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TWO C*-ALGEBRAS RELATED TO THE DISCRETE
HEISENBERG GROUP

HONG-SHENG YIN

§1

In this paper we study two classes of C*#-algebras related to the discrete Hei-
senberg group, H. The first class consists of crossed product C#-algebras of the
group C*-algebra of H, C*(H), with the group of integers, Z, under x-automor-
phisms, o,, determined by (one-dimensional) characters, 8, of H. The second class
consists of twisted group C*-algebras, C*(H, ), determined by 2-cocycles, ,
of H. We want to classify these two classes of C*-algebras up to *-isomorphism.
Although the second class has been classified by J. A. Packer [3], our method is diffe-
rent from hers, and seems simpler, we feel.

Our basic tools are two K-theoretical invariants. The first one, called the trace
invariant and denoted 7°(-), is defined for unital C*-algebras as follows (cf. [7]):

@ T(4) = Q exp o 0, (Ky(4)),

where ¢ runs through all tracial states of the C*-algebra 4, and exp is the exponen-
tial map R — T, ¢t — e If A does not have any tracial state, we just define 7(A4)
to be T, the whole unit circle. When the C*-algebra A has unique tracial state, or
when all tracial states of 4 agree at Ky(4), e.g., A is a noncommutative torus [1]
there is no need to take the intersection over all tracial Istates in (1). In this case, the
trace invariant was previously studied by Rieffel [5], Pimsner and Voiculescu [4], and
Elliott [1]. The above definition, however, applies to more general situations. It was
proved in [7] that for any discrete group G and any character § of G, we always
have

@) T(CHG) %u ) = 6(G).

We will need this result in the sequel.
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Our second invariant, called the twist and denoted ¢(-), is defined for a smaller
family of C*-algebras. Let 4 be a unital C*-algebra satisfying:

(i) A has tracial states v and all tracial states agree on Ky(4); and

(ii) [1] generates a free direct summand of K,{4).
Then we define (cf. [6}, [7])

dist(t4(e), Z), if {x € Ko(4) :1.(x) € Q} =~ Z2,
0, otherwise.

HA) = {

where e is the other generator of the group {x € Ko(4): 7,(x) € Q} and dist denotes
the usual distance on the real line R. The twist #{4) is a rational number in the inter-
val [0, 0.5]. It was shown in [7] that #(A4) does not depend on the choice of ¢ and that
it is a #-isomorphism invariant of 4.

The two invariants 7(-) and #(-) taken together completely classify the
crossed product C*-algebras C}(F,)>,Z for all characters 0 of the free groups
F, [6], [7]. This generalizes the classification of irrational and rational rotation C*-al-
gebras of [5), [4], [2). In the present paper, we will show that these two invariants
also classify C*(H, w) for all 2-cocycles @ (§ 3 below). For the C*-algebras C*(H) %, Z,
the twist does not give desired information directly. However, we can apply it to
an appropriate quotient which is a noncommutative torus of dimension 3, and thus
obtain the classification (§2 below).

The following notations and conventions will be used throughout the paper.
The discrete Heisenberg group H is the group generated by two elements a, b, with
the relation that aba—1h~1 = ¢ is in the centre of H. Given any character 0 of H
(by a character we always mean a one-dimensional one), there is a unique =-auto-
morphism «, of C*(H) such that ay(U,) = 8(g)U, for the canonical generators
{U, : g € H} of C*(H). When no confusion will result, we simply use 0 to denote o .
For instance, we have the C*-crossed products C*(H) X, Z. We use Hyp to denote
the abelianization of H, which is isomorphic to Z2. It is well-known that the natural
homomorphism Aut(H) — Aut(Hy,) ~ GL(2,Z) of automorphism groups is
onto. Hence we will not distinguish automorphisms ¢ on H,, and its lifting on H.
Thus we will speak of the determinant of ¢ in Aut(H). Note that @(c) = ¢dte,

§2

In this section we classify C*(H) X, Z up to =-isomorphism for all characters 0.
We need some preliminary rasults.

Given a discrete group G and a ¢ € Aut(G), there exists a unique =-automor-
phism ¢, of the reduced group C*-algebra CH(G) satisfying o (U,) = U, g €G.

LemMA 1. Any eigenvalue /. of o, is a root of unity. Moreover, if x € CF(G)
is a nonzero eigenvector of o, associated to ). and if g € G is in the support of x, then
the order of ) is no greater than the cardinality of the p-orbit of g.
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Proof. Assume «,(x) = Ax, where A € C and 0 # x € C¥(G). It 1s well-known
that we can view x as an element of the Hilbert space £%(G), that is, x = Y}, C, f,,
gEG

where {f, : g € G} isthe canonical orthonormal basis of /%(G), C, € Cand Y IC,IP<o0-
g

Since u,(f,) = fpe)» We obtain

; Cgf¢(g) = A Zg Cfe = A f'v_l Cw(s')frp(g)'
Therefore

(3) AC,‘,(g) = Cg, g € G.

In particular, |C,,)| = |C,| since |i] = 1. The condition that ¥} |C,|* < co then

&
implies that x is supported on finite g-orbits. Let {g, g1, - - -, g;-1} be such an orbit,
where ¢(g;) = 8,41, 8 = £, and ¢; (= Cp,) are all nonzero. By (3) we sce that

CO = ACI = e = A.s—lcs_l = AsCO .

This proves that 4 is a root of unity with order no greater than the cardinality s
of the orbit of g,. Q.E.D.

We denote the centre of a C*-algebra 4 by Z(4).

LeMMA 2. Suppose 8 is a character of a discrete group G. If 6(G) is an infinite
set, then

Z(CHG) %o Z) = Ci(ker0) n Z(CH(G)),

where C}(ker0) is identified with a C*-subalgebra of C*(G) in a natural way.

Proof. Assume x is in the centre of C¥(G)X,Z. Let E be the conditional
expectation from C¥(G) x, Z onto C¥(G), and let E (x) = E(x W**), k € Z, where W
is the unitary implementing o,. Then all E,(x) are in the fixed point algebra of
the ®-automorphism o,, which is just the C*-algebra C¥(ker 0) by [7]. From the
bimodule property of E, we have, for any g € G,

U E(x)UF = E(xU, W*Ug¥) = 0(g)“E,(x).

Thus if E.(x) # 0, it would be an eigenvector of the inner x-automorphism
AdU, of C¥G) with respect to the eigenvalue 0(g)*. However, Ad U, = «, with
¢ = Adg € Aut(G). Now let 1 € G be in the support of E,(x) and let g above
run over all G. The union of all orbits of & under Adg is just the conjugacy
class of # in G. From the proof of Lemma 1, we sce that all coefficients of E,(x)
which are supported on this conjugacy class have the same absolute value, and
hence this conjugacy class is of finite cardinality, say s. Since 6(G) is infinite by

6 — 2129
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hypothesis, we can find, for fixed k # 0, some ge G such that 0(g)¥ # 1 for
1 < I < 5. From Lemma 1, the order of the eigenvalue 6(g)* is no greater than
the cardinality of the Ad g-orbit of /, the latter is no greater than s. Thus there
is some /, 1 < /< s, satisfying 0(g)* = 1, contradicting the choice of g. This
forces Ey(x) = 0 if k # 0. Hence x = Ey(x) € C}G). This completes the proof of
one direction. The reverse is obvious since 2, acts trivially on C¥(ker ). Q.E.D.

Return to C*(H)xyZ. Since ¢ = aba='b-1 is in the centre of H and since
8(c) = 1, the C*%-algebra generated by U,, C*({U.}), is contained in the centie
of C*(H)x,Z.

COROLLARY 3. The centre of C*(H)x,2Z is C*({U.}) (~ C(T)) if 0(H) is
an infinite set, and it is C*({U,, W9}) (=~ C(12)) if O(H) is finite of order q, where
W is the unitary implementing o,.

Proof. Note that Z(C*(H)) = C*({U.}) = C*(ker 6). If O(H) is infinite, we
have, from Lemma 2, that

Z(CHH) x, Z) = C*(ker0) n Z(C*(H)) = C*({U.}).

If 6(H) is finite of order g, we argue as in the proof of Lemma 2 and use the
fact that if g € H is not in the centre, then g is of infinite conjugacy class. This
will show Z(C*(H) x4 Z) = C*({U,., W?}). The reverse is obvious. Q.E.D.

THeEOREM 4. C*(H) x91Z ~ C*(H) ><92Z if and only if 0, =0,-¢ for
some ¢ € Aut(H).

Proof. Let A; = C*(H) x(;jZ and let f:4, > 4, be a *-isomorph.ism.
By (2), the trace invariant of A; is T(4;) = 0,(H). Hence 0,(H) = 0,(H). Let §; be
the character of H,, induced from 6;. We have 0,(Hap) = Oz(Hab). If the free
rank of é'j(Hab) is zero or two, we can find some Y € GL(2,Z) such that
6, =0,0¢ by [7]. Let ¢ be a lifting of  to H. We obtain 8, = 6,0¢. Thus in
the following we can assume that éj(Hab) has free rank one. Let A €T be a gener-
ator of the free part of Oj(Hab). By [7; 4.2], we can find ¥; € GL(2, Z) such
that éjcnpj is in its standard form, that is,

B0y (al) =2 and Gy (b)) =7, j=1,2,

with (p;,¢) =1 and 0 < p; < [g/2]. Here [a], [b] denote the image of a, b in
H,. Since 9; and 0;0y; give rise to *-isomorphic crossed product C*-algebras,
we can assume that 0, is already in its standard form for notational ease. Now
0,(H) is infinite, hence the centre of 4; is C*({U.}) ~ C(T) by Corollary 3. Choose
¢, €T such that the free rank of the subgroup of T generated by &; and 0,(H)
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is two. Let M; be a maximal ideal of C*({U,}) such that the quotient map
C*{U.}) —» C*({U.})/M, takes U, to &,. Let I be the closed two-sided ideal of A4,
generated by M,. Then A,/l; is a noncommutative torus of dimension three.

In fact, 4,/I, is the C*-algebra generated by three unitaries [U,], [U,] and [W] with
the relations

IO = AU,

WU WY = 79,
and
[UJIU,] = &IUIU,

the last equation coming from U, U, = U.U,U, in 4,. Let 4 ¢, be the noncommu-
tative torus of dimension three with structure coefficients {2, EEUA &}. Then
there is a *-homomorphism from A,,1 onto A,/I;. Since the structure coefficients
given above determine a nondegenerate character p, of Z3AZ3, 4 p, is simple [1],

and hence A,,l =~ A/l in a canonical way. Applying the Pimsner-Voiculescu six
term exact sequence [4], we obtain (cf. [1]) that

Ko(4i/h) = Z[1] @ Z[P,] @ Z[P,] ® Z[P¢],

where P,, P,, and P are Rieffel projections in A,,1 such that if 7 is a tracial

state of Ap > then
@ expot(P) =2, expot(Py) =", expor(P) = ¢;.

Now we apply the twist to 4,/1;. By our choice of &,, we have

{x e Ko(A,/h) : 14(x) € Q} = Z{1] ® Z[P,]).
Hence
1(Ay/L) = dist(t([Pp]), Z) = p:/q.

Since the *-isomorphism f : 4; — A, takes centre to centre, it takes M, to a maximal
ideal M, of the centre Z(4,). Assume U, goes to &, € T under Z(A4,) - Z(A4,)|M,.
Similarly, we get a quotient of A,, A, /I,. Clearly 4,/I, = A,/I,. Hence they have
the same trace invariant T(4,/I,) = T(A,/I,). From (4) we see that T(4 ;) is just
the subgroup of T generated by 6;(H) and ¢;. Thus 0,(H) and &, also generate a
group of free rank two. A similar computation then gives 1(4,/l,) = p,/q. From
t(4,/1) = t(A,/1,), we obtain p; = p,. This implies that 0, = 0, after standardization.
Therefore A; ~ A4, implies 0; = 6, o ¢ for some ¢ € Aut(H). The converse is straight-
forwaid. Q.E.D.
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§3

In this section we classify C*(H, w), the twisted group C*-algebra of the
discrete Heisenberg group H, up to #-isomorphism for all 2-cocycles w. We show
that the s-isomorphism class of C*(H, ) is determined by a character 6, of H
up to some equivalence, where 8, is defined by '

w(c, g)
0,(g) = —8L, geH.
(g, ¢)
This defines a character because ¢ is in the centre of H. Now 0, induces a charac-

ter éa, on Hyp~Z?%. In[7; §4]a twist, denoted #{.), is defined for characters of Z".
This is a rational number in the interval [0, 0.5] which is invariant under auto-

morphisms of Z". Here we define the twist.of 0,,, 1(0,), by setting #(0,) = 1(0,).
Since automorphisms of H factor to H,p, we sec that #(0,) is also invariant under
automorphisms of H.

The following theorem is essentially due to Packer [3].

THEOREM 5. Suppose w, and e, are two 2-cocycies of H. The following
are equivalent:

(1) C*(H3 wl) = C:::(H) wZ) ;

(i) These two C*-algebras have the same trace invariant and the same twist;

(iii) le(H) = 0,,(H) and t((L,l) = 1(0u,);

@iv) 0o = 0,00 for some ¢ € Aut(H);

V) w, is cohomological to wyc ¢ for some ¢ € Aut(H).

Proof. We first recall some general facts about the K-theory of C*(H, w),
which are contained in [3). C*(H, w) is the C*-algebra generated by three unitaries
{U,, U,, U} with the relation

UgUh = CU(g, /I)Ugh, g, heH.
From this, a simple computation gives
v,U, =0,@U.U,,

Ub Uc = Ow(b) Uc Ub ’
and

Uan = chUbUa H

where ¢ €T is a scalar. Note that the C*-subalgebra generated by U, and U,
C*({U,, U.}),is arotation algebra. Thus C*(H, w) isisomorphic to C*({U,, U.}) x, Z,
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where y is the composition of an action dual to the rotation with an action arising

from ((l) :) € SL(2, Z). The Pimsner-Voiculescu six term exact sequence en-

ables us quickly to get
(5) Ko(C*(H, w)) = Z[1] ® Z[P,] @ Z[P,),

where P, and P, are Rieffel projections sitting in the rotation algebras C*({U,, U,})
and C*({U,, U_}) respectively, such that for any tracial state t of C*(H, w),

©) expo 1(P,) = 0,(a), expot(Py) = 0,(b).

Therefore, all tracial states agree on K (C*(H, w)).

Now we proceed to prove the theorem.

(i) = (if). From above knowledge of K (C*(H, w)), we see that the twist
is defined for C*(H, w).

(i) = (iii)). From (5) and (6), we obtain T(C*(H, w)) = 0,(H). It remains
to show that 1(C*(H, w)) = #(8,). If 0,(H) has free rank two or zero, it is easy
to see that 1(C*(H, w)) = 0 = t(6,). When 8,(H) has free rank one, we can find
¢ € Aut(H), as in the proof of Theorem 4, such that

8,00 =1, 8,0 @) = enirla,

with 4 € T of infinite order, (p,q) = 1 and 0 < p < [g/2]. It follows that 7(8,) =
= #(0,, o ¢) = p/q. Note that if det ¢ = 1, then ¢(¢) = ¢ and hence 6,0 ¢ = O,.,;

if detop = —1, lety =@ ((1) ?), and we have 0,0y = 0,.,. However,

Opouw(@ = 0,0 0@ = 4,
and
Buew(b) = 0,0 @p(b~Y) = e?nila-rlia,

As in the proof of Theorem 4, we can compute the twist of C*(H, w - ¢) and
C*(H,wo ). In both cases, it is p/q. Since C*(H,w) is isomorphic to both
C*(H,wo-¢) and C*(H, woy), we obtain 1{(C*(H, w)) = plqg = 1(0,).

(iii) = (iv). This follows from [7; §4]. The results there on Z? can be
lifted to H.

(iv) = (v). If detp =1, 0, 0@ = 0o 0. If detp = — 1, then ¢(c) =c?,

and hence 0, - ¢ =§m2w because of wy(g=, A1) = wy(h, g). Let ¢ = (“(1) 2)

Then 6, ., = 0w2.,¢cx// = 0,,,2‘,,,,,,,. Hence (z?u,1 = szo(p implies Ow1 =0,., or
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0(,,1 = Oweo pov . Since the map w — 0, only depends on the cohomology class of

o, we have a group homomorphism H2(H; T) — H, where H is the abelian group
of all characters of H under pointwise operation. The above map is, in fact, a
group isomorphism. This is a pure algebraical result, which is almost implicitly
contained in {3]. From this isomorphism, we get [w,] = [w,-¢@] or [w] =
= [wy - ¢ < Y].

(v) = (i). Well-known. Q.E.D.
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