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ON THE HOMOTOPY GROUPS
OF THE AUTOMORPHISM GROUP
OF AF-C*-ALGEBRAS

VICTOR NISTOR

INTRODUCTION

In this paper we study the homotopy groups of the automorphism group
of an AF-C*-algebra. Results on this line were previously obtained by J. Dixmier
and A. Douady [8] and K. Thomsen {22]. Our results concerning the computation
of homotopy groups contain as special cases the above mentioned results.

Our method of computation reduces completely the computation of the
groups m,(Aut(4)), k > 0, to the computation of the homotopy groups of unitaries
(4 is an AF-C*-algebra, Aut(4) is the group of x-automorphisms of 4 endowed
with the point norm topology). Using standard results concerning =, (U(n)) we
succeded to make a complete computation for w,(Aut(4)) for a large class of
AF-C*-algebras A. If A is simple, A # K (the algebra of compact operators
on a separable Hilbert space) the results are as follows: my(Aut(4)) ~
~ Hom(Ko(A4)/Z[1], Ko(A)), 7ias— 1(Aut(A)) =~ Ext(K o(4)/Z[1], Ko(A)) for A unital (k > 1)
and m,, (Aut(4)) ~ Hom(Ky(4), Ko(4)), o 1(Aut(4))~Ext(Kq(4), K(A)) if 4is not
unital (k > 1). Note the similarity with results obtained by J. Cuntz in [6]; also
there exist a few points of resemblence in the techniques used there by J. Cuntz
and by us. If 4 is not simple the results are more complicated depending in a
nontrivial way on the ideal structure of A. In order to handle these situations
we were led to introduce the groups Hom, and Ext, which take into account
the restrictions introduced by the ideals of K,(4).

The method of proof is the following. First we study n,(End(4)), the homo-
topy groups of the semigroup of all #-homomorphisms 4 — 4 endowed with the
pointwise convergence. It turns out then that the natural embedding Aut(4) —
— End(A4) induces an isomorphism 7n,(Aut{4)) - n,(End(4)) for any k > 1, and
this is the crux point of the proof. The computation of 7,{End(4)) requires the
knowledge of n,(U(A4,)) (4, is the commutant of the finite dimensional C*-algebra A,
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in A). This type of questions enter in what is called’ “nonstable K-theory” (see
[17], [18]); in the same order of ideas we prove that certain C*-algebras obtained
from locally trivial fields of AF-C*-algebras on spheres satisfy the cancellation
property for finitely generated projective modules, and also we classify the positive
cone of K, of these C*-algebras.

The first section contains general results: the isomorphism n,(Aut(4)) —
- m(End(4)) for k > 1 and the reduction of the computation of n,(End(4)) to
7, (U(n)). In the second section we introduce the class of ordered groups with large
denominators and show that m,(U(A,)) ~ Ky(4,) if K,(4) has large denominators.
Also we introduce Hom_ and Ext, and develop briefly their properties, showing
that Ky(4,)~ Hom (Ky(4,), K (4)). Next to a k-loop f in Aut(A4) we associate as usual
a locally trivial field of AF-C*-algebras on S**! and show that for k& odd this
defines an element in Ext (Ko(4), Ko(A4)) which is trivial if and only if f is inner.
The final result is Theorem 2.12.

1.

In this section we shall prove same general results about the homotopy
groups of the group of automorphisms of an AF-C*-algebra.

For the basic results concerning AF-algebras and for the definitions not
explained, such as ordered group, ideal of an ordered group, the interested reader
may consult [3] or [9].

1.1. Let us introduce first some notations and fixe some conventions to be
used from now on.

a) K,(4), i =0,1 will denote the K-theory groups of a C*#-algebra A ([3],
[21]). If 4 is an AF-C*.algebra, > will denote the order on K (4), K,(4), will
denote the positive cone of Ky(4) and X(4) will denote the scale of Ky{(4) ([3],
OD. If f: A — B is a =-morphism of C*-algebras K,(f) : Ki(4) - K,(B) denotes
the natural group morphism.

b) If A4 is a C*-algebra M(A) is the multiplier C*-algebra of A ([15]).

¢) Let us fix a base point p, €S* for k > 1. If (X, x) is a pointed topolo-
gical space a k-loopin Xis a continuous base point preserving function f: (S¥, py) —
— (X, x). The class of this function in 7,(X) will be denoted by [f].

d) Let 4 be a C*.algebra. A+ denotes the algebra 4 with adjoined unit,
X :A+ — C is the quotient map. A denotes A4 if 4 has unit and A+ otherwise.
U(A) is the set of those unitaries v € A+ such that x(u) = 1. ad,(x) = uxu® is
the inner automorphism of A4 induced by u € U(A4).

"~ e) If (X, x) is a pointed topological space X9 denotes the path component
of the base point.
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f) If A and Bare C*-algebras Hom(4, B) will denote the set of all #-morphismg
f:A—> B. We shall topologise this set with the topology of norm-pointwise
convergence. If /:4 — B, Hom(4, B,i) is the pointed topological space
(Hom(4, B), {). End°(4) denotes (Hom®(4, 4),id). id denotes various identity
morphisms. ;

g) If Bc 4 are two C*-algebras B’ denotes the relative commutant of
B in A.

h) Let G,,, n € N be abelian groups, ¢,,,.: G, — G,, m > r an inverse system
of homomorphisms. Let é:{[G,—JIG, given by (X )men) = (X, —

neN neN
— @, p+1{Xy+D))nen . Te shall denote by 1imi(G,, ¢,..) the cokernel of this morphism.

Of course lim(G,, ¢,..) = kerd. If y,,.: X,, = X,, m > n is an inverse system of
topological spaces lim(X,,,,) is the subspace {(x)uen, X, = ¥, +1(X,+1)} of

T1X,. It has the induced product topology.
neN

i) From now on 4 will always denote an AF-C*-algebra, 4 = (A, and
A, =AVD ... ® A(n"n), AY) being factors of type I,,nj. Also we shall denote
by a,,,: Kq(4,) = Ko(4,,) the natural morphism induced by the inclusion /,,: 4, =
— A4, for m = n. The inclusion 4, - 4 will be denoted by i, and Hom®(4,,, 4, i,)
by Hom®(4, , 4).

i) Other notations: I =[0,1], 7L =[0,1] X L, S4 = Cy{R, A). B, is the
standard n cell, $"-1 = 0B,

k) By “ideal’” we shall mean “‘closed two-sided ideal’’.

1.2. Let us denote by Y, and ¥,, the mappings ¥, : U(4) - Hom®4,, 4),
lPn(u) = adnlAn’ l//nm: HomO(Am) A) - HomO(An! A)’ ‘//nm(f) =flAn'

LemMa. (U(A4), ¢,, Hom®A4,, A)) is a locally trivial principal U(A,)-bundie
and (Hom®4,,, A), ¥,., Hom®(4,, A)) is a fibration.

Proof. The second assertion follows from the first.

Let us prove now the first part. ¥, is obviously surjective and the function
UA)=U(A) 3 (u, v) — t(u, v) = u~'v € U(A}) is continuous (we have denoted, as
usual, by U(A)=U(A) the set of those pairs (u, v) € U(A) X U(A) such that ,(u) =
=y, (v)). Also z(u, -) and (-, v) are onto for any fixed « and ». This shows
that (U(A), ¥, , Hom®(A4,,, A4)) is a principal U(A4,)-bundle.

Let us show that there exists a cross section for y, defined in a neighbourhood
of i,. Let V be the set of those ¢ € Hom®(4,, A) such that |j¢ — il < 1. Ife
and f are two selfadjoint projections such that [le — f]| < 1 then fe has a polar
decomposition f{efe = (1 — |le — f|De). Denote by 0(f, ) the partial isometry
arising in this polar decomposition, thus fe = 0(f, e)(efe)/2. It follows that
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0(f, e)0(e, f) = fand O(f, e) = O(e, f)*. Let (e;) be a matrix unit for 4,. The required

kn Pk
cross section is defined as follows: u(p) = ¥, Y o(ef)b(@(ehy, efpet;, (see [4]).
k1 i1

Since U(A) acts transitively on Hom®A4,, A) a local cross section exists in the
neighbourhood of each point.

1.3. LEmMA. End®(A) is homeomorphic to the inverse limit im(Hom®(A4,,, A), ¥/ yu)

Proof. Denote by ¢,(f) = f|A,, @, End®(4) > Hom%(4,, 4); then ¢, =
= Y,m° @, for any n<m. Since each of ¢, is continuous they define a continuous
function ¢ = limg,: End®(4) — lim(Hom®4,, A), {/,,,). @ is obviously one-to-one
and onto. ¢ is a homeomorphism from the very definition of the topology on
End‘(4).

1.4. LEmMA. Let L be a finite cell complex, f:L — End®4). Then there
exists a continuous function g : IL — End%(A4) such that g|{1}x L = f and g(t, x)€
€ Aut(A4) for any 0 < t <1 and x € L.

Proof. Denote by B, the standard n-cell, $"-' = B,. By induction on the
number of cells we reduce the problem to the following: given f: {1} x B, U
U I0B, — End®(A4) a continuous function, extend this function to a continuous
function g on IB, such that g(x) € Aut’(4) for any x € IB,\({I} X B, U I¢B,).
But since the pair (IB,, {l} X B, U I¢B,) is homeomorphic to the pair (IB,, {1} x B,)
it follows that we may suppose that L itself is a cell, L = B,.

Since B, is contractible and (U(A4), ¥, Hom®A4,, 4)) is a fibration there exists
0,,: B, = U(4) such that f(x)|4,, = adgm(x)]/ﬂ,,,. Let 0y(x) = 1. Using that U(4,)
is connected and B, is contractible we may choose a continuous function 6,,: IB, —
— U(A4,,) such that 0,(,x)=1 for xeB,, t€[0.1 — 1/m] and 6,0, x) =
=05_.(0)0,(x) for t e[l — )m+ 1),1], x€B,, m = 1. Set as in [1} g(t, x) =
= adgl(,,x)gz(,’ 0.0, for t <1 —1/(n+ 1) and g(l,x) = f(x).

We have to prove the continuity of g(z, x). It is enough to show that (¢, x) —
- g(t, .\‘)[A,,, is continuous. But g{z, x)[A,,,: adgl(,, x)_ugm(,’x)lAm which is obviously

continuous since 0; are continuous.

1.5. THEOREM. a) The naiural inclusion j: Aut®(4) — End®4) induces iso-
morphisms m,.(f) @ m(Aut®(4)) — 1 (End®(4), k > 1.
b) There exists a short exact sequence of groups:

0— liml(nk+1(H0mo(An s A))9 7Tr.~+1(‘¢nm)) - nk(AU‘to(A)) -

- }in(nk(Hom()(Arr H A))5 nk(¢1lrn)) -0 (k Z 1)
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) ng(Aut(A)) is isomorphic to the group of the automorphisms of the scaled
ordered group (K,(A), Z(A)). ‘

Proof. a) follows from Lemma 1.4.

b) follows from a), Lemmata 1.2 and 1.3 and [24], Theorem 4.8, p. 433.

There is an obvious morphism Aut(4) — Aut(K,(4), 2(4)). The kernel of
this morphism is Aut’(4) ([2], Theorem 3.1). This morphism is surjective by a
theorem of Elliott ([10]). This proves c).

1.6. REMARK. Let us note that a nontrivial element of limi(m,(Hom®(A4,, 4)),

(Vo)) < Ti(Aut(4)), for a certain AF-C*-algebra 4 is implicitly contained in
the construction of Proposition 5.1 of [7].

1.7. Remark. Using the exact sequence of a fibration we obtain if 4 = K
(the algebra of compact operators on a separable Hilbert space) n,(Hom®A4,, A))~
=~ {0} for k # 2 and n,(Hom°(4,, A)) = ny(Hom®A4,,,, A)) =~ Z, the isomorphism
being induced by m,(¥/, ,+1)

It follows from Theorem 1.5b) that m,(Aut(K)) ~ Z and r,(Aut(K)) ~ {0}
for k s 2. This also follows from results in [8].

2.

In this section we shall go further into the structure of the homotopy
groups of a certain class of AF-C*-algebras, a class which contains, for example,
all simple, non type [ AF-C*-algebras.

2.1. We shall need the following results concerning the homotopy groups
of the unitary group U(n) = U(M,(C)).

Denote by i and j the following functions i,j: U(n) » Um) i(u) =u @
DLy, j) =u® ... Du® [, (iis defined for m > n, jis defined for p = m —
—nl > 0, u occurs [-times).

ProposiTioN ([13D). m,()) = In, (i) and m(j) is an isomorphism for kj2 < n.
Also

n(Un)) = {g :Z‘Z k/2 < n.

2.2. DeFINITION. Let (G, G,) be an ordered group. We shall say that G
has large denominators if for any @ » 0 and n € N there exists b€ G und m € N
such that nb < a < mb.
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2.3. PROPCSITION. Suppose that A is simple, infinite dimensional, A # K;
then Xy(A) has large denominators.

Proof. Let e # 0 be a projection, a = [¢]; replacing A by eM, (A)e for some
large n we may suppose that a ={I}. Let k e N. Denote by J, = @ AYV< 4,.

p\k

Then i,,(J,) < J,, and hence J = Ljf,, is an ideal of A. Since A is simple it follows

that J = 4 or J = {0}. But A/J has only finite dimensional irreducible represen-
tations; this shows that J # {0} is possible only if 4 = K. It follows from the above

discussion that 1 € J = 4. Choose n such that 1 €J,. Let (ef‘,) be a matrix unit
k

for J, = A, = G—) A with AY) finite dimensional factors. b = § [¢49] will satisfy
j=1 ji=1
the requirements of Definition 2.2.

2.4. PROPOSITION. Suppose K (A) has large denominators. Then:
a) Ky(A;,) has large denominators, m > 1.
b) The natural morphisms w,{U(A)) — K, (S*A) are isomorphisms.

¢) The isomorphisms of b) give a commutative diagram with exact rows:

0 - o {(Hom®(4,,,,, A)) - Ky(4,41) - Ko(A) - Ty 1(Hom®(4,,,,, 4)) - 0

1 1[
Y

0 — my,(Hom®(4,, A)) — Ky4,) - Ko(A) = Tap - ](Homo(A A4)) = 0.

d) li_rr—ll(vtzk_l(Homo(A", A}, 7T2k—1(l//n,n+l)) =0.

Proof. a) Suppose that A is not unital, I € M(A)\A.
Let (e¥) be a matrix unit for 4,. Denote by e, the unit of A An casy

computation (see [1]) shows that 4} is isomorphicto (I — ¢, )A(l — ¢,) + @ ek Aek,,

Lm km Pk

the isomorphism being p(a @ @ ak) a+ Y, Yehaek; . Let J, be the idea! generat-

k=1i:1

ed in A by (I —e,) for Kk =0 and by €% for k > 0. It follows that K(4)) ~

k
~ Ko(Jo) @ @ Ky(J,) since ef, e, ((1 — e, )A(1 —e,) is a full corner in J, (Jy); to
k-1

prove this, use [5]. Since K, (J) has large denominators for any ideal J of 4 it
follows that K,(4,) has large denominators.

For A wunital the proof is similar.
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b) We shall repeatedly use Proposition 2.1. There exists a commutative
diagram of isomorphisms

limn, (U(n)) = K(S4C)

*
KO(Sk+1) (see [13]).

For each A, denote by e, its unit. Let /, > k/2 and f, such that [[f] <
< [e,] < m[f,] for some m € N. Replacing (4,).en by a subsequence and the f,s,
by some equivalent projections we may suppose that f, € 4,,,. Replace again
A, by e A e, It follows that A4, ~ M,1 ®...8 M,j and ry, ..., r; = Iy > kj2.
Then n,(U(4,)) - K,(S*4,) is an isomorphism and we have isomorphisms n,(U(4)) ~
~ limm,(U(4,)) =~ limKy(§¥4,) ~ K,(S¥4) (recall the convention made for
U(4) in 1.14d)).

¢) This follows from the exact sequences of the fibration U(A4}) — U(A) —
Hom?(4,,, A) and from the commutativity of the diagram

U(4,+;) = U(A) > Hom"(4,,, , A)

I
l
U(4]) — U(A) » Hom®(4,, A).

(Note that my,,(U(A)) ~ Ky(4) and m,,(U(4)) ~ {0} by b).)
d) follows from the surjectivity of my, (¥, ,+1) as is apparent from c).

The previous lemma shows that it is important to know Ky(4;) and, in view
of Theorem 1.5, to compute also the morphisms K,(4, ;) = K(4;). The following
definition and Definition 2.9 are an attempt to give a satisfactory framework for
our computations.

2.5. DEFINITION. Let Hy, H, be ordered groups, i : H, - H, a positive mor-
phism, ¢ : H; - H, a group morphism. We shall say that ¢ is compatible with i
if for every x € H,, x » 0 there exists m € N such that —mi(x) < @(x) < mi(x).

We shall denote by Hom_(H,, H,,i) the set of morphisms ¢: H, - H, com-
patible with i. In the same spirit as before Hom (K,(4,), Kq(4), Ko(i,)) will be denot-
ed by Hom (Ky(4,), K(4)) and Hom (G, G, id) by End_(G).

This definition is suggested by the computation of Ky(4}) in the proof of
Proposition 2.4 a).

2.6. The following proposition gives the basic proprieties of Hom_ needed in
the computation of n,(Aut(4)).

PROPOSITION. a) Let H, , H,, and Hy be ordered groups, l,: H; = H,, l,: Hy, — H,
be positive morphisms. Then there exist natural morphisms I¥ - Hom (H,;, Hy, 1) —

9-2129
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~ Hom (H,, H3, lyo 1) and iy,: Hom (H,, H,, ) = Hom (H,, Hy, I, ° ) given by
I¥e) = @ ol and b, (9) =1~ 9.

b) If Hy, H,, and I, are as before, H, is a simple ordered group, and I,(x) # 0
for x 2 0, x # 0, then Hom (H,, H,, I,) = Hom(H,, H,).

c) Suppose H,, n € N and H' are ordered groups, j,,: H, — H, are positive
morphisms for n<m and H =1_im(H,, s Jmn)- Also let i : H— H' be an order morphism.

Denote by 1, the composition H, — H_, H'; then
Hom (H, H’, i) = lim(Hom (H,, H', 1), jX.).

Proof. a) Let ¢, € Hom (H;, H;3,1,), ¢, € Hom (H,, H,,l,). We have to prove
that @,el;,l;0 0, € Hom (H;, Hy, ;o). Let x € Hy, x 20 then (x)>0. Choose
m such that —ml,(1,(x)) < @,(li(x)) < mly(li(x)). This proves the first part. Choose m
such that —ml(x)< ¢y(x) < mh(x). Since /, preserves the inequalities we obtain
the desired conclusion.

b) Since H, is simple and /;(x) > 0, ;(x) # 0 for x # 0, x > 0 it follows
that /;(x) is on order unit for H,, namely for any y € H, there exists an m € N such
that —ml(x) < y < mly(x) (see [9]). This concludes the proof.

c) Denote by j, the positive morphism H, — H;j, defines a morphism j}:
‘Hom (H, H',i)>Hom (H,, H', 1). Since j, o}, = j, it follows that j = j* j_ and
hence j¥ collect to define amorphism f: Hom (H, H', i)—»lim(Hom (H,, H', 1), j.).
Let ¢ e Hom (H, H', 7). If f(¢) = 0 then ¢<j, =0 for any » and hence ¢ =0.
Let ¢, €« Hom(H,, H', 1) such that j¥ (¢,) = ¢,. This means that ¢, ¢j,,=0,.
Define ¢:lim H, — H' using the universal property of the inductive (direct) limit:
7] eHom(ﬁ:H’). We need to check that ¢ is actually in Hom (H, H’, i). Let
x € H, x > 0. Then there exist » and x, € H,, x,, > 0 such that j,(x,) = x. By the
assumption that ¢, € Hom (H,, H', iol,) it follows that there exists 2 € N such
that —mi(l,(x,)) < @.{x,) < mi{l,(x,)) and hence —mi(x) < @(x) < mi(x).

2.7. LEMMA. Let A be a unital AF-C*-algebra such that X,(4) has large
denominators. Suppose also that Ay = Cl.

a) There exist isomorphisms B,: Ko(A4,) — Hom (K (4,), K((4)) and a com-
mutative diagram

Ky(45) . Hom,(Ky(4,), Ko(d)
N l“"’k’"
Ki()) Ky(A) ——— Hom (Z, K(4) |ak, m>n
Ky(42) + Hom, (Ko(4,), Ko(4))

(j: Ay, = A, is the natural inclusion and o, is as in 1.1 i)).
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b) There exist morphisms j: mp (Hom®(4,, A)) - Hom(K(4,)/Z, Ko(4)) and
&: Ty —1(Hom"(4,,, A)) — Ext(Ko(A4,)/Z, Ko(A)) and a commutative diagram with
exact rows:

0 — 7y (Hom%(4,, A)) —> my—1(U(A4})) — 1y -1(U(A)) —> 73— ,(Hom"(4,,, 4)) - 0
I I =
0->Hom(Ky(4,)/Z,Ko(4)) > Hom(K(4,),Ko(4)) » Hom(Z,K(4))—Ext(Ko(4,)/Z,Ko(4)) » 0
(0: o1 (U(A,)) > Hom(Ky(A4,), Ko(A4)) is the composition '
o 1(U(A4})) = Ko(4;) — Hch(Ko(An), Ko(4)) = Hom(Ky(4,), Ko(4)),
Z is embedded as n — n[1}).

Proof. It follows from the proof of Proposition 2.4 a) that Ky(4,) is a subgroup
of Ko(4)'r~ Hom(Z*, Ko(A)) ~ Hom(Ky(4,), Ko(4)). The previous isomorphism
maps K,(4,) onto the set of those morphisms ¢:Ky(4,) - K4) such that
o([e4,]) belongs to the ideal generated in Ky(4) by [e%], namely the set of those
a € K,(4) such that there exists m € N such that —mf[e%,] < a < mfé%,]. This shows
that K,(4;) is isomorphic to Hom_ (Ky(4,), K(A4)).

We shall prove that ok 8, = B,K,(j), the other relations being similar. Let t,,,,, =

= (a,,,,) the matrix representation of the morphism «,,,: KQ(A 2 2 Ked,) A <p <

S kw, 1 <qg<k,) Let (fe], O,..., 0)€Ky(4) n Hom, (K(A4,), Ko(4)), i.e.

[e] € Ky(J7) (we use the notations introduced in the proof of 2.4 a)). Suppose ([e],
P

.,0) is represented in 4, by fi= z,e}] fe}; for a projection f equivalent to {e] (e}

i=1
is a matrix unit of 4, ).We want to find the class of this projection in K(4,). Let (},)
be a matrix unit of 4,. We may suppose that the matrix units e,
and (ef;) are compatible in the sense that each of e}, is a sum of some of ;. To

.. . . k
be more precise in such a sum for €}, appear a,, projections from ek, , e&,, ..., € Pk’

Let [g] be the r*" component in Ky(4}) of f;, this is the rt? component of aX, (e],

.,0) in Hom (K,(4;), Ko(4)). [g] is represented by Zeﬂhen and & is a projec-

tion equivalent to g. It is clear now that / is of the form K —e11 figy= Y, el fel, ay,
e’1‘< 1

terms occuring in the sum and hence [g] = [A] = a,,[f] = a,,[e]. It follows that there

exists a commutative diagram

~

Ko(42) = Ko(d)* ® Ko(d) = Hom(Ko(4,), Ko(4)) — Hom (Ko(4,), Ko(A))
Ky(j) la,sm ® 1 ak,
Ky(A2) - Ko(4,)*® Ko(4) = Hom(Ko(4,), Ko(4)) « Hom (Ko(4)), Ko(A)).
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This diagram gives the desired conclusion. ,

b) Let f: S¥*-1, p, — U(4}), 1 bea 2k — 1 loop. We identify Sz~ with éB,,.
Choose g: By, = U(M,(A)) an extension of f @ f* to B,,. ad, defines a morphism
A, = C(B,, , My(A)) — C(By,, K ® A). Since f takes values in U(A4}), the range of
the previous morphisms is actually in C(B,,/¢B,,, K ® 4) =~ C(S*, K® A). De-
note by ¢,: A4, - C(S%, K ® A4) the previous defined morphism and by ¢: A, —
-+ C(S?, K ® A) the morphism (@)(x) = a @ 0 (the upper left corner embedding
by constant functions). Using a Kiinneth theorem ([3], [19]) or by direct computa-
tion Ko(C(S%*, A)) ~ Ky(A) ® Ky(A4), the first summand being Ky(f)(Ko(4)) and
the second being the kernel of the morphism Ky(e): K (C(S%*, 4)) - K(A4) induced
by the evaluation at S¥*-1/S%~1 (the point obtained by collapsing S% - = B,
to a point).

It foliows that K,(¢,) — K () defines a morphism d([f]) = Ky(o,) — Ko(t):
Ko(4) = ker(Ky(e)) =~ Ky(4). This morphism depends only on the class of f in
i —1({U(A})). Ths shows that d is a well defined function.

Let us show that ¢ is actually a morphism.

Denote by f+ g the operation of concatenation of loops and by o:S%* —
— SV S§¥% ~ S2%fequator the obvious morphism. Note that there exists a homo-
topy commutative diagram:

(9)7 C(S2k5 A ® K) A o-*
A CS*V'S¥, 4@ K) — C(S*, 4 ® K)
H |
‘| o > C(S¥, A® K) |
i
i ®
A, i C(S*, A® K).

The corresponding commutative diagram of Ky-groups looks as follows:

5(\@» ! KO(A) @ Ky(4)

(xé I
Ko(a*)
Ko(4) N Ko(4) O K ()@ Ko(4) Ko(4)@Kq(4)
Id; i2
l %”*mm®mw/
l id, 8([f *
Ko(A4) (d, 507+ 2D) > Ko(A)OK,(A),

where il(x9 y) = (xs y’ O)’ iz(x, Z) = (X, 0: Z)’ KO(O'*)(X, y’ 2) = (x) y + Z),
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This gives the desired conclusion.

Note that 8([f)([1]) = d,([f]) = the index of the loop f regarded as an element
of K,(S*-14). Hence, if f is homotopic to the constant loop p, in U(A) then 3([f1)
factors to give a well defined morphism K(4,)/Z — K(A). This is u([f]) under the
identification my(Hom®(4,, 4)) = ket(ny, —1(U(A))) — g 1(U(A))).

Let us define now &. Let f: (S22, pg) = (U(4), 1) be a 2k — 1 loop. f defines
a unital morphism A4, — C(S% -1, 4). This morphism is the Busby invariant of a
unital extension

m 0> S*4 > E—>A4,-0.
Denote by 1 the units of E and 4, as well. This gives an extension of groups
0 = Ky(4) » Ky(E)Z — Ky(4,)/Z - 0

(Z is embedded as n — n [1]).

The class of this extension in Ext(K,(4,)/Z, K,(4)) will be denoted by
e([f]). We may show that ¢ is a group morphism as we did for ¢ or as we shall do
for E in Theorem 2.11. However we shall confine ourselves to note that this will
follow if we shall show that the diagram

k- 1(U(A)) = mg(Hom®(4,,, 4)) -0

T

Hom(Z, Ky(A4)) ——> Ext(Ko(4,)/Z, Ko(4)) — 0

is commutative. To show this observe that (1) becomes a trivial extension after
tensoring Co(By, 4) by K. A lifting for 4, — C(S¥*-1, 4) - C(S¥* -1, M,(4)) to
C(B,,, My(A4)) is given by a lifting of /@ f*. This shows that our extension of
groups is isomorphic to

0 = Ko(S%4) — Ko(S*4) @ Ko(4,)[ZO([fD, [1]) = Ko(4,)/Z{1] - O

and hence it is the image of the morphism Z—-Ky(4) which sends 1 to —dy([f]) in
Ext(Ky(4,)/Z, K,(A4)) (this also justifies the appearence of the sign —1).

The first row is exact since it is a segment of the exact sequence of homotopy
groups of a fibration ([24]). The second row is a segment of the Ext-exact sequence
of homological algebra ([14]).

The next lemma is the nonunital case of 2.7.
2.8. LeMMA. Let A be a nonunital AF-C*#-algebra. There exists an exact
sequeince

0 - m(Hom"(4,, 4)) > Hom (K(47), Ko(4;) » Hom (Z, Ko(4+)) -

- 1o, (Hom®(4,,, 4)) — 0.

no
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Proof. There exist morphisms

@1: Hom (Ko(4,), Ko(4+)) » Hom(Z,Z) =~ Z
and
@, Hom(Z, Ko(A+)) > Hom(Z, Z) ~ Z

given by Z = Z[1] < Ky(4}) and K,(4+)>K,(C) =~ Z. It follows that Ky(A4,) ~
=~ Ker ¢, and K (4) = ker ¢, as easily seen from the proof of Proposition 2.4 a)
(we have an argument similar to that given in the first paragraph of the proof of
Lemma 2.7). The rest is an application of Proposition 2.4 c).

2.9. DerFiNITION. Let H,, H, be ordered groups, i : H; - H, an order morphism.
An exact sequence of groups

[E] 0> Hy,—E—H, >0

in which F is an ordered group, ¢ is a positive morphism, will be called compatible
with i if
(2) g(E,) = Hyy ;

W) if x,y >0, xe Hy, y,z€ E are such that x — ¢(y) = g(z) > 0 then
z>0 if any only if there exists m > 0 such that —mi(x) < z — y < mi(x) in H,.

As in the usual case, two compatible extensions E, and E, will be called iso-
morphic if there exists a positive group morphism ¢: E;, — E, and a commutative
diagram

O-H,->F, - H -0

)

0> H,— E,—» H, —0.

It follows that ¢ is necessarily an isomorphism of ordered groups.

The set of isomorphism classes of extensions of H, by H,, compatible with i,
will be denoted by Ext (H,, H,, i).

An extension E compatible with / is called trivial if there exists a positive lift-
ing for ¢g. Note that in view of our definition two liftings differ by an element of
Hom (H,, H,, i).

It is not true that a trivial extension in Ext (H,, H,,) is isomorphic to H; ®
@ H, as ordered groups.

We will need only the following results about this Ext,_ .

2.10. PROPOSITION. a) Let H,, H,, Hy, H, be ordered groups, I, H; = H;,,,
j€{l, 2, 3} be order morphisms. Suppose that the ideal generated in H; ., by I,(H ;)
is Hiy (7 €11, 2, 3}).
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Then there exist functions
l;_k : EXtc(HZ’ H3, lz) had EXtc(Hl, H3, lz © 11)
Lyt Ext (H,, Hy, I,) = Ext (Hy, Hy, Iz L)

with the property that If oly, =l o I}¥ as functions from Ext (H,, Hs, l,) to
Ext (H,, Hy, lyoly0 ).

b) Let E,, E, cExt(H,, H,, i), d: H, > H, ®H, da)=a®a, 6: H, ®
@ H, - Hy, oa,b) =a+b then E, @ E,cExt (H, ® H,, H,® H,, i ® i)
and d*(c(E, ® E,)) = 0,(d*(E, @ E,)) € Ext (H,, H,, i) defines a group structure
on Ext (Hy, Hy) with the trivial extension as a neutral element.

c) Let H,,neN, H', i, ju.,l, and H be as in Proposition 2.6¢€), then there
exists an exact sequence of groups

0 - lim'(Hom (H,, H', L), j,) = Ext(H, H', i) - lim (Ext (H,, H', L), j,) = 0.

Proof. a) Let[E] = 0—>H3—j+ ES H, — 0 be an element of Ext (H,, Hy, ).
Define /*([E]) to be the class in Ext (H,, Hy, I, o 1) of the extension

0—)H3—>EullH]_—'H1—’0

Here E_L[,1 H, = {(x,hy) l q(x) = Lh,)} and (x, A;) 20 if and only if x > 0
and A, > 0.
L ([E]) is the class in Ext (Hy, H,, I3 l;) of the extension

q
0 - Hy —» E® H,/(—)) ® ly(H,) = H, — 0.

The order on E;, = E ® H,/(—j) ® I(H;) has as positive cone the set Py o
the classes of elements (x, &,), x € E, x > 0, hy € H, such that there exists m > 0

S
for which —mlizol,0q(x) < by < mlyol,-q(x). Denote by (x,h,) the class of an
element (x, 1) € E® H, in E;. We shall show that [E;] € Ext (H,, H,,l;01l,). Let

N
(x, h) € E,. There exist positive elements x,, x, € E such that x = x, — x;. Also,
since the ideal generated by I;0/(H,) in H, is the whole of H,, there exists
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N S
xg = 0 such that —/yol,(x3) < 7 < I3o L(x;). 1t follows that (x, h) = (x, + x3,h) —

— (x; + x5, 0) is the difference of two positive elements. If (x, h) e P, 0 (—Py)

N
then gy(x, h)) = g(x) e E, n(—E,) (E, is the positive cone in E). This shows
that P, n (—P;) = {0}.

Let (x;, hy), (x5, hy) € E; be such that (x,, k) is positive and /1 = g(x,) =

= g(x,). Suppose that (g,\hz) is also positive. Then we may suppose that x,, x, > 0,

—mly(h) € x, — x; < mly(h) and —mlzsly(h) < h; < mizo l,(h) for some meN
P VS —— T T ———

and j € {1,2}. Then (x;, 1)) — (xy, hy) = (0, hy — hy + I(x, — xp)) satisfies —3mlzo

oly(h) < hy — hy + Ig(xy — x;) < 3mlgoly(h). Conversely, if —mloly(h) < B <

VS Py N
< mly e l(h) then {x,, ) + (0, 4')is positive from the definition. Since g,((x;, /) =
= g(x1), q.((xy, N3)) = g(x,) it follows that (E,,P;) defines an element of
Ext(H,, Hy, l301,).

Note that if in (2.9.1) we suppose only that ¢ is a group morphism then it
follows that ¢ is actually a morphism of ordered groups. This shows that the
natural function Ext.(H,, H,,i) > Ext(H,, H,;) is injective and hence that
Ext.(H,, H,,i) may be identified with a subset of Ext(H,, H,). This proves the rest
of a) and b).

Let E, and 8, be such that the diagrams

0O-H —-E, -»H,->0

i
I; l/ Brin l
|

]
0-H -E,—»>H,—0
are commutative, f,,, positive, then

0 _>HI _-}lim(EII’ ﬁ""l) _>lim(HI1’j"1ﬂ) —)0

represents an element [E] € Ext(H, H', i) such that its image in Ext.(H,, H', j)
is [E,). This gives the surjectivity of Ext(H,, H', j,) — im(Ext.(H,, H', j,), jms)-

Let 0 > H' — E — H — 0 be an extension such that if Jut H, > H is the
limit morphism then j;([E]) is trivial. This means that there exist positive liftings
1, :H, > E such that g-1, =j,. Let us observe that t,41¢j,01,,— T,€
e Homy(H,, H', j,). If we choose other liftings 7, then 7, 19/,41,,— T =Tn41%nr1,0 —

— Tyt (Ths1 — Tusr) 2 nsrn— (T — T,). It follows that (7419541, — Tonen and
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(Tn+1°Jn+1,n—Tn)nen differ in ] Hom (H,,H’,1,) by an element in the range of &
nenN

(see 1.1h)). This gives the rest of the statement.

Let us observe that if H, and H, are unperforated then any ordered group
representing an element in Ext (M, , H,, i) is unperforated.
We shall denote by Ext (K,(4), Ky(4)) the group Ext.(K,(4), K,(4), id).

2.11. LemMA. Let f:S*~1 - Aut(A4) be a 2k—1 loop and suppose that K (A)
has large denominators. Let E < C(By,, A) be the C*-algebra of those functions
@: By, > A such thar @(x) = f(x)(a) for some a = n(p)e A and any xeS*-1,
Then the semigroup V(A) of projective finitely generated modules over E, has can-
cellation. If Ky(E,), is the positive cone of Ky(E;) then Kym(K(E))+) = Ky(A).
(n is the quotient map E, — A). Moreover, Ko(E,) represents an element in
Ext,(Ko(4), Ko(4)).

Proof. We refer the reader to [16] for the notion of topological stable rank
and for the theorems used in this proof.

There exists an exact sequence
0 — S?*4 —»EI-LA = 0.

We denote as in [16] by tsr(B) the topological stable rank of a C*-algebra B.
It coincides with the Bass stable rank ([11]).

We know that tsr(S%*A4,)<k + | and hence tsr(lim S%A4,) < k + 1. Also
tsr(4) = | and hence tsr(E;)<k + 1. Analogously tsr(eEe) <k + 1 for any
projection e€ E,. Let e, e, be two projections in K @ E; such that [e;] = {e,].
Replacing A by some M, (4) we may suppose that y(e;), n(e,) € A. Since close pro-
jections generate the same ideal and n(e;) and #n(e;) are equivalent cousider the
ideal J generated by n(e;) and identify e; and e, with two functions ¢, and ¢,
in C(By, J)n E,. Then there exists a commutative diagram

0 — S*J — C(By, J) > J =0

|

0—8*4—> E, . 40

Since Ky(/) = Ky(4) and Ky (S%J) — K,(S?*A4) are injective it follows that
Ko(C(Byy, J) N E;) — Ky(E() is injective and hence [e;] and [e,] represent the same
class in Ko(C(By,, J) N Ef). This shows that we may suppose that e; and e, are full
projections in E,.
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Let n =k + 1. Choose a full projection e € A4 such that nle] < Kq(n)({ey))-
We may suppose that e € 4, for some large p. Also it follows from Proposition 2.4b)
and c) and from Lemma 1.2 that there exists a loop of unitaries g such that f|4, =

= ad,|A, . Leth be a lifting of g ® g* toa unitary in C(Byy , My(4)). Then ad, ( (‘; g) -

= ¢, is a projection in M,(E,) such that n(e,) = e. Similarly we may find a projec-
tion e’ € M, (E,), for some large r, such that ale] + K,(in)({e'D = Ko(n)([ey])- We
show now that we may replace e, @ ¢’ by some other projection e’ such that

) (n — Dleo] + [e”] = [e,].

Indeed let x = [e;] — nle,] — [€'] € Ky(S2*A). Since e is full p = e @ yle') is also
full and this means that the map m,_,(U(pM, ,,(A)p)) = Ko(S*A) is surjective
(use Proposition 2.4b)). Let g be a (2k — 1) loop in U(pM,,,(4)p) representing x
in K,(S%%4). Using g we may twist e, @ e’ such that the new projection ¢’ satisfies

(1). Indeed, let / be a lifting of g ® g* to a unitary in C(By,, My, (A)), ¢ = ad, (‘(’)’ 8).
It follows that (n — 1)[e] + [q] = [eL].

Since e is full in A4, e, is also full in E, and hence (eE;)"~* @ qE,; ® (eE;)" and
(e,E;) @ (eE,)" are isomorphic as right E,-modules for some m e N. We may use
now the Warfield cancellation theorem ([16], [23]) to conclude that (eE;)*-'@®
@ qE, and e,E; are actually isomorphic. The same argument shows that e,E,
and (eE)f~1 @ qE, are isomorphic and hence we obtain that [e,] and [e,] are equiva-
lent projections.

We have already proved that any projection in 4 has a lifting in E,. This
shows that Ky(n) (Ko(E,)+) = Ky(4), . To prove that

0 - Ky(4) = Ko(Ef) > Ky(A4) -0

is an element in Ext (K,(4), Ky(4)) we have to prove 2.9b).

Let ey, e;€ M (E[) such that K,(m{e.]) = Ko(n)([ex]) = [e]l. Then, as we
did before, we note that e, and e, may be identified with functions ¢,, @,: By, = J, J
being the ideal generated in 4 by 5(e,). Hence [e;]—[e,] is an element of K,(S2J)-
Conversely if x € Ky(E,) is such that [e;] — x € Ky(§2J) = K((S*4) then we may
find a 2k — 1 loop g in U(n(e, )M, (4A)n(e,)) such that 6([g]) = x — [e,]. Using this
g we may twist e, to obtain a new projection e, € M;(E,) such that [e,] — [e,] =
= x —e, . This concludes the proof.

Note that E is a locally trivial field of AF-C*-algebras.
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2.12. THEOREM. Let A be an AF-C*-algebra such that Ko(A) has large deno-
minators. Then there exists a commutative diagram with exact rows:

0 - 1y (Aut(4)) —— > End (Ko(A)) — Hom(Z, K(4)) -

-1

M
0 — Hom(Ky(A)/Z, Ko(4)) — Hom(K,(4), Ky(4)) » Hom(Z, Ky(A)) —

- M- 1(Aut(4)) ——> End (Ko(4), Ko(4)) =0

— Ext(Ko(4)/Z, Ko(A)) = Ext(Ko(A), Ko(A)) = 0.

Proof. Let us suppose first that A4 is unital. Endc(Ko(/I)) — Hom(K(4), Ko(4))

and  Ext (Ky(4), Ko(4) — Ext_(Ko(A), KO(A~)) are the natural maps. M is
defined analogously with u of Lemma 2.7b). £ associates to x € 7y, _;(Aut(4)),

x = [f], the class in Ext (Ky(4), Ky(4)) of the extension

0 — Ky(S¥A) — Ko(E,) = Ko(4) » 0
constructed as in Lemma 2.11. (We identify using Bott periodicity Ky(4) with
Ky (S A).)

Let 1 denote the units of £, and A4 as well. The extension of groups

0 — Ky(S*4) - Ko(E))/Z[1] - K(4)/Z[1] -0

will be denoted by E,(x).
We prove now that E and E, are group morphisms.
Denote by fx g the concatenation of loops. Also letd: 4 —» A @ A4,d(a) =

=a®a and o: S%4 @ S*A > S*A the map induced by Cy(R*) @ Co(R*) ~
Co(R¥) @ Cy(R*) — Cy(R%). There exists a commutative diagram of extensions:

R

0 — Sy E;y, A-0
-

0 - S*A4 @ S¥4

E A-0

d

0 S*4A@S%4A — E®E, -4 @A 0.
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Since Ky(o)a, b)) =a+ b and K(d)a) =a® a we obtain that the
extensions E([fx«g]) and E,({f«g)) are the Baer sums of the extensions E({f]) and
Efg]) and, respectively, of the extensions E,({f]) and E([g]).

The commutativity of the diagrams follows by the naturality of the defini-
tions (compare with Lemmata 2.7 and 2.8).

We have to prove the exactness of the upper row. Consider the commutative
diagram

To(Aut(A)) «— li_n—q_(nZk(Homo(A,, » Ay T (Wpm) 20

Hom (Ko(4)), Ko(4)) = lim(Hom (Ko(4,), Ko(4)), o) = O

s Hom(Z, K(4)) — s Hom(Z, Ko(A)) — 5. 0

o
O O T ©

0 —)ETI(HZk(HomO(An’ A))’n?,k(l//mn)) - nzk - 1(AUt(A)) g l_i_ri(n‘lk‘ I(Homo(Am A))a n’lk - 1(‘!’)3111)) _>0

N

Oq!iLn.l(Homc(K[)(A 3 K()(A))’ O‘:m) -—> EXtc(KO(A)’ KO(A)) — 0 ' 0

n

Ce—

0 0

In this diagram the first row is exact due to Theorem 1.5 b) and to Propo-
sition 2.4 d). The second row is exact due to Proposition 2.6 c). It follows also from
Theorem 1.5 b) that the fourth row is exact. The fifth row is exact due to Proposition
2.10¢c). This shows that in the previous diagram all rows are exact. We want to
show that the middle column is exact.

Let us first observe that the composition

Hom(Z, Ko(4)) - mai - 1(Aut(A)) - Ext(Ko(4), Ko(4))

is zero. Indeed if fis a 2k—1 loop in Aut(A4) then there exists a 2k—1 loop g in
U(A) such that f = ad, for g a 2k—1 loop in U(A4). Let e be a projection in M, (A).
Choose a lifting # of g@gP + ... DgPg"® ... ®g* to a continuous
function /: By, — U(M,,(A)) (¢ appears n-times and g* also n-times), then t([¢])=
= ad,(e) defines a positive lifting for Ky(n): Ky(E[) - Ko(A4).

Let us denote by H{) the i-th cohomology group of the j-th column, je{l, 2,
3}, ief{l, ..., 5}. We want to show that H® =0 for any ie{l,...,5}. 1t is
obvious that H{ = HY = HP = {0}. Also H{» = H{) = {0} by direct compu-
tation using Lemma 2.7.
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The computation of other cohomology groups requires the use of the lim!
exact sequence (see [20]). There exists an exact sequence (we omit writing the
morphisms defining the inverse systems):

0 — lim my (Hom%(A4, , A)) — lim Hom (K(4,), Ko(4)) —

~ lim Hom(Ko(4,), Ko(A))/mas(HomP(4,, A)) = limi 7y, (Homo(4,, 4)) —

~ lim* Homo(Ko(4,), Ko(A4)) ~ limtHom(Ko(4,), Ko(4))/mpu(Hom®(4,, A)) - 0.

We obtain that HM~tan(§) and that H®Px~lim*Hom(K,(4,), K.(4))/
1o (HomO(4,, 4)).
There exists also a lim' exact sequence obtained from the exact sequences

0 — Hom(Ko(4,), Ks(4))/ms (Hom®(4,,, A)) - Hom(Z, Ky(4)) -
— Ty 1 (Hom%(4,,, 4)) -0,

0 — limHom(Ky(4,), Ko(A))/ny(Hom’(4,, 4)) - Hom(Z, Ko(4)) -
= lim g, _ (Hom® A4, , 4)) - lim* Hom(Ky(4,), Ks(A))/ne (Hom%(4,, 4)) — 0.
This shows that H{» is isomorphic to the cokernel of the map

lim Hom(Ky(4,), Ko(A4)) = lim Hom(K o(4,), Ko(A))/myi(Hom (4, , 4)).

From the previous lim! exact sequence this cokernel is isomorphic to ran() and hence
Hiy~ H® . Similarly H® ~lim Hom(K,(4,), Ko(4))/my(Hom®(4,, , A)) = H® .

We have to show that the previous isomorphisms are induced by the connect-
ing homomorphisms in the long exact sequence of cohomology groups:

8.
oy co > HO 5 H® S H® S HD, - L

Let us prove first that H{®~ HV is the connecting morphism in (1). Let
X =(X,)ueN € limry, _,(Hom®A4, , A)). Each x, isrepresented by an y,cHom(Z,K,(4)),
namely by ;-(Zk — )-loop of unitaries f, in U(4), such that ad, 4, =
= adfn\A" .Itfolowsthaty, ; — y,comesfromanelement z, € Hom (Ky(4,), Ko(4)).
The class of (21,25, ...,2,,...) in l.i_xngomc(Ko(A,,), Ko(A))/mo(Hom (4, , A))
coincides with the image of x in li_g_llHomc(Ko(A,,), Ko(A))/mo (Hom®(4,,, 4))
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under both compositions lim n,, _,(Hom%(4,,, A))—H» ~lim' Hom (Ky(A4,), Ko(A))/
[ (Hom®(4,,, A)) and

lim 7y, (Hom¥(4,,, 4)) » H{®-> H{® = lim* Homo(Ko(4,), Ko(A))/mo(Hom (4, , A).

This shows that the connecting map §,: H{® — H{ is an isomorphism.
Let f be a 2k—1 loop in U(A) such that its class in limmy, _,(Hom®4, , 4))

is 0. Then ad; is in lim!n,,(Hom®(4,, 4)) and is represented by the following ele-
ment: for each n theTe— exists a loop x, in U(4,) such that ad |4, and ad,vn!A,, are
homotopic. Also ad,'4, and adxnﬂfA,, are homotopic. The resulting homotopy
from adx"+1'A" and adxn‘;A,, defines a 2k-loop in Hom®(A4, , A). Denote the class of
this loop by y,. Then the class of ad, inli_n}l na(HomA,, A)) has as representative

(¥uDnen (24). x, defines an element of 7y (U(4L) ~ Homy(Ky(4,), Ko(4))
such that x, and x,, ., regard=d as elements of Hom (Ky(4,), X,(4)) have the property
that x,,,([1) =[f] = x,({1D) and hence x,,; — x, is actually in the image of
7o (Hom?(A4, , A)) in Hom (K,(4,), K (4)). It follows from the definition that x,,, —
— x, corresponds to y,. It follows that we have a commutative diagram
63
Ha(a) — H{EI)

N 4
lim?n,, (Hom%(4, , A4)).

This shows that the connecting morphism §, is an isomorphism. The nonunital case
is similar requiring also the use of Lemma 2.8 and of the isomorphism
lim* Hom((Ko(4,), Ko(4)) = lim' Hom(Kq(47), Ko(4+)).

2.13. CorOLLARY. Let A be a simple AF-C*-algebra, A infinite dimensional,
A # K. Then, if A is unital

Tk 1(AUt(4)) > Ext(Ko(A)/Z[1], Ko(A4))
T (Aut(4)) ~ Hom(Ko(4)/Z{1], Ko(4))
and, if A is not unital
Ty 1 (Aut(4)) = Ext(Ko(4), Ko(4))

To(Aut(4)) ~ Hom(Ko(4), Ko(4)), k>1.
Proof. Use Theorem 2.12 and Proposition 2.3.

2.14. REMARK. a) Suppose that 4 is not unital. Let 4 be an AF-C*-algebra
with K(A4) with large denominators. Let e, denote the unit of 4,. Let us suppose
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also that 1 —e, is a full projection in A+ then it is easily seen that 7, (U(4,))) = n,(U(A4))
is surjective for any k > 1 (see Lemma 2.7 a)). This shows that End(K,(4)) —»
— Hom(Z, Ky(A)) is surjective and hence g _(Aut(4)) =~ Ext(Kq(4), Ky(4)).

b) If A4 is unital then r,, _,(Aut(A4)) can be identified with Jsomorphlsm clas-
ses of compatible extensions with order unit

) 0 = Ko(4) = (B, 1) = (Ko(A), [1]) -0

such that
0 = Ko(4) = E = Ky(4) -0

is an exact sequence as in Definition 2.9 and u is a positive element in E such that

p(u) = (1]. Two such extensions (E;, u;), (E,, u,) are isomorphic if there existsa
commutative diagram

0 = Ky(4) = £y = Ko(4) - 0
-
|

0 — Ko(4) = E, - Ko(4) -0

such that ¢ is a positive morphism (and hence necessarily an isomorphism of order-
ed groups) and ¢(u,) = u,. The extension in (1) is trivial if there exists a positive
lifting © for = such that 7({1]) = w.

We associate to a loop f representing x € 7y, _,(Aut(4)) the class of the exten-

sion Ko(E,) with [1]e Ky(E;) as order unit. It turns out that there exists a commuta-
tive diagram:

Hom(Ko(4), Ko(4)) » Hom(Z, Ky(4)) - my—1(Aut(4)) — Ext(Ko(A), Ko(4)) =0

Hom(K(4), Ko(4))—>Hom(Z, Ko(4)) »Extz(Ko(4), Ko(4)) - Ext(Ko(4), Ko(4))—0.

(Ext¢(K,(4), K,(4)) denotes the group of isomorphism classes of extensions
as in (1), called compatible unital extensions.)

The morphism Hom(Z, K (4)) - Ext?(K,(4), K¢(4)) sends the morphism
n — nu the class of the trivial extension

p

0 - Ko(4) » E T Ko(4) =0

with ordered unit 7({1]) + u. It follows easily that the second row is exact and
hence 7y, (Aut(A4)) ~ Ext¥(K,(A4), Ky(A4)) from the five lemma,
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