TWO C*-ALGEBRAS RELATED TO THE DISCRETE HEISENBERG GROUP

HONG-SHENG YIN

§ 1

In this paper we study two classes of C^* -algebras related to the discrete Heisenberg group, H. The first class consists of crossed product C^* -algebras of the group C^* -algebra of H, $C^*(H)$, with the group of integers, \mathbf{Z} , under *-automorphisms, α_{θ} , determined by (one-dimensional) characters, θ , of H. The second class consists of twisted group C^* -algebras, $C^*(H, \omega)$, determined by 2-cocycles, ω , of H. We want to classify these two classes of C^* -algebras up to *-isomorphism. Although the second class has been classified by \mathbf{J} . A. Packer [3], our method is different from hers, and seems simpler, we feel.

Our basic tools are two K-theoretical invariants. The first one, called the trace invariant and denoted $T(\cdot)$, is defined for unital C^* -algebras as follows (cf. [7]):

(1)
$$T(A) = \bigcap_{\varphi} \exp \circ \varphi_*(K_0(A)),$$

where φ runs through all tracial states of the C^* -algebra A, and exp is the exponential map $\mathbf{R} \to \mathbf{T}$, $t \to \mathrm{e}^{2\pi\mathrm{i}t}$. If A does not have any tracial state, we just define T(A) to be \mathbf{T} , the whole unit circle. When the C^* -algebra A has unique tracial state, or when all tracial states of A agree at $K_0(A)$, e.g., A is a noncommutative torus [1] there is no need to take the intersection over all tracial states in (1). In this case, the trace invariant was previously studied by Rieffel [5], Pimsner and Voiculescu [4], and Elliott [1]. The above definition, however, applies to more general situations. It was proved in [7] that for any discrete group G and any character θ of G, we always have

(2)
$$T(C^*(G) \times_{\alpha_{\theta}} \mathbb{Z}) = \theta(G).$$

We will need this result in the sequel.

276 HONG-SHENG YIN

Our second invariant, called the twist and denoted $t(\cdot)$, is defined for a smaller family of C^* -algebras. Let A be a unital C^* -algebra satisfying:

- (i) A has tracial states τ and all tracial states agree on $K_0(A)$; and
- (ii) [1] generates a free direct summand of $K_0(A)$.

Then we define (cf. [6], [7])

$$t(A) = \begin{cases} \operatorname{dist}(\tau_*(e), \mathbf{Z}), & \text{if } \{x \in K_0(A) : \tau_*(x) \in \mathbf{Q}\} \simeq \mathbf{Z}^2, \\ 0, & \text{otherwise.} \end{cases}$$

where e is the other generator of the group $\{x \in K_0(A): \tau_*(x) \in \mathbf{Q}\}$ and dist denotes the usual distance on the real line \mathbf{R} . The twist t(A) is a rational number in the interval [0, 0.5]. It was shown in [7] that t(A) does not depend on the choice of e and that it is a *-isomorphism invariant of A.

The two invariants $T(\cdot)$ and $t(\cdot)$ taken together completely classify the crossed product C^* -algebras $C^*_r(F_n) \times_{\theta} \mathbb{Z}$ for all characters θ of the free groups F_n [6], [7]. This generalizes the classification of irrational and rational rotation C^* -algebras of [5], [4], [2]. In the present paper, we will show that these two invariants also classify $C^*(H, \omega)$ for all 2-cocycles ω (§ 3 below). For the C^* -algebras $C^*(H) \times_{\theta} \mathbb{Z}$, the twist does not give desired information directly. However, we can apply it to an appropriate quotient which is a noncommutative torus of dimension 3, and thus obtain the classification (§ 2 below).

The following notations and conventions will be used throughout the paper. The discrete Heisenberg group H is the group generated by two elements a,b, with the relation that $aba^{-1}b^{-1}=c$ is in the centre of H. Given any character θ of H (by a character we always mean a one-dimensional one), there is a unique *-automorphism α_{θ} of $C^*(H)$ such that $\alpha_{\theta}(U_g)=\theta(g)U_g$ for the canonical generators $\{U_g:g\in H\}$ of $C^*(H)$. When no confusion will result, we simply use θ to denote α_{θ} . For instance, we have the C^* -crossed products $C^*(H)\times_{\theta} \mathbf{Z}$. We use H_{ab} to denote the abelianization of H, which is isomorphic to \mathbf{Z}^2 . It is well-known that the natural homomorphism $\operatorname{Aut}(H) \to \operatorname{Aut}(H_{ab}) \simeq GL(2, \mathbf{Z})$ of automorphism groups is onto. Hence we will not distinguish automorphisms φ on H_{ab} and its lifting on H. Thus we will speak of the determinant of φ in $\operatorname{Aut}(H)$. Note that $\varphi(c)=c^{\det \varphi}$.

§ 2

In this section we classify $C^*(H) \times_{\theta} \mathbf{Z}$ up to *-isomorphism for all characters θ . We need some preliminary results.

Given a discrete group G and a $\varphi \in \operatorname{Aut}(G)$, there exists a unique *-automorphism α_{φ} of the reduced group C^* -algebra $C^*_{\mathsf{r}}(G)$ satisfying $\alpha_{\varphi}(U_{\varphi}) = U_{\varphi(g)}$, $g \in G$.

Lemma 1. Any eigenvalue λ of α_{φ} is a root of unity. Moreover, if $x \in C_{\mathbf{r}}^*(G)$ is a nonzero eigenvector of α_{φ} associated to λ and if $g \in G$ is in the support of x, then the order of λ is no greater than the cardinality of the φ -orbit of g.

Proof. Assume $\alpha_{\varphi}(x) = \lambda x$, where $\lambda \in \mathbb{C}$ and $0 \neq x \in C_r^*(G)$. It is well-known that we can view x as an element of the Hilbert space $\ell^2(G)$, that is, $x = \sum_{g \in G} C_g f_g$, where $\{f_g : g \in G\}$ is the canonical orthonormal basis of $\ell^2(G)$, $C_g \in \mathbb{C}$ and $\sum_g |C_g|^2 < \infty$. Since $\alpha_{\varphi}(f_g) = f_{\varphi(g)}$, we obtain

$$\sum_{g} C_g f_{\varphi(g)} = \lambda \sum_{g} C_g f_g = \lambda \sum_{g} C_{\varphi(g)} f_{\varphi(g)}.$$

Therefore

(3)
$$\lambda C_{\varphi(g)} = C_g, \quad g \in G.$$

In particular, $|C_{\varphi(g)}| = |C_s|$ since $|\lambda| = 1$. The condition that $\sum_{g} |C_g|^2 < \infty$ then implies that x is supported on finite φ -orbits. Let $\{g_0, g_1, \ldots, g_{s-1}\}$ be such an orbit, where $\varphi(g_i) = g_{i+1}, g_s = g_0$, and $c_i (= C_{g_i})$ are all nonzero. By (3) we see that

$$c_0 = \lambda c_1 = \ldots = \lambda^{s-1} c_{s-1} = \lambda^s c_0.$$

This proves that λ is a root of unity with order no greater than the cardinality s of the orbit of g_0 . Q.E.D.

We denote the centre of a C^* -algebra A by Z(A).

LEMMA 2. Suppose θ is a character of a discrete group G. If $\theta(G)$ is an infinite set, then

$$Z(C_{\mathfrak{r}}^{*}(G) \times_{\theta} \mathbf{Z}) = C_{\mathfrak{r}}^{*}(\ker \theta) \cap Z(C_{\mathfrak{r}}^{*}(G)),$$

where $C_r^*(\ker \theta)$ is identified with a C^* -subalgebra of $C_r^*(G)$ in a natural way.

Proof. Assume x is in the centre of $C_r^*(G) \times_{\theta} \mathbb{Z}$. Let E be the conditional expectation from $C_r^*(G) \times_{\theta} \mathbb{Z}$ onto $C_r^*(G)$, and let $E_k(x) = E(x W^{*k})$, $k \in \mathbb{Z}$, where W is the unitary implementing α_{θ} . Then all $E_k(x)$ are in the fixed point algebra of the *-automorphism α_{θ} , which is just the C^* -algebra $C_r^*(\ker \theta)$ by [7]. From the bimodule property of E, we have, for any $g \in G$,

$$U_g E_k(x) U_g^* \, = E(x U_g \, W^{*k} U_g^*) \, = \, \theta(g)^k E_k(x).$$

Thus if $E_k(x) \neq 0$, it would be an eigenvector of the inner *-automorphism $\operatorname{Ad} U_g$ of $C_r^*(G)$ with respect to the eigenvalue $\theta(g)^k$. However, $\operatorname{Ad} U_g = \alpha_{\varphi}$ with $\varphi = \operatorname{Ad} g \in \operatorname{Aut}(G)$. Now let $h \in G$ be in the support of $E_k(x)$ and let g above run over all G. The union of all orbits of h under $\operatorname{Ad} g$ is just the conjugacy class of h in G. From the proof of Lemma 1, we see that all coefficients of $E_k(x)$ which are supported on this conjugacy class have the same absolute value, and hence this conjugacy class is of finite cardinality, say s. Since $\theta(G)$ is infinite by

278 HONG-SHENG YIN

hypothesis, we can find, for fixed $k \neq 0$, some $g \in G$ such that $\theta(g)^{kl} \neq 1$ for $1 \leq l \leq s$. From Lemma 1, the order of the eigenvalue $\theta(g)^k$ is no greater than the cardinality of the Ad g-orbit of h, the latter is no greater than s. Thus there is some l, $1 \leq l \leq s$, satisfying $\theta(g)^{kl} = 1$, contradicting the choice of g. This forces $E_k(x) = 0$ if $k \neq 0$. Hence $x = E_0(x) \in C_r^*(G)$. This completes the proof of one direction. The reverse is obvious since α_{θ} acts trivially on $C_r^*(\ker \theta)$. Q.E.D.

Return to $C^*(H) \times_{\theta} \mathbb{Z}$. Since $c = aba^{-1}b^{-1}$ is in the centre of H and since $\theta(c) = 1$, the C^* -algebra generated by U_c , $C^*(\{U_c\})$, is contained in the centre of $C^*(H) \times_{\theta} \mathbb{Z}$.

COROLLARY 3. The centre of $C^*(H) \times_{\theta} \mathbb{Z}$ is $C^*(\{U_c\})$ ($\simeq C(\mathbb{T})$) if $\theta(H)$ is an infinite set, and it is $C^*(\{U_c, W^q\})$ ($\simeq C(\mathbb{T}^2)$) if $\theta(H)$ is finite of order q, where W is the unitary implementing α_{θ} .

Proof. Note that $Z(C^*(H)) = C^*(\{U_c\}) \subseteq C^*(\ker \theta)$. If $\theta(H)$ is infinite, we have, from Lemma 2, that

$$Z(C^*(H) \times_{\theta} \mathbf{Z}) = C^*(\ker \theta) \cap Z(C^*(H)) = C^*(\{U_c\}).$$

If $\theta(H)$ is finite of order q, we argue as in the proof of Lemma 2 and use the fact that if $g \in H$ is not in the centre, then g is of infinite conjugacy class. This will show $Z(C^*(H) \times_{\theta} \mathbf{Z}) \subseteq C^*(\{U_c, W^q\})$. The reverse is obvious. Q.E.D.

THEOREM 4. $C^*(H) \times_{\theta_1} \mathbb{Z} \simeq C^*(H) \times_{\theta_2} \mathbb{Z}$ if and only if $\theta_1 = \theta_2 \circ \varphi$ for some $\varphi \in \operatorname{Aut}(H)$.

Proof. Let $A_j = C^*(H) \times_{\theta_j} \mathbf{Z}$ and let $f: A_1 \to A_2$ be a *-isomorphism. By (2), the trace invariant of A_j is $T(A_j) = \theta_j(H)$. Hence $\theta_1(H) = \theta_2(H)$. Let $\dot{\theta}_j$ be the character of H_{ab} induced from θ_j . We have $\dot{\theta}_1(H_{ab}) = \dot{\theta}_2(H_{ab})$. If the free rank of $\dot{\theta}_j(H_{ab})$ is zero or two, we can find some $\psi \in \mathrm{GL}(2, \mathbf{Z})$ such that $\dot{\theta}_1 = \dot{\theta}_2 \circ \psi$ by [7]. Let φ be a lifting of ψ to H. We obtain $\theta_j = \theta_2 \circ \varphi$. Thus in the following we can assume that $\dot{\theta}_j(H_{ab})$ has free rank one. Let $\lambda \in \mathbf{T}$ be a generator of the free part of $\dot{\theta}_j(H_{ab})$. By [7; 4.2], we can find $\psi_j \in \mathrm{GL}(2, \mathbf{Z})$ such that $\dot{\theta}_j \circ \psi_j$ is in its standard form, that is,

$$\dot{\theta}_i \circ \psi_i([a]) = \lambda$$
 and $\dot{\theta}_i \circ \psi_i([b]) = e^{2\pi i p_j/q}, \quad j = 1, 2,$

with $(p_j,q)=1$ and $0 \le p_j \le [q/2]$. Here [a], [b] denote the image of a, b in H_{ab} . Since θ_j and $\theta_j \circ \psi_j$ give rise to *-isomorphic crossed product C^* -algebras, we can assume that θ_j is already in its standard form for notational ease. Now $\theta_j(H)$ is infinite, hence the centre of A_j is $C^*(\{U_c\}) \simeq C(T)$ by Corollary 3. Choose $\xi_1 \in T$ such that the free rank of the subgroup of T generated by ξ_1 and $\theta_1(H)$

is two. Let M_1 be a maximal ideal of $C^*(\{U_c\})$ such that the quotient map $C^*(\{U_c\}) \to C^*(\{U_c\})/M_1$ takes U_c to ξ_1 . Let I_1 be the closed two-sided ideal of A_1 generated by M_1 . Then A_1/I_1 is a noncommutative torus of dimension three. In fact, A_1/I_1 is the C^* -algebra generated by three unitaries $[U_a]$, $[U_b]$ and [W] with the relations

$$[W][U_a][W]^* = \lambda[U_a],$$

$$[W][U_h][W]^* = e^{2\pi i p_1/q}[U_h],$$

and

$$[U_a][U_b] = \xi_1[U_b][U_a],$$

the last equation coming from $U_aU_b=U_cU_bU_a$ in A_1 . Let A_{ρ_1} be the noncommutative torus of dimension three with structure coefficients $\{\lambda, e^{2\pi i \rho_1/q}, \xi_1\}$. Then there is a *-homomorphism from A_{ρ_1} onto A_1/I_1 . Since the structure coefficients given above determine a nondegenerate character ρ_1 of $\mathbb{Z}^3 \wedge \mathbb{Z}^3$, A_{ρ_1} is simple [1], and hence $A_{\rho_1} \simeq A_1/I_1$ in a canonical way. Applying the Pimsner-Voiculescu six term exact sequence [4], we obtain (cf. [1]) that

$$\mathbf{K}_0(A_1/I_1) = \mathbf{Z}[1] \oplus \mathbf{Z}[P_a] \oplus \mathbf{Z}[P_b] \oplus \mathbf{Z}[P_{\xi_1}],$$

where P_a , P_b , and P_{ξ_1} are Rieffel projections in A_{ρ_1} such that if τ is a tracial state of A_{ρ_1} , then

(4)
$$\exp \circ \tau(P_a) = \lambda, \quad \exp \circ \tau(P_b) = e^{2\pi i p_1/q}, \quad \exp \circ \tau(P_{\xi_1}) = \xi_1.$$

Now we apply the twist to A_1/I_1 . By our choice of ζ_1 , we have

$$\{x \in K_0(A_1/I_1) : \tau_*(x) \in \mathbf{Q}\} = \mathbf{Z}[1] \oplus \mathbf{Z}[P_b].$$

Hence

$$t(A_1/I_1) = \operatorname{dist}(\tau_*([P_b]), \mathbf{Z}) = p_1/q.$$

Since the *-isomorphism $f: A_1 \to A_2$ takes centre to centre, it takes M_1 to a maximal ideal M_2 of the centre $Z(A_2)$. Assume U_c goes to $\xi_2 \in \mathbf{T}$ under $Z(A_2) \to Z(A_2)/M_2$. Similarly, we get a quotient of A_2 , A_2/I_2 . Clearly $A_1/I_1 \cong A_2/I_2$. Hence they have the same trace invariant $T(A_1/I_1) = T(A_2/I_2)$. From (4) we see that $T(A_j/I_j)$ is just the subgroup of \mathbf{T} generated by $\theta_j(H)$ and ξ_j . Thus $\theta_2(H)$ and ξ_2 also generate a group of free rank two. A similar computation then gives $t(A_2/I_2) = p_2/q$. From $t(A_1/I_1) = t(A_2/I_2)$, we obtain $p_1 = p_2$. This implies that $\theta_1 = \theta_2$ after standardization. Therefore $A_1 \cong A_2$ implies $\theta_1 = \theta_2 \circ \varphi$ for some $\varphi \in \mathrm{Aut}(H)$. The converse is straightforward.

In this section we classify $C^*(H, \omega)$, the twisted group C^* -algebra of the discrete Heisenberg group H, up to *-isomorphism for all 2-cocycles ω . We show that the *-isomorphism class of $C^*(H, \omega)$ is determined by a character θ_{ω} of H up to some equivalence, where θ_{ω} is defined by

$$\theta_{\omega}(g) = \frac{\omega(c,g)}{\omega(g,c)}, \quad g \in H.$$

This defines a character because c is in the centre of H. Now θ_{ω} induces a character $\dot{\theta}_{\omega}$ on $H_{ab} \simeq \mathbb{Z}^2$. In [7; § 4] a twist, denoted $t(\cdot)$, is defined for characters of \mathbb{Z}^n . This is a rational number in the interval [0, 0.5] which is invariant under automorphisms of \mathbb{Z}^n . Here we define the twist of θ_{ω} , $t(\theta_{\omega})$, by setting $t(\theta_{\omega}) = t(\dot{\theta}_{\omega})$. Since automorphisms of H factor to H_{ab} , we see that $t(\theta_{\omega})$ is also invariant under automorphisms of H.

The following theorem is essentially due to Packer [3].

THEOREM 5. Suppose ω_1 and ω_2 are two 2-cocycles of H. The following are equivalent:

- (i) $C^*(H, \omega_1) \simeq C^*(H, \omega_2)$;
- (ii) These two C*-algebras have the same trace invariant and the same twist;
- (iii) $\theta_{\omega_1}(H) = \theta_{\omega_2}(H)$ and $t(\theta_{\omega_1}) = t(\theta_{\omega_2})$;
- (iv) $\theta_{\omega_1} = \theta_{\omega_2} \circ \varphi$ for some $\varphi \in Aut(H)$;
- (v) ω_1 is cohomological to $\omega_2 \circ \varphi$ for some $\varphi \in Aut(H)$.

Proof. We first recall some general facts about the K-theory of $C^*(H, \omega)$, which are contained in [3]. $C^*(H, \omega)$ is the C^* -algebra generated by three unitaries $\{U_a, U_b, U_c\}$ with the relation

$$U_g U_h = \omega(g,h) U_{gh}, \quad g,h \in H.$$

From this, a simple computation gives

$$U_a U_c = \theta_\omega(a) U_c U_a,$$

$$U_b U_c = \theta_\omega(b) U_c U_b,$$

and

$$U_a U_b = \xi U_c U_b U_a$$

where $\xi \in \mathbf{T}$ is a scalar. Note that the C^* -subalgebra generated by U_a and U_c , $C^*(\{U_a, U_c\})$, is a rotation algebra. Thus $C^*(H, \omega)$ is isomorphic to $C^*(\{U_a, U_c\}) \times_{\gamma} \mathbf{Z}$,

where γ is the composition of an action dual to the rotation with an action arising from $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{Z})$. The Pimsner-Voiculescu six term exact sequence enables us quickly to get

(5)
$$K_0(C^*(H,\omega)) = \mathbb{Z}[1] \oplus \mathbb{Z}[P_a] \oplus \mathbb{Z}[P_b],$$

where P_a and P_b are Rieffel projections sitting in the rotation algebras $C^*(\{U_a, U_c\})$ and $C^*(\{U_b, U_c\})$ respectively, such that for any tracial state τ of $C^*(H, \omega)$,

(6)
$$\exp \circ \tau(P_a) = \theta_{\omega}(a), \quad \exp \circ \tau(P_b) = \theta_{\omega}(b).$$

Therefore, all tracial states agree on $K_0(C^*(H, \omega))$.

Now we proceed to prove the theorem.

- (i) \Rightarrow (ii). From above knowledge of $K_0(C^*(H, \omega))$, we see that the twist is defined for $C^*(H, \omega)$.
- (ii) \Rightarrow (iii). From (5) and (6), we obtain $T(C^*(H, \omega)) = \theta_{\omega}(H)$. It remains to show that $t(C^*(H, \omega)) = t(\theta_{\omega})$. If $\theta_{\omega}(H)$ has free rank two or zero, it is easy to see that $t(C^*(H, \omega)) = 0 = t(\theta_{\omega})$. When $\theta_{\omega}(H)$ has free rank one, we can find $\varphi \in \operatorname{Aut}(H)$, as in the proof of Theorem 4, such that

$$\theta_{\omega} \circ \varphi(a) = \lambda, \quad \theta_{\omega} \circ \varphi(b) = e^{2\pi i p/q},$$

with $\lambda \in \mathbf{T}$ of infinite order, (p, q) = 1 and $0 \le p \le [q/2]$. It follows that $t(\theta_{\omega}) = t(\theta_{\omega} \circ \varphi) = p/q$. Note that if det $\varphi = 1$, then $\varphi(c) = c$ and hence $\theta_{\omega} \circ \varphi = \theta_{\omega \circ \varphi}$; if det $\varphi = -1$, let $\psi = \varphi \circ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and we have $\theta_{\omega} \circ \psi = \theta_{\omega \circ \psi}$. However,

$$\theta_{\omega \circ \psi}(a) = \theta_{\omega} \circ \varphi(a) = \lambda,$$

and

$$\theta_{\omega \circ \psi}(b) \, = \, \theta_{\omega} \circ \varphi(b^{\, -1}) \, = \, \mathrm{e}^{2\pi \mathrm{i} (q-p)/q} \, .$$

As in the proof of Theorem 4, we can compute the twist of $C^*(H, \omega \circ \varphi)$ and $C^*(H, \omega \circ \psi)$. In both cases, it is p/q. Since $C^*(H, \omega)$ is isomorphic to both $C^*(H, \omega \circ \varphi)$ and $C^*(H, \omega \circ \psi)$, we obtain $t(C^*(H, \omega)) = p/q = t(\theta_\omega)$.

- (iii) \Rightarrow (iv). This follows from [7; §4]. The results there on \mathbb{Z}^2 can be lifted to H.
- (iv) \Rightarrow (v). If $\det \varphi = 1$, $\theta_{\omega_2} \circ \varphi = \theta_{\omega_2 \circ \varphi}$. If $\det \varphi = -1$, then $\varphi(c) = c^{-1}$, and hence $\theta_{\omega_2} \circ \varphi = \overline{\theta}_{\omega_2 \circ \varphi}$ because of $\omega_2(g^{-1}, h^{-1}) = \overline{\omega_2(h, g)}$. Let $\psi = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $\overline{\theta}_{\omega_2 \circ \varphi} = \theta_{\omega_2 \circ \varphi} \circ \psi = \theta_{\omega_2 \circ \varphi \circ \psi}$. Hence $\theta_{\omega_1} = \theta_{\omega_2} \circ \varphi$ implies $\theta_{\omega_1} = \theta_{\omega_2 \circ \varphi}$ or

282 HONG-SHENG YIN

 $\theta_{\omega_1} = \theta_{\omega_2 \circ \varphi \circ \psi}$. Since the map $\omega \to \theta_{\omega}$ only depends on the cohomology class of ω , we have a group homomorphism $H^2(H;T) \to \hat{H}$, where \hat{H} is the abelian group of all characters of H under pointwise operation. The above map is, in fact, a group isomorphism. This is a pure algebraical result, which is almost implicitly contained in [3]. From this isomorphism, we get $[\omega_1] = [\omega_2 \circ \varphi]$ or $[\omega_1] = [\omega_2 \circ \varphi \circ \psi]$.

$$(v) \Rightarrow (i)$$
. Well-known. O.E.D.

Acknowledgment. The author wishes to thank Professors Don Bures and Edmond Granirer for interesting discussions and helpful suggestions. This work was supported by Edmond Granirer's NSERC grant.

REFERENCES

- Elliott, G. A., On the K-theory of the C*-algebra generated by a projective representation of a torsion-free abelian group, in *Operator algebras and group representations*, Vol. I, Pitman, 1984, pp. 157-184.
- HØEGH-KROHN, R.; SKJELBRED, T., Classification of C[©]-algebras admitting ergodic actions of the two-dimensional torus, J. Reine Angew. Math., 328(1981), 1-8.
- 3. Packer, J. A., C°-algebras generated by projective representations of the discrete Heisenberg group, J. Operator Theory, 18(1987), 41-66.
- PIMSNER, M.; VOICULESCU, D., Exact sequences for K-groups and Ext-groups of certain cross--product C²-algebras, J. Operator Theory, 4(1980), 93-118.
- RIEFFEL, M., Co-algebras associated with irrational rotations, Pacific J. Math., 93(1981), 415-429.
- Yin, H. S., Classification of C^o-crossed products associated with characters on free groups, C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 1-4.
- 7. YIN, H. S., Classification of crossed product C*-algebras associated with characters on free groups, Trans. Amer. Math. Soc., to appear.

HONG-SHENG YIN
Department of Mathematics,
University of British Columbia,
Vancouver, B. C., V6T 1Y4,
Canada.

Current address:

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.