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L’ AND SPECTRAL THEORY FOR A CLASS OF GLOBAL
ELLIPTIC OPERATORS

DAVID GURARIE

The present paper deals with certain aspects of “global elliptic theory’’ on
R” and continues our research started in [13], [14], [15], [16]. To explain the problem
and provide motivation we shall describe some essential features of “local theory”
(compact manifolds and domains) of regular elliptic operators.

One such feature is the presence of a “single model”, the Laplacian —A
upon which the theory is based. Indeed, the scale of Sobolev spaces H, is defined,
in terms of “fractional Laplacians’ (1 — A)*. Al operators can be compared
by their order = degree of the principal symbols a(x, £) in the ¢-variable. Precisely,
degb(x, &) < dega(x, &) implies “B = b(x, D) is small (compact) relative to 4 =
= a(x, D)’. Therefore, lower order terms can often be ignored in calculation.

An illustration of this principle is the celebrated “Weyl formula’ for asymp-
totic distribution of large eigenvalues of a selfadjoint elliptic operator

N(2) = 4 {eigenvalues < A} ~ Vol{(x, ¢) : principal symbol 4 < A} as 14— oo.

Notice that in the local theory any regular elliptic operator can serve as a
“model”’, as all of them are comparable to (— A)*, and hence to each other.

In the global setting R” (non compact manifolds) or in the case of degenerate
(singular) ellipticity no such single model exists. Depending on the particular type
of degeneracy (singularity) of coefficients one can construct different classes of
operators and appropriate “Sobolev scales’’. Degeneracy-singularity is often measured
in terms of the distance function d(X) = dist(x; 092), to the boundary of the region Q.
Precisely, let a(x, &) = Y a;;(x) £,¢; be the principal symbol of 4. Denote by
{Aa(x), ..., 2,(x)} the eigenvalues of matrix (g;;(x)) and by A(x) the isotropic modu-
lus of ellipticity,
i AxX)ERL Y, a;(x)¢&;< Const A(x) 2.

Typical conditions are given either in terms of A(x) or {4,,...,4,} as

() Ax) = O(d~*(x)) as x — 0Q (singular)

(I) A(x) = O@@d@*(x)) as x — JQ (degenerate).
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Degenerate elliptic operators of type II are usually called “Tricomi” (or
“Legendre’” in the ODE case). Both classes were studied by a number of authors
(see [29] and references there).

The class of operators considered in the present paper is modelled after
— V-pV + ¥V (and its powers), where both parameters: “metric’’ p and “‘potential’
V can be “large’ (singular) or “small’’ (degenerate) on a “‘thin’’ subset X< R".

An interesting case arises when “degeneracy’’ of p is combined with “singu-
larity”” of V,

p=dx, ) and V=xd(x, ) ",

These are so called Laguerre-type operators modelled after the classical:

2 2
0x0 + s on (0, oo).
4x

More generally we consider m-th order elliptic operators of the form,

1
Ao=p Y, a.D*+ V =pax;D)+ ¥V, D=—0,; a=(n,...,%);
i

lal=m

with “uniformly elliptic”” symbol a(x, &) = Y, a,(x)é* and their perturbations

o[ =m

B =Y, b,(x)D* with possibly singular coefficients b, .

laf<m

Typical problems of operator theory that will be addressed in the present
work are:

(I) Closedness and essential selfadjointness of operators 4 in L? and other L?
spaces, their LP-domains.

(I) Existence and estimates of the resolvent R, = (¢ — A4)™!, the semigroup
{e~*'} and other related ‘“kernels of 4”".

(IIT) Smoothing properties of {R.} and {e~*'} in L” or Sobolev scales (so
called “hypercontractivity problem’).

(IV) Conditions for compactness of (¢ — 4)~%, and “relative compactness’
of B with respect to A, ; structure of L? (LP)-spectra of A.

(V) Estimates and asymptotics of eigenvalues and eigenfunctions of A.

The basic tool in studying problems, (I-—-V) is the resolvent kernel of A.
We construct and estimate R_ in Section 2. The method of Section 2 follows
ideas” of our earlier work [14], [15], [16], namely, using pseudodifferential calculus
and perturbation expansions. However, the analysis becomes more involved due
to a more complicated structure of operators.
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After the main estimates (Lemma 1) we proceed to corollaries and applications
(Theorems 1 —4), which include

(i) L’-closedness and essential selfadjointness of A;
(ii) bounds on Lr-spectra of A4;

(iit) resolvent summability;

(iv) existence of a holomorphic semigroup e~*;

(v) “LP-smoothing™ of kernels R_ and e~*4 (“supercontractivity”).

Section 2 is preceded by an introductory part (Section 1), which describes
pairs of parameters (p, V) and introduces the corresponding classes of symbols
and operators 4, and A = 4, + B. We establish basic properties of 4, and A,
such as product formula, adjoint, etc., and give a few examples both of second
(Schrodinger-type) and higher order. Among others they include some classical
orthogonal polynomial expansions, like Hermite and Laguerre, as well as their
multivariable modifications.

The last section of the paper (Section 3) is devoted to spectral theory of
operators A, and 4. First we give conditions for compactness of R, and relative
compactness of B with respect to A, and establish “L?-stability’’ of the discrete
spectra. Finally for self-adjoint operators A with purely discrete spectrum we derive
an analogue of the “Weyl formula’ (1) for asymptotic distribution of large eigen-
values (Theorem 6).

The latter problem has a long history (since the early work of H. Weyl in
1913) and an extensive literature.

Most of the known results fall into two large categories: “‘local results” on
compact manifolds and domains (see for instance [1], {17]); “global results’” for
Schrédinger operators — A + V(x) on R” ([23]).

There are fewer global results for operators of higher order and “‘singular
coefficients’’. We shall mention the papers {29], [19], which established “Weyl
formulas’ for fairly general pseudodifferential operators of “Weyl-type’; the
paper [5] which treats differential operators with singular leading coefficients,
recent works [24] and [26], [27] on newly discovered “‘nonclassical asymptotics’’ for
Schrédinger operator with ‘“‘degenerate potential’’, and the monograph [29], which
treats among others Tricomi operators. Qur result is close to [10], but it differs
from all of the above references due to its emphasis on “degenerate-singular”
coefficients.

In conclusion let us remark that Theorem 6 along with other results of the
paper extends to pseudodifferential operators of the form pa(x, D) + V.

4 — 2129
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Another extension includes a wider class of ‘“nonisotropically deformed”
symbols a(x, ) — a(x, pf) + V, where the scalar (conformally flat) metric, of
the present work is replaced by the matrix-valued p = (p;(x))}.

This extension will be discussed elsewhere.

We acknowledge the referee’s comments that helped us to clarify the argument
and improve the presentation of the paper.

1. CLASSES OF SYMBOLS AND OPERATORS

Throughout the paper we shall consider functions and differential operators,
defined either on R” or a complement @ = R\ of a “thin’’ closed subset X
in R", e.g. a hypersurface or a closed submanifold.

The coefficients (symbols) of operators are assumed to be smooth, and in the
case of R™\Z they are allowed certain “degeneracy’’ or ‘“‘singularity”> on X. The
singularity or degeneracy will by typically measured in terms of the distance
function: d(x) = dist(x; X).

The following standard notations are used:

1) L?(w) denotes a weighted LP-space on R” (or Q) with the norm

- ( S!fw - dx)l"’ -

2) Le(Q) is a subspace of L®(Q) which consists of functions that vanish
at {Z} and {oo}, ie.

sup{|f(x)| :'x]>R and d(x,%) <¢} -0 as R— o0, ¢ = 0.

3) Given a symbol p(x, ) on QX R", p{3} denotes its partial derivative Df0%p,
of multiorders « in ¢ and f in x where D = — id.

4) If p depends on one set of variables (x or &) then p® will denote its
partial derivative in the appropriate variable.

5) The standard (left) convention will be mostly used for YDO’s P = p(x, D)
with symbols p(x, &)

_ iE-(x~ ) dvd
Ply] o SSG p(x, Hu(y)dyde,

but occasionally another (right) convention and more general symbols p(x,y, &)
will appear.

The class of operators A of the paper is described by two parameters: smooth
functions p 20, ¥ > 0. Without loss of generality we can assume V(x) > 1.



GLOBAL ELLIPTIC OPERATORS 247

Any such operator A4 will typically consist of the principal part 4, =
=p Y, a x)D* + V and a perturbation B(x) = ¥, b,(x)D=.

la]=m lajgm

Parameters (p, V) and coefficients {a,; b,} are subject to certain constraints
which we shall now describe.

These conditions are written in a somewhat technical form, convenient in
the proof of resolvent estimates of Section 2, but their real meaning is to provide
a control of degeneracy-singularity of (p, ¥) in terms of ratios p®/p; V@V etc.

The basic hypothesis on {a,(x)} is the standard uniform ellipticity

CilE" < Y, a(x)&* < Glej™  with Cy, Cp > 0, uniformly in x.

i =m

A ‘prototype of our basic hypothesis (H1) below is the “finite propa-
gation speed”” condition of [15] in case of one (leading order) parameter p,

(1.0) p@p = O(p~1alim), luf < m,
+ co d
which is close to the more conventional S m_v = co (cf. [6]). It essentially limits

Ve

the rate of growth of p at co by O(lx;) (for m-th order operators!).

In the case of two parameters (p, ¥} we have more flexibility, and the proper
analogue of (1.0) is given in terms of functions

(1) F() = (VY T (0 o) L V17

where o, ...,aF; B, ..., B are tulpes of multiindices with combined norm
N=3 [+ Y B

We require

(H1) F(x) to belong to L*® or LP on R"\Z for any tuple o, ...,of; L, ..., B,
of norm Ngm = order of A4,.

An equivalent simpler form of (H1) can be stated in terms of logp and logV,

(H2) F(x) = (p/V)Nim(log p)*(log V)B e L*® (or L), for all «, B, whose
combined norm N = |o| + |Bj<m.

The coefficients a, of the leading part are assumed to satisfy
(H3) prima By e L=,  |fj<m,

in addition to the uniform ellipticity hypothesis.
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Condition (H3) allows to replace the parameter p in the numerator of the
function F (1.1) by products pa,, so that the hypothesis (H1) would still hold.
This modification of (H1) will appear in the proof of the Lemma (Section 2).
The coefficients b, of the perturbation are allowed local L’-type singularities.

Precisely, as in [14] we introduce for each term b,D* with b, € L”= its fractional
order

(1.2) vV =y, =" 4 o,
Pa
and require
(H4) v<m = order of A4,, for all terms 5,D* of B.

The fractional order v in (1.2) combines the differential order | and local L’-

-singularity of the coefficient. The extra term " corresponds to a shift in the LP-

P
o . . . 1 1 1
-scale caused by multiplication with an L”-singular coefficientb,: — - + - -.
P P Pa
This shift can be balanced by a fractional derivative (—A)~*2 of order 5 = L )
Pa

according to the Sobolev-Hardy-Littlewood inequality ({28]). So an L”*-singular
coefficient has the same effect on the LP-scale as a “fractional derivative” of
order .
Py
In addition to (H4) we need some control of b, relative to parameters (p, V).
The latter is conveniently expressed in terms of weights

(1.3) w = p-vimprm-1
where v is the fractional order of b,D*. These weights interpolate between w = 1/p
(for v =m) and w = 1/V (for v = 0).

We require b, to be in the weighted L”-space

(H5) b, € L’(w), where w = p-vmpvm-1 and vy = o +
Pa

ol
i

Let us remark that for top order coefficients {b, : @' = m} one has p, = oo,
w = 1/p and condition (HS) reduces to

(1.4) by()jpe L.

In other words, top order b, behaves like leading coefficients pa, of 4, except no
regularity of b, is required in general.
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Often instead of (1.4) a stronger “LP-hypothesis’® will be used

(H6) b./p € LP(R™\Z) for top order coefficients {b,},, = -
Let us comment on conditions (HIl—6) and classes of operators A4, and B.
1. An alternative pair of parameters can be used to describe our classes 4, =

= pa(x, D) + V: functions ¢ = |/p/V and V.
Then (H1) reduces to

P\ Y@ )
(H?) @'*l —- - and il ——are in L* or LY for ail |aj<m.

@

The hypothesis (H7) is much easier to check. It has another advantage as
one of parameters ¢ is now “‘uncoupled’’ from the other V.

Condition (H7) has implications both for ‘“global” (o0) and ‘“local” (Z)
behavior of (¢, V).

The first condition (H7) limits the rate of growth of ¢ at {co} by O(|x)),
respectively p/V = O(|x|") for m-th order operators (cf. [15]).

As for V, (H7) puts a very mild constraint on its possible growth rate at {co}
(see examples below).

Locally conditions (H7) allow ¢ to degenerate (vanish) on X to “first or
higher”” degree, namely @(x) = O(d(x)), d = dist(x, X).

One interesting case arises when ¢(x) vanishes on ¥ to degree p > 0, i.e.
p(x) = O(d#(x)). If p < m we do not get sufficient “nullity’’ of ¢ unless the potential
V(x) is itself “singular’® to degree v=m — p, i.e. V(x) = O(d*(x)). Thus locally
we must have

(1.5) w + v = “nullity of p>” + “singularity of V'’ >m.

As an iltustration of this principle we shall discuss operators of the Laguerre-
-type (Examples 2.3).

Condition (1.5) provides only “L®-hypotheses’’ (H1—7) on functions F, ¢ etc.,
whereas in most results below a stronger “L$’’ is needed. The latter can be achieved
by strengthening (1.5) to

O(d(x)) with s > 1 (i.e. u + v > m) “locally”’
(1‘5) (p(x) — ( ( )) i f !‘l’ . ) y
O(lx[) with T <1 “globally”.
The most interesting critical case: 4 + v =m and 7 =1 (like Laguerre’s)
can still be treated by the method of Sections 2, 3 but requires more careful analysis.
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2. Let us observe that our class of symbols o(x, &) = pa + V, and powers
(pa + V)*, formally belong to generalized WD Calculi of Beals-Fefferman [4] and

m
Hoérmander [18). Indeed, introducing “weight factors’ ¢(x, &) = VW and &(x, &) =
= || in the terminology of [4] hypothesis (H1) implies the following basic estimate
of Beals’ classes

lo{8/o] < Const @~ l=lp-18]
n

However, other hypotheses of [4] when specialized to ¢ = |/ p/V and & = &
are different from our (H1—7). In particular, they do not allow local “degeneracies’
and “singularities”’. Therefore the general theories of [3], [4] and [18] are not readily
applicable.

For this and other reasons we prefer to work directly with symbols (pa + V)
and exploit their specific structure rather than involve the general machinery of
Beals-Hormander.

Let us also observe a certain similarity of our hypotheses (H1—7) and those
of H. Triebel ([29], Chapters 6, 7).

Now we shall state some properties of the operators Aand A + B.

PRrROPOSITION 1. The product A-B and the adjoint B* of two operators A =
= a(x)D* and B = b(x)D?# with coefficients a € L°(w'); b e LYw'"), of fractiona

orders v(A) = L. lal and v(B) = LI |B:, belong to the above class of perturba-
p q

tions provided b(x) is sufficiently smooth, i.e. be L‘Zl(w") for the product, and Li;(w)
for the adjoint. Moreover, the fractional order of the product, v = v(4-B) = v(4) +

7o

+ v(B) and the corresponding weight w = w'w

It is assumed here that fractional orders v(4), v(B) are bounded by some inte-
gers m', m" (W(A)<m', v(B)<m') and the corresponding weights w', w"', w
are determined by the pairs: {v(4); m'}, {v(B); m"'}, {vim =m’' + m"'}.

The proof easily follows by expanding the product and adjoint according to
the standard “Leibniz rule”

(1.6) A-B=a (“)bta-thHv.
osySa ‘))

Then using Sobolev embedding

b(a-y)eLI‘;' cL”; ~1__ =_1_ _M_

P q n
and Holder inequality
b(a—y) < b(a—y) . 1 . I 1 . . 11t
”a ”L'(w)\ “a” Lp(wr)” ”LP’(W,,) . T = ; + ;T W =ww
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one can show that all terms of (1.6) belong to appropriate LP-weighted classes
and their order v<v(4) + v(B). Similar argument applies to B*.

From Proposition 1 immediately follows that any power (4, 4+ B)* (k—integer)
belongs to the same class of operators provided coefficients of A4, and B are
sufficiently smooth. The latter can be interpolated to fractional powers, when all
definitions above are properly modified to include pseudodifferential operators of
the form: pa + V (cf. [29)).

Another property of operators 4, + B is given in

PROPOSITION 2. The class of operators A, + B is invariant under conjugation
with any function w = p*V* or, equivalently, w = @*V".
Indeed, by the product formula the conjugate ¥DO w~*4,w has symbol

(1.7) pa(x, &) + p % a®(x;¢) w_(a)
w

1gjalsm

(2)
But ¥— ~ (Inw)® = (lng + In¥V)® is of order O(p~1#) by hypothesis (H7).
w

(2)
So all terms b(x, &) = p~w—-—a(")(x; &) of (1.7) represent perturbations of the
w

above type.

An important consequence of Proposition 2 is that it allows to extend most
of results stated below in LP-spaces to weighted spaces LP(w) with any weight
-w = p*V*. This in turn can be used to extend our results to operators on certain
manifolds diffeomorphic to R”.

We conclude this section with examples of pairs (p, V) and operators 4, + B.

ExAMPLE 1. (Schrodinger-type operators).
A=—V-pV+5b-V+V.

Hypotheses (H1—4) reduce to

- 2 2
% . Yoo . PP, POV ;s (or L)

1.8 /= sy T

(18) Vev v 14 y2

and

(1.9) B eLP(w), where w = p=*2P¥2-1 and v= " <1.
P
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Using the pair (@, V) and functions loge, logV instead of (p, ¥) we can
rewrite these conditions as

h2

oV
0p; @dp; (p7 and ¢? -UVVEUo (or LY.

One specific example is @(x) = |x]°, V =~ exp(jx|*) for large x, where 0 < s <
. ) P(x
< 1,5 + © < 1. These can be modified by any polynomial factor, e.g. i (A))’/
+ x%)2

(I = degP). The LP-hypotheses at co is provided by s + 7 < 1.

Other specific examples include differential operators associated to classical
orthogonal polynomials,

ExAMPLE 2. Operators of the “Hermite’” and “Laguerre” type: H = — A +
| D
+ (x}"+ 1) and L = —3-|x|°0 + il !+ ! s +r=2).
X T

Conditions (1.8) that involve only the potential V(x) become

2
s ; FV. e L* (or LY).
V3/2 Ve

They are obviously satisfied for ¥ = |x|” + 1 as well as many other polynomial
(and exponential) functions. Note that “L&"” here refers only to the global behavior
at oo (as p =1 has no “local degeneracies™!)

2 2
The classical Laguerre operator L, = — dx0 + Xt is usually considered
4x
. ) . x* 4+ o?
on the half line R, , but the natural extension, —ojx|d + - , allows to
Ix

translate all results from R to R, .

To verify hypotheses (1.8) for L, we calculate: @ = /p/¥V =@x/Vo® + x)
and perturbation coefficient 5 = 1 € L, has “fractional’’ order v = 1.
Hypotheses (H1—5) are easily seen to hold in the “‘strongest’> LP-form at {oco}

p
I+ 1 provided

and this is also true for more general operators: — 0[x]°0 +
. x i
p > 1. Locally (at the “degeneracy’” X = {0}) Ly’ holds iff s + v > 2 (sub-
critical case).
The Laguerre operator L, itself represents the critical case (s + t = 2),
so only a weaker “L>®-hypotheses’” holds near X. However, evaluating L*-norms of

’

1 4
¢ and @o" we get |||l = —, 00" |l = o , both become small for large o.
o o

Therefore all results of Sections 2, 3 are still applicable to L, with sufficiently large o.
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In connection with the Hermite and Laguerre operators we shall mention
paper [2], which proved L”-convergence of the Hermite and Laguerre expansions
in the range 4/3 < p < 4. This implies, in particular, stability of L”-spectra in this
range: “LP-spectrum of L’ is equal to *‘L?-spectrum’ for all 4/3 < p < 4.

The results of Sections 2,3 (Theorems 2, 4 and 5) extend this corollary
of [2] to the whole range of L?, 1 < p < oco.

COROLLARY 1. LP-spectra of operators H and L, with sufficiently large o
are identical in all LP-spaces, 1 < p < oo, and equal to their L2-spectrum.

ExampLE 3. A multivariable version of “Laguerre-type’” operator can be
defined as in Example 2 with |x] being the norm of x & R”.

More interesting versions arise when |x| is replaced with some other functions,
('x2 + yz)p/z + C

[xpiT

Here the de~eneracy set is ¥ = {(x, y) : xy = 0}, all hypotheses (H1—5" are
satisfied, if s + 12 2;p =2t for “L>;0r s + 7 > 2;p > 1 for “LP”. So all results
of Sections 2—3 apply to such L.

like L = — 0-{xyl*a + on RZ.

2. CONSTRUCTION AND ESTIMATES OF THE RESOLVENT
AND SEMIGROUP KERNELS

Our basic method follows [14],[15]). Namely, we first construct the ‘free’
(unperturbed) resolvent R? = (¢ — 4,)7', using pseudodifferential calculus, then
proceed to R, = (¢ — A)~* via perturbation series expansions.

The free resolvent R? is approximated by its parametrix K = K (x;x —y)a

YDO with symbol oy = ————1———— Here ¢ varies over the set C\R,,

¢ —(pa+ V)
complement of the range of symbol pa + V. By the standard product formula
we get

(C —AO)KG = I_‘Lg

where the symbol of the remainder, a ¥DO L_, is computed explicitly

1 (1
2.1 oy = ~ (pa + V)m(————-—) .
@1 t 1<|z;q;<m ! c—pa—V/]y

From (2.1) we get R? in the form of the Neumann series

2.2) R = K¥ LF = KU — L),

0
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Given R} = (¢ — 4,)~* we construct R, = (¢ — A)~! via the perturbation series
expansions

(2.3) R, = R; § (BRY = RS ¥ [BK,(I — L)~
k=0 0

To show convergence of both series (2.2)—(2.3) and establish resolvent
identities for R® and R we need norm estimates of operators L. and BK,. These
are given in the following lemma, which is similar to Lemma 1 of [14], [15].

LEmMMA 1. Operator L_ is bounded in all L"-spaces 1 < p < oo, while BK,
is bounded in the range 1 < p<wmin{p,}, the minimum being taken over LP-classes
of all coefficients b, .

Both operators are estimated as follows

24 Ll < e(0); NBKN < () X 1Bl

with c,(c) depending on the leading symbol, a(x, ), and parameters (p, V).

We shall outline the proof of the lemma, and give explicit form of constant

c,(¢) in the RHS of (2.4).
It is convenient to introduce the following functions:

k .o ;
II » I vie's
_ _ 1 1 . _ D! '
25 F=F(x= oy N = Y+ Y <m

and a modified version of F, where derivatives of p in the numerator are replaced
with derivatives of a,p, i.e. leading coefficients of A4:

(26) weight: w = w;(x) = pV"/miC _ Vi‘v/m—l
2.7 argument (angle): 0 = 8(x) = arg(c — V(x));
and

. - &
2.8 a “uniformly elliptic’” symbol: ¢ = o,(x, ¢) = —————
=Y T ) oo e, O

with |v| < Nm.
The function F, and the weight w, are paramster depzndent versions of F and

w of hypotheses (H1—5) of Section 1 (the latter corresponds to ¢ = 0).
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By the product formula (2.1) the symbols of both operators L, and BK,
consist of linear combinations of terms,

1

pé”(——l—) ; [v|=m=[y and bafv(_‘—‘_
R c—pa—V

s [V[ = '—I?l'
e Jor 17

1

Expanding each composite derivative 0 (
¢—pa—

V) by the “iterated chain

rule’’

k ; k
(fea® = % e, k(@ [[a); Yol =y
[ PN 4 1 1

lé'k.<|y[
we can rewrite the symbols of L and BK, as finite sums of terms

k | .
&1l (pa)h II v’
1 1

Q9 Y(x, &) = ;0 with [V < (b + )m — [y].

(6 — pa—yy+it

Next using homogeneity of a(x, &) in ¢ and “pulling out’’ the dilating factor

5 = 800 = ValE =71

from the numerator and denominator of (2.9) yields a representation of ¥ in terms
of the functions and symbols (2.5—2.8), introduced above.
Namely,

¥ = F(x)ay(x; 6&).

The corresponding ¥YDO ¥(x; D) is thus reduced to the product of two
operators: a multiplication with a function F(x), followed by a so-called J-dilation

(15, —;—M( x;§), of a uniformly elliptic kernel
M(x; z) = S"o(x; §eic=ds; z=x —y.

If the symbol ¢, has strictly negative order (as in the case of L), then its
kernel M(x, ¢) admits by [14] a convolution type L'-radial bound

|M(x; 2)| < C(O)H(z])
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with

(2.10) H(z)) = {' + iz, 'Z: 3 = 7o sin 0/m

and with constant C(6) = c,isin (/2] -# for a sufficiently large u > 0.
In [15] we observed that J-dilations of an [Ll-radial kernel H{|x —»,

consequently My, can be estimated in terms of the Hardy-Littlewood maximal
function

1
W) = sup S jux — 3)1dy.
r>0 r
Irl<r

Indeed,

| Hsu(x)| < || Hu*(x).

Combining the latter with L™-bound of F, (hypothesis H1) and the standard L*-
estimates of the maximal operator u — u* we derive the following bound for operator
L in all LP-spaces (1 < p < o0)

211 Ll < X WF Ml = ¢, 3, IF sin=#(0) -

The summation in (2.11) extends to all terms in the expansion of L =
= Y, F(x)My(x, z), and yields the required norm estimate of L.

The argument for BK, goes along the same lines, but some modifications are
needed to account for L”-singular coefficients.

Precisely, by the iterated chain rule symbol of BK, is written as the sum of
terms

k P 4 .
II (pa)ia) I Vi)
1 1

e — pa— Vyrin

¢ vl =km + laf = |y|

where each tuple of multiindices {’ ; p’} represents a partition of y = ¥, o' + Y 5.

As we already observed the L= -singular coefficient b, shifts the scale: RS - RS + L

p p Dq
and this shift is to be matched by a suitable negative fractional derivative. So we

multiply and divide BK_by the fractional Laplacian A° = (—A)%2 and write the
expansion of BK, as

b

(2.12) BK, =Y, F(x)My(x; 2)A~%(2).
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Now the resulting W'DO M;, the middle factor of (2.12), has symbol 6, =
= (— f ’6—'5;, which may be of order zero, if B has terms 5,D* of the highest
et —q

fractional order 2 + lof = m.
p(l

The corresponding WDO-kernel M(x,z) becomes a singular integral of the
Calderon-Zygmund type ([28]). It does not admit an L!-convolution bound. We
proceed as in [15], i.e. split o4 into the sum 6° + o' of two symbols: 6°, homogeneous
of degree zero in &, and ¢ of strictly negative order. The corresponding kernel M
splits into the sum M° + M*. Here the first (Calderon-Zygmund) part M° is not
affected by d-dilations (because of the “O-th degree”” of homogeneity), while the
second (Ll-radially bounded) Mj can be estimated by the maximal function as
above.

Next we write down explicitly the multiplication factor F~§ in (2.12)

k o .

5 I1 (pa)= [ V"

F, = 2 ! L = (wb,)F..
p(lll'f‘f)/”’|g — V[l“(J‘IH‘s)/'" pk‘lvwg — V|l']‘l1'l

In other words 1":; is a product of an L”-function wb, and an L*®-function
F. (2.5).

Combining estimates of M with the standard Hélder inequality for wb, and
Sobolev-Hardy-Littlewood for A-° we get the final result

(2.13) IBKAI < ¢, 35 lbawlt || F sin=#0]|o,.

Norms of b, in (2.13) are taken in appropriate weighted L’-classes with
weights w, given in (2.6).
The limitation on the scale 1 < p < max{p,} resuits from the fact that the

fractional Laplacian A~° ( = »rl—) in (2.12) is not allowed to “push’’ L? outside the
Pa

range 0 < L < 1. This completes the proof.
4

In order to apply Lemma 1 to summation of series (2.2—2.3) we need to
analyse the RHS of estimates (2.11) and (2.13).

Remembering that ¥ > 1, choosing a specific value of ¢, e.g. ¢ =0, and
replacing ¢ — V(x) in the denominator of F, (2.5) by ¥V(x) we estimate

V(x)___
¢ — V(x)

14+ N:m
sin”# ;j2.

(2.14) £, sin=#0, < lI Folleo SUP

Here F, is the original function (1.1) and Oy(x) = =.



258 DAVID GURARIE

Similar estimates hold for ||wb||, . But these bounds are not enough to sum
geo metric series (2.2)—(2.3), unless norms ||Fll, and |wb||, are sufficiently small.
So stronger hypotheses on p, ¥ and b, are needed.

One of them is the LP-condition (instead of L*) on the functions Fand top

order perturbation coefficients {b,},4-, (L"#-condition on b, with p, < oo, does not

require any change). Both conditions “L®’’ and <“L"*” withp, < oo allow to divide
b = b, (respectively F) into two parts: compactly supported b’ and small b":
suppb’ = {|x] < R, dist (x, £) > ¢} and 16" {l,, < . Moreover, b’ can be chosen

in L? so that the fractional order v/ = —117 + || is less than n1. The order v will

show up in the estimate of |bw_|| below.

Such decomposition is obvious for coefficients b, of order |a} < m. As for
the top-order b, we simply require |jb,/p|l,, to be sufficiently small.

To show that each term [[pbD®K !} becomes small for large ¢ we decompose
b =b' + b, as above, then use estimates (2.13) of the lemma for both terms. Let
us start with &',

DK< ¢ S 1w lp lIF, sin ™,

where w, means the weight p~»/|¢ — P|v'/"-1 of order v < m.

Note that as long as suppd’ is separated from the boundary X any particular
choice of the weight, w or w’/s in the L? -norm of b’ is irrelevant, as all spaces L?'(w)
with weights w = p~7¥*-1(0 < 7 < 1) are equivalent to the standard L? on suppd’.

The important point for us is ¢-dependence of w’ (or w), which allows to prove
convergence [[b'w.|| - 0 as ¢ - co. Indeed,

2.15) 1wl < ¢ [l max l — Vjin-t
supp &’

the exponential v//m — 1 being negative and x varying over a compact region
suppbd’, the RHS of (2.15) obviously goes to zero as ¢ — oo.
As for &'D°K, it can be estimated as in (2.14)

! . A 'vym—~L
|wam<qwmm<mwwmmﬁ—K@g .

So the norm |}6"’D*K_|| is controlled by ||''w|| which is ge-small. A similar argument
(partition into “‘compactly supported” and ‘‘e-small”’ parts) applies to functions
F, subject to the “L{-condition”.

Notice for any fixed ¢ > 0 and small angle § = arg¢ the RHS of (2.15) can
made arbitrarily small by choosing sufficiently large r = |g| =r,.
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Therefore both series (2.2) and (2.3) converge absolutely in the region
(2.16) Q ={c:largcl > 0; r = [¢]| > 1o}

for any 6 > 0 and a sufficiently large r, = ry(0).

REMARK 1. Sometimes it is convenient to replace “L3’’ with the stronger
“Lg’-hypothesis: potential ¥ dominates p in such a way that quotients F in (HI)
remain bounded after the exponent of ¥V is lowered by ¢ > 0,

k . j
H p(a') H Vi)
1 1

pk—N/n1I/I—£+N/m

L=,

@) Fr =

-, p =14+ N/m, so

v

Then one easily verifies that || F. ], < ||F*lle supI

>0 ¢ —
HFg”oo < r‘SISingl_ﬂllFe”oo; r = |C!’ 0 = arge.

Therefore the first of two series, (2.2), converges in the complement of a
parabolic-shaped region

(2.17) Q = {relsinf|* < C}

about R, . Two examples illustrate the “L;°*’-hypothesis:
1) Bounded ¥V, consequently “finitely propagating” p (studied in [15]).
II) Bounded function p (with all derivatives) and V satisfying |V@/V| <
< const, i.e. operators of the form: “unifermly elliptic’” + “large potential’.
In both cases one can show

[ Fello < Cr=tim.

So under any of two assumptions “L$” or “L;” on functions

. 1 .
ﬁpu';nw.e’)
F=—"t—": N=Y [+ Y5

pl— Nimp/i+-Nim

and top-order coefficients {b,/p},, = norms of operators L_and BK, become small
(less than 1) in the appropriate region Q - C and therefore both series (2.2), (2.3)
converge absolutely in Q.

REMARK 2. As we already mentioned in the critical *“L*-case’’ (Laguerre-type
operators of Examples 2, 3 with s + 7 = 2) the RHS of (2.11) and (2.13) does not
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decrease with ¢ — co. Therefore more careful analysis is required. To get RHS <
< 1 for convergence of series (2.2) — (2.3) it suffices for instance, that functions
F(x)(2.5) with ¢ = 0 (or some fixed ¢,) have sufficiently small L*-norm. This was

x2+a2

shown to be the case for the Laguerre operator: L, = 0x0 + , with

4x
sufficiently large . More generally, it holds for operators: —(d- pd)™%? + V with

prdix); Va :1% in the critical case :s + © = m, provided C > 0 is suffi-
X T
ciently large.

Now we can state the first main result of the paper.

Let Ay and A = 4, + B be operators of Section 1 satisfying “L%”’ (or “L>)
hypothesis on functions {F = F.} and assume that top order perturbation coeffi-

cients {b,},, -, belong to LF(1/p). Both operators are considered on the minimal
domain CP(R").

THEOREM 1. (i) Operators A, and A are closeable in all LP-spaces:1 < p < oo
for Ay and 1 < p < min{p,} for A (the minimum taken over L'-classes of coeffi-
cients b, of B).

(ii) The LP-domains of operators Ay, A, B satisfy

Dom(B) =2 Dom(4,) = Dom(4).

(iity A formally symmetric operator A, withmin{p,} »21is essentially selfadjoint

on L, i.e. DomA* = Dom A = closure of the minimal operator.

(iv) Series (2.2)—(2.3) converge absolutely in the region Q given by (2.16) or
(2.17) and define resolvenits RY = (¢ — Ag)™t and R, = (g — A)~1.

The main ingredients of the proof are aiready contained in Lemma 1 and sut-
sequent discussions, in particular, convergence of series (2.2) — (2.3).
The rest will follow from two resolvent identities

(c— AR =1, (c— AR Sf=f allfelLr
(2.18)

R(c—A)f=/fi R(c—Af=f, allfinDom4,orA.

For the operator A both identities are verified straightforward by definition
of series (2.3). For 4, the 1-st identity (2.18) also follows directly from (2.2).

The second is less obvious because of the apparent asymmetry of (2.2). To prove
it we construct the left resolvent of A4,, treating the latter as an operator of
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left type
Aufu) = ¥, D[pa,u] + Blu]

>

and transforming all expansions and estimates of the lemma from the “right-type’
to “left-type”” WDO’s. _

Once both (right and left) resolvents of A, are shown to exist they must be
equal.

The relation between domains, part (ii), follows from the a priori estimate
of the lemma,

1Bfll, < ell4ofll, + ClIfll, all f€DomA,,

orany ¢ > 0 and C = C(g).

This estimate could also be used to establish essential selfadjointness of 4
(cf. [20], [21)) provided the formally symmetrized operator A4, is shown to be selfad-
joint. In fact, selfadjointness of both (symmetrized 4, and formally symmetric A)
follows directly from the existence of resolvents in C\.Q.

Finally one can show (cf. [15]) that the domain of A4, is the same asof the
“model operator’”’: p(—AY"? 4+ V, ie.

Dom(dg) = {u: || V(I — A" ull,» < oo}

The latter space is a modification of the LP-weighted Sobolev space LZ(w)
of [15], (see also [29], Chapter 6) with the standard Laplacian — A being replaced by

the new “conformally stretched”” Laplacian A, = V-9V with ¢ = \//7/7
"~ An obvious consequence of Theorem 1 are bounds on L’-spectra of oper-
ators A: spec A < C\Q. These will be discussed in more detail later on (Section 3).
Another application is to so-called “resolvent summability”’.

THEOREM 2. The resolvent R, = (¢ — A)~ of an operator A of Theorem 1
has

. . — C
() the “maximal rate” of decay in any nonzero direction: |RJ|| < — as ¢ =
9

=rel? —» co, 0 3 0,
(i) it satisfies

GRu) - u in LP-norm as¢ — oo
ium'formly in any sector {¢c = rei® :|0| = 0, > 0}.
Proof. (1) It suffices to show that
2.19) llcK |l € Const
for the operator K. .

5 — 2129
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Indeed, by (2.2) — (2.3)
R, = Rl — BR)-! and R®=K(— L)

and by Lemma 1 both operators (I — BR%)-! and (I — L)~! remain bounded as
¢ — oo. In fact both L, and BR? go to 0 as ¢ — oc.
The kernel of the operator ¢K_ is of the form

i0
¢ My(x;z), where the symbol o, = .e
lc — V]| e® —q

in notations of Lemma 1. Now (2.19) easily follows as in the lemma.

(ii) We first show L’-convergence
(2.20) ¢Ku—»u as ¢ =re¥? - oo

and then estimate differences ¢(K, — R)u and ¢(R? — R )u.
The estimates of differences follow directly from series expansion (2.2)—
—(2.3) and Lemma 1 asin[14], [15}. The proof of convergence (2.20) is however,
" different from the “uniformly elliptic case™ [14], because of the lack of global

Ll-radial bound of 4.
Writing ¢k, as l ¢ - M (x; z) we observe the following properties of a

¥DO kernel M(x; z), whose symbol ¢ = ” s
ev —a

0 { Mt —pay =1,
(2) M(x;z) admits an L'-radial convolution bound H(|z|) (2.10). Now we

estimate the difference

c 1

@20 ekl —ut)l < s

()] + SHa(lx — WD) — u(y)] dy.

Since the family of LP-operators {¢K,}, was shown to be bounded in part (i)
it suffices to prove convergence ¢Ku — u on a dense subset of compactly supported

u € Cy(R"). Assume suppu < {|x| < ry; dist(x; 2) > &}.
Notice that on any compact set @ < R*\Z, the dilating factor §(x) =

m
= Vp()/lc—V(x)] -0, as ¢ - co uniformly in xeQ. So (Msu —u) =0 in
L*-norm and consequently any LP-norm on Q.
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It remains to show the convergence M u(x) — u(x) in LP-norm outside any ball
{Ix| > ry}. Taking r; = 2r, (twice the radius of the support of u), we observe that

u(x) in the RHS of (2.21) becomes 0. The resulting integral SHa(\x — y)u()|dy,

after the change of variable y — )" = xé(—)y , can be estimated by
«
2.22) ullo SH(y') dy',
B

integration over the ball B = {|y" — x'| < ry/d} centered at x’ = x/5(x).

Next we observe that the centers x' = x/6(x) remain bounded away from 0,
as x varies over the region {|x| > 2r,}, by the “finite propagation speed’’ condition
(H7) of Section 1, i.e. 6(x) = O('x|). At the same time the radii of balls B are less
than |x'//2, so the region swept by the whole family {B} is bounded away from 0.

Remembering now explicit radial bound of H(z) < Ciz;~("+9 for large z we
estimate

T ,
Sde' < Const Hixg) rajon = o8str . Const £.00).

N
x|+ lg — V)it |x|"

B

The function g.(x) obviously belongs to all L*-spaces (I < p < oo) in the
region {|x| >2ry} and its LP-norm goes to 0 as ¢ — oo.

Thus we have shown that for any compactly supported u the LP-norms of the
“Jocal”” and “global’” parts of (cKu — u) converge to 0, as ¢ — oo, which proves
(2.20) and Theorem 2 altogether.

After Theorems 1 and 2 we can get a variety of other “analytic multipliers”
f(4), and “summation families” {f.(4)}., by Cauchy integration of the resolvent,

fd) = - Sf(c) (c — A)-1de.
2ni

r

(2.23)

According to Theorem 1, the contour I' can be chosen to consists of two rays
{rexito: r > ro} with an arbitrary small opening 0, > 0 and the arc {r,e : 10| >0}
of sufficiently large radius ry = r(6,).

One such example is a family of multipliers {@,(c) = e~*} that gives the
semigroup kernel.

THEOREM 3. An operator A of Theorem 1 generates a holomorphic semigroup
{e~*4Yinthe half plane Ret > O, which is strongly continucus at t = 0, e~y — y
(as t —»0) in all admissible LP-spaces.
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The proof is fairly standard and straightforward after Theorems 1 and 2 (cf.
[20], [14], [15])

Various special cases of Theorems 1—3 relevant to LP-theory were proved in
our earlier work on uniformly elliptic operators [14], and strictly elliptic operators
subject to “finite propagation speed”’ condition [15]). Other related results can be
found in [25], [31], [3], [29].

The third statement of Theorem 1 (essential selfadjointness) has an exten-
sive literature ([23], [26), [7], 6], [11], [20], [21] {9], [29]) both for 2-nd order (Schrg-
dinger) and higher order elliptic operators. Our result extends all those in
various directions, though it may not cover them completely because of the
number of incompatible conditions existing in the literature. As a special case
it includes a wide range of Schrodinger operators (Examples 1 — 3) as well as
their powers.

An interesting problem related to resolvent and semigroup kernels is their
“smoothing properties” in {L?} or other natural scales, so called “hypercontracti-
vity’” or “‘supercontractivity’’ (cf. [26], [8]). We give a sufficient condition for super-
contractivity in our context.

THEOREM 4. If the weight function w = p~"Vsm=1is bounded for some0<s<m,
g p

. s . 1 1
then the resolvent R, = (¢ — A)~lis e =-"--smoothing in the L’-scale: — — -~ - — &.
m p P
Consequently, the semigroup e~'* is oo-smoothing, i.e. €™ maps LPinto () LI.
1<g<oo

Semigroup smoothing follows immediately from resolvent smoothing, by the
t "
semigroup property: exp{—t4) = [exp (— A)] . Indeed each exp(— AI-A) is
voon n
g-smoothing and » can be taken arbitrary large.

The resolvent smoothing reduces, as above, to smoothing by the operator
K., since R. = K, X “invertible operator.”

A WDO K, has a negative order symbol—l———r—/. So multiplying and
¢ —pa—
dividing it by a suitable fractional Laplacian A° = (—A)*? (as in Lemma 1) we
get, after pulling out ¢ — ¥,

m
o =ple—V.

@ ="symbol K.A** = p=*"¢c —y Sim-1lg(x; ), whereo= .f‘
el

So K A° = w M, (in notations of Lemma [) factors into the product of a
bounded function w and LP-bounded operator M;, 1 < p < oo. Therefore K, A° is
LP-bounded. The remaining negative Laplacian A~° on the right side of the product
(KA°)A ~t implements the required L”-smoothing,
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We would like to comment on the main condition of Theorem 3
(224) W = p-s/mVs/m_l c L°°.

Case s = m corresponds to p bounded from below, p(x) = p, > 0, i.e. strictly
elliptic operator A.

The combined form (2.24) is more flexible as it allows some degree of dege-
neracy of p, that must be “cancelled out’ by a suitable singularity of ¥. One exam-
ple of this type was already discussed in Section 1. Namely, p(x) = dist(x; X),
V(x) = dist(x; £)~#, with « + f>m, where X is a surface (closed submanifold)
in R”.

Condition (2.24) then becomes

(2.25) i-oc—(1—~— <0 or O0<sg .
m } o+ B
An.immediate application of Theorem 4 and (2.25) is .
COROLLARY 2. (i) The resolvent R_ of the Laguerre operator: L = — dx 3 +
2 2
X -4+»D~‘»« with sufficiently large o and its multivariable version (Example 3) is
X

smoothing of degree = 1/2,in the L-scale, i.e. L - L 1/2.
, . p p '
(ii) (Supercontractivity): The semigroup e~ 'L is infinitely smoothing,

e~ (LY = (M L

1<g<gco

3. SPECTRAL THEORY

In this section we shall discuss the structure of L’-spectra of operators 4
The main emphasis will be on discrete spectra, as very litile is known in genera
about continuous spectra, unles_s A is “sufficiently close’® to a constant coefficient
operator.

We shall give conditions for compactness of R, or discreteness of spec A,
establish L”-stability of discrete spectra and- derive asymptotic disttibution of
large eigenvahies.

. The following theorem plays the central role here

THEOREM 5. Let A = Ay + B be an operator of Section 1, with parameters
p, V satisfying : :

(31) V—1+"/ltlp—:lz/lll c Lioc-
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Then
(1) A sufficient condition for compactness of R, — R® in all admissible LP-spaces

is the Ly-hypothesis (i.c. vanishing at co and X) on leading perturbation coefficients :
b,/p € LY for |a| = m.
(ii) A4 sufficient condition for compactness of R., resp. R%, K, is

(3.2) Vol{x : ¥(x) < A} <oo for all . > 0.

Results of the type of Theorem 5 are well known for perturbations of constant
coefficient or uniformly elliptic operators (see [25], [31]). Here the only relevant con-
dition is (3.2), “large potential ¥,

In [16] we extended these results to strictly elliptic operators, p(x) = p, > 0,
with possibly “large’” p, subject to “finite propagation speed” condition, p(x) =
= O(|x|™) (see also [29], Chapters 6, 7).

The new feature of Theorem 5 is condition (3.1), which allows certain dege-
neracy of p and singularity of V. ‘

The proof of Theorem 5 involves some standard steps (cf. [25], [16], [29)),
which reduce the problem to the proof of compactness of an operator

T = f(x)Hy(z), on L"(D)

in a bounded region D < R", where f = I;Zl_) , the function H(z) is compactly
%

supported and bounded, and é(x) = VE/_V is the dilating factor.

We use the standard LP-equicontinuity test for compactness of the inte-
gral kernel T(x,y). Let B denote a sufficiently small ball in D and let
functions u € L?(D), v € L”(B) ( = —p-—l—)

p —_—

Then we estimate

| (Tu; vyul <sup (Sl TG, )| dx) el ol -
yeb

In the *‘uniformly elliptic case (nondegenerate p) and for B outside
of the degeneracy set X = {x : §(x) = 0} the dilating factor é(x) > C >0 and
L7-equicontinuity follows immediatly, as the RHS of (3.3) is bounded by

~

supS | T(x, y)|dx < SH(y — x)f(x)dx;

B

Lo
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So it becomes small as vol B — 0, for any pair H € L¢, f € L?.

In our cases T(x, y) = V-Yx)0~"(x) H(lxé( ;)l )and the estimate of the
X

RHS of (3.3) takes the form

d d
3.4 | H]| oo SUP X~ Const\ —— > .
yeD V(S" Vl—n/mpn/m

B B

Due to hypothesis (3.1) the integral in (3.4) becomes small as vol B — 0, which
proves LP-equicontinuity of the family {T[u] : [lu]|,< 1} everywhere in D and thus
completes the proof of Theorem 5.

ReEMARrk 3. To illustrate condition (3.1) of Theorem 5 we assume that the
degeneracy set £ = {x: p(x) = 0} is a smooth submanifold and functions p(x),
V(x) are of the type discussed in Section 1, ie. p(x) = dist(x; 2)%, V(x) =
=~ dist(x; X£)~# near X, where a + 8 >m. Then the integrability condition (3.1)
on the function

Vn/m—lp—n/m ~ distﬂ—n/nz(a-{ﬁ)

becomes

(3.5) 2 @+pB)— B <n—dimZ.
m

In the critical case & + f = m (Laguerre-type operators) it reduces to
dimZX < §.

The latter condition obviously holds in dimension 1. So we immediately
derive LP-compactness of R, for a large class of Schrédinger operators — dpd + V
on R with parameters

PR Ix—x0|% V= |x— xg™# + “large regular ¥,

sothata + 8 > 2, > 0.

In the multidimensional case of Example 3 (Section 1) we have m =2, n = 2,
dim X = 1, so (3.5) reduces to & < 1. Theorem 5 applies to all such Laguerre-type
operators. However the critical case « = 1 remains open.

As a corollary of Theorem 5 one can show that operators of the Laguerre-type
(Examples 2—3) have purely discrete spectra in all L”-spaces, 1 < p < oo, whence
Lr-stability of spectra follows (Corollary 1, Section 1).

After Theorem 5 we can also study LP-spectra of operators A in general.
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The first statement of Theorem 5 implies by the standard “Weyl’’ lemma that

the difference of two spectra a(4)\a(4,) is a discrete set of eigenvalues {1;}7 of A.
The spectrum of A, may be fairly complicated and very little is known in
general. As for eigenvalues we can prove the following ‘‘L?-stability’” result.

COROLLARY 3. Discrete spectra oo(A) = {};}7 are identical in all admissible
Lr-spaces. Moreover, all LP- eigenfunctions (A —Ayu =0 and root functions
(4 — 2)*u =0, belong to () Lo

l<ggoo

This follows immediately from Theorem 4 (LP-smoothing of semigroup e~'4).

Theorem S and Corollary 3 extend some of earlier kncwn results ([25], [31]
[16]) to a wider class of differential operators.

Our final result gives an asymptotic distribution of large eigenvalues for self-
adjoint operators 4 = A, + B with purely discrete spectrum.

Let N(4) = “number of eigenvalues 4;<A” denote a counting function
of A. The celebrated “Weyl”’ (or “volume counting”’) principle states that

(3.6) N2 ~ Vol(1) = Vol{(x, &) : principal symbol < 2} as A — co.
In our case (3.6) takes the form

G.7) N(Z) ~Vol() = SS d¢ dx = S (L—.l’ )"’m w(x)dx,

p +
patV<a

where w(x) = Vol{¢ : a(x; &)< 1}.
Formula (3.7) will be established under three additional hypotheses:
(A) volume function f(1) = Vol(1) satisfies

af(A) < Af'(A) < Bf(}) for some a, B > 0.

. . n N
(B) There exists an integer / > —— so that the following integral converges
m

dx <
[e @]
(C + V)I—n/ mpn/n:

(C) Let H(jz}) denote the radial function e-<!?! for a sufficiently large ¢ > 0,
and let H, = t~"H(z/t) be its L'-dilation. Then we require that the functions

F(x) = w(x) sup {H, * p®®)e Ly, for all o' <m
: >0

where w = p-1tlelimp—lajim
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Conditions (A) and (B) are essential in the Tauberian Theorem of M.V.
Keldysh, which is used in the proof in order to translate large c-asymptotics of
R! (Cauchy-Stieltjes transform of N(1)) into A-asymptotics of N(4). Let us observe
that (B) is essentially a “‘global integrability’’ condition at {co} on the function
(c.+ V)~ !+mmp=nim_ since its “local integrability”> is already implied by the
“compactness hypothesis’ (3.1) of Theorem 5. Condition (A) allows function Vol(4)
to grow at most polynomially as 4 — oo, which in turn implies a polynomial lower
bound of V(x)/p(x)forlarge x. So it covers all Schrédinger operators — A + V(x)
with V(x) > {x|* (¢ > 0), but V(x) ~ logl|x| is not allowed.

Condition (B) implies that a power / > n/m of the resolvent (¢ + A4)~/, equi-
valently a DO K® with symbol (¢ + pa + V)~ belongs to the trace class. Indeed,

(¢ + pa+ VY
(3.8) , with

(9 e
> S'U oGOl

‘tr K([), = SSJ—(}L_ = S(g + V)—[—!--n/mp—n/mwl dx

Finally, condition (C) represents a strengthening of the basi¢ hypbthesis (H1),
“Lg>-condition’” on wp!® with w-= p=14l«imp~lalim_Indeed, wp! is formally equal
to imwH xpt®), as t = 0.

Now we can state the result.

THEOREM 6. A selfadjoint operator A = A, + B of Section 1 satisfying
hypotheses (A — C) has a purely discrete spectrum {1}, whose asymptotics obeys
the classical “Weyl principle’,

. N njm
NO) ~ S (’1—3/ ) w(x)dx, asi - co.
p J+

Asymptotics of the spectral function N(1) can be transformed into asymp-
totics of other related kernels, for instance, the semigroup e~ 4. Thus we get

COROLLARY 4. The semigroup-e='4 is of trace class for all t > 0 and

tr(e—"1) ~ 1“(-’i + 1)17”/’”Sef’-"p‘"/"'w dx, ast->0.
m .

Proof of Theorem 6 is based on the Cauchy Stieltjes transform of the count-
ing function,

(3.9) o) = S--~-’~ AN(D),
(c+ :
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with an integer / > n/m of hypothesis (B). Notice, that (3.9) represents the trace
of the I-th power of the resolvent: f(c) = tr(R!), the exponent / was chosen high
enough to make R/ of the trace class. The latter will be shown to admit an appro-
1

ximation by the trace of K’ or equivalentlya ¥'DO K, whose symbol = ~———————
(c+pa+ VY

and whose trace is computed explicitly:

didx

~ O N e S

3.10) f(g) ~ tr KY SS Crpat VY
Hypothesis (B) guarantees the convergence of the integral,

Once the asymptotic relation (3.10) is establishd for large ; — + co we can

go back to asymptotics of N(1) via the Tauberian Theorem of M. P. Keldysh [22].

Hypothesis (A) provides a sufficient condition for validity of the Tauberian Theorem.

To establish (3.10) we introduce intermediary operators K!, RY, R! (the

I-th powers of K, R} and R) and prove that traces of all four: K, K!, R and R,

are asymptotically equal as ¢ — co, or phrased in a different way

(R — RY)  tr(R¥ — K)  tr(Kl — K

(.11
) tr RY tr K! tr K!

-0 as¢—oco.

The rest of the proof is to establish (3.11).
We write K. = K(I + M,); R® = K(I + L) and R, = RYI + B,), where
the remainders ]\ng,z,;, B, are constructed and estimated as in Lemma 1. In

particular, all three can be shown to go to zero as ¢ - oo in L® (LP)-operator
norm.

The differences of the /-th powers is represented by

(3.12) R —K'= Y KiL... K,

{ +...+[k=l
lgks!

similarly for R' — R and K' — K®, from which we derive the following estimates

, ~
tr(RY — KD < |IKf; Y 1L,
k=1

I ~
(3.13) te(Rl — RY) < R,/ Y, 1B,

1

tr(K! — KOy < (KO [| M.
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Here ||K||, denotes the Shatten-von Neumann [-norm of K, and ||[K®),, its trace
class norm.
In order to deduce (3.11) from (3.13) it suffices to show that the ratios

RIS R < TT RV e

(3.14) ; ;0
tr(KY) tr(RY tr KO

are bounded as ¢ —» + co.

Then the remaining factors (norms of “twiddled’’ operators) will provide the requir-
ed convergence to 0 in (3.11).

In fact we shall prove more: all three ratios (3.14) approach 1 as ¢ — oo.

If operators K., R?, K’ were selfadjoint positive, the ratios would be
equal to 1 and the result would hold trivially. Though neither one is actually selfad-
joint we shall show that all three become very close to positive selfadjoint oper-
ators as ¢ — oo.

Precisly, let us write K = P + iQ as the sum of the real and imaginary parts:
P =(12)(K+ K*)and Q = (1/2i)(K — K¥), and let P, P_ denote positive and nega-
tive part of a selfadjoint operator P = P, — P_. The main step in the proof of
(3.14) is

LemMA 2. Operators P_ and Q are “small’ relative to P (or P, ), ie.
(G.15) ||P_|| + ||Qu|| < e ||Pyull, (weL?) withe=¢e(c)—0 as ¢—o0.

In other words the operator (Q*Q)Y2 + (P*P)Y2 £ ¢P, in the sense of
comparison of positive operators.

Similar estimates hold for positive real parts of operators R® and K.

From Lemma 2 relations (3.14) follow immediately. Indeed, the operator
inequality (Q*Q)Y/? < ¢P implies a factorization formula

K=P+ Q=PI+W), with |W] <e.
Hence
K|l = te(I + WP + W))2 < (1 + trPl < (1 + e)tr K
with & = ¢'(c) >0 as ¢ »oc. So [KJl} ~ tr(K))as ¢ — oo, Q.E.D.

Similar argument applies to R? and K.
It remains to prove Lemma 2. We shall restate it separately for P_ and Q.
Notice that inequalities

(3.16) oIl < ellP.]l < &P

(G.17) 1P-{l < ellPy |l < &'|| P
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for positive real and imaginary parts of K, are equivalent to those of R°. Indeed,
K. = RUI + L) with |L | - 0. Inequality (3.17) for R? holds trivially, since
its negative real part is O for sufficiently large ¢ as a consequence of semiboundedness
of A, from below (Theorem 1).

Relation (3.16) in its turn is equivalent to norm estimates

1Qull < &"'|Kull < & ||R%||
and the latter can be written as
(3.18) 10(c + 4p)]l =0 or [l(c+ AH)Q|| -0, as ¢—o0.

In this form it becomes very close to estimates of Lemma 1. Precisely, AF =
= A, + “small perturbation Q = (1/2i)}(K — K*)”’, and the product (¢ + A)K. =
=J— L, where |L || >0 by Lemma 1.

We need to show that the same holds for the product of (¢ + Ay)KF . Namely,

3.19) (c+ 4)k¥ =I— L, and |Lj -0 as ¢—oo.

The difference between (3.19) and Lemma 1 is in the type of two ¥ DO’s: A4,
of the standard (left) type and K* of the right type, which means its symbol of =
= a(y, £). The corresponding product formula is

' C L oy )
(320) Symb(§+A Ke = 1 + o [_—_L'_—'-_‘ + tm ]
0 lélgsm al a(y; 6)

where ¢ = pa + V + ¢ and the remainder has the form,

-1
71_48[9_(1)0’ + 12,9

(3.21) (%, 3,8 = Y, o(y; &)

faf —=m !

(o)
] (1 — oy~ 1dr.

All regular terms of (3.20) represent adjoint ¥'DO’s to operators of Lemma 1.
Hence they all are L#-bounded (I < p < co) and become small as ¢ — oo.
The remainder is treated similar to Lemma 1. The basic steps include ‘ite-

rated chain rule”, dilating symbols by é(y) = V'p/V + ¢ exploiting homogeneity
in & etc. However, the resulting integrals kernels are somewhat different.
Namely, E

(3.22) T, = T(x,y) = w(MpN(y + 12)Hs;(2), with w, = p=1tliln(c + V)= i=.m,
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Here H(z) = e~<l7lis the radial bound (2.10) of a uniformly elliptic symbol y =

[C + a(x, O

fv

of order — m.

We estimate the operator (3.22) in L?-spaces as in the proof of Theorem 5:

7l < sgpg \T(x, p) dx = St;p{wg(y) S(p‘“’ * Hesy)(0)m =1 d7)}.

Now hypothesis (C) applies to show that the RHS of (3.22) goes to 0 as ¢ — co.

This proves convergence of the remainder ||7,(c)|| — 0 as ¢ » oco. Combin-

ing the latter with estimates of regular terms of (¢ + Ay)K¥ (3.20) we establish
(3.18) and complete the proof of Lemma 2 and Theorem 6 altogether.
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Added in the proof. After the paper was submitted I learned about the recent work of

M.M.H. Park ““On spectral properties of singular second order elliptic operators’” (Preprint,
1987), which studies in detail the effect of *‘singular-degenerate” leading coefficients of Laplace-
-Beltrami operators 4 and their LP-spectral properties.
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