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PERTURBATION OF THE SPECTURM OF EVOLUTION
OPERATORS

ORLANDO LOPES

If T(r) is a family of bounded linear operators in a Banach space X, depending
continuously in the uniform operator topology (that is, in the norm of the space
L(X)) on a parameter r in a metric space (E, d) then the spectrum o(7(r)) is an
upper continuous function of r; this means that for any r, in E and any ¢ > 0
there is a 6 > 0 such that if d(r, ry) < & then o(T(r)) is contained in the ¢-neigh-
borhood of o(T(ry)). A consequence of this fact is that the asymptotic behavior
of the linear discrete dynamical system {T"(r), n =0,1,2, ...} is a continuous
function of the parameter. However, if 7(r) is continuous in the strong operator
topology (that is, (r,u)€ ExXX — T(r)u € X is continuous) then o(7(r)) may present
an “explosion’ as a function of r; to be more specific, if p(T") denotes the spectral
radius of 7, we may have p(T(r,)) < 1/2 and p(T(r,)) > 2 for a sequence r, con-
verging to ry. Of course this implies that the asymptotic behavior of the ¢ orresponding
discrete dynamical system is very sensitive to perturbations of the parameter.
This phenomenon has been known in the context of difference equations ({2]) and
it is called parametric unstability. Since mixed problems for hyperbolic systems in
one space variable are closely related to difference equations ([3]) one expects that
parametric unstability may occur also in that class of equations. Indeed, this is
the case. In this paper we give conditions under which we are able to estimate the
“explosion’ of the spectrum of time periodic evolution operators continuously in
the strong operator topology on a parameter ». The applicability of the method
depends very heavily on the possibility of finding an evolution operator which is
simpler than the given one but still related to it (in a sense which will be made
precise). We start by stating the abstract result for the case of a linear discrete
dynamical system.

THeEOREM 1. Let T, Ty, : (E, d) —» L(X) be operator valued functions defined
in a metric space (E, d) with values in the set L(X) of the bourded linear operators
of a Banach space X and suppose the following conditions are satisfied:

H)) Ty(r) and T3 (r) are strongly continuous in r;
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H,) for each v, T(r) — To(r) is a compact operator ;

Hy) T— T, :(E, d)y » L(X) is continuous with respect to the norm of L(X);

H,) there are real constants 6, > 0, M > 0, T > 0 and w, and a point ry in
E such that |Ti(r)| < Me™" for any positive integer n and any r satisfying
d(r,ry) < 8y;

H;) for some a > oy, T(r,) has no spectrum on the circle |1 = e*.

If Ay, ..., A, are the eigenvalues of T(r,) outside the disk of radius e* and
& > 0 is given then there are 3,0 < & < 8, and K(e, M) such that for d(r,ry) <9
the following assertions hold:

1) T(r) has no spectrumn on the circle of radius e and its spectrum outside
the disk of radius e* consists of eigenvalues lying in the union of the balls
(A=Al <el, j=12,...,m

2) for each j = 1,2, ...,m the finite dimensional spectral projection Pr)
corresponding to the curve |A — A;| = ¢ converges to Piy) in normasr —rg ;

3) [ T")P(r)| < Ke™=, for any positive integer n, where P(r) is the spectral
projection corresponding 1o the curve |A| = ex.

REMARKS. 1) The assertion about the part of o(7T{r)) outside the disk of radius
e*” consisting of isolated eigenvalues with finite multiplicity follows from H, and H,.

2) If T(r, g) depends on two parameters (r, ¢) in such way that its dependence
on ¢ is continuous in the norm of L(X) lccally uniformly in r then Theorem I has
an obvious extension; in this case assumptions H, and H; should hold for each
g fixed and H, for T4(, g,).

3) Theorem I also has an obvious extension to the case where instead of oper-
ators 7(r) and Ty(r) we deal with C, semigroups 7(t, r) and 7y(¢, ) or, more gene-
rally, with z-periodic evolution operators 7(t, s, r) and Ty(t, s, r).

Roughly speaking (modulo some uniformity), Theorem I says that if we are
able to bound the spectral radius of Ty(r), in a full neighborhood of r,, by a con-
stant €% and T,(r) is related to 7(r) in the sense that assumptions H, and H,
hold, then the part of the spectrum of 7(r) which is outside the disk of radius &%’
changes with r in a very nice way.

Before passing to the proof we give two lemmas.

LemMma 1. Let P,,n = 1,2,...,and P be finite dimensional projecticns in
a Banach space X such that P, converges to P in the strong operator topology. If

Px,n =12, ..., x <1, xeX} and {PFy,n=1,2,..,iyi <1, ye X*} are
precompact then P, converges to P in the norm of L(X).

Proof. We start by showing that dimP(X) = dimP(X) if n is large. Let
(ey, --.,e;) be a basis of P(X). Clearly P,(e)), ..., P,(e,) are linearly independent
if # is large and then dimP,(X) > k; if dim P (X) > k for infinitely many #’s
then there would be x, in P,(X) such that |x,} = l and d(x,, [P,(e), ..., P,(e)]) =1;
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passing to a convergent subsequence x, — z we would have
J

|x, — Pz| =|P, x, — Pz| < |P, (x, —2)| +|P, z— Pz
i i i i J

which is a contradiction because this last expression tends to zero and
d(x, ,[er, ..., e])tends to one. As a consequence of that we see the existence
J

and uniqueness of functionals of, i =1,2,...,k, in X* =n large, such that
P(x) = «(x)P(e) + ... + «(x)P,(e,); clearly at belongs to (ker P,)* = PX(X*).
Next we claim the sequences af, / = 1, ..., k are bounded; in fact, taking for
instance / = 1 and defining d > 0 by d = d(e,, [es, ..., e;]) we see that d(P,(e,),
[P,(e5), ..., Ple)] tends to d and then there is a sequence y, e X* such that |y,
tends to 1/d, y,(P,(e;)) =0 for i > 2 and y,(P,(e;)) = | and, since &(x) = y,P,(x)
the claim is proved. In order to show that P, tends to P uniformly it suffices to
show that {P,, n =1,2,...} is a precompact subset of L(X) (with respect to
the norm topology) and this follows from the precompactness of {P¥y, |y < 1,
n=1,2...}, the boundedness of u} and from noticing that if oc;’i converges to
f; in the norm of X* i =1,2,...,k, then P,,j converges in norm to P(x) =
= fi(x)e; + ... + Bi(x)e, and the lemma is proved.

ReMARK. The projections in £,(N) given by x = (x,,0, ...,0, x,,0,...) and
x—(x +x,,0,...,0,...)show that the assumptions in Lemma 1 are sharp.

LemMA 2. (1) If S, is a sequence of compact operators in L(X) which eon-
verges to some (compact) operator S in the norm of L(X) then {S,x,n = 1,2, ...,
Ixl €1, xe X} and {Sfy, n =1,2, ...,1yl < 1,y€ X*} are precompact.

(i) If S, and S are as in part (i) and T, T then T,S, converges to TS in

the norm of L(X); in particular, if T,,—S-> T and S is a compact operator then
T,S = TS in the norm of L(X).

Proof. Clear,

Proof of Theorem I From assumption H, it follows that any complex num-
ber 2 satisfying |2] > ™" belongs to the resolvent set of 7y(r) for d(r, ry) < 5, and
[(Ty(r) — AD)~*| is bounded by a constant depending just on M and the distance
from 4 to the disk of radius e™". Defining S(r, 2) = (Ty(r) — AD)~XT(r) — Tu(r)
then Lemma 2, part (ii), and assumptions H,, H, and Hy show that S(r, 1) — S(ry, 4o)
in the norm of L(X) if |4, > €™ and (r, ) = (ry, 4y). Moreover, from the equality
T(r) — M = (To(r) — 2T + S(r, )) we conclude T(r) — AI is invertible if and
only if I + S(r, 4) is, and then, from the previous argument, we see that if A, belongs
to the resolvent set of T(r,) and |1, > e™" all A’s in some neighborhood of 4, also
belong to the resolvent set of T(r) if d(r, ry) is small and assertion 1) of the theorem
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follows from a compactness argument. If I'; denotes the circle |4 — A} = ¢, using

the fact that the 1’s outside the disk of radius e™’ belong to the resolvent set of Ty(r)
we see the spectral projection Py(r) is given by

Pr) = 1 S(T(r) — A)-1d) = o S (T(r) — M)t — (T(r) — AD)~1dA =
7[

. r.
J J

- 5-1—_ S (T() — A)-UTo(r) — TONTolr) — AD)-1d
7l
r
Jj

Let r, be a sequence converging to r,. Clearly P (r,) converges to P;(r,) strongly.
Next we claim {Pj(r)u, Jul < 1, n =1,2, ...} is precompact; in fact, if ju} < 1
then |T,(r) — AI)~1u| < a, for some constant a, any 7 such that d(r, ry) < é and any
A in I'; ; defining S, = Ty(r,) — T(r,) and using assumptions H, and Hy and Lemma
2 we conclude {S,(Ty(r) — A, lul <1, n=1,2,...} is precompact; since
the map (r, A, v) € B(ry, 0) X I';x X — (T(r) — AI)"'u € X 1s continuous the claim
is proved. The same argument proves that {P*(r)o, lx| < 1, n =1,2, ...} is pre-
compact and Lemma 1 shows that the convergence of Pi(r,) to Pj(r,) takes place
in norm. Finally, denoting by I the circle |i| = e we have T"(r)P(r) =

2 S)"(T(r)~—21) 142 and then |T"(r)P(r)] < Net"tDe* for some constant, N
ni

dependmg just on M and 9, and Theorem 1 is proved.

Consider now an abstract linear evolution equation in a Banach space X,
u = A(t, r)u, depending on a parameter r in a metric space (E,d); we assume
A(t,r) is periodic in ¢ with period 7 > 0 and we denote by T(¢, s5;r), s < ¢, the
corresponding evolution operator. We consider also another linear t-periodic equa-
tion # = Ay, r)u (which will be called the reduced equation) and we denote by
To(t, s; 1), s < 1, the corresponding evolution operator. Next we give conditions
under which assumptions H,, H, and H; in Theorem I are satisfied for T(z, 0; r)
and Ty(z, 0; r) but, first, we state a lemma which will be useful.

Lemma 3. Let o,,,, B, be sequences of nonnegative uniformly bounded
measurable real valued functions defined on some interval [a, b] such that a, tends to
zero pointwise and

1

onl8) < a(t) + S B(eu(s)ds, a1 <b.

a

Then @, tends to zero pointwise on [a, b).
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Proof. It follows from the generalized Gronwall’s inequality

b

b
oalt) < a,(1) + Sﬂ,.(S)an(S)(expSﬁ..(u)du) s,

a
and Lebesgue convergence theorem.

THEOREM II.  Assume A(t,r) = Ay(t,r) + B(t,r) where B(t,r) belongs to
L(X) and is strongly continuous in t and r. Let S(t;r) and Sy(t, s; r) be defined by

S(t,r)y =T(@,0;r)— Ty, 0;r)

and

t
Solt, s;1) = S Ty(t,a;r) B(o,r) Ty(o,s;r)de, 0<s<t<
5
and suppose thereis ac > O such that foreachsand ,0 < s <t <1, 5<t<s + ¢
he following conditions are satisfied:
H,) Ty, 5;r) and T¥{, s r) are strongly continuous in r;
ﬁz) Jor any r in E, Sy(t, s, r) is a compact operator ;

H,) r = Sy(t,s; r) is continuous in the norm of L(X).
Then
(i) To(t,s;r) and T3, s;r) are strongly continuous in r for 0 < s <t < 15
(i) for any r in E, {S(t,r)u, 0 < t < 71, |u| < 1} is precompact; in particular,
Jor any r, S(z,r) is a compact operator;
(iii) for any t<[0, 1), r — S(t,r) is continuous in the norm of L(X); in parti-
cular, r — S(z,0) is continuous in the norm of L(X).

Proof. For s + ¢ < t < s + 2¢ we have
To(t, 5515) — To(t, 5519) =
=To(t,s + c; ) (To(s + ¢, 55r5) — Tols + ¢, 55 F1)) —

— (Tolt,s + ;) — To(t, 5 + c; 1)) To(s + ¢, 53 1)
and

T, s5r0) — Tg8(t, s51) =
=T5°(s + ¢, 8, r )TNt 5 + ¢5 1) — T3t s + ¢; 1)) +

+ (T + ¢, 85 19) — ToH(s + ¢, s; r)TgH(t, s + ¢5 1)



370 ORLANDO LOPES

and this proves (i) for s < t € s + 2¢ and a repetition of the same argument shows
it holds for any s,¢, 0 < 5 < ¢ < 7. Assertion (ii) follows from Lemmas 2 and 3
in [3]. In order to prove (iii) for ¢ < t < 2¢ we start by noticing that r — Sy(t, r)
is continuous in the norm of L(X) for each  in [c, 2¢] as a consequence of the equality

So(t, 05 7) = To(t, ¢; r) Solc, 05 r) + Solts ¢; 1) To(c, 0; r),
Lemma 2 and assertion (i). Next, if r, — r, from

St r) — St r) = So(t,0; r,) — So(t,0;r,) +

+ \ To(t, s; r,) (B(s, rp) — B(s, #)) S(s, r)ds +

D1y

t

+ S To(t, 53 1) BGs, 1) (S(5, 1) — S(s, P)ds,

]

Lemma 3 and Lebesgue convergence theorem we see S(r,r,) — S(t,7) in the
norm of L(X) for ¢ < t < 2¢ and a repetition of this argument proves assertion
(iii) and the theorem.

As an application of our theory we consider the following time t-periodic
initial-boundary value problem for a hyperbolic system in one space variable in
normezl form:

_Q_(u(t, x)) + K, x)_i(u(t, X)) + c, x)(u(l‘, X)) 0, 0<x<l,
ox

0t \ v(t, x) v(t, x) ult, x)
(”*%@mn—mmmm=nmmn+am@n

with boundary condition: u(z, 0) = E(r)u(z, 0),

where:

() K(t, x) = diag [4,(¢, x), ..., A8, X), tn+1(t, X), - . ., 1,2, x)] is a diagonal
nXn matrix whose entries are real valued C' functions in ¢ and x for (¢, x) in
RX[0,1], with 2,(t,x) >0, i=1,...,N, and pi(t,x) <O for j=N+1,...,n;

(ii) C(z, x) is an n X n matrix whose entries c; (¢, x) are real (or complex) valued
continuous functions of (¢, x) in R X[0, /] and either C* in f or C'in x;

(i) u(t, x) =collu(t,x)], i =1,..., N is a column vector in R¥ (or C¥)
and o(1, x) = col[v;(t, x)), j =N + 1, ..., n is a column vector in R*""¥ (or C"~N);

(iv) D(t), E(t), F(t) and G(1) are matrices of appropriate sizes whose entries
are real (or complex) valued C* functions defined on R.
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We also assume that K(¢, x) and C(r, x) satisfy the following condition:

W) if k# m and (¢, x) = A,(t, x) (or w(t, x) = p,(t, x)) somewhere in
R %[0, /] then ¢,,(t, x) vanishes identically on R X[O0, /].

For any p, 1 < p < oo we consider the Banach space X, = (L([0, ID)" X R"-N
(or (LA[0,1])" x C"=N), where L,({0,/]) denotes the set of the real (or complex)
valued functions whose power p is integrable on [0, /], and we define

A(t) : DAW) < X, > X,
by

AW, v, d) = [—K(t, x) - (“) —cq, x)(” ) Foyud) + G(t)v([)]
ox v

v

where

D(AW) = {(u, v,d) € X, 1 u e (H, (0, )Y, ve (H (0,M)"",
u(0) = E(t)u(0), d = vo(l) — D(u(D},

H, ({0, I]) denoting the usual Sobolev space. With this setting, the system (1) can be
viewed as an abstract equation w = A(t)w in X, and, under assumptions (i) to (iv),
A(t) generates an evolution operator 7(z, s), § < t, in the sense of Krein {1].

In [3] we have given some properties of the spectrum of the operator 7(z, 0);
in particular, we have shown that the essential spectral radius of T(z, 0) is determin-
ed by a reduced system. Here we analyse how the spectrum of 7(z,0) changes with

the coefficients of the system; the complication is due to the fact that as a function
of the eigenvalues

()"1(15 X), Tt "{N(n X), MN+1(’> X), e l’ln(t) X)),

T(z,0) is continuous with respect to the strong operator topology but not with
respect to the uniform operator topology.

First of all we define the spaces of the parameters and their topologies. We
denote by r the parameter

ro= (4> x), oo An(t X), Pt X)s <o (X))

and by ¢ the parameter g = (E(1), D(1), F(t), G(t), C(¢, x)) as elements of spaces
of functions. We equip the space of the parameter » with the C' topology in (¢, x)
and the space of the parameter ¢ with the sup topology. We make a distinction
between r and g because as a function of g the evolution operator T(t, 5) is conti-
nuous with respect to the norm of L(X).

In order to apply the theory we have just developed,fwe have to construct the
reduced system and so, together with system (1), we consider the following three
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reduced systems:

i(W“U+Km@3{W”u+Qﬁ@(WJU=& 0<x<l,
ot \ v(t, x) ox \ v(t, x) v(t, x) :

@>*£“@g_mw@m=nmmo+qmmn

with boundary condition: u(z, 0) = E(t)u(z, 0);

_(34(11(1, x) )+ K(t, ) _} (u(t’ X)) + Cy(t, x) (ll(t, X)) =0, O0<x<l|,
X

ot \v(t, x) v(t, X) v(?, x)

3 A ,:7 [v(t, ) — D(u(t, )] =0

with boundary condition: u(t, 0) = E(t)v(z, 0)

and

9 ("(’, x)) + K{(t, x) i(“(” x)) + Coft, x) (u(t’ x)) =0, 0<x<]
@ o \o(t, % ax \ o(t, x) o(t, x)

with boundary conditions: u(¢,0) = E(t)v(t,0) and v(¢, 1) = D(t)u(t,]),

where C,(t, x) = diag(cyy(t, X), - . -, €{t, X)).

Each system can be viewed as an abstract equation w = A,(t)w, i = 2,3, 4,
with A4,(t) and 2(A,(t)) defined in the obvious way and the corresponding evolution
operators will be denoted by Ti(t,s), s < ¢, i = 2,3,4. For systems (2) and (3)
the phase space is also X, but for system (4) the phase space is L,({0, /])". Letting
X} = {(u,v,d)e X, : d = 0} it is easy to see that X} is invariant under Ty(z, s) and
Ty(t,s) = Ty(t,s) on Xy (we are identifying (v, v,0) with (u, v)); we denote by
n : X, = X,, the projection onto X} dsfined by n(u, v,d) = (4, v, 0).

The role of T, in Theorem I will be played by T\(t, 0)x but we have to intro-
duce also systems (2) and (3) because they will be important in verifying the as-
sumptions of Theorems I and II. In order to carry out this verification we make an
intensive use of the following explicit represzntation of Ty(t, 5), (¢, 5) and T,(¢, s).

Let @(t,5;x), i =1,...,N and y;(t,5;x), j = N+ 1,...,n be the solu-

. d o
tions of %x_ = A(t, x) and -(»ix« = p;(t, x) satisfying @,(s,s; x) = x and (s, 5; x) = x,
t t

respectively; for each (f,x) we define ty(f,x), i =1, ..., Nand 1;(t, x),j = N +
4+ 1,...,n by @1, t; x) = 0 and (v}, ¢; x) = [, respectively. In [3] it was shown
that there is a ¢ > 0 such that for s < t < s + ¢, Ty(¢,5) has the representation:

To(t, $)(tg » v, dy) = (u(t, 5), v(t, 5), d(t, 5))
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where

t

w'(t, s, x) = exp — c:(o, (o, t; x))do [ Y et %)
() J=N+1

ri(t,x)

-(exp = S 650, Yo i, x);O»da)vz(w,(s, (, x);O»]

s

if x < ¢,(¢,5;0) and
t
W(t,5, %) = ( exp — Scﬁw, oo, 1; x))da)ua(wi(s, t; %))
if @, (t,5;0) < x<I;

vi(t, 5, x) = exp — S ¢;i(o, (o, t; x))da[df(rj(t, x),8) +

‘rj(f,x)

tj(f,x)

+ Y dulet, ) (exp - S 6f0, 9ulo, T x);l))do)us((pk(s, ot x);l»]
k--1

s

if Y(t,s;0) < x<{, and
t
oty 5, %) = ( exp — S ¢11(0, (o x»da) sWGs, )
fOo<x<yt,s50);

d(t,s) = X(t, s)d, + SX (t, 0)(G(0)D(6) + F(0)lu(s, s, l)do,

X(t, s) being the fundamental matrix of the linear system d = G(t)d.

When necessary we use the notation T(t,s,r, q), T5(,s, 1, q), @(t,s;x,r),
ietc., to emphasize the dependence with respect to the parameters r and ¢q. We start
by showing that T(z, s, r, ) is well behaved as a function of q.

12-2129
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LEMMA 4. For each a > 1, and s < t, the evolution operator T(t,s,r,q) is
continuous in q with respect to the norm of L(X,) uniformly in r, r| < a, inf(12(t, x)|,
(7, X)) 2 1/a.

Proof. From arguments similar to the ones used previously and Gronwall’s
inequality it suffices to prove the lemma for s < 7 < s + ¢ and C(¢, x) = 0; in this
case,

T(t, 5,7, q) Uy, Vg, dy) = (u(t, ), v(t, s), d(t, 5))
with
u'(t,s, x) = i e (t:i(t, x)) U(J;('//j(ss (6, x);0)) i 0 < x < @i(t,550)

J=N+1

ul(t,s, x) = u(@i(s, ; X)) if @(t,550) < x <1

. : N
Vit 53 %) = d(ri(t, X)) + Y dui(t, )ub(@ils, 72, x)3 1))
k==1
if Y0, < x<1;
vj(’, K x) = U{;(lpj(s, I, x)) lf 0 < X S lp”j(t, S; l);
t

dt,s) = X(t,5)dy + SX(t, 0)[G(0)D(0) + F(o)] u(o, s; I)da,

5

where X(t, s) is as before. The conclusion follows from this explicit representation
and the lemma is proved. :

LEMMA 5. For each q,s,t, s < t, TAt,s,q,r) and T§(,s,q,r) are strongly
continuous in r.

Proof. Since the maps x — (s, 1,(t, X); 0, r), x = @,(s, t; x, 1), x = T,(t, x,7),
x = @u(s, 1;(t, x); I, r), x = (s, t; x,r) are !diffeomorphisms, the lemma follows
from the explicit representation of T,(t, s, r, ) and T3(t, s, r, q).

The proof of the next result can be found in [3].

LeEMMA 4. For each q and r, the sets

{(T@,s5r,9) — Ty(t,s;r, )W), 0 < s <1< 1, |wl < 1}
and

VAN

{(To(t, 557, 9) — To(t, 557 ,9))(W), W] <1, 0< s< 1< 1}

are precompact; in particular, for each q and r, T(z,0;r,q) — Ty(z,0;r, g)7 is}a
compact operator.
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Lemma 7. For each g,s,t, 0 < s<t<r, the map r->T@,s;r,q) —
— T4(t,s; r, @)m is continuous with respect to the norm of L(X,), 1 <p <oo; in
particular, for each q,r - T(1,0;r,q) — T,(z,0; r,q)n is continuous with respect
to the norm of L(X)).

Proof. As before, it suffices to prove the lemma for s < 7 < s + ¢. First we
claim that r — To(t, s, r, ¢) — Tu(t, s, r, q) is continuous with respect to the norm of
L(Xp); in faCt: (Tz(t, S, 7, ‘]) - T3(l, S5 Fs q))("o, Vo dO) = (O: W(t, s r)’ d(t, 5 r) - do),
where

-

wi(t, s, x, r) = exp— ¢;i(o, Y(o, t; x, Yo (d/(x,(t, x; 1), 5) — df)
'rj(l,x;r)
if y(t,s;L,ry < x <

wit,s,x,r) =0 if 0 < x < yY(t,5:1,r)

d(t,s,r) = X(t, $)d, + SX (1, 0)[G(6)D(6) + F(o)lu(o,s,1,r)do
with

ui(aa S, l’ r) = exp - S Cii(éa (pi(éa a, l, I’))dé u(‘;((pi(s’ g, X, r)),

beginning with the component d(t, s, r), we see each d/(z, s, r) is equal to c;{;(t, 5)
plus the sum of terms of the form

Scﬁ-a, o) ( exp — Sc,-.-@, 0i&, o 1, r))de) wiois, o, 1, 1))dos

defining a change of variable in ¢ by ¢,(s, g, 1, ¥) = y and denoting by ¢ = h(s, y, 1, r)
its inverse, those terms become

(’i(x:':’,")

Cu(t, hi(s, y, 1, 1) Oh; (s, v, 1, 1)
Oy
1]

hi(s,y,l,r)

* exp( - S cii(és (pi(iahi(ss B ) l5 r)))dé) u:)(y)dy

s
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and looking at this expression as a function from the set of the parameters r into
the space of the linear operators in some L, space we see clearly that it is norm
b

continuous. The terms w;(z, 5, r) have a similar treatment (the inequalityS Hf(lde <
< (b —a-YPf| has to be used) and the claim is proved. Next we show
r—T(,s,r,q) — Tyt,s,r,q) is continuous with respect to the norm of L(X,); in

fact, according to Theorem II defining B(6)(uy, vy, dp)(x) = (C‘(a, x) (uo(x))’ 0)
vp(x

we have to verify that r =\ T,(1, 0, r, 9) B(c) T,(0, 5, r, g)do is continuous with

G ™y

respect to the norm of L(X,) but, in view of Lemma 7 and the claim we have just

~
i

t
proved, all we have to do is to show r — 5 T4(t, 0, r, q) B(6)Ts(0, s, r, q)do has that

property. The third component of this operator is zero and so we have to worry
about the first two; those components can be written as the sum of terms which
have been computed explicitly (see [3]) and a typical one has the form

ri(t,x,r)
Yijk(t: G, X, V)U,(;(ﬁ(s, g, X, r))da‘,
s‘.kj(t,s,x,r)
ap . . .
where - 5 0; defining a change of variable (s, 0, x,r) = z and denoting by
o

o = g(s, z, x, r) its inverse, the integral above becomes

?i(f.r.f)
:;Iijk(ts Y, X5 i')l)o(y)dy

Tigjltsnr)

and clearly this expression has the desired property. The same type of argument can
be used to show that

r—)T:I(tsS’rsq‘)'—_ T4(1,S,r,q)7f = T3(t9syr’q)([_n)

is continuous with respect to the norm of L(X,) and the lemma is proved.

Putting together Theorem I, the remarks following it, Theorem II, Lemmas
4,5,4 and 7 we can state:
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THEOREM 1II. Let ry = (A(t, x), ..., An(t, X), tin+1(t, X),s - . ., Us(2, X)) and
q0 = (E(1), D(1), F(1), G(1), C(t, x)) be points in the spaces of the parameters r and
q defined previously and suppose there are a neighborhood V, of r, and constants

and M > 0 such that |T,(t, s, r, gg)| < Mea°“_s), §<t, for any r in V,. Suppose
also that for some o > a,, T(1,0, ry, qy) has no spectrum on the circle |3 = ex. If
My ooy A, are the eigenvalues of T(t,0;ry, q,) outside the disk of radius e and
€ > 0 is given, then there are > 0 and K(e, M) > 0 such that for |r —ry] <6
and g — q,| < O the following is true:

(i) T(z,0; r,q) has no spectrum on the circle of radius e and its spectrum
outside the disk of radius e consists of eigenvalues lying in the union of the balls
(Aild—X)<ej=1,2...,m);

(i) |P;(r, g) — Pi(ro, o)l < &, where Pi(r, q) is the spectral projection corres-
ponding to the curve |A — 1;| = ¢;

Gil) |T(t,s; r,q) P(r,q)| < Kex'=%, 5 < t, where P(r,q) is the spectral pro-
Jection corresponding to the curve |1| = e

In order to use Theorem III in concrete situations we have to get for T,(z, 5)

an estimate of the type |{T,(z, s)| < Mea"(t_s) and, in general, this is not an easy
matter. Next we show that, in the autonomous case, to get an estimate of such a
type is equivalent to locate the zeros of an entire function which can be written down
explicitly; in fact, following [3], we define the NXN matrix Y3(x,y,4) as a

diagonal one whose entries are exp (— A ds__ (el ds) , the (n — N) X
4(s) Ai(s)
y Y

X (n — N) diagonal matrix whose entries are

x

[ ds ¢;;i(8)
) — N\ 4
ex’p( §u,-<as) Su,-m S)

and the entire function 4,(1) = det(/ — DY}'(/,0, A)E(YE(, 0, 1)~Y).

N
Notice that 4,(1) has the form 1 — Zo bkelw", where the w,’s are real and po-
k=1
sitive and in order to take into account its dependence on the coefficients (4,(x), ...
. -5 1,(x)) we will use the notation 4,(4, r). Defining yo(r) = sup{Re A : h,(1,r) =0}
it has been shown in [3] that for any «, > 7y, there is a constant M such that
|Ty(t, )l < Me™', ¢ > 0; however, if yo(r) < a, < %, for any r in a neighborhood
of some r, then, showing the constant M can be chosen the same for all r’s in
that neighborhood requires some work; that will be done next.
We start by discussing a result due to Pitt [4]. We say that a function h(f) =
= oi b,‘f;:l
k=1

w had .
"t,t and w, real, belongs to the class U if Y b, < co. Pitt’s result
k=1
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says that if s belongs to U and [A(t)] = m > 0 for all ¢, then 1/i also belongs to

. 1 ® i &
U, that is, — = Cy- y"z, with Z lexl = M < oo and a close look at the
)y i s}
’ L iw
proof shows that if /1 is a finite sum Y akel ' then M depends just on L, n and
k1
sup [a .

The next step is to bound finite exponential sums uniformly from below in
a band free of zeros. First let us remark that in some applications we have to work
with a class of problems for which the functions 2,(x), .. ., u,(x) are not independent;
to be more specific, taking for instance n = 4 and N = 2, there are physical problems
giving rise to systems for which Z;(x) = —p(x), A(x) = —uy(x), identically on
[0,{]. In order to take care of those cases we consider entire functions /1,(2) of the
form hy(A, ry, ..., 1) = f_" a,.e_ls" — 1, where s; = Ek; n; Tk > Ny being fixed non-

i-:1 k=1

negative integers such that for each i, # 0 for some k.

Lemma 8. Let O « RE, be a bounded set whose closure is still contained
in R% . and suppose there is a band a; < Rei < by, where hy(},ry, ..., 1) nevey
vanishes for any (ry, ...,r) in Q. Then for ay < a; < by < by there is an m > 0
such that \hy(A, ry, ..., ry) = m for ay < a; < Red < by < by and any (ry, ..., 1)
in Q.

Proof. By contradiction assume there are sequences (ry;, ..., 7, ;) and /; =
= x; + it; such that |fy(4;;r1 ;5 ..., 1 )l >0 as j— +oo; passing to a subse-
quence we can assume (ry ;, ..., F ;) converges to (v, ..., ry), X; converges to x,
a, < x < by, and tjr; ; = 0, (mod 21),7 =1, ..., k. Let gi(%) be defined by

. L —(atits, ;
gl =h(2 +ity5r 5, i) = Y, ae ’

i-=1

k &
since §; ; = n; ¢, ; converges to §; = n; ¢, and t.5; ; converges to some
i L j i [N Joi,J
1=1 I:1

k s,
B: (mod 2r) it follows that g;(1) converges to some g(4) = Y age Mi_q uniform-
il

ly on compact sets of the band qy < Re . < by ; moreover, g(x) = 0 because
hy(x; + ity ry 55 e ) —hy(x +it50 5, 000,15 20

and then by Hurwitz theorem g(4) = 0 and this is impossible because g(%) — —1
as Rel — +oo and this proves the lemma.

If we go back to the proof of the main results in [3] and we use Lemma 7 and
the remarks preceding it we conclude that the estimate |T,(z, )| < Me*', ¢ > 0,
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for some constants M and a,, holds for any r giving rise to ry, ..., r, in a set Q
as above if there is an «, such that v(r) < o; < a, for any r in Q. The location of
the zeros of finite exponential sums and their dependence with r,, ...,r, have
been studied in [2].
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