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ESTIMATING THE DISTANCE BETWEEN UNITARY
ORBITS

KENNETH R. DAVIDSON

In this paper, we examine how well an operator is determined by its restrictions
to finite dimensional subspaces. The finite dimensional pieces are taken only up
to unitary equivalence, so it is not, a-‘priori, apparent that the operator can be
recovered up to unitary equivalence from these pieces. Indeed, as we will be
concerned with approximation of pieces of one operator by pieces of another, it
is more natural to consider approximate unitary equivalence. As a consequence
of our methods, it follows that an operator is determined up to approximate unitary
equivalence by its finite dimensional restrictions. Thus we are able to recover some
results of Hadwin [9] describing the norm closure and strong® operator topology
closure of the unitary orbit of 7.

The main use we had in mind is a method of estimating the distance between
the unitary orbits of two operators based on finite dimensional information. We
quantitatively measure how well finite dimensional pieces of one operator, say B,
can be approximated by finite dimensional pieces of another operator A. It is
shown (Theorem 4.1) to bea good measure of how close B is to being a summand
of A. This can be used to estimate the distance between the unitary orbits of A
and B. As this estimate is based on finite dimensional information, it is perhaps
surprising that definitive results are obtained when C*(4) (or C*(B)) contains no
compact operator (Section 2). In general there 1s no operator theoretic “Schroeder-
-Bernstein”” theorem to turn “A is almost a sunwnand of B and B is almost a
summand of A’ into “A is almost unitarily equivalent to B”. An example is given
(Section 5) to show that a finite dimensional summand of an operator can provide

an obstruction to good approximation which cannot be detected by comparing finite
dimensional pieces.

I would like to take this opportunity to thank the referee. His thoughtful
comments indicated a simpler proof of Theorem 2.1 which led to better constants
than were obtained in the original draft. He also asked a good question which
led to the inclusion of Section 4 of this paper.



22 KENNETH R. DAVIDSON

The description of the closure of the unitary orbit of an operator in terms
of approximate unitary equivalence is due to Voiculescu [14]. Our methods were
motivated in part by Arveson’s approach [1] to Voiculescu's Theorem. The distance
between unitary orbits of special classes of operators have been computed only
in a few cases (see [2, 3, 5, 6, 10].)

All operators in this paper are continuous linear operators on a separable
Hilbert space #°. The set of all operators is denoted by #(#), and A4~ denotes
the ideal of compact operators. The set of unitary operators on B(#) is denoted
by %. The unitary orbit of an operator 4 is

U(A) = {UAU® : U e ¥}.

Two operators 4 and B are approximately unitarily equivalent (4  B) if there

is a sequence of unitary operators U, such that

B =1limU,AU¥.

[ihad™ ]

It is readily verified that ~ is an equivalence relation, and that {B : B ~ A} is

the norm closure of %(A), denoted %(A). The distance between unitary orbits is
d(U(A), %(B)) = inf |4 — UBU¥{. Let # denote the set of finite dimensional
Uex

subspaces of #. If M is a subspace, let P,; denote the orthogonal projection onto M.

1. A MEASURE OF APPROXIMATION AND PRELIMINARY ESTIMATES

Consider the following estimate of how well finite dimensional pieces of an
operator B can be approximated by finite dimensional pieces of A:

54(B) = sup inf max {[(AU— UB)P,!, [i(A4*U — UB*)P,}}.

MerF Ueq

Also, consider an “essential”’ version in which UM must be orthogonal to an
(arbitrary) finite dimensional subspace:

55(B)= sup inf  max{{j(AU — UB)P,li, |(4"U — UB*)P,,"}.
M,Nes (Uc2:UM LN}

As well, for 4 and B in #(#), define:
p(4, B) = max{ (B), 55(4)}

(4, B) = max{diy(B), 33(D)}.
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The following propositions are very easy. The proofs are omitted, but they
are a useful exercise to gain a working understanding of these definitions.

ProrosITION 1.1. For all A, B and C in B(#), d(%(A), U(B)) > p(A, B),
and d(U(A), %(B @ C)) > 5 (B).

FropositioN 1.2.If 4 o A', then p(A, A") = 0. If B is any operator, 6 ((B) =
= 0,(B), 04(B) = 05(B), 0p(4) = 04(4") and S3(A4) = 55(4").

ProrosiTion 1.3. For A, B and C in B(#), 0,(B) + 65(C) > 6,(C) and
%(B) + 03(C) > 8%(C). Hence p and p° satisfy the triangle inequality.

Let 4 denote the direct sum of countably many copies of A4 acting on

a Hilbert space #(° which is the ¢2 direct sum of countably many copies of #,
H = DH D ... .

Prorosition 1.4. For A and B in (),
8 ()(B) = 8%()(B) = 8 (o)(B'™) = & (e0)(B™).

Proof. Clearly, d (o)(B) < 6:(00)(3(“’) are respectively the smallest and largest
of these quantities. Let 6 = (SA(oo)(B). Let M and N be finite dimensional subspaces

of s, and let ¢ > 0 be given. It is possible to choose an integer k and a subspace
My e F so that My(k) = M, ® ... ® M, ® 01 almost contains M in the sense

that |]P,bo(,‘)PM|[ < g and so that P = @ ... & # @ 0 almost contains
N in a similar fashion. Let U be a unitary so that

max{[|(4 U — UB)Py,ll, (42U — UB*)Py I} <6 + &

Pecompose #(* as a direct sum of k + 1 copiesof # ), say 4 @ A, @ ... D A\,
so that &y contains #* and A |, is unitarily equivalent to A® for each
0 < i < n. Define a unitary W whose restriction to 5#; maps into #;, 1 < i < k,

and corresponds via the unitary equivalence of 5#; with #( to the unitary U.
Then

max{|[(A W — WB(”))PMf)k)”y (4w — WB"=(“))PM8k)[|} <d +e.
It follows, by letting & tend to zero, that ¢5() B™) = 56,2)(B).
FrorositioN 1.5. For A and B in B(H),

55(B) = 1im 5 ,(B™) = § (B).

n—=oo
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Proof. Clearly, 6 ,(B™) < §,(B) for every n > 1. On other the hand, as
in the proof of Proposition 1.4, every finite dimensional subspace of #= can be
approximated by a subspace of # for n sufficiently large. So a minor modification
of the previous argument shows that J,(B(®?) < supd(B™) = limd ,(B™).

. ,

nooo
Let M be a finite dimensional subspace of #, and let 6 = 05(B). If n 15 a
positive integer, one can recursively find unitaries U}, ..., U, so that
iy max{i{AU; -~ U;B)Py,, (A%U; — U;B*)Pyl} < 6 + n;
i) U;M L span{XU. M. 1 <i<j, X €&} where

& ={YZ:Y=1I A4, A*, 4%, A"*, AA" or A%A, Z =1, B or B".

Let M = span{’, BM. B“AM ), and define a unitary W from #® onto # such
that W02 ... 2 M. 203 ... ®0 agrees with U, M;. The subspaces N, =
= span{U;3,, AUM,, A“U M.} are pairwise orthogonal by (ii). Thus if x =

n
= ¥, 9 x; belongs to 39,

=1

i
(A — WB™)x =
ji

N (AU, - bTiB) «\'il’!.

,
1 il

I

Since {AU; -— U,B)x; belongs t¢ N;, this is an orthogonal surmi. Hence
(AW -- WBY)P,, | < & + 1/n. Similarly, '(4*W — WB*MP,ii<é + 1 r. So,

3 (B)*) = limd (B¥) < & = 6%(B).
On the other hand, §§(B) < §%(B*) = §,(B)) by Proposition 1.4. 55
The next propositions are easy, and again the proofs are omitted.
PROPGSITICN 1.6. Let A and B,, n > 1 belongs to #(K). Then

5 ( ye B,,) — supo3(B,).

n=1

CoRroLLARY 1.7. For A and B in B{(H#), 65(B©) = §5(B) = 3 (B™)).

FRGPOSITICN 1.8. For A;, B; in A(#), 1 <i<k<oo, let A= Y94,
i<ic

and B = Y ©B;. Then §,(B) < max{éAi(B,-)}.
ik

CORrROLLARY 1.9. Swuppose A ond B belong to #(#) and 6,4 & B) =0.
Then 0%(B) = 0.
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Proof. By Proposition 1.5, it suffices to show that §,(B"™) =0 for every
in > 1. Proceed by induction on n. Clearly, d,(B) < d,(4 @ B) = 0. Suppose
3 {B"-Vy = (. By Propositions 1.3 and 1.8

1 O4(B") < 0(4 @ B) + 54e8(B" "V @ B) <0 + 0,(BOV) + 55(B) = 0.

REMARK. At this point, it seems reasonable to address the question: does
6 4(B) really measure finite dimensional information? It would appear, in fact,
that although B M is finite rank for M in &, its range is arbitrary and hence it
is not a finite object. Perhaps it would be more reasonable to measure compressions
P B|M versus Py, AiUM as U runs over all unitaries. It turns out that compres-
sions are adequate provided that we consider, simultaneously, compressions of B*B
and BB* as well. Let ¢(x, y) be the (noncommuting) polynomials x, xy, and yx
for i =1,2,3, and consider the measure

04(B) = sup inf maxJ; Pumpi(A, A¥)PypyU — UPyp (B, B¥)Pyl.

MeFUeul<giss

The comparison with §,(8) is based on the following computation. For M in &,
let M = span{M. BM, B*M}. Fix U in %.

(AU — UB)Py | = Y|P, (U A% AU — _B"."'B + BH(B—U*AU)+(B*—U*AU)B)P,|| <
< ||PyunA* APy U — UPyB*BPy|| + 2{|PyB*P;(UAU — B)PjPyll <
- < PosrA* APy U — UPyB*BPui|| + 2B\ ||PyizAPyiyU — UPiBPi|.
A similar estimate holds for ||(4*U — UB*)P,]|. Thus
04(B)* < (1 + 2[IB{)o4(B).
On the other hand, it is easy to show that
64(B) < max{||4]| + |'B], 1}6,(B).

So these two measures are closely related. However, the measure 65(B) is not homo-
geneous, and is not as convenient to our purposes. The main reasons for introducing
it here is to demonstrate that J,(B) is indeed a measure of finite dimensional
phenomena.
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2. APPLICATIONS OF VOICULESCU’S THEOREM

In this section, we obtain better estimates by employing the following Weyl-
-von Neumann type theorem due to Voiculescu {14].

VoICULESCU’S THEOREM. Let T be a bounded operator on #, and let p be
a separable x-representation of C*(T)which annihilates C(T)n A" . ThenT o« T & p(T).

The following result is an immediate and useful consequence.

COROLLARY. Let T be a bounded operator on H. Then T ~ T® if and

only if C*(T) contains no non-zero compact operator.

Operators of “‘approximate infinite multiplicity”’ (i.e. T ~ T are easier
to handle for purposes of approximation since there is less rigidity, or more “room’
in which to manoeuvre. For this reason, the mcasure §%(-) is more tractable than
the more important J3,( ).

THEOREM 2.1. Let A and B belong to B(H#). Then there exists a T in B(H)
so that

d(U(A), T & B)) < 3%(B).
Hence

d(U(A), %A @ B)) < 205(B).

Proof. The idea is to perturb A4 to a nearby operator 7 which contains
pairwise orthogonal pieces that are unitarily equivalent to arbitarily large pieces
of B. This will allow us to define a s-representation of C#(T) taking T onto B
which annihilates the compacts. Then Voiculescu’s Theorem may be applied. We
take a certain amount of care in the construction to ensure a perturbation of
norm close to 3%(B).

Let P, be a fixed sequence of finite rank projections increasing to the identity.
Fix ¢ > 6%(B). Then there is a unitary operator U, such that

(AU, — UB)P\l <& and  [(4%U, — U,BP,} <e.

Let Q, = U,P,U and let R; be the projection onto the span of the ranges of
{01, AQ,, A*Q,, U,BP,, U,B*P,}. Then

WR:(4 — U, BUF)Q, | = (AU, — U,B)P;}, < ¢
and

W04 - UBURIR, ! = (AU, — U BP, | < e
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Choose an operator K; = R, KR, so that

R,K\Q, = Ry(A — U,BU¥)Q, and Q,K\R, = Q\(4 — U,BU)R,,
such that ||K,|| < &. This is possible by [7], Theorem 1.2. Thus

(4 - K)Q, = Rl(A - Ky@, = Rl(U1BU1*)Q1 = (UlBUf‘)Qx
and similarly,

QI(A - Kl) = Ql(UlBUI*)'

Now let N, be the span of the ranges of {R,, AR,, A*R,}.
By induction, we will construct sequences of unitaries Uy, pairwise orthogonal
finite rank projections R,, and operators K, = R K, R, such that
i) Q. = U.PU¥ and the range of R, equals the range of {Q,, 40,, A*Q,,
U.BP,, UB*P.},

ii) (4 — K)Qx = (UBUHQx,
il") Qu(d — K) = O (U BU),
iii) K| < e.

We also define finite dimensional subspaces N, equal to the span of {N,_,, R,
AR H , A*R A} and M, equal to the span of {P. o, BP, ¥, B*P,#}.

Assume U,_,, R._,, K,_, and N, _, are defined. Define N, and M, as above.
Since ¢ > 65(B), choose a unitary U, ., such that U, M, is orthogonal to N, such that

(AU, — UkB)PMk“ <e

and
(A*Uy — UB*Pu, | < .

Define Q, and R, by (i). First we verify that R, is orthogonal to each R; for
J < k. The ranges of Q,, U.BP, and U,B*P, are contained in U, M, which is ortho-
gonal to N, and hence to R; for all j < k. In particular, the range of Q, is ortho-
gonal to the range of AR; and 4*R; for j < k: whence AQ, and 4%Q, have ranges
orthogonal to each R; . Consequently, R, is orthogonal to R; forj < k.

Asinthefirst paragraph, one has

R4 — UBUNQ, = (4U, — U,B)PU;
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0i(4 — UBUPR, = U J(A*L, — U,B)PJ".
Thus by (7], there is an operator K, = R, K, R, with 'K,i| < ¢ such that

(4 - K30 = Ri(4 — K)Qy, = R.UBUZQ, = UBUSQ;
and

QL(A " K;.) = Qr.v(A - KA-)RL- = Q[x(LvI:BU[?:)Rk = QRUABUf?'

Thus ii), it') and ii1) have been verified.
Let K= Y K,. Then 'K, < ¢ Define T = A4 -- K. By ii) and ii’) it follows

Lyl

that

(C*TU, — B)P, =0 = PLUSTU, — B)

for all & z 1. Consequently, GEFTT, converges to B in the strong-* tonology. Define
a representation p of C*(7T) by

p(X) = s“EmUEXU,.

k—o0

This limit exists for cvery polynomial in 7 and T, and thus for all X in C*(7T).

Moreover. p(T) = B. Since U, P, are pairwise orthogonal, the sequence U, converges

to zero in the weak operator topology. Thus p annthilates every compact operator.
By Voiculescu’s Theorem applied to o, onehas T o T @ B . Thus

d(U(A), #(T © BN < A — T + d2(T), %(T © B)) < &.

Thus d{#{A & B}, #(T © B))) < ¢ also, whence d(#(A4), %(4A @ B)) < 2. Let ¢
decrease to 0%(B) to finish the proof. ?

S

COROLLARY 2.2. Let A and B belong to J(5¢). Then
3B) < d(%(4), U(A © B) < 25%(B) = 25,(B>).

Proof. This is an immediate consequence of Theorem 2.1, Corollary 1.7 and
Proposition1.1. 7

CoroLLARY 2.3. Suppose A is an aperator such that C*{A4) contains no non-zero
compact aperator. Then for every operator B in #A{HK),

5AB) < A4, #(4A & B)) < 20,(B)
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and

S5(A) < d(u(B), U(A & B)) < 235(4).

Proof. By the corollary to Voiculescu’s Theorem, 4 ~ A® . Hence by Propo-

sition 1.4, ¢ ,(B) = 8%(B); and by Proposition 1.3, §5(4) = 63(4). The non trivial
half of the two inequalities now follows from Theorem 2.1, and the trivial part is
given in Proposition 1.1. N

7%

The following result is an immediate corollary of Corollary 2.3. We call it
a theorem to emphasize its importance.

THEOREM 2.4. Suppose that A is an operator such that C*(A) contains no
non-zero compact operator. Then for every operator B in B(H#),

p(4, B) < d(W(A), U(B)) < 4p(4, B).

Proof. Indeed, the upper bound obtained is 2§,(B) + 265(4) which is at
most 4p(A, B). %

Two more corollaries follow easily.

COROLLARY 2.5. Let A and B belong to #(#). Then p°(A,B) =0 if and
only if A ~ A ~ B ~ B K

In particular, 5°(A) =0 if and only if A v A

' Proof. We assume p°(4, B) =0 and prove the non-trivial assertion. By
Theorem2.1,4 y A® B » A@ B andB y BO Ay B A . So A4 ~ Band

A~A® B ~ A @ AP ~ A ~ B, 2
COROLLARY 2.6. Let A and B belong to #(A). Thea
d(U(A), #(B)) < 4p%(A, B).

Proof. By Theorem 2.1,

d(U(A), #(BY) <d(U(A), U(A @ B)y + d(U(A g B}, #(B))<

< 265(B) + 28%(4) < 4p%(A. B). 2
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3. CONSEQUENCES OF §,(B) =0

The aim of this section is to show that 8,(B) = 0 implies that B is an approxi-
mate direct summand of 4. As a corollary, it follows that p(4, B) = 0 if and

only if 4 ~ B. Thus p is a metric on the unitary equivalence classes. In Section 3

we will see that p is not equivalent to d. However, the “one sided version™ is.

Lemma 3.1. Let B belong to B(H°). Let k be a positive integer, and suppose
that D is a direct summmand of B®. Then B has a direct summand Dy unitarily
equivalent to a summand of D.

Proof. Let P be the projection of #) onto the domain of D, and write P
as a k x k matrix [P;;]. We can assume, without loss of generality, that P;, # 0.
Let X be the operator from #” into #*) given by k > 1 matrix [Pyl <. Since P
commutes with B%)_ one obtains BYX = XB and B*®X = XB*. The range of X
is contained in the range of P, so by restricting, we obtain DX = XB and D*X =
= XB*. Let X = UR be the polar decomposition of X. Then

R:B = X*XB = X*DX = (D*X)*X = BX*X = BR®.

Thus, B commutes with R, and hence with the projection T*U onto the range of R
(which is non-zero since X # 0). So

(DU — UB)R = DX — XB =0
and
(D*U — UB*)R = D*X — XB* = (.

Thus if Wis the restriction of U to U*U and D, is the restriction of B to U*U¥#,
then Wis an isometry and DW = WD, and D*W = WD¥. So WD,W* a sum-
mand of D unitarily equivalent to D,. %

THEOREM 3.2. Suppose A and B are operators on H#, and 3,(B) = 0. Thew
there are operators Ay, B, and C such that A~ A, ® C, B= B, ® C, and
A v A3 B™.

Pioof. Let {(4;, B,), ~ € A} be a maximal family of pairs of unitarily equi-
valent direct summands of A4 and B respectively so that 4 (resp. B;) are supported
on pairwise orthogonal subspaces. Let C= Y® 4, = },® B,. Then A = C® 4,
and B = C @ By, and no summand of B, is unitarily equivalent to a summand of A4,,.
It suffices to show that 0%(B,) = 0. Let {B.,,, y € I'} be 2 maximal family of pairwise
orthogonal summands of By such that §%(B,) = 0. Let B, = Y@ B,. By Propo-
sition 1.6, 0%(B,) = 0. Let B, = B, ® B,. Thus no summand D of B, satisfies
either 0%(D) = 0 or is unitarily equivalent to 2 summand of A4,. Let #, be the
domain of B,.
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Now & ,{B,) = 0. So choose a sequence P, of finite rank projections in
@(Hy) increasing to the identity. One can find unitary operators U, such that

max{[|(4U, — U,By)P,|l, |(4*U, — U,B¥)P,|}} < 1/n.
Let X be a weak operator topology cluster point of {U,},say U, s X.Let X = UR

be the polar decomposition of X. One has AX = XB, and 4*X = XB¥. Proceeding
as in Lemma 3.1,

R:B, = X*XB, = X*AX = (A*X)*X = B,X*X = B,R®.

Hence B, and B} commute with R. In particular, the closure of the range of R
reduces B,,s0 B,commuteswithQ = U*U. Moreover,

(AU — UB)R = AX — XB, =0
and

(A*U — UB¥)R = A*X — XBF = 0.

Thus, if we decompose B, = B, @ B, on Q#, @ Q*5#,, then B, is unitarily equi-
valent to a direct summand of 4.
Suppose that U*U # 7, so that B, is a proper summand of B,. Let W, =

= U,,lQl,%”. Then for every finite dimensional space A/,

max{|[(4W, — W.B)Pyll, [(A*W, — W,BH)Pyll}

tends to zero. Moreover, Wa, 5 0.Let Nbe any finite dimensional subspace of #.
Then lim ||PyW, P,!| = 0. Hence one may choose 1 so that [[PyW,Py|| is arbitrarily
small. 'Fhus a small perturbation of W, yields a unitary W, so that W M is .orthogonal
to N. It follows that 65(B;) = 0, contrary to the construction of B, and B,. Hence
U is unitary, and B, is unitarily equivalent to a direct summand of A.

Let A = A, @ C with respect to the decomposition #, @ #,. With respect
to this decomposition, {/ has a matrix [U,U;]. Suppose that Py U=U,# 0.
Then since P, commutes with A4, one obtains AUy = UyB, and AfU, = U B¥.
Using the polar decomposition of U,, one obtains (as in Lemma 3.1} a summand
of B, unitarily equivalent to a summand of 4,. This is contrary to the construction
of C, hence the range of U is contained in ;. So B, is a summand of C.

It will be shown by induction that B is a summand of C for every k > 1.
This has been verified for ¥ = 1. Suppose that B» is a summand of C. Then B{+D
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is 2 summand of B~ C@® B, @ B,. and hence J,(B{+V) = 0. Repeat the argu-
ment given above for B{+1 in place of B, . There are three possibilities:

(i) B¥+D has a summand D such that §%(D) = 0,

(ii) B{*V has a summand D unitarily cquivalent to a summand of 4,. or

(iti) B+1 js a summand of C.

Now in cases (i) and (ii), one uses Lemma 3.1 to obtain a non-trivial
summand D, of B, unitarily equivalent to a summand of D. In case (i). one obtains
%(Dy) = O contrary to the construction of B, . Incase (ii), D, is unitarily equivalent
to a summand of A4, contrary to the construction of C. Thus only case (iii) is
possible, and B{ is a summand of C for all & > 1.

Clearly, (B =0 for all k& > 1. Hence by Proposition 1.5, 83(B,) = 0.
From the definition of B,. one finds that B, is vacuous. Thus A4 and B have the
desired decompositions. , . A

CoROLLARY 3.3. If p(4, B) = O, then A o B. Heice p is a metiic on HH), .

Proof. By Theorem 3.2 and its proof, 4 and B can be decomposed as A4 =
~A4,® C and B = B, ® C so that d5(B)) =0 = 34(4,). By Theorem 2.1 ome
obtains

A A2 B® e C ~ B.

That p is a metric on the collection of closed unitary orbits now foliows from
Proposition 1.3. |

‘Before considering p(4, B) in genersl, we mention a few applications of this
coroliary. In [8], Hadwin defines an operator valued spectrum X(7) = {4 €. 4(# ") :
:T=lim7T,and T, = A @ B,). The space .#’ may be finitc or infinite dimensional.

=20

The following theorem due to Hadwin can be dzduced from our results.

THEOREM 3.4. Ler T belong to 40 ).
() AcZ(@)if ond only if T ~ T'= A & B,

(i) #(T) = {d e B(#) : Z(A)y = Z(T).

() The “-strone operetor  closuse *11’47')’:‘5 = I(T)~Hy = 435 £ ):
204y = 0.

Proof. 1t is clear from the definition of 3{7T) that A belongs to Z{7T) if and
only if d4{4) = 0. So (i) follows from Theorem 3.2. Hence X(A4} = (T} impiles
p(4, T) = 0. By Corollary 3.3. A 5 T. The converse follows from Proposition 1.2.
This proves (ii). If 4 belongs to Z(T)n H(F)onehas T ~ 7' >~ 4 = Bby .
Let P, be a sequence of finite rank projections increasing to the identity of % 4.
Let U, be unitary taking 4, onto # which identifies P, with P, € 0 in &' =
=H 4@ Hpg. Then WITW P, = AP, and PWETW, = P, A. Thus WITH,
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converges to A in the *-strong topology. Consequently, 4 belongs to #(T)*.
Conversely, if A4 is the *-strong limit of W#TW, with W, unitary for n > 1, then
for every finite dimensional space M,

max{l[(TW,, - W!A)P;\III7 |l(T$W,u - WuA*)PMH}

tends to zero. Thus §;(4) = 0 and hence A4 belongs to Z(T) n B(HX). %
ExaMpLE 3.5. Let A be an invertible, bilateral weighted shift. That is, one
has an orthonormal basis {e,, n € Z} such that Ade, = w,e,,; and inf|w,| > 0.

The operators A*A, ..., A¥A" are commuting diagonal operators with joint
spectrum

Z‘n(A) = {(Iwk‘nzy iwkwk+1127 RS ‘wkwk+1 v wk+n—1'lz) : ke Z}_

There is a natural correspondence between this subset of R”and
Z(A4) = {Gwils Wl -y Weruad) Tk Z} 7

It is clear that 3,(4) (or 5,(4)) are unitary. invariants of 4. The following theorem
is a consequence of O’Donovan [12].

THEOREM. Let A and B be invretible, bilateral weighted shifs. Then
A ~ B if and only if £,(4) = Z,(B) for all n > 1.

Proof. The only if direction has already been noted. Conversely, if 2,,+1(A) =
= %,..(B), it is immediate that the restriction of B to M = Span{e€; ¢y, - - s Cpant
can be approximated to arbitrary accuracy by a piece of 4. Namely, take the
weights {v.|, ..., |vx4,| Of Band some e > 0 andfind an integer [ so that the weights
Wi, ..., (W] approximate these weights within e. The unitary given by Ue; =
= ;- satisfies

max{|[(4U — UB)Pyli, (A*U — UB*)Pyl} <.

The projections P,, of this type almost dominate every finite rank projection. Hence
04(B) =0 = d5(4). By Corollary 3.3, 4 ~ B.

Unfortunately, it is not easy to estimate d(#(4).%(B)) from these weights
when A is not approximately unitarily equivalent to B. In his doctoral thesis [11],
I.. Marcoux has obtained interesting upper and lower bounds for this distance.

The case of unilateral shifts is somewhat different, but can be proven along
the same lines. Again, this theorem is a consequence of O’Donovan’s results.

THEOREM. Let A and B be unilateral weighted shifts which ave bounded
bolow. Then A ~ B if and only if A = B if and only if their weights {w,} and {v,}
satisfy |w,| = v for all k > 1.
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Again, computing d{(#(A4), #(B)) from the weights is an interesting and non-
-trivial task. Refer to Marcoux [11] for some partial results.

4. §,4(B) AS A MEASURE OF B AS A SUMMAND OF 4

In Proposition 1.1. it is shown that for all operators 4, B and C, one obtains
the trivial estimate d(#(4), #(B © C)) = 6,B). The purpose of this section is
to prove the converse. That is, for each 4 and B, there is anoperator C so that
d(#(A), #(B @ C)) == 6 ,(B). By applving this to 4 and B in turn, onc wou'd
hope to generalize Theorem 2.4 to all operators. In spite of the positive cvidence
of Corollary 3.3 and Thecrem 4.1 below, this turns out to be false. The example
will be given in the next section.

First, we describe a representation of %(3# } closely related to 2 representation
used by Calkin [4]. Let % be a non-principal ultrafilter on N. Take £%(#) tv
be the space of all bounded sequences x = (x,) of vectors in 2. Define a sesquilincur
form

e xd = lim (x,. 7).

Standard arguments show that .{” = {x : {x, x> = 0} is a subspace and the comw-
pletion #, of £=(#)/4" is a Hilbert space. Let X = (1,) denote a typical element
of the quotient. Define a representation o of #(3#) on J#y by

o(TH(x,) = (I'x,)

and extend by coutinuity.

Define a unitary map W of ¢ into 5 by sending a vector x to the constant
sequence x, = x. Clearly, the range 2%, of W is invariant for ¢. Thus %", splits
as ., = Hy © A2, and ¢ splits as ¢ = 6, © 7 where 6, = AdW is equivalent
to the identity representation. We claim that 7 factors through the Calkin algebra.
To see this, let K be a compact operator and let y = (p,) be a unit vecter in Jf% .

For ¢ > 0, choose a finite rank projection P so that |[KP*|j < & Lete,, 1 < i <
< p = rank P be an orthonormal basis for Ran P, and let x; = We,;. Then

0 =<y, xp =lim{y,,e) 1<i<p
Thus, onc can choose a subset Sin % so that [Py, |} < efor all # in S. Hence

Kyl < KNPyl + IKPH] iyl < (IKI| + De for n € 8.

Consequently, |[7(K)yll < (IK]| 4 De. This is independent of &, whence ©(K) = .
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Now, we describe how certain bounded operators in #(H#, #;) may be
obtained. To each bounded sequence (4,), define

Ax = (4,%).

This is easily seen to be linear with [|4]] = lim||4, ]| < supll4,i. If T is a bounded
A

operator on J#, then AT is given by the sequence (4,T); and o(T)A is given by
the sequence (T4,).

The main result of this section can now be stated. Notice that Theorem 2.1
is an immediate coroilary.

4.1. THeorEM, Given A and B in B(H#’), there is an operator C such that
d(%(A), % (B @ C)) = 6 4(B).

Proof. Let P, be a sequence of finite rank projections increasing to the identity.
From the definition of 6 ,(B), one can obtain unitary operators U, such that

(AU, — U,B)P,|| < 6,(B) + 1/n
and

(4*U, — U,B*)P,|| < 6,(B) + 1/n.

Fix a nonprincipal ultrafilter % as above, and define an operator U in B(#, # ;)
by the sequence (U,). Then o(4)U — UB is given by the sequence (AU, — U,B).
But for every x = P.x, one has (AU, — U,B)x|| < 6,(B) + 1/n for n > k and
hence ||(6(4)U — UB)x|| < J,(B). But these vectors are dense, so ||6(4)U — UB|| <
< 8,(B). Similarly, llo(4*)U — UB*|| € §,(B). Next, notice that U is an isometry.
For x in #,

|Ux|F = lim(U,x, U,x) = lim||x|* = ||x]2.
@ a

Thus we have identified an “‘approximate summand’ of g(4) close to unitarily
equivalent to B.

Let o7, be the smallest reducing subspace of #, for ¢(4) containing 37,
and the range of U. Since 2%, , Ran U, and C*(¢(4)) are all separable, the space 5#;
is separable. Now 2, decomposes as 3y = #, @ #3 . Define a representation g,
of C*(4) on #, by restricting ¢ to C*(4), and restricting this to #,. This is a
scparable representation, and it decomposes as g, = 6y @ 1, Where 6, = AdW
is equivalent to the identity representation, and 1, factors through the Calkin algebra.
By Voiculescu’s Theorem, 4 ~ 03(4). Translating the results of the previous para-
graph, we obtain

llo(A)U — UB|| < 64(B) and |[lo,(A*)U — UB*|| < 04(B).
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Now split o2, as Us#’ @ (U#)". Note that ¢,(4) decomposes as

" T
i = 72 O] [ %e]
21 22

’[Xu] |
Xl -

so that X:[X“ X‘Z] has X' < 6,(B). Let C = Ay, — Xop. It is now ap-

21 224

and [|[Xy, Xulil < 0,4(B) and < 64(B). By [7], there is an operator Xu,

parent that
[6:(4) — (UBU* @ C). = [ X, < 3.(B).
Hence
d(#(4), #(B © C)) < d(#(A), %(c1(4))) + d(U{e:(4)), Z(B S C)) <

<0+ 0,(B) =3B

The reverse inequality is trivial, and follows from Proposition 1.1. Z

5. FAILURE OF p(4, B) AS A MEASURE OF d(#%(A), %(B))

From Theorem 4.1, we obtain, for each 4 and B, a pair of operators A
and D and unitary operators U and ¥V so that

(AU - UB @ D)!! < p(4,B) and [BV — V(4@ C). < p(4, B

That is, A and B are almost summands of each other. An opzrator analogue of
the Schrosder-Bzrastein Theorem would yield a good estimate of d(#i4), #{B))
in tzrms of p{4, B). The following example shows that this is not possible.

Let J = [0 (1)] be the 2 X 2 Jordan block. Let N > 1 be a positive integer

N-1

Define F, = Z@ J and Gy =0,® F, in M,;_5(C) and A,y ,(C)

k=1

respectively. Let A_.\- = Fy ® J and By = Gy @ J®. Sincz Ayis a dircct sum-
mand of By, 5BN(A.~;) = 0. Now Byactsonthz spiccC@ C*@ ... @ C* @(C)>,
and Ayactson C2 @ ... @ C? @ (C)© where in each casz therc are V — 1 singie

. : . . 1y, . ..
copies of C*. Let ¢ be the unit vector (0) in C?, and consider the isomeziry W

given by

oo 20
W/(Aa X315 Xy—-1s Z@J’k) = ().e, X1y ooos Xy—os Xy-1 @D Ze."k-n)-
k=2

k=1
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Then
[=o]
G =8 (2,35, 30, S ) =

k=1

2 N-—-1 d
={0, —Jx;, ..., ———JIxn_0, JXy® VYO Iy} —
( v 1 I N-2 N 2 Y 1)

4

1 N—1 ®
—W(O,—*Jx,...,———————.]x_, @ Jy. | =
N 1 I N-1 kgl J’k)

2 N -1 0o
= 03_—']—‘(3---,_—_-,:{_ ,J.\' @ ® Jy, _ —
( N 1 N N-2 N kgl Vi 1)

1 N—2 N—1 ®
—_ 01 "—.].\' 5 v s ']"YA -2 Jx:"‘ @ ©J =
( v ~ N N-1 t.z='2 J’k)

1 1 1
=10, —Jxy, ..., — Jxn_p, — -~ JX; 0].
( v N e Ty N D )

4

Hence || Ay} — WBy|| = 1/N. A similar computation yields ||43W — WBE| = 1/N.
Thus p(A4y, By) < 1/N. It will be shown that d(%(A4y), %(By)) > 1jV5.
A simple and well known lemma is required.

LeMMA. Let P be a finite rank projection such that [P, J)| < 1;J5. Then
rank(P) is even.

Proof. Now J( is unitarily equivalent to [g ;] . With respect to this same
decomposition, P has the matrix [P;;]. Compute

[P, J(oo)] = [_ P21 Pll - P22].

0 Py
Therefore, ||Py;[| = ||Py,]l < 15 and ||Py; — P!l < 1j)/5. Since P = P2,
”Pii - Pi2i|| = lme!P < 1/'5-

Thus, the spectrum ¢(P;;) belongs to {0, f) U (1 — f. 1] whereff = (5 -- ]/5)/10 is the
smaller root of x — x? = 1/5. From the Hermitian functional calculus, one obtains
prejections Ej; such that ||P;; — E;;|l < . Now

'Ey: — Epll < ||Eyy — Pyl + [P — Pooll + [|Poy — Eapll <

<2B+1/5=1—15+1/)5<1.
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So rank £y, = rank E,,. Also

K:P._Ell o Eg-g-: < maxi:Pu-i - El_ + YﬂaX{fPlni’, ‘P"l'» <
: Al 21,

<p+ifS=1-g<1.

Hence rank(P) = rank(£y; @ En) = 2 rank(E;;) is even.

Ty

Now return to the example. Supposec that U were a unitary  sotisfying
fdy — UByU* =8 < 1///3. The projections P, =Ly.s @ (I @ 0°) commute

with By = Gy @ J®, and increase strongly to the identity. Letz = e ,/ 5= ).
Choose & so large that

(UPEUNhoy—2 @ 04 < &
This says that UPU* almost dominates the projection £ = Ly ., @ 7. 1t is
possible to find a projection Q > E so that |0 — UP, U, < 2s So rankQ =

=rank P = 2N ~ 1 + 2k is odd. Moreover,

HO AN < HUPUS, Ay + TUPUS — 0, 4y], <

S
ta,

< I[Py, USAZU — B, + 2 UPUY — Q' < | UPAyU — By + 42 =7

So the projection Q — E is of odd rank, and
1@ — £, 70 = 10, 4] <1/Y/5

contrary to the lemma. This establishes that d(#(4y), %(By)) > 1V5. 3|

The curious aspect of this example is that it is the finite rank pieces of Ay
and By that cause the trouble — even though p(4, B) is expressly designed to
examine and compare the finite pieces of 4 and B. To put it in another light,
this example shows that there is no good analogue of Corollary 1.9 for close

orbits. That is, if 6,(4 @ B) = ¢, then the best one can prove is 6,{8%) < ae.
2

. . ; . . . i 2
An ecasier example of this phenomena is obtained by taking Ay = dlag{ IR
N—1 ) . .
S @ 0°) and B =1, acting on C. Ther d, 44y © B = L'N and
] ;

k
S5 N = minlt.- -
GAN(B ) = mm{ v 1}.

4
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Also, notice that d405(B @ F) < 0,(B) and may be much less even when F
acts on a finite dimensional space. For example, take A = 0 and B to be a rank
L. 1 2 N —1 <
one projection. Then F=diagl---, —, ...,-—- — L yields ¢ B@® F) =
E{N T I }y 4or(B @ F)
=1/N =d(U(A @ F),UB @ F)).

QUESTION 5.1. Do p and 4 (the distance metric) yield the same topology
on A(H)] 7

QuEsTION 5.2. Find comparable upper and lower bounds for the distance
hetween the unitary orbits of two binormal operators.

In the casc of binormal operators, %(T) is determined by ZE(T) = {%(o(T)) ;
;91 C*(T) - M,is a =-representation} and its multiplicity function. For exaraple,
sec Ernest [8]. In particular, it follows from Pearcy-Salinas [13] that if 4 belongs
to the essential spectrum X&(T), then T ~T® A1) The theory is analogous to

the approximate unitary equivalence of normal operators. In the case of normel
operators, estimation of the distance between unitary orbits can be computed but
it is not trivial. See Bhatia-Davis-MaclIntosh [3], Azoff-Davis [2], and Davidson
[s, 6.

Binormal operators, and in general n-normal operators, are members of the
larger class of operators which are limits of operators unitarily equivalent to
X @ F where F acts on a finite dimensional space. In computing the distance
between the unitary orbits of 4 = X @ F and 8 = Y(®) @ G, one finds using
the results of Sections 1 and 2 that p(4, B) is a good measure of d(%(X ), (YY)
as well as a measure of how well F embeds as a summand of B, and G embeds
as a summand of 4. So one obtains Theorem 4.3 in this context much more
easily with better constants. The problem remains to find some way of measuring
an obstruction of the type described in this section.

This work is partially supported by a grant from NSERC (Canada).
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