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COMPACT GROUP ACTIONS ON C*-ALGEBRAS

SERGIO DOPLICHER and JOHN E. ROBERTS

INTRODUCTION

If one is given a family of Hilbert spaces of finite dimznsion together with
linear mappings between them satisfying suitable axioms, the classical Tannaka-
-Krein duality theorems for a compact group will allow one to recognize this structure
as the representation theory of a compact group G. The Hilbert spaces can then
be endowed with continuous unitary representations of G in such a way that the
given linear mappings correspond precisely to the intertwining operators between
these representations.

The problem of proving the existence of a compact group of internal gauge
symmetries in quantum field theory pinpoints the inadequacy of these classical
theorems. In fact, the C*-algebra of local observables defines through its super-
selection structure an abstract structure akin to the representation category of a
compact group but where the objects are not explicitly associated with finite dimen-
sional Hilbert spaces. Instead, the objects of the category form a semigroup of
endomorphisms of a C*-algebra o/ and the arrows of the category are the inter-
twining operators between these endomorphisms, i.e. we have a full subcategory
of the monoidal C*-category End &/ of endomorphisms of 7.

Hence it is natural to take as the input for the abstract duality theory of
compact groups monoidal C*-categories fulfilling suitable axioms related to permuta-
tion symmetry and the existence of conjugates. It will be shown elsewhere that
such a category can be embedded in the category of endomorphisms of a C*-algebra.

This step puts the problem of formulating an abstract duality theory for com-
pact groups into the framework of C*-algebras and reduces it to the problem
met in quantum field theory. We shall show elsewhere ¥ how a C*-algebra o
with centre C/ and a subcategory of Eand .« fulfilling natural axioms lead to a
compact group G given as a group of automorphisms of a C¥%-algebra & con-
taining & as its fixed-point algebra under G. To the objects p in the given cate-
gory, a semigroup of endomorphisms of o/, now correspond explicit Hilbert

1) [6}; cf. the announcements in [3], [41
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spaces H, in & which are stable under G and induce on &/ the endomorphisms p.
Tn other words, a concrete representation category for G is realized within the C*-
-algebra 4.

In fact, as we shall see in §7, any concrete representation theory may be
realized in this way within a suitable C*-algebra, a C*-tensor product of Cuntz
algebras. Thus the C*-systems (£, G) as above provide a model for a concrete
representation category whereas the fixed-point algebras o/ together with the
endomorphisms induced by the Hilbert spaces provide a model for the abstract
representation category.

After these motivating remarks we turn to the specific contents of this paper.
1t treats certain aspects of the spectral analysis of the actions « of compact groups G
on infinite C*-algebras with unit %. The main technical tool in analyzing the C*-
-systems (4, &) will be to look at a-stable Hilbert spaces H within 4. These Hilbert
G-modules H defined in Section 2 combine spectral information, the equivalence
class of the action of G on H, with the algebraic property of being a Hilbert space.

The interest centres here on certain classes of actions typical of C*-systems
which arise as the cross product by an action of the dual of a compact group
on the fixed-point algebra. Thus attention is directed to the property of having
full Hilbert spectrum, i.e. each equivalence class of irreducible continuous unitary
representations of G is realized on some Hilbert G-module /. Another property
studied here and characteristic of a class of cross products is for the relative
commutant of the fixed-point algebra to be trivial.

After discussing the Hilbert spectrum of an action (Section 1) and the cate-
gories associated with Hilbert spaces in a C*-algebra (Section 2), we prove variants
of the Tannaka-Krein theorems in our framework. When a representation theory
is realized within a C*-algebra &, such theorems give conditions for a compact
group G to agree with the stabilizer in Aut% of the fixed-point algebra (Theorem 3.3
and Corollary 6.5).

In Section 4 we study a Galois correspondence between subalgebras of 4
and normal subgroups of G.

In Section 5 we characterize C*-systems with #* Nn# = %' n ¥, this condi-
tion plays an important role in the construction, to be given elsewhere, of minimal
cross products with @« n% = CI [3], [5], [6].

In Section 6 we study C*-systems (%, o) where sufficiently many represen-
tations of determinant one are realized on Hilbert spaces within &. This condition
replaces the stability of the spectrum under conjugation.

Section 7 gives examples of C*-systems constructed from representation
theories which illustrate the setting of this paper. It is shown (Theorem 7.3) that
under natural conditions the C#*-algebras of fixed-points are simple.

A further paper will complement this analysis of C*-systems with a synthesis
of C*-systems as crossed products by the action of the duals of compact groups [6].
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1. THE SPECTRAL CATEGORY

A C*-system is a pair (%, u) consisting of a C*-algebra # and a continuous
homomorphism a : G - Aut# of a topological group & into the group Aut#
of automorphisms of % equipped with the strong topology, i.e. the topology of
pointwise norm convergence. We will suppose that the C*-algebra # has a unit [
and G will usually be a compact group. We are, of course, interested here in
aspects of spectral analysis where the C*-nature of £ plays a special role. Hence
we may as well assume that the action o is faithfuland that G is an automorphism
group. In this case, we denote the C*-system by (%, G) rather than (%, «).

A first step towards spectral analysis i5 to consider a multiplet from &% trans-
forming according to some continuous, finite dimensional, unitary matrix repre-
sentation ¢ or, as we shall say, a &-rensor with values in 4. A ¢-tensor B is a
multiplet By, B,, ..., B; of elements of &, where d is the dimension of &, such
that

d
og(B;) = Z Bi&;i(g).

As G is compact, the entries of irreducible tensors with values in 4 form
a total set in & (cf. remarks following Proposition 2.2 of [2]).

The ¢-tensors with values in # form a linear space %, which can also be
looked on as follows: let H, denote the underlying Hilbert space of ¢ and let 1
denote the trivial representation of G on C = H,. Then if (H;, H,) denotes the
set of linear mappings from H; to H,, (H,, H,) ® # may be regarded as a space
of matrices with entries from # and carries a natural action of G

g(L ® B) = L{(g)* @ u (B).

The set of fixed points under this action is precisely #,. This way of looking
at %, is independent of the choice of basis in £ and makes sense for an arbitrary
finite-dimensional, continuous unitary representation. Hence in what follows ¢
is not restricted to being a matrix representation. Note, further, that 4, is just
the fixed-point algebra. The spaces %,, with £ irreducible, are one possible gene-
ralization of spectral subspaces to the action of non-Abelian groups (cf. [8; §2]).

The space %, of &-tensors is best looked at as a space of arrows in a C*-
-category, the spectral category Sp(4, «) [8] of the C*-system (4, o). Its objects
are wriften & ® ab’, where ¢ is a finite-dimensional, continuous unitary repre-
sentation of G. The set (¢ ® o, # ® o) of arrows in Sp(Z, o) from ( @ o to n ®

1) This notation will be retained even where the C*-system is denoted (%, G).
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in Sp(#, a) is the fixed-point sst of (H;, H,) ® # under the natural action,
g(L ® B) = n(g)L&(g)* ® a,(B),

of G. The composition law for arrows and the definitions of adjoint and norm
are the obvious ones and serve to make Sp(4, «) into a C*-category. In terms
of the spectral category we have

B=(E@u 1®a); B, =5 =000 1®aq).

The spectral category leads naturally to a number of spectral invariants
(cf. [8; §2]). The natural definition of spectrum in this framework is

Sply ={¢:8: =(¢(®a, 1®a) #0}.

The C#-system will be said to have full spectrum if Sp(x) contains each
irreducible, continuous unitary representation. These definitions do not depend
on whether # is a C*-algebra so they do not tell much about the C*-system (4, «).

We define the Hilbeirt spectrum of (8, «) to be

HSp() = {¢ 1 ¢ @ < 1@,

e. £ HSp() if . = (( ®a, 1 ® %) contains an isometry. The C*-system will
be said to have full Hilbert spectrum if HSp(x) contains each irreducible, continuous
unitary representation.

If 8. contains an isometry ¥ and B e %, then we have B = (By*)y so that
every element B of Z; is of the form Ay, where 4 € #* = &,. Expressing 4 as a
linear combination of unitaries, we also see that every B € %, is a linear combination
of at most four isometries from 22..

In terms of the entries of ¢, the condition Y*y = 1.4, reads

(1) Wi, =85 hj=1,2,....d

where 4 is the dimension of £. In other words, the entries form a multiplet of
isometries with pairwise orthogonal ranges. The linear span of entrics ¥, , ¥y,. .., ¥,
is now an o-invariant Hilbert space H in & carrying a representation of class ¢.
If ¢ €, is actually unitary, the condition Yy* = 1,5, holds too and reads
in terms of the entries T

(1.2) Yt =1

i

1

and we have a Hilbert space with support 7. Hilbert spaces in C*-systems form
the subject of the next section.
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2. HILBERT SPACES IN C*-SYSTEMS

By a Hilbert space H in a C*-algebra with unit & we understand a closed
subspace of Z with Y™y € CI for € H. The scalar product on the Hilbert space H
is then given by

1) W, ¥ = gy

Thus if ¥, ¥,, ... is an orthonormal basis in H then (1.1) is satisfied. In
this paper, we shall solely be concerned with finite-dimensional Hilbert spaces. If
we pick an orthonormal basis ¥, , ¥y, ..., i, for H then the projection

22) L= 5 b

is independent of the choice of orthonormal basis and is called the support® of H.
We have

(2.3) Iw =y, YeH

and an clement ¢’ of & lies in H if and only if 1,30’ = ' and y*y' e CI for
each Y e H.

Given finite-dimensional Hilbert spaces H and H' in & the set (H, H') of
linear mappings from H to H' can and will be realized as the set of elements T
of # satisfying TH < H', T = Tl = 1T, In particular 1, the support of H,
is just the identity mapping on H as the notation suggests. We denote by (%)
the C#*-category of finite-dimensional Hilbert spaces in # realized in this way
(cf. [11; Example 3.3]).

The C¥-algebra generated by a d-dimensional Hilbert space, d > 1, with
support I in a C*-algebra is a universal simple C*-algebra @,, the Cuntz algebra
[1]. We write Oy in place of @, if it is necessary to stress the generating Hilbert
space H. If the generating finite-dimensional Hilbert space H does not have support
I, the C*-algebra @ is no longer simple but we have instead an exact sequence [1],[7]

0"’:%/‘—)@;1—3’(0,1‘-)0.

A 1-dimensional Hilbert space with support I in a C*-algebra # is just
the scalar multiples of a unitary and therefore has canonically associated with
it an inner automorphism of %. A finite-dimensional Hilbert space H in # gene-
rates an endomorphism ¢y through

.4) ou(B) = ¥, V:BYY, BeR

1) The Hilbert spaces in von Neumann algebras first met in Quantum Field Theory [2]
and generally introduced in [11, § 2] have support I by definition.
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where the ¥, run through an orthoncrmal basis in H. Note that ogy(l) is just
the support of H. We also have

(2.5) WB = oy(BY, YecH, Bed.

The endomorphisms of the form ¢, may be regarded as the inner endomor-
phisms of #. If T €(H, H') then

(2.6) Tou(B) = o, (B)T, Be%.

There is a natural definition of the temsor product of two Milbert spaces
H,, Hy, in #: H, ® H, is the closed linear span of elements of the form Y ¥,
with Y, € H; and y, € H,. When H, and H, are finite dimensional so is H; ® H,
and we have

(2.7) o

If we define the tensor product of linear mappings T € (H,, H}), T, € (H,, H3)
by

(2.8) T, ® T, = Tyo(Ty) = oy(Ty)Ty

then # (%) becomes a monoidal C*-category. Since we are dealing with a category
of Hilbert spaces, there is also a natural symmetry associated with this monoidal
structure: the operator which permutes the order of factors in the tensor product
is denoted O(H, H') and is given by

(29) B(H’ H’) = Z w;'ﬁﬂl/:*‘/b* s

where the sum is taken over orthonormal bases ¢;, j =1,2,...,d and ¥/,
i=1,2,...,d of Hand H' respectively.

Let &(%) denote the C*-category whose objects are the inner endomor-
phisms of %, i.e. the endomorphisms induced by the objects of (%), and whose
arrows are the intertwiners between these endomorphisms, ie. Te€{o,0’) if
T = To(I) = ¢’'(I)T and

(2.10) To(B) = o'(B)T, Be 4.

SL(#) is a monoidal C*-category if we again use (2.8) to define the monoidal
structure (cf. {11; Example 3.7]). If ¢ = oy and ¢’ = o, then we define

@210 O(c, 6"y = O(H, H')
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and it is easy to check that 8(c, ¢') does not depend on the choice 1 of H and H'.
Furthermore, the corresponding results for 0(H, H') show that

2.12) 0(o, ¢") O(¢', o) = 1,,,
2.13) 0(o,0'0"") = 1, ® 0o, 6" O(6,6) ® 1,7,
(2.14) 0(1, 0) = 0(g,1) = 1,,

where |, = o([) denotes the unit of (s, 6) and 1 denotes the identity automorphism.
A simple computation shows that if T;e (o;,0}), i = 1,2 then

(2.15) 0], 0) Ty ® Ty = Ty ® T,0(cy, 65).

These last four equations may be summed up as
2.1. Lemma. (S#(B), 0) and (F(B), 0) are symmetric monoidal C*-categories.

By a Hilbert G-module H in a C*-system (4, ) we understand an a-invariant
Hilbert space H in & endowed with the continuous unitary representation o, of
the underlying group G obtained by restricting the action a to H. The C*-algebra
O generated by the Hilbert space H then carries a natural action so that the
Hilbert G-module H generates a C*-system which will, abusing notation, be denoted
by (O, o).

The endomorphism oy of & generated by H restricts to an endemorphism py
of the fixed-point algebra #*. p, will, in general, not be an inner endomorphism
of #*.

Let 4 and A’ be Hilbert G-modules in (#, ®). We write Te(H, H) if T
is a G-module homomorphism, i.e. if T is a map of the underlying Hilbert spaces
and intertwines oy and g . This condition can be written

(2.16) a (Ty) = Ta, (), YeH.

Since T = T1,, (2.16) reduces simply to T e &~

We let %(#, «) denote the category whose objects are the finite-dimensional
Hilbert G-modules in (%, «) and whose arrows are the G-module homomorphisms.
Since the tensor product of Hilbert G-modules is again a Hilbert G-module and
the operators O(H, H') permuting Hilbert spaces are G-module homomorphisms,
we have

2.2. Lemma. (U(4B, &), 0) is a symmetric monoidal C*-category.

D If %0 B = CI then o determines H uniquely, in fact H = G, op).
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The Hilbert spectrum HSp(x) of an action was defined in Section 1 and we
see that ¢ € HSp(«) if and only if there is a Hilbert G-module H in (4, «) such
that oy is equivalent to £&.

A notion of cross product of a von Neumann algebra by a group dual
was introduced in [11]¥. Tn this approach, a W™-system over a compact group
is the crossed product of the fixed-point zlgebra by the action of a group dual
if and only if ¢ ® @ ~ 1 ® o for each irreducible &. This notion of crossed product
is adequate only if the fixed-point algebra is a properly infinite von Neuinann
algebra. There are C*-systems arising as the cross product of the fixed-point algebra
by the action of a group dual where only the weaker condition @ u < 1 ®
for each irreducible ¢ is satisfied, i.e. the system has full Hilbert spectrum.

2.3. LemMa. Let (B, ) be a Cr-system with full Hilbert spectrum. Then
the finite sums of elements from the objects of U (&, w) form a dense =subalgebra
By in B.

Proof. Since the cobjects of #(4, o) are closed under tensor products, %, is

a subalgebra. Every element of %4, is a finite sum of entries from irreducible
tensors. Conversely if B, B,, ..., B, is an irreducible tensor under G, let ¥, , ., ...
.., ¥, be an orthonormal basis of a Hilbert G-module in & transforming in the
same way. Then X = Y By € #* and B, = Xy;. Writing X as a linear combi-

nation of unitaries we see that B; € %,. Hence £, is a dense =-subalgebra since
the sums of entries of irreducible tensors are closed under * and are dense.

REMARK. %, is just the dense x-subaigebra of G-finite clements in #. An
element B of & is G-finite if it is contained in a finite-dimensional G-invariant
subspace.

The next result relates %(#4, o) to a monoidal C*-category of endemorphisms;
it should be compared with [2; Theorem 3.6]. Let $(4, ) denote the category
whose objects are the endomorphisms of #%* induced by the objects of %(%, 2)
and whose arrows are the intertwiners between these endomorphisms, i.e. T e (p, p)
if Te#*, T=T1,=1,T and

(2.17) Tp(A) = p'(DT, Ae B,

where 1, = p) e (p, p). Now the map H — p, extends to a functor F from
U(B,x) to L(A,q) in fact we have

2.4. LEmMMA. Let (B,0a) be a C*-system over a group G then there is a
faithful funcior F from U(B,a) to L(#B,w). If the fixed-point algebra has trivial

1) For other approaches cf. [9].
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relative commutant,

B n% =CI
then F is an isomorphism of categories.

Proof. We define for an object H of #(#B,a), F(H)=py. ¥ T: H - H’
in %(#,0) then Tpy(l) =T = py (DT and T e %> Furthermore

Toy(AW = TYA = py(A)TY, YeH, AcB,

and we conclude that T e (p,, py) in F(F, ) so that we get a faithful functor

defining F(T) = T € (py, py)- i Y €@ with Y4 = py(A), AeB* and §;, j =

=1,2,...,d is an orthonormal basis of H, then Yy € #* n % so that when this

relative commutant is trivial Yy = A1 and = pu(DY = Y, Yy =Y ¥;2; e H.
7 J

Hence
(2.18) H={ecB YA = py(A)Y, A € B*}.

So py determines H and F is an isomorphism on objects. Now let T ¢ (py, pu?)

andlety,i=1,2,....,d be an orthonormal basis of H'. Then y/*T ;€ B~ N A

so Yi*Ty; = 2,1 Thus T = py(DTpu(l) = Y, YiA, b and T is a linear map
ij

from H to H'. Furthermore Ta () = a(T)o, () = o (Ty) so that T is an arrow
in %(#, o) and F is an isomorphism.

REMARK. In the same spirit, if & is a C*-algebra with unit and &' n 4 = CI
then the categories # (%) and & (%) are isomorphic.

3. THE STABILIZER

Given a C*-system (%, «) over a group G, there are many other C*-systems
intrinsically associated with it. We may, for example, replace G by its image «; in
AutZ. As far as the action gees, this is a trivial change. It is of more interest to

replace G by the stabilizer é, say, of % in Aut%. We have a canonical homo-

morphism G — G with image a;. The following result is a simple consequence of
Lemma 24.

3.1. LEMMA. Let (B, u) be a C*-system and suppose the fixed-point algebra has
trivial relative commutant,

(B n B =CL

Let G denote the stabilizer of B in Autd, then U(R, v) = U(AB, é).
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Proof. Let H be an object of (B, o), ¥,y e H, A€ %* and fe G then

YR = YrBOY A) = Y*Blou(AW') = Y pu(ABW") = AY*B(Y").

Thus y*fyYe@BY nB =CIL Let §,, i =1,2, ..., d be an orthonormal
basis of H, and E = Y, ;¥ be the support of H. Set 1,/ = y¥B(y) then since

E € % we have

By = BEY) = EB(Y) = Z YAFBW) = 3 viks.

Hence B(Y) € H and (&, «) and U{4, G) have the same objects. Thus S (%, &)
and (4, (3) coincide. Hence by Lemma 2.4, %(#, «) and %(4, G¢) coincide.

The following resuit gives a criterion for the stabilizer G to be a compact
group.

3.2. LEMMA. Let & be a C*-subalgebra with unit of a C*-algebra with unit 2.
Let G be the stabilizer of sf in AutB. If B is generated by its finite-dimensional G-in-
variant Hilbert spaces then G is compact in the strong topology.

RiMmark. If U is a unitary of o then CU is a 1-dimensional G-invariant Hil-
bert space in & so the C*-subalgebra of & generated by its finite-dimensional,
G-invariant Hilbert spaces automatically contains 7.

Proof. Let I' denote the set of finite-dimensional G-invariant Hilbert spaces
in 4. If He I’ we have a continuous unitary representation uy, say, of G on H.

The map u, :g€G - up(g), uy(g) := I uylg), is an isomorphism of G with a
Her ’

subgroup #,(G) of the compact group #(I') := {1 #(H), where %(H) denotes the

Hel
unitary group of H. Suppose u,(g;) — u in ¥(I'), then u.(g; ') — v~ and, since the
elements of I' generate & as a C*-algebra, g; and g7 * converge strongly. The limit g
is thus an automorphism stabilizing </ and u,.(g) = ». Hence G is homeomorphic
to the closed subgroup u,(G) of the compact Hausdorff group #(I'). Thus G is
compact in the strong topology.

As pointed out at the beginning of this section, we get C*-systems intrinsically
associated with a C*-system (4, o) by replacing the underlying group G by «; or the
stabilizer G of 2% in Aut@. We can, however, get new C*-systems by replacing &
by some intrinsically dsfined a-invariant C*-subalgebras. In particular, if I' denotes
some intrinsic set of G-invariant Hilbert spaces in 4, i.e. Hilbert G-modules in
& u), and %, the C*-algebra generated by the elements of I' then 4. is invariant
under the action and we have an associated C*-system (#,,a,)over G. If B, = &
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then we say that (%, o) has sufficient Hilbert G-modules of class I'. For example,
in the proof of Lemma 3.2 we used I' to denote the set of all finite-dimensional
G-invariant Hilbert spaces in 4.

3.3. THEOREM. Let G be a compact automorphism group of a C*-algebra with
unit #. Let G denote the stabilizer of B° in Aut®B. Suppose

a) (8, G) has sufficient finite-dimensional Hilbert G-modules,
b) 25 n £ = ClI,
) (2, G) has full Hilbert spectrum;

then G = G.

Proof. G is compact by Lemma 3.2, %%, G) = % (%, é) by Lemma 3.1.
If we knew that (42, é) had full Hilbert spectrum, G would be irreducibly represent-
ed in each irreducible representation of G so that G = G (cf. {7; Corollary 3.3]).
Hence it remains to show that (4, (A;) has full Hilbert spesctrum. Let X denote the
set of equivalence classes of irreducible continuous unitary representations of G

occuring as objects of %(4%, é). X is closed under decomposition of tensor pro-
ducts of elements into irreducibles. Since (#, G) has full Hilbert spectrum and

UB, G) = U4, é), 2 is closed under conjugates. For, if H, H are irreducible
Hilbert G-modules whose associated representations are conjugate to each other,

they are also irreducible G-modules and {0} # (C, HH); = (C, HH)p . Hence the
linear space spanned by functions fe fé(&) of the form

S =yre@), ¥, y'eH

where H is an object of %(%, 6) is a =-subalgebra of ‘6(GA). Since (4, GA) has suffi-
cient finite-dimensional Hilbert G-modules this s-subalgebra separates the points
of G. Tt is therefore dense in %’(GA) and a fortori in Lz(GA). Hence the orthogonality

relations for G allow one to conclude that (4, é) has full Hilbert spectrum comple-
ting the proof.

4. A GALOIS CORRESPONDENCE

Given a C*-system (4, G), we construct a Galois correspondence between
certain subalgebras of # and subgroups of G. Given any closed normal subgroup
K of G, define

BX ={Be®B :k(B) = B, ke K}
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then #% is a G-invariant C*-subalgebra of 4. If K, < K, then B ¢ #*1 and,
in particular, 2% « #X < 4. Conversely, if & is a G-invaliant C*-algebra with
B° < of < B define

Gl) ={geGigd) =4, Aed)

then G(#/) is a closed normal subgroup of G and G/G(&/) is the automorphism group
associated with the action of G on . If o, < &7, , then G(&Z,) < G(s7,). Obviously
o < B¢ and K< G(BX) so that we have two Galois closure operations &7 — Z3G()
and K — G(#%). In particular, G(#%<) = G(+/) and B0 = K I K = G(#5),
we say K is Galois closed and if o = #°), we say & is Galois closed. {¢}, G, #
and 4¢ are trivially Galois closed.

4.1. LemMA. Let G be a compact automorphism group of a C*-algebra with
unit B. Let & be a G-invariant C*-subalgebra with #° <« of < #. Thus Q =
= G/G(«) is an automorphism group of & and 42 = BC. Suppose (o4, Q) has
Jull Hilbert spectrum; then o is Galois closed.

Proof. Q is also an automorphism group of H£C«w and (#C¢9)C =
= (FO\N)GIGl) = O,

To show that &/ = #%<) is suffices to show that the entries of an irreducible
tensor B in %< lie in /. Since (&, Q) has full Hilbert spectrum, there is an irredu-
cible tensor ¢ of the same type in &/ which is an isometry. Setting 4 = Y, By *

then A e (#6N2 = B° < of and B, = Ay, so B;e & and & is Galcis closed
as required.

We now have the following result

4.2. THEOREM. Let G be a compact automorphism group of a C*¥-algebra with

unit B. Suppose (B, G) has full Hilbert spectrum; then a G-imvariant C*-algebra &7
with B ¢ of < # is Galois closed if and only if (o, G|G(£)) has full Hilbert
spectrum.

Proof. The condition is sufficient by Lemma 4.1. To see that it is necessary,
let o/ be Galois closed then of = BX, where X = G(</) is a normal subgroup of G.
Since #X is G-invariant, it is generated by its irreducible tensors under G. The entries
of a &-tensor in & lie in #X if and only if K < Keré. Since (8, G) has full Hilbert
spectrum then so has (#%, G/K) and the condition is necessary.

5. THE RELATIVE COMMUTANT

We have made frequent use of the hypothesis ¢ n # = CI. In this section
we examine the structure of the relative commutant.
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5.1. LeMMA. Let G be a compact automorphism group of a C*-algebra with
unit B and suppose (B, G) has full Hilbert spectrum; then B% n % is generated as a
closed linear space by sets of the form (py, )H where H is a Hilbert G-module in
(2, G).

Proof. (py, VH = #% n A trivially. Since the action of G induces an action
on B nAB, B nA is generated linearly by its irreducible tensors under G. Let
T,,T,, ..., T, be such a tensor from %% n 44, then since (#, G) has full Hilbert
spectrum there is an orthonormal basis ¥, ¥, ..., ¥, of a Hilbert G-module H

d
transforming in the same way. Let X = Y Ta¥ € B, then we have T; = Xy;
i=1
and X1, = X. It suffices to prove that X € (py, 1). Since T;4 = AT, for A e B°,
we have

(Xpu(A) — AX)W, =0, AeBC i=1,2, ..., 4d

Thus (Xpu(A) — AX)1, = 0. Since 1, € (py, py) and X1, = X, we conclude that
Xpu(A) = AX for A€, ie. Xe(py, 1) as required.

The next result is of interest because it links minimality of the relative commu-
tant of the fixed-point algebras to properties of permutation symmetry.

5.2. THEOREM. Let G be a compact automorphism group of a C*-algebra with
unit B. If (B, G) has full Hilbert spectrum then the following are equivalent :

) BENB =B 04,

b) (py, pu’) = (Oy, o) for any pair H, H' of Hilbert G-modules in &,

c) (P(B, G), 0) is a symmetric monoidal C*-category.

Proof. a) = b) Let X € (py, py’) then picking bases y; and ¢ in H and H’
respectively we have X = ), y/C, ;¥ where C;; = yj*X¢,€ B n £ but then
W

X € (on, o).

b) = a) By Lemma 5.1, it suffices to show (py, )H <% n # but
(o, VWH < (oy, )H < B n AB.

a) =>c) O(H,H')e #° and we show that 8 depends only on py and pgy-.
We already know, cf. (2.11), that 6 depends only on o, and oy . Let ¢ and ¢’
be two inner endomorphisms restricting to p on #¢. In particular ¢(I) = o'(I).
If Y,e@,0) with Y Yy} =0o(l) and ;e (1, ¢') with Y yjy/* =¢'(I) then

? J

YR EBS N B =B 0B so

o(B) = X Yo BW* = ¥ BRI = X wRBY* = o'(B).

ij

The fact that 6(p, p’) acts as a symmetry for #(4, G) now follows from b)
and Lemma 2.1.
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¢) =a) By Lemmas 2.3 and 5.2, it suffices to show that
X' = y'(Xy) forXe(py,),yeH Y cH"
Now Yy’ = 0(H' ,H}y'y so by c)
XYpy' = XOCH', )"y = py (X)W =y’ Xy

completing the proof.

C*-systems (%4, ) with B~ n # = B’ n % were investigated in [5] and shown
to be obtained canonically by inducing up from a C*-system over a closed subgroup
with the same fixed-point algebra but which now has trivial relative commutant.

The following variant of Theorem 5.2 will be used in a subsequent paper;
we provide a proof which avoids the hypothesis that (4, G) has full Hilbert
spectrum.

5.3. LeMMA. Let G be a compact group of automorphisms of B, a C*-alge-
bra with unit, let H be a G-stable Hilbert space in # and set p = py, 6 = 0y. Sup-
pose BC and H together generate #; then the following conditions are equivalent :

A B n B=R nB;

b) (p', ps) < (O.r’ O-s)3 r,Se NO ;

c) If Te(p",p*) then 0(s, )T = p(T)8(r, 1), r,s € Ny, where (n,1) denotes
the n + l-cycle (1,2 ...n+ 1),

d) B% n A is pointwise c-invariant.

Proof. ay = b) is proved as in Theorem 5.2. b) = ¢) by virtue of Lemma
2.1. d) =>a) is proved by taking Te B9 n % and ¥ € H then YyT = o(TYW = Ty
but ¢ and H generate & so T %' n #. It remains to show that c) = d). Since
Z% n B is G-stable it suffices to consider an irreducible tensor Ty, Ty, ..., Ty,
say, in B n 4. Since B¢ and H together generate &, G is faithfully represented
on H and hence a subgroup of #(H). We can therefore find p,n e N, such that
S"*l;i, i=1,2,...,d transform in the same way as T; where § is defined by (6.2)

and y; is an orthonormal set in H®. Hence X := ¥, S’T /¥ isin 46 and T, = S” Xyj;

by (6.4). Since X € (p", p), ¥, € (1, 6" and S € (a7, 1) we have by c) o(T}) =
= o-(S”t)p(X)a(t/;i) = §*°Xyj, = T, so that ¢) = d) completing the proof.

6. SPECIAL HILBERT G-MODULES

A finite-dim>nsional Hilbert G-module H in a C*-system (4, o) is said to be
special if oy, the induced action on H, has determinant 1. This notion is related to
the structure of (%(4, ), ) as a symmetric monoidal C*-category.
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A symmetry ¢ on a symmetric monoidal C*-category  determines for each
object p of 7 canonical unitary representations 8g" of the permutation group P,

on n symbols in (p”, p”). In the case at hand, we have simple explicit formulae:
given an object H of %(#, o), we have for p € P,
©.1) )= % Wy .. Wi Vi

i
. p{1)
‘1y I‘Z’

REREE
where ¥, ¥, ..., Y, is an orthonormal basis of H.

The question of whether H is special or not depends on the behaviour under
o of

62) Si= 171‘:'55» SiEn(Wpa o - - Voo
6.1. LEMMA.

(6.3) ,(S) = detoy(g)S

(6.4) S*S =1

(6.5) SS* = Z;T Yy, sign(p)0iP(p)

' pEPy

so that the range of the isometry S is the totally antisymmetric projection of H®4.
Furthermore, we have

6.6) S¥0,(S) = (—1)i-3 5 .
If we set
©.7) Vo= e Y sign(OWe - Yy

4 —(d;”lﬁ PEP (i)

where P(i) denotes the subset of Py of permutations p with p(1) = i, then

©8) yF = (=1 Vd 7,

The proof is a matter of simple computations and will be omitted here. Note
that A is special if and only if S € #* and that the J/i then transform under G con-
jugately to the ;.

6.2. LEMMA. Let & be a C*-algebra with unit, G a compact automorphism
group of B and I’ a family of Hilbert G-modules stable under products and G-submo-
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dules. Suppose B is generated as a C*-algebra by BY and the special elements of T.
Then any equivalence class of irreducibles of G is realized on some element of T.

Proof. Let ¥ denote the set of equivalence classes of irreducible, continuous,
unitary representations of G occurring as Hilbert G-submodules of some special
element of I'. ¥ is closed under decomposition of tensor products of elements:into
itreducibles. It is also closed under conjugates since, when H is special, the tﬁi of
Lemma 6.1 transform conjugately to the ¥,. Hence the linear space spanncd by
functions f € €(G) of the form

fio! =y7e(’), ¥,y eH,

where H is a special element of I' is a *-subalgebra of €(G). Since % is generated as
a C*-algebra by 8¢ and the special elements of I', this #-subaigebra separates the
points of the compact automorphism group G. It is therefore dense in 4(G) and
a fortiori in L%(G). Hence the orthogonality relations for G allow one to conclude
that Z contains all equivalence classes of irreducibles completing the proof.

As an immediate consequence we have

6.3. COROLLARY. Let G be a compact automorphism group of & and suppose
(8, G) has sufficient special Hilbert G-modules; then (8, G) has full Hilbert spectrum.

Corollary 6.3 and Lemma 4.1 have the following simple corollary.

6.4. COROLLARY. Suppose G is a compact automorphism group of a C*-algebra
with unit B and suppose a C*-subalgebra s¢ o> B is generated by its special Hilbert
G-modules; then o is G-invariant and Galois closed in (8, G).

Proof. o is G-invariant since it is generated by its special Hilbert G-modules.
Q := G/G(«) acts as an automorphism group of &/ and & has a fortiori sufficient
special Hilbert @-modules. Hence, by Corollary 6.3, (&7, ) has full Hilbert spec-
trum. Thus & is Galois closed in (%, G) by Lemma 4.1.

The following result is an immediate corollary of Corollary 6.3 and Theo-
rem 3.3.

6.5. COROLLARY. Let G be a compact automorphism group of a C*-algebra
with unit B. Let G denote the stabilizer of BC in Aut B. Suppose

a) (B, G) has sufficient special Hilbert G-modules,

b) 8°° n 8 =CI;
then G = G.

Corollary 6.5 has in its turn the following corollary.
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6.6. COROLLARY. Let G be a compact automorphism group of a C*-algebra
with unit B. Let B,, B° < B, = B be a C*-algebra generated by its special Hilbert
G-modules and let G, denote the stabilizer of B¢ in Awt@B, . Suppose B N B = CI;
then G, = G|G(%,).

Proof. %, is a G-invariant C*-subalgebra of 4, 0 = G/G(4%,) is an automor-
phism group of %, and #¢ = #C (cf. Lemma 4.1). Trivially ¢ n B, = CI so
the result follows on applying Corollary 6.5 to the C*-system (4,, Q).

For the remainder of the section we change the perspective and pick a fixed
C*-algebra with unit & and trivial centre and study a class of extensions of /.
Let 4 be a C*-algebra with o < & and let

6.9) Aut (B) = {gc AutB : g(A) = A, A e o}

be the stabilizer of of in Aut#. The class of extensions we study are characterized
by

ay ' n B =CI

b) & is the fixed-point algebra of # under the action of Aut (%)

c) 4 has sufficient special Hilbert Aut(4%)-modules.

Note that, by Lemma 3.2, Aut_(£%) is a compact automorphism group.

6.7. THEOREM. Consider a family of C*-algebras each satisfying a), b) and c)
above which is partially ordered and directed upwards under inclusion. Then the C*-al-
gebra generated by the family also satisfies a), b) and c).

Proof. Let B, = B, be two C*-algebras in the given family, we first show
that

(6.10) Aut (B,)\B, = Aut (B,).

This will follow from Corollary 6.6 if we show that £, is generated by its
special Hilbert Aut(%,)-modules. Let H < &; be an Aut (%,)-Hilbert module
then YA = p,(A)y for each ¢ € H. Now g()4 = p,(A)gy) for ge Aut (H,)
and since &' n B, = CI, H is Aut,(%,)-stable. If H is even special for Aut (%)
then the totally antisymmetric vector S given by (6.2) is in o/ and hence invariant
under Aut(%,). Thus H is special for Aut_,(%,). But such Hilbert spaces generate
%, so (6.10) follows from Corollary 6.6. The surjective homomorphism
Aut (8B,) —» Aut(%4,) is a continuous homomorphism of compact groups and
we have a projective system. The corresponding projective limit Gis a compact
group [10; § 43].

Let 4 be the C*-algebra generated by the given family. We can define a con-
tinuous action of G on & as the inductive limit of the actions of Aut #%B;) on the
algebras &; of the family. Therefore for each C*-algebra %, in the family, the
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Aut(%,)-stable Hilbert spaces are actually G-stable Hilbert spaces in %. By va-
rying %;and applying Lemma 6.2 to this collection of Hilbert spaces we see that all
equivalence classes of irreducibles of G are realized there. Furthermore # is
generated by its special Hilbert G-modules.

Next note that 5 = s because averaging over G provides a conditional expec-
tation m of & onto %% which agrees on each C#*-algebra 4, with the conditional
expectation derived from Aut(2,). Since the union of the #,; is dense in & we
have m(#) = o as claimed.

As o' n # is G-stable, it is generated by its irreducible G-tensors. Let
71, Ty, ..., T, be such a tensor then, as we have seen above, there is a basis
Y1,¥s, ..., ¥, of a Hilbert space in some C*-algebra %, of the given family trans-
forming in the same way under G. Then 4 = Z Ty¥es and T, = Ay, € B,.

Since &' n #, = CI we conclude that # satisfies a). Coroliary 6.5 shows that

G = Aut (%) so b) and c) are also satisfied and we have completed the proof of
the theorem.

7. A CLASS OF EXAMPLES

In this section we discuss how a representation theory of a compact group G
can be embedded in a C*-system of the type considered in the previous sections and
give conditions for the associated fixed-point C*-algebra to be simple.

Let 2 be a category whose objects are a set |#]| of continuous unitary repre-
sentations of the compact group G on Hilbert spaces each of finite dimension greater
than one and whose arrows are the corresponding intertwining operators. If v € (%]
let Oy, be the Cuntz algebra generated by the representation space H, of u. We get

a C*-system (0, , «,) over G by letting a,,, denote the automorphism of @,
defined by

etu(,g)(np) = u(g)ll/’ W € Hu .

Let (4, «) be the C*-system got by taking the infinite tensor product of the simple
nuclear C*-algebras @, together with the tensor product of the actions a,

(7.1) .@ = ® (OH"
ue\ R\
(1.2 4, = @ Oy, &€C
uelR!

o is obviously a strongly continuous action on & and & is generated by its a-stable
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Hilbert spaces with support I. The image of H, under the canonical map Oy, —» %

will again be denoted H,. & is now naturally embedded as a full subcategory of
the category %(#, ) defined in Section 2. By [13; page 117, Corollary] and [12;
Corollary 1.23.9] # is a simple C#*-algebra.

7.1. LEMMA. Let (B, o) be the C*-system described above; then

2 n % =CL
Proof. Let T denote the compact product of circle groups

(1.3) T=T1[T.

e

% carries a natural strongly continuous action § of T

(7-4) B ) = @y, tel, yeH,,

where t(1) e T < C is the uth coordinate of 7.

Since o and f commute elementwise € = #* n £ is globally stable under f£.
By Fourier analysis, @ is generated (as a Banach space) by elements C €% such
that B(C) = (z, tDC for all te T and some z € f, i.c. z : || — Z has finite sup-

port and (z,t) = I 2(u)*™. Such elements are precisely the range of the map
ue, 4 .

(1.5) m, = S<Z‘?> B.du(r)

where u is the normalized Haar measure on T. The range of m, is clearly given by

m#) = @ 05"

ue %)

where 0% denotes the elements of 0y, of grade k (cf. [7; § 3]). Now if Ce ¥, C com-
mutes in particular with the images in # of all the permutation operators
0.(p) e Ouny < On ,uc|Zl,peP,, neN (cf. Equation (6.1)). Reasoning as in
{7; Lemma 3.2) we see that if Cem,(B)n € either C =0 or z = 0. But if z = 0,
oHu(C) = lim 0,(r, DCO,(r, D* = C so C commutes with all the Hilbert spaces

H, < &, ie. it belongs to the centre of the simple C*-algebra # so we have C € CJ
completing the proof.

Combining Lemmas 7.1 and 2.4 we conclude

7.2. COROLLARY. & is embedded as a full subcategory of (%, ®).
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We conclude this section by showing that, under a certain condition on £,
2* is simple.

We will say that £ is specially directed if for each finite subset u;, u,, ... u, €
€ || there is a u € |#! with determinant one dominating each u;, i.€. u; is quasi-
contained in @ u®~

n
A subset o < |4 is said to be special if it is finite and contains a representation

with determinant one dominating all of the representations in g.
If % is specially directed, the special subsets of |#| partially ordered under

inclusion form a directed subset with union |42].
7.3. THEOREM. If @ is specially directed then B* is a simple C*-algebra.

Proof. When £ is specially directed, 4 is the C*-completion of the union
of the partially ordered directed set of subalgebras #, = ® On wheng varies over

ueo

the special subsets of |%|. Now £° is the range of the conditional expectation

.
m =\ 2,du(e)
)

on # and each 4, is a-stable, hence #* is the inductive limit of the %%, ¢ = 19|
special. It will therefore  uffice to show that each 4, is simple. We now fix attention
on a special subset (u;, 1y, ..., u,,u) where u is the dominating representation of
determinant one. For brevity we will now denote 4, by 4, 8, by & and H, by H.

For each H, there are partial isometries W/ e (u;, u®™) o with Y, W/'W] = 1y
7

Hence I-I,,i is included in Z W{*Hmf and 2 is generated by & and H. The proof

now follows closely some ;rguments of [T. Let 2 = 0y 0 Bwehave @ = O ®

®"'®@Huu and 4 =92 ® 0. "
Let y denote the action of T on & defined by

(7.6) 1:D®Y)=z2D®Y, DeD, yeH.

Let {#*: k e Z} denote the associated Z-grading of 4, i.e. X € B* if 7,(X) = z*X,
zeT. As y and « commute o7 will be Z-graded too.
Let °Z denote the algebraic part of 4 relative to the factor @y in the tensor

product, i.e.
‘B =9 O °Oy,

where © denotes the algebraic tensor product and °@ the algebraic part of @ (cf.
[7; § 1]). Let °Z/ = (°4)* denote the algebraic part of .
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The proof of the theorem follows from the folloWing two lemmas.

7.4. LEMMA. If n is a non-zero Hilbert space representation of s then
kern n °o = {0}.

7.5. LEMMA. There is a unique C*-norm on °sf .

To prove the theorem granted these two lemmas, let = be any non-zero repre-
sentation of & then [|n(A)|, 4 € °/ defines a C*-norm on °s/ so [n(A)| = ||4]],
A€ °sf. °of is dense in o so 7 is isometric on & and kern = {0}. Thus & is simple.

Proof of Lemma 7.4. First note that °% is Z-graded and is the algebraic direct
suim of °#*, k e Z, where

ng = 9 @ O@';., .
So given X € °#* we have

X=$D0,8X, Xe@,

Thus for r € N large enough we have
7.7 Xo"(A) = 6" (A)X, Aecl® 04

where ¢ is the endomorphism generated by H. Since detu(g) = 1, g € G, we have
I® Osyuy = o and identifying Ogyg, with its image in o/, we have isometries
S,,m=1,2,... as in[7; Corollary 2.3]. By Equation (7.7) we have in particular
that for every X e °/* there is an r € N such that

(7,8 Xo'(S,) =" S, )X, m=12,....

The arguments in [7] following Corollary 2.3 and in Lemma 2.4 now show
that every Hilbert space representation of °<Z has a kernel which is a graded ideal
and is hence o-stable by the argument of [7; Lemma 2.1].

Now let 7t be the representation of % obtained by inducing up from the repre-
sentation 7 of o/ using the conditional expectation m: # — /. Since u is special we
see, taking the adjoint of Equation (6.8), that 4 A is the closed linear span of the

subspaces n(H")*# . If A € °s is such that n(4) = 0 then by the above arguments
n(6"(A4)) = 0 and for each X € (H™)* and ® € #, we have
(XD = Xn(c™(A)P = 0.

Thus 7(4) = 0. Now & being the (minimal) tensor product of simple C*-algebras
is itself simple [13; page 117, Corollary]. Thus 4 =0 and ker=n [ °of = {0} complet-
ing the proof.
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Proof of Lemma 7.5. First note that °%° is the ascending union of the C*-alge-
bras @ ® (H™, H™), each stable under a. Denoting the fixed points by &, we see that
°#° is the ascending union of the C*-algebras &, and hence has a unique C*-norm.
The same use of Equation (7.8) as in [7], cf. Equations (2.14) and (2.15) and Lemma
2.10, shows that the projection of °%/ onto °s/° is continuous for any C*-norm
on °«/. Now °#/° has a unique C*-norm so [7; Lemma 2.11} applied to °<f and the
action y of T on °«/ shows that °+/ has a unique C*-norm too.
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