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ON EQUIVARIANT SHEAF COHOMOLOGY AND
ELEMENTARY C*-BUNDLES

ALEX KUMIIAN

In what follows the equivariant sheaf cohomology of Grothendieck (see [14),
Chapter V) is applied to the study of an appropriate class of groupoids. This coho-
mology is given as the sequence of right derived functors of the invariant section
functor (defined on equivariant sheaves). Extensions of groupoids, here called
twists (in order that no confusion with the bifunctor Ext will result) are classified
by a functor which is distinct from yet closely related to the second cohomology.
This situation is clarified by the existence of a long exact sequence relating equiva-
riant sheaf cohomology to ordinary sheaf cohomology in which the twist functor
occurs (cf. [20]). Using this machinery we show that actions of a groupoid on ele-
mentary C*-bundles fibred over its unit space are classified up to Morita equiva-
lence by an invariant taking values in the second (equivariant) cohomology with
the sheaf of germs of continuous circle-valued functions as coefficients: this invariant
includes the Dixmier-Douady invariant and the Mackey obstruction as special
cases. Renault has conjectured that this classifier may be identified with Ext (T, T) (see
{36]) for a more general class of groupoids.

The class of groupoids studied in this paper are termed sheaf groupoids and
defined to be topological groupoids for which the source map is a local homeomor-
phism. In addition to the Grothendieck cohomology, denoted H*(I', .) (where I
is a sheaf groupoid),there is available a continuous cocycle cohomology of topolo-
gical groupoids (see [17], [22]). This is the subject of our first addendum (§5); as
expected the continuous cocycle cohomology, noted H¥(I',-), may be characterized
asderived functors with respect to a relative notion of exactness. In the second adden-
dum we collect an assortment of facts relating to elementary C*-bundles necded in
§4. Since there is a bijective correspondence between continuous trace algebras
and elementary C*-bundles, this addendum serves to translate known results con-
cerning continuous trace algebras into the language of bundles (see {7], Chapter 10).
The third addendum deals with the computation of the cohomology of certain induc-
tive limit groupoids in terms of a 1i~_m1 sequence,



208 ALEX KUMIHAN

The main body of the text begins with a preliminary treatment of sheaf group-
oids and the relevant coefficient category (§0). If I' is a sheaf groupoid, a I'-sheaf
is defined to be a sheaf over I'? equipped with an action of I (see [15)). The category
of I'-sheaves. noted #(I'). is easily seen to be an abelian categorv. A homomorphism
of sheaf groupoids gives rise toa pull-back construction (justas with ordinary sheaves)
which yields am exact functor between coefficient categories.

In order to invoke the calculus of derived functors, one must show that &1
has enough injectives. This is done in §1 by defining a functor J: ¥ (I'") -» Y1)
which is a right adjoint for the functor which forgets the action of I'; since J takes
injectives to injectives £(17) is scen to have enoughinjectives. The cohomology funic-
tors H=(I', -) arc then defined to be the right derived functors of the invariant sec-
tion functor S, 2 Hom{Z. -} (where Zis the constant sheaf with fiber Z and ri-
vial action): alternativelv, H¥(I. .) = Ext}f(Z. +). The contravariant dependerce
of the cohomology of I is then easily verified.

Given a I'-sheaf .1, the group of twists T,.(A4) is defined (82) to be isomorphism
classes of groupoid extensions:

A—X=>T

compatible with the action of I'on A with addition given by the Baer sum. We show
that T is a half-exact functor and that 7(Q) = 0 if O is injective.

The twist group is seen to be the Jobstruction to lifting one-cocycles (§3);
more precisely, 7. is the first derived functor of 7. (where Z,(4) isthe group of con-
tinuous A-valued one-cocyeles). Letting S denote the section functor, it is easy to
see that:

0= SJHQ) - SQ) » Z,10)=>C

is exact if Q is injective. Applying this triple ‘0 an injective resolution of a given
F-sheaf yields a short exact sequence of complexes which by standard homological
algebra gives rise to a long exact sequence relating (I, ), H*(I'", +) and the right
dJerived functors of Z,.. A fragment of this scquence was obtained in [20) for the
groupoid R(y) where ¥ is a local homeomorphism (and trivial R()-shezf T).

In the final seciion (§4), actions cf a sheaf groupoid I on elementary C%-bund-
les fibred over the unit space I'? are studied. 1f the elemcntary C*-bundle is trivial
fviz. = .# x I'® where .#" is the algebra of compact operators on a separable infinite
dimensional Hilbert space). an element of T,.(T) results as the obstruction to lifting
an action to a unitery representation of I' (cf. [40], where an analogous result for
Borel equivalence reiations was obtained); the obstruction is a compleie invariant
for exterior (unitary cocyle) equivalence. A complete invariant for Morita cquiva-
lence (for such actions) is then obtained by taking the image of the obstruction
under the map

TH(T) > HYI, T).
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The general case is reduced to the above via stabilization and functoriality in I'.
We remark that this invariant is additive on tersor products and that all values in
HYI, T) occur,

"I wish to thank Tain Raeburn, Colin Sutherland, Peter Donovan and Jean
Renault for many helpful conversations during the course of this work. I am also
grateful for the congenial atmosphere provided by my colleagues at the University
of New South Wales.

0. PRELIMINARIES

We view a groupoid I' as a small category with inverses. The distinguished
subsct of units is noted I'® ; the range and source maps are denoted by r and s while
inversion is denoted y — y*. Composition is defined on the set I'* = {(y, y)yeT
% I is(y) = r(y")} and is written (y, 7)) € I'* - yy' € I'. A groupoid endowed with
a topology for which the above structure maps are continuous is referrcd to as a
topological groupoid. The reader is referred to [35)] for a detailed treatment.

1. DEFINITION. A topological groupoid is called a shieaf groupoid if the source
map s: I = [V is a local homeomorphism.

It follows that r: I' — I'® is a local homeomorphism as well and that I'° is
open in I.

2. REMARK. In dealing with applications to C*-algebras (§4) we will assume
that I' is locally compact, Hausdorff, and second countable (hence paracompact).

3. DEFINITION. A continuous map ¢: A — I'where A and [ are sheaf group-
oids is said to be a homomorphism if:

(215 22) € A% = (0(4y), @(5)) € I and ¢{4:7.) = ¢(24)¢ (7).

Tt follows that (A% < .

Thus the category of sheaf groupoids contains both the cétegory of topological
spaces (with continuous maps) and the category of discrete groups (with homomor-
phisms). We consider some examples.

4. ExaMPLE. i) Let G be a discrete group and X a topological space. An
action of G on XY is given by a homomorphism «: G - Homeo(X). One may asso-
ciate a groupoid I, to this action as follows. Put I', = G x X, 'y = {e}x X=X,
s(g, X) = x, r(g, x) = ay(x), (g, )* = (g~ 4'a;'(x)) and composition is defined
for (g, x), (g', x") if x = a,(x") in which case set (g, x}(g’, x') = (gg’. x).

i) If ¥: X - Z is a local homeomorphism put R(Y) = X=X = {(», x') €
€ XXX 1 y(x) = Y(x")}. One checks that R(Y) is a groupoid with R(})® = X (x —
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= (X, X)) s(x, X)) =27,y x7) = () =, ), (LX) X)) = (T
Such groupoids will be called preliminary.

(iii) Let g¢: M — X be a sheaf of abelian groups (as in [16]) over X. Then A7
may be regarded as groupoid with M° = X identified with the image of the zero sec-
tion. One has g = r == §; m™ = -~ m and if qum) = g(m’) write mm’ = m + '
Write ¢ Yx) = M,. We shall usually omit explicit reference to the projection ¢
when no confusion results. If U < X is open, let S(U, M) denote the group of
continuous sections over U: write S(M) = S(X, M).

5. OperaTIONS. There are several ways of constructing new groupoids from old
ones. What follows should not be regarded as a complete list.

1) If Iy and Iy are groupoids one may form their product Iy > I'y (with (1, *:
X)W = Iy x IY) or their (disjoint) sum I'y 1T I'y (with (T IT 1,)® = FYTLTY).

ii) If I' is a groupoid and U < I®is open, set I'y = {y e :s(3), r(;) & U7
Iy is called the reduction of I to U (note (I'y)* -+ U).

If Uis full, viz. (s "W(U)) = I'', I'y is called a full reduction.

i) Let I' be a groupoid and ¢: X — I'" a local homeomorphism. One forms
the induced groupoid IV with unit space X as follows. Set I'V =: X xI'sX =
$(x, 9, X)) € X T X 1 (X)) = r(y), Y(x') = s(7)]; the unit space of I'” is identified
with X by x = (v, ¥(x), x). The structure maps are given by: s(x, 7, A') = x",
(x, y, X')¥ = (x'. 9%, x) and

(.\4’ v’ xl) (X’, ‘;’/, x//) - (-\,, )”‘/’3 '\.I/)‘

There is a homomorphism s, : 'V - I given by (x, 3, x’) = ;. Note that
R() = Zv.

iv) Given groupoid homomorphisms ¢,: A; - I' for i = 0,1 one may form
the fiber-product over I', 4, 5 Ay = {(Zo, 71) € Ay X Ay 1 o(20) = @y(74)} with unit

space (A, 5 Ay = Ap = A9 (groupoid structure is inherited from A, X A,).

v) Let ¥ < I’ be an open subgroupoid with X? = I'*: X is said to be normal
if the following holds:

a) r(o) = s(o) for all ¢ € Z,

b)if ¢ € £, yeI', with r(o) == s(y) then y07% € X.
If ¥ is normal one forms the quotient groupoid with unit space identified with 7™+
as follows. Set 7 ~ 7' if there is 6 € X such that 3’ = 0 ; condition (b) implies that
involution and composition respect this equivalence relation (thus if' 7, ~ 34 @nd
o~ 71 then 347, ~ vo7). The quotient of I' by this equivalence relation is denoted
Ii¥ and is easily seen to be a sheaf groupoid with groupoid structure induced by the
quotient map I' — I},

We proceed now to a discussion of the coefficient category associated to a
sheaf groupoid I' (cf. [15]).
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6. DEFINITION. Let 4 be a sheaf over I'®; an action of I' on A is givenby a
continuous map o : ' = A — A, where I' = A = {(y, @) : a € Ay}, satisfying the
conditions:

1) o, Ay,

i) if (y, y') €eI'? then o, = a,00q,.

A sheaf equipped with such an action is called a I'-sheaf, It is often convenient to
avoid explicit mention of o — we write (y, @) — ya — and by standard abuse of lan-
guage to refer to A as a [-sheaf, Given I'-sheaves 4 and A’ a sheaf morphism f: 4 —
— A’ is said to be a [-morphism if f(ya) = yf(a) for all(y,a) €T = A. Let Hom, (4,
A’) denote the set of I'-morphisms from A4 to A’. Let &(I') denote the category of
I'-sheaves with I-morphisms.

y = A, 18 an isomorphism,

7. ProprosiTiON. (I is an abelian category.

Proof. It is immediate that Hom,.(4, 4’) is an abelian group and that direct
sums cxist (write A @ B). Further if f € Hom,(4, A’) then kerf is a subsheaf of 4
which is invariant under the action of I" (if f(a) = O then yf(a) = f(ya) = 0). Hence
kernels and similarly cokernels exist in #(I'). Moreover, theinduced map 7 : A/kerf —
— Imf is an isomorphism. 7

REMARKS. A sequence of I'-sheaves is exact iff it is exact as a sequence of
sheaves. If G is a (discrete) abelian group let G = G X I'® be the constant sheaf with
fiber G. If H is a locally compact abelian group let ' denote the sheaf of germs of
continuous H-valued functions on I'°. In either case we may regard these as
I'-sheaves with trivial action. If 4 is a I'-sheaf Hom (7, 4) may be identified with
the group of (continuous) invariant sections S,(4) of A, that is, Hom.(Z, 4) =
x{f:T°> A :f(x)eA, and f(r(y)) = yf(s(y)) for all ye I'}. Observethat S,. : L(I') -
— /£ 1s a left-exact covariant functor from the category of I'-sheaves to abelian
groups.

Let ¢: A = I be a homomorphism of sheaf groupoids. As with sheaves one
may define the notion of pull-back as a functor ¢* : P (I') = F(A). If A is a I'-sheaf,
set p¥(A) = A« A = {(z, @) € A° X A :a€A,.)} and observe that A * p*(4)
2AxA={(, a):aec Ay} The action, A =x@*(4) - ¢*(4), is given by
4y a) = Ja = (r(1), o(Da). If f e Hom (A4, A") one defines ¢*(f) : ¢*(4) = ¢™(4")
as in the case of sheaves and checks that ¢*(f) € Hom (A4, A’).

8. PROPOSITION. ¢* : L(I) = F(A) is an exact covariant functor for which
0*(Z) = Z, if 0 : 2 — A is another homomorphism then (p0)* = 0%*.

Proof. A sequence of sheaves is exact iff it is exact at each fiber. %
9. THEOREM. The functor ny : S (I) = P(I'Y) yields an equivalence of categories.

Proof. 1t suffices to construct a functor F¥ : £ (I'Y) — %(I') such that F¥n}}
is naturally isomorphic to the identity on #(I') and nF¥ is naturally isomorphic
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to the identity on &(I'Y). First identify R(y) with its image in I'V by jix, x') ==
(x, (), x’). Given a I'V-sheaf A, consider the equivalence relation on A defined oy
the action restricted to R(\Y), thatis, seta € A, ~ @’ € A if Y(x) = P(x') and ¢ =
=zj(x, X')a’. Note that the quotient of A by this equivalence relation becomes a sheaf
over J'' - - denote this sheaf F”(A4) and the image of ae A by [a} & FV(A). Ifae A,
and ye I' with s(7) = %(x") choose x €~ Yr(7)) and set y{a] = [(v, 7. x"3a]. This
defines an action of I' on F¥(A) unambiguously. Clearly A4 & n(F”(A4)) and, con-
versely, given a [-sheaf B one has B = FY(ai(B)).

10. CorOLLARY. The functors S, and Slun’f; are naturally isomorphic.

Piroof. One has S{4) = Hom{Z, 4) > Homlu(ﬂq",‘(Z). niA) = S,U(n,?f(z!)
for cach I'-sheaf A. e

Following Grothendieck (see [14]) we propose to define the cohomology of a
sheaf groupoid i" as the right derived functors of the invariant section functor

Sy P - AL

11. DEFINITION. A cohomology theory for I is a sequence of covariant functors
H¥I, -) : (') » 7/ satisfying the conditions:

1) H(I, -) =2 S,

iy HY(I', Q) = 0 for n > 0 and Q injective;

iii) Given a short exact sequence of I'-sheaves, 0 - 4 — B — C -» 0, there
are natural connecting maps o* : HYI', Cj » H"*Y(I', A) which make the fol-
lowing a long exact sequence

Ry E
0 HE(I', A= HOT, B) = HOUT, C) ——> HYI, Ays... > HYI'.C) s H'*YI", A)->....

In order to make this a useful definition one must show that &(I') has enough
injectives, that is, each I'-sheaf A may be embedded in an injective. One may then
“compute’” H*(I", A) by appslying 5,. to an injective resolution of A. Grothendieck
oifers criteria for the existence of enough injectives but we prefer to deal with the
matter in a more concrete manner as it wil! illuminate the relationship between
Sy and £(I'Y). tlaving done this the contravariant dependence of cohomology on
I' will be easy to verify.

In the case that Grothendicck deals with, I' @ G X X (see Example 4i), he
writes H%(X, G; - ) for our H¥*(T, - ).

1. INJECTIVES

Given a sheaf groupoid I we show that the functor S(I') —» &£(I'?), write
A — A°, given by disregarding the action has a right adjoint J (so that Hom(B°,
A) = Hom (B, J(4))) which takes injectives to injectives. This is used to show that
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F(I') has enough injectves — the cohomology of I will then be realized as the coho-
mology of the complex obtained by applying the invariant section functor to an
injective resolution.

1. Given a sheaf 4 over I'?, set J(A) = s.(r*(A4)) where s,. denotes the push-for-
ward; the associated presheaf of sections is given by

SWU, J(A)) = Ss=YV), r*(4)) = {f:571(U) > 4 1 [(1€ A5

Eiements of J(A) are regarded as equivalence classes of such functions (note that
J(A), = lim S(s~Y(U), r*(A)) for each x € I'%). To define the action one must make
xelU

sense of the formula:
() ()@Y =f(y'y)  where y €T and feJ(A),,-

This is done by extending the homeomorphism s=Y(r(y)) — s~}s(y)) givenby y" = y'y
to a suitable neighbourhood. Since s, r: I' - I'® are local homeomorphisms there is
for cach y € I' an open set r(y) € U, < I'” and a continuous map p, : U, » I' satis-
fying the conditions:
i) p,(r(M =7,

iy rip,(x)) =x forall xeU,,

iii) sop, : U, = I'" is injective.
Given another choice of neighbourhood U, and continuous map p; : Uy — I' satis-
fying these conditions, one has p,| U, n Uy = p)| U,n U;. Set V, = s(p,(U,)) and
note that the map s~*U,) - S~YV,) defined by 9" — y’p,(s(y")) is a homeo-
morphism and that r(y') = r(y'p,(s(y))), for each y'e s~!(U,). Hence, the formula:

(4, = ' ps(y' )

gives an isomorphism «, : S(s=%U,), r*(4)) - S(s~Y(V,), r*(4)) which is compa-
tible with restriction maps. This then provides us with the desired action.

Given a I'-sheaf B and a sheaf morphism k: B’ — A, we define a I'-morphism
k: B = J(A) by k(b)(y) = k(yb). This yields a homomorphism &4 : Hom(B®, A) —
- Hom (B, J(4)) (where Hom denotes sheaf morphisms by ®3(k) = k.

2. LemMma. &3 is a natural isomorphism.

Proof. Let e, :J(A4)° — A be given by ¢ (f) = f(x) where f € J(4)%. For all
k e Hom(B°, A), k = e¢,®3(k)* and for all i € Hom (B, J(4)), h = Pj(e Ji°).

3. DeFINITION. A I'-sheaf D is called a relative injective if given any injective
[-morphism j: B — C for which j(B)® is a direct summand of C°, the induced map
J* :Hom(C, D) »> Hom (B, D) is surjective.

2-2487
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4. PrOPOSITION. For any sheaf A over I'®, J(A) is a relat ive injective.

Proof. Given a diagram

i
B C

l P
I

J(A)

with p € Hom(C®, B®) such that pj® = id 0. Setk = ®¢(c /i) and note that /: =: kj. Z3

Relative injectives are relevant to the continuous cocycle cohomology (see
Addendum 1). 1t is well-known that the category of sheaves over a given spuce
has enough injectives. Indeed, given a sheaf 4 — X, let A, —» D" denote the embed-
ding of the fiber over x into its divisible hull; Jet D(4) be the sheaf over X given by
the presheaf:

S(U, D(A)) = I D* for U< X open.

€U
D(A) is clearly injective and one has i, : A —» D(A). To show that #(I') has enougiz
injectives, it suffices to verify that J takes injectives to injectives.
5. PreposiTiON. If D is an injective in (I, then J(D) is an injective in#(I').
Proof. Suppose j: A — B is an embedding of I'-sheaves. Consider the com-

muting diagram:

Hom(B®, D) 55 Hom(A°, D)
o

@ﬁl oo/

)

Hom (B, J(D)) —— Hom(4,J(D))
7

where the vertical arrows are isomorphisms. Since D is an injective, (j)* is surjective.
Hence, j* is surjective and J(D) is an injective. 3

6. COROLLARY. L(I') has enough injectives.

Proof. For each I'-sheaf 4, let Q(A) = J(D(4%); the embedding .1 — Q{A)
s given by @549 ). 2

Given an abelian category & with enough injectives and a left-exact covariant
functor I':.¥ — &’ where &’ is another abelian category one defines the right derived
functions R"T .. —+.%’ using injective resolutions (cf. [14, 2.3]). Given an object
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A in & form an injective resolution of 4, 4 » Qy = 0, —» Q, — ... andlet R*T(A4)
be the cohomology of the complex T(Q,) — T(Qy) — ... .

7. Fact. This sequence of functors is characterized up to natural isomorphism
by the properties:
i) RT = T,
ii) R"T(Q) = 0 if Q is an injective and n > 0,
iii) For each short exact sequence E:0 - A — B = C — 0 there are natural
connecting maps J%: R"T(C) » R"*+'T(A) such that the sequence:

0 "

5 &
0 — RYT(A) — R*T(B) ~ R'T(C) —%> RIT(A) - ... = R'T(C) —> R"IT(A) - . ..

1S exact.

If & is an abelian category, then Hom, (4, .): &% — /4 defines a left exact
functor for any object 4 in &; if & has enough injectives denote the right derived
functors by Ext,(4, -). Ext; may, of course, be viewed as a bifunctor (in which
case a contravariant analog of (iii) holds in the first variable). It is useful to view
elements of Exty (4, B) as equivalence classes of n-fold exact sequences starting at B
and ending at A4, under the equivalence relation generated by morphisms between
them:

0-oB->Cy—>»Cy—>...»C,_;,>A—0

v ! i
05B-Cy—»Ci—...»C,_, > A-0.

Concatenation of such sequences gives the Yoneda pairing:
Exty(d4, B) XExty(C, A) ~ Ext;, "(C, B).

On #(I') denote these bifunctors by Ext¥. Recall that the invariant section functor
S is naturally isomorphic to Hom(Z, -). Set H"(I', A) = Exti(Z, A)—this is called
the nth cohomology group of I' with coefficients in 4. Note that H*(I', Z) =
= Ext}(Z, Z) is a graded ring under the Yoneda pairing.

We consider now the dependence of Ext} on I'. Let ¢: A4 — I" be a groupoid
homomorphism. Recall that ¢* : (I') —» £(A) is an exact functor; hence,if 0 - B —
—-Cy~— ... »C,_, = A — 0isan n-fold exact sequence in #(I') then 0 - ¢*(B) -
= @HCy) = ... = 0¥*(C,_)) = p*(4) - 0 is an n-fold exact sequence in F(A).
Since ¢* preserves equivalence classes of n-fold exact scquences, one has the fol-
lowing proposition.

8. PROPOSITION. With ¢: A — I asabove,the map ¢ : Extj(A, B) — Exti(¢*(A),
o*(B)) defines a natural transformation of bifunctors for each n. Note that since
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O Z) ~x L, one has well-defined maps on cohomology o : H*(I', A) - H*(A, 0%(A)}.
Furthermore, if n, : TY ~ I' is the map discussed in §0.5iii), thea nf . H(I, A) -
w> [T5(I'Y, n§(A)) is an isomorphism.

2. TWISTS

A twist is defined to be an extension of a sheaf groupoid I' by a I'-sheaf
which is compatible with the action of I' (by analogy with group extensions). lIso-
morphism classes of twists by a given I'-shcaf form an abelian group: this assign-
ment gives rise to a covariant half-exact functor which vanishes on injectives.

1. DeriNITION. Let [ be a sheaf groupoid and 4 a I'-sheaf. A rwist by A over
I is given by a sheaf groupoid I (with X° = I'") together with two groupoid homo-
morphisms (which respect the identification of unit spaces):

J m

such that j is injective, & is surjective, 7=}(I'") = j(A)and for allec e Zand ¢ € 4,
one has gj(a)o™ = j(r(o)a). Note that = is a local homeomorphism (write 7(g) = 7).

By the usual abuse of language we refer to ¥ as a twist when explicit reference
to the maps j and 7 does not appreciably enhance clarity. The semi-direct product
AXxT =AxI ={(a, y):a €Ay, is the trivial twist defined by the following
formulas:

1) sla, p) = s(v)

i) (@, ) = (—=yFa, v¥),

i) if (3, 3) € I put (a, y)a’, ¥) = (e + va’, 7y

2. PROPOSITION. A twist X is isomorphic to A x I iff there is a groupoid ho-
momorphism ©: I = X with nt = id,.

Proof. The isomorphism 7: A x I' — X is given by T(a, ) = jla)x(y). 73

Given two twists Z, and X, by A, and A, , the fiber product %, % 2 = ey,
6,): 6, = &, is easily seen to be a twist by 4, @ A4;.

3. DeFiNiTion. A morphism of twists is given by a commutative diagram:

Ao Z e T

T

B—— A > I

where f'is 2 I'-morphism and fisa groupoid homomorphism. Clearly f'is injective
(resp. surjective) iff s injective (resp. surjective). Note that projection onto either
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factor X, * 2, > X, (i =0.1) yields a morphism of twists compatible with pro-
jection onto a direct summand A, @ 4, > A,;.

4. LEMMA. Given a morphism of twists as above () there is a surjective twist
morphism:

BOPA—— BxIN+xX——T
i |
gl ' s “
Y
B I '

A
such that g(b ® a) = b + f(a) and 2((0, ¢), 6) = f(o) for all ¢ € X.

Proof. Let the embedding B — A be denoted by j and set g((b, ¢), 6) =

= j(b)f (). Evidently, T is compatible with g and it suffices to check that this defines
a groupoid homomorphism. Given (o, ¢') € 2* and b € B,,,. b’ € B,(,y, one has
b, a), a}(', ). a) = ((b + ob’, ad'), ad’);

g((b, 6), (B, 57, 0') = J(BS (@I (6") = jb + 5b)f (0)f10) =
= g((b + ab’', o6d’), oo’).
It is routine to verify that g preserves invo]ution. %
Note that A is isomorphic to the quotient of (Bx: I') * 2 by the image of ker g-

5. DeFINITION, Two twists by 4, Z and X', are said to be properly isomorphic
if there is a twist morphism between them which preserves the inclusion of A4 :

> 2 ——> T

| ]

A——>2 T,

i

The collection of proper isomorphism classes of twists by A4 is denoted T'1(A) (write
[Z] € T, (4).

6. PROPOSITION. If £ is a twist by A and f € Hom (4, B), there exists a 1wlit by B
denoted f. X, which is unique up to proper isomorphism, and a twist morphism f": Z -
= f.2 (which is compatible with f).

Proof. Let j: A — ¥ denote the twist embedding and define it 4 (B X. N3 X

by i(a) = ((—f(a), x), j(a)) for a € A,. Note that i(4) is a normal subgroupoid (of
§0.5v));set f.Z =(B x 2)}52/1(,4). It is clear that 7,.X is a twist by B. The map
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f: 2 - [, X is given as the composite

I BxNsE>]L

‘Uniqueness foliows from the preceding lemma. ]

Given f € Hom (4, B) define f,: T\(A) — Tp(B) by f.[2] = [/.2]. It follows
that this assignment is functorial. Note that f.[A XIT'] = [B X1 I']; morcover,0,[2] =
== [B x1I'} for any [Z] € T,{A). We introduce a binary operation on 7 ,(4) so that
it becomes an abelian group with neutral element {4 x I']. Let V' : A ® A — A be
given by V4a, a') =a + a’. Set [Z] +[2] = v;{[Z;:;Z’] where [27], [£]e T, (4).
It is immediate that [2] 4+ [Z] = [X'] + [Z] (since a + a' = 4" + a).

7. THEOREM. When endowed with the above operation T,(A) is an abelian group

with neutral element [A x: I'). Furthermore, Ty.: ¥ (I') = £Z¢ is a covariant half-exact
functor.

Proof. Give a twist X, the composite morphism
E— (A xI ;Zevg((Axil");e_Z)

(where 1(6) = ((0, &), o)) is an isomorphism; hence, [4 xI ')+ [X] =[Z] for ail
[2] € T (A). Define 04 € Hom, (A4, A) by 04(a) = - - a; since V4(0%a), a) = 0 (ie.
a—a=0)[Z] +042) = [V32 ;0;‘):)] =[A4 x'T}. Hence T,(A) is an abelian group
with --[Z] = 04[Z]. If fe Hom, (4, B) then f.((Z] + [Z']) = f,[2] + f.[Z], by
commutativity of the diagram:

YR T Y

It remains to show that 7, is half-exact; suppose that 0 — 4 —j> B3¢0
is a short exact sequence of I'-sheaves and that[Z] € kerg,,, thatis, [g, %] = [C x T].
One has the following surjective twist morphism:

B ) r
[ !
Pl
C CxTI ——T.

Set 2’ = {0 € X : g(0) = (0, ¢)}; then X' is clearly a subgroupoid. In fact, 2" is a
twist by A4 (= kerg) and hence, by the above proposition, [Z] = f.[Z']. Hence
kerg, = Imf,.
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In order to verify that T, vanishes on injectives, it will be useful to identify
HX(I', A) with a certain subgroup of T',.(A4), where H¥(I', -) denotes the continuous
cocycle cohomology functors (see Addendum 1). Let [X] € T,(A4); X is said to be
continuously split if there is a continuous section /i: I' —» X of the twist projecion
7 (i.e. m(ii(y)) = vy for all y €I'). One defines a continuous twc-cocyle ¢, : 't — A,

which measures the extent to which / differs from a groupoid homomorphism, by
the formula:

ey, y') = hh()h(yy)*  for all (y,y) e I*.

It is not hard to see that ¥ may be reconstructed from this cocycle (see [35)) and
that cohomologous cocycles yield isomorphic twists. The reader is referred to Adden-
dum 1 for details on the continuous cocyle cohomology. Of relevance here is its
<haracterization as a relative cohomology theory; in particular, one has #%(I,J) = 0
for all n > 0 if J is a relative injective.

A sheaf P over X is said to be of product type if there are abelian groups P*
for x € X such that S(U, £) = [] P* for each open subset U < X. Such sheave are

xel

known to be acyclic (i.e. H"(X, P) = 0 for all n > 0).
8. PROPOSITION. T(Q) = 0 if Q is an injective I'-sheaf.

Proof. 1t suffices to show that T.(J(£)) = 0 if P is of product type. Now, J(P)
is itself of product type, since S(U, J(P))= [I ( II P’?); this will be used to show

el yes~\(x)

that any twist by J(P) is continuously split. From this it will follow that T.(J(P)) =
o2 HXT, J(P)) = 0 (since J(P) is a relative injective). Let Z be a twist by J(P) with
twist projection  : £ — I. Since n is a local homeomorphism, there is foreach y e I
an open neighbourhood U, of y and a continuous map #,:U, - 2 so that
a(h(y)) =y for all y" € U,. Hence, we may choose an open covering % =
= {U,:i €I} of I' together with local sections k;: U; — Z; identifying J(P) with
its image in X, the formula 4;,(y) = h(p)h(y)* for y € U;n U; yields a continuous
#*(J(P)) valued one-cocycle relative to %. Since r*(J(P)) is of product type, as well,
the class of 2 is trivial. Hence, X is continuously split.

We conclude this section with a brief discussion concerning the dependence of
TronT.Letg: A — T bea groupoid homomorphism and X be a twist by A (over
I'). The fiber-product A * Z may be viewed as a twist over 4 by ¢¥(4):

@A) =A%+ A -—»/1;2 - A

We write ¢*(Z) = A % 2; the map T(4) = T ,(9p*(4)) given by [X] — [p*(2)} yields

a natural transformation of functors T, — T 4o @*.
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9. ReMARK. The notion of twist considered in [21] is that of a topological exten-
ston of the groupoid I' by the constant group bundle T I'® with trivial action. We
use the term topological twist to distinguish this notion from that considered above.
A topological groupoid A is said to be a topological twist over I' if there is given 2
sequence of groupoids with common unit space (I'”)

TXI—A—T

such that
i) m is a submersion (continuous open surjection admitting local sections),

1) iis a homeomorphism onto 7 "1(I"),

iti) A(t, SGNA® = (f, r(A)) for all 2 €A, teT.

Note that A may be viewed as a principal T-bundle over I' via the map (¢, 4) —
-+ (t, r(4))2. The group of isomorphism classes of topological twists over I" is denot-
ed Tw(I') (in [21], " was required to be a relation, that is, a sheat groupoid without
isotropy). We show that Tw(I') may be identified with T,(T).

Given a topological twist A, let 4 denote the set sheaf over I' of germs of
continuous local sections of 7: A — I'. Given ye I, an element of A is given by
a continuous section defined on an open neighbourhood of y and two such are
identified if they agree on some neighbourhood of y. We equip 4 = J] 4, with the

usual sheaf topology. With groupoid structure inherited from A, it is imediate that
A is a twist by T. Further, the map Tw(I') - T,(T) given by [A] — [4] is a mono-
morphism. To see that this map is surjective, let Z be a twist by T. Choose a family
of local sections for the twist projection relative to an open coveringof I', (h;: U, —
-» X}. Define a continuous T-valued one-cocycle, Z;;:U;; = T, by the formula

;'iJ(V) = hi()’)/lj(*/)’5’ .

Denote the associated circle-bundle by b (= TI TxUJ ~ where (1, 1)eT U, ~

~(t',y)eT xXUjify =y and t’ == 12;,(y)). There is a continuous surjection ¥ --» hy
{which sends the germ of /; at y € U; to the class of (1, 7) € T x U,): ¥ is endowed
with the unique structure of a topological groupoid which makes this map a homo-
morphism. Evidently, ¥ is a topological twist and X v{ Thus Tw(I') = T',{T).

3. THE LONG EXACT SEQUENCE
This secion begins with the study of the left-exact functor Z,:S(I') -+ &/

which assigns the group of continuous A-valued one-cocyles to a I'-sheaf A. Its
first derived functor is shown to be naturally isomorphic to the twist functor. More-
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over, we show there to be a long exact sequence relating the cohomology of I' and
I to the derived functors of Z,.. Fix a sheaf groupoid I

1. DEFINITION, Let 4 be a I'-sheaf and f: ' — r*(4) be a continuous section
(viewed as a continuous map f: I — A4 with f(y) € 4,,)). Then f is said to be a
continuous (A4-valued) one-cocycle if

(%) JY) = (@) + y')  for all (y,y)erl®.

The group of all such is noted Z,(A4).

2. ReMaRKS. Let f: ' —» r¥(A) be a continuous section: the map o,: I —
— A xiT" given by o,(y) = (f(7), 7) is a groupoid homomorphism iff f* satisfies the
cocycle identity (*). Thus, Z,(4) may be identified with the collection of trivializing
sections of the semi-direct product 4 x|I". Note that if ¢ : A - T is a homomor_
phism, there is the usual natural transformation of functors o™ : Z (A) — Z (¢*A))
given by (¢%f) (2) = flo(7)).

It is immediate that Z . is a left-exact functor. The obstruction to right-exact-
ness appears in the form of a twist. Indeed, given a short exact sequence of I'-sheaves:

045582500

and f'€ Z,(C), we form a twist by 4 as a subgroupoid of B x! I'. Put Z; = {(b,y)€ B x!
1T : f(y) = h(b)} and note that this gives a twist by 4 (when A is identified with
its image in B). It is routine to verify that the mapping p : Z,(C) - T,(4) given by
/= 1[Z] is a group homomorphism.

3. PROPOSITION. With the situation as above, the sequence

0 — Z(A) —'? Z(B) g Z(C)—> T (4) —> T {B) 7 T:C)
# £ I3 £ 1

is exact. Further, juis natural with respect to short exact sequences in ().

Proof. We nced only verify exactness at Z,(C) and T,(4). Given feZ (C) we
show that X, o 4 xII" iff there is k € Z,(B) such that ' = /i k. Supposc there is
such a k, then o,: I' = B xiI" defined by a,(y) = (k(7), y) trivializes I, (note
1(y) == h(k(y)). Conversely, any such trivialization arises from a lifting of f. Hence
kerp = Imh, . Next, we check Impu = kerg,. Suppose Z is a twist by A such that
842 = B x| T; there ist hen a twist embedding X — BXiI" which when composed with
the map B x(I' » C xiI" gives a twist morphism /: X —» C x;I" which vanishes
on A. Hence [ factors through I' ; let f € Z,(C) correspond to the resulting triviali-
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zation (i.e. /(o) = (f(6), ). Clearly [£] = [Zf] and ker g, < Impu. The converse
is obvious. Given a morphism of short exact sequences in ¥ (I'),

0> A->B->C-0
]
Vol
0-A" -8B ->C -0
one verifics that the diagram

Z{C) —> T, (A)

ZUC) —> Ty(d))

is commutative. %

4. COROLLARY. T,. is naturally isomorphic to the first right derived finctor of
Zp.
r

Proof. T(Q) = 0 if Q is injective. %
Given a I'-sheaf 4, we define a map d : S(A) — Z,(A) by the formula:

df)) = fe@) — ¥fs(v)) for all yel.
We check that df satisfies the cocycle formula (x); for all (3, 7) € I'* one has
A7) = flr@y) — w7 f6sGy) =
= flr(y) - YN + @) — v G = @) + 2@dNE)

Since df = 0 iff f € S,(A4), the sequence, 0 — S(4) — S(4) - Z(A4) is exact. We
define a map n: Z(A) - Ext}(7, A); given 1 € Z(4) we endow A ® 7, with an
action of I' compatible with the given action on A:

ya, k) = (ya + kh(y), k) for all ae Ay, and ke Z.

Denote the resultant I'-sheaf by £i/1) and note that one obtains a short exact sequ-
ence of I'-sheaves:
0—-A—E(l)— 7 0.

Let n(h) € Ext}{Z, A) be the class of this sequence. One verifies that # is a natural
transformation of functors Z, — Ext}(Z, -).

5. LeMMA. Imd = kerp.

Proof. We show Imd c kery. Given f e S(4), we must show that E(df) =
= A ® Z (as I'-sheaves). It suffices to find an equivariant splitting g: 7. — E(df).
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[
(2]
'

Set g(k, x) = (kf(x), k); for all y € I" one has:
78(k, s(v)) = (ykf(s(v)) + kdf(y), k) =

= (kfs() + KUr() — kyf(s(), k) = (kf(r(y)), k) = g(k, r(7))-

Hence E(df) splits as desired. Conversely, suppose #(/1) = 0; there is then an equi-

variant splitting g : Z — E(h) of the form g(k, x) = (kf(x), k) for some f e S(4).
It follows that h = df. %

6. REMARK. Given a short exact sequence of I'-sheaves

. f
02Ad—>EZZ7Z -0
&

with sheaf splitting ¢ € Hom(Z, £°) (so that f% = idz), we associate an element

71 € Z,(A) as a measure of the extent g fails to be equivariant. Let / € S(r*(4)) be
given by the formula:

ith(y)) = yg(1, s(y)) — g(1, r(y)) forallyer.

It follows that /i € Z(4) and E =~ E(h).

Suppose ¢ : A — I' is a groupoid homomorphism, then applying ¢* to the

above short exact sequence (with sheaf splitting) yields the commutativity of the
square:

Z,(4) —— EXtNZ. A)

"

o* ¥

Z J(@*(A)) '—‘;—> Extf,(z,, P*(A4)).

Let Z7. denote the nth right derived functor of Z (so Z% =~ Z and Z}~ T,). Note
that any I'-sheaf 4 may be embedded in an injective Q which is acyclic as a sheaf
(i.e. H(I'°, Q% = 0 for n > 0).

7. TueorREM. Given an injective resolution of a I'-sheaf A
A—> Qs> 0> Qa— ...
the sequence of complexes

0 = SHQy) = S(Qp) —> Z(Q,) =0



224 ALEX KUMJIAN
is exact. The resulting long exact sequence

(1} ,ﬂ
0 = I, A) —» HYIY, A% = Z%A) —> HAT, A) —

-1

. -——>II”(F A) -» I‘I"(F" A") ___)717(14)__) Hn 1([’ A)

is independent of the injective resolution and functorial in A.

Proof. If Q is injective, d: S(Q) —» Z (Q) is surjective by the above lemnut
(EXt}{( 7, Q) = 0). 3

8. REMARKS. i) Identifving HXNI, A) with Ext}.(Z, A), one checks that ¢ == —ip.

ii) If ¢ : A — I'is a groupoid homomorphism, then ¢ : #(I") = ¥ (A1) induces
a (natural) morphism of long exact sequences:

.= HUL., A) ———s H(IY, A% — ZA) —> H'NT, 4) >

l i o oo

= HA, @FA) = H(AY, 07 A%) = ZoFA) —> H" A, o d)> ... .

The map ¢1: T,(A) - HXI', A) will play an important role in the next section - it
will be useful to know when two twists give rise to the same second cohomology
class.

9. ProPOSITION. Let X and I' be two twists by A (over I'); then CMY]=
= QU E'Yiff there is a local homeomorphism np X = DOwith [n¥(2)] = [a5(Z)] (regard-
ed as elements of T W(ntA) ).

Proof. 1f (YZ] = CYY'] there is g € HY(I'Y, A%) such that [X]--[3"] = d'g.
There is a local homeomorphism {: X’ — I'" such that y*g = 0 € HY(X, Y*4"). One
has the commutative diagram

H(Io, A " T (A

| .
k893 | Ty

HYT, A)

_— p i
HI(T?Y, = 34% =L Tpi(nid) —— HXTV, 754)

with (I'v)? = X and 754% = %A% Herce, [#J2] — [nEZ] = ai(d'g) = 0. The
converse is obvious.

4. EQUIVARIANT C*-BUNDLES

The cohomological apparatus developed above is applied to the study of actions
of a sheaf groupoid on elementary C*-bundles. Such actions will be classified up to
a suitable notion of Morita equivalence by an invariant taking values in H*(I", T).
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Fell’s notion of Banach bundle [11] seems better suited to the setting of groupoid
actions than the equivalent formalism of continuous fields. The reader is urged to
consult Addendum 2 for the appropriate definitions and a preliminary treatment of
elementary C*-bundles.

The groupoids considered in this section are assumed to be locally compact,
Hausdorff, and second countable; Banach bundles are assumed to be strongly
separable.

1. DERINITION. An action of a groupoid I on a Banach bundle E fibred over
Fo is given by a continuous mapt:I' « E — E(where I' + E = {(7, ¢): e € E,,} =
< I' X F) satisfying the conditions:
i) 7,1 Eyyy = E,,) is an isometric isomorphism for each y e I',

i) 7, = 1,01, for all (y, y') e I'%.
The pair (E, 1) is said to be a Banach I'-bundle. If each fiber is a Hilbert space the
pair is called a Hilbert I'-bundle. 1f E is a C*-bundle and each 7, is a #-isomorphism,

then (£, 1) is called a C*-I-bundle and an elementary C*-[-bundle if £ iselementary.

2. ReMARK. To check continuity it suffices to show that y — 7.(f(s(y))) is a
continuous section of +*(E), for every f in a family of sections of E large enough to
determine the topology of £.

Let Z be a topological twist over a sheaf groupoid I" and define an action of
Ton Z by te = (t, r(o))o for t € T, o € 2 (this action makes X a principal T-bundle
over [').

3. DerFINITION. A Hilbert X-bundle (¥, p) is called a rwist representation of
z if
Pu(v) = tp,(v) forall teT, o€ and veVy,.
4. ExampLE. Given a topological twist 2 over I” we construct a twist represen-

tation of 2. The Hilbert bundle ¥V is realized as that associated to a Hilbert C,(I'%)-
-module. Let D = ({f'e C(Z) : f(to) = #f(0) for t €T and ¢ € L} and note that if

g, €D then g(to)f(to) = g(o)f(o). This defines an element of CI') which we
denote [gf]. Let -, -> be the Cy(I"*)-valued sesquilinear form given by

g [>(x)= (z)‘: [g/1(y) for xeI® and f geD.

The completion of D with respect to the norm [f}| = |[<f, f>i42is a (right) Hilbert
Cytr-module (see [21], § 2). Let ¥ be the associated Hilbert bundle (i.e. D =
C,(V)) and define the action p : 2+ ¥V — V by the formula

(Po(fN(6') = flo'0) for 6 €Z, f€Vy,, sa') = r(o)

Since p,(f) = tp,(f), (V, p) is a twist representation of L.
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5. ProposiTION. If (V, p) is a twist representation of X, then the formula
Adp,a) = papi for ¢ € X, a € X (V)

defines an action of I' on the elementary C*-bundle 7 (V).

Proof. 1t suffices to check that the formula is unambiguous — if ¢ == ¢’ there
is 1 € T such that p_- = tp,_ ; hence Adp, = Adp,-. %

por 4

The elementary C*-I'-bundle (J(V), Ad p) is said to be associated to the twist
representation (V, p).

6. DEFMNITION. Suppose (E, 1) is an elementary C*-I'-bundle; a multiplier
me M(E) is said to be invariant if v.(me) = mr(e) and t.(em) = t.(e)n for all
y €T and ¢ € E . The collection of invariant multipliers is denoted M(E) .

7. ReMaRk. If p ¢ A/(£)7 is a projection such that p, # 0 for all ve I'%. set
Er={eeE:e = pepl. and let 17 denote the restriction of 7 to E?. It is clear that
(E?, ") is an elementary C*-I'-bundle.

& DrrmNITION. Two elementary C*-I-bundles(E, 1) and (E’, ') areto be Moritu
equivalent, write (E. 1) Y (E’. '), if there is an elementary C*-I'-bundle (F. ) and

projections p, p' € M(F)*, with pp’ = 0 and p, # 0 and p, # 0 for all x& [, such
that (£, 1) x(F?. 2Py and (E’, ¢")=(F"", 2'") (¢f. Theorem 1.1 in [1]).

9. PropositioN. If (V. p) and (V', p') are nwist representations of L teen
(2 (V) Adp) ~ (F(V'), Adp).

Proof. Let (V@ 17, p @ p') denote the direct sum of the twist representations
(V, p)y and (V', p'), that is, set

(p @ ply(t + ') = p(t) + py(v) for 6 €, vEV,, '€V ,.

Let p, p' e M(A(V @ V')Ade®r) be the projections onto the summands ¥, 7.

It follows that (#(V), Adp) = (A (V @ V)", Ad(p @ p’)") and that (X' (}'), Adp’) =
(A SV, Adlp @ p')). 77

One forms the tensor product of two elementary C*-I'-bundles, (E, 1) and
(E', '), in a straightforward manner. Let 1 ® 1’ be the action of I" on K & £~
given by:

(t®@t)le®e)= 1) ®1le’) for yeTI, ecE,, e ek,

One checks that (£ ® £, 7 ® t') 1s an elementary C*-I'-bundle.

10. PrROPOSITION. If (E, 1), (E’, 1), (F, %), and (F', 2') are clementary C*-I'-bundics
such that (E, 1) ~ (F, 2) and (E', ') ~ (F’.a'), then(EQE', 7 ® 1) v (F & F',
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Proof. It suffices to check that if (D, ) and (D', B’) are elementary C*-I-bundles
and p € M(D)® and p' € M(D')?" are projections (p, # 0, p, # 0 for all xeI'®)
then (DP @ (D), B ® ()Y = (D@ D')yor, (f ® f)*®); but this is

immediate. %,

If Z and X’ are two topological twists over I', let £ % Z’ be the topological
twist corresponding to [X] 4+ [2'] in T((T). Indeed, Z ;Z’ is given as the quotient
of the fiber-product X x X' = {(o, 6 € £ X X' :0 = ¢’} by the equivalence rela-
tion (ta, ¢’) ~ (o, t6') for t € T (see [21], § 4.2).

11. ProrosiTiON. If (V, p) and (V' p') are twist representations of X and %',
then (V@ V', p ® p’) define a twist representation of X x Z'. Furthermore, one has
AV V), Adlp @ PN (X (V) @A V'), Adp ® Adp").

Proof. For e €%, o' €X' with ¢ = ¢' = 7, let

(p ® p’)(a_a') : (V ® Vl)s(r) - (V ® V,)r(y)
be given by

(P ® p,)(a'_n')(v ® UI) = po(v) ® pa(u’) fOI' v Ee Vv(;v), UI € V.;('y)'

The verification of the second assertion is routine. %

Given an elementary C*-I-bundle (E, 1) with 6(E£) = 0, we show below that
it is isomorphic to one of the form (' (V), Adp) for some twist representation
(V, p). By stabilization it will be sufficient to consider actions of I" on the constant
bundie # X I'°. Let P, denote the collection of strongly continuous homomorphisms
n: I - Aut(X) (so n, = n,m, for (y, y) €I'* and y — n(a) is continuous for
cach « € X). For n e P, let n: I'*(# x I'’) - A x I'® denote the corresponding
action (i.e. 7.(a, s(7)) = (n,(a), r(y))); clearly every action of I on A x I'® is of this
form. It is a standard fact that Aut(#") = U(#)/T where U(#) is the group of
unitary operators on a Hilbert space # equipped with the strong operator topology,
(indeed, one has Ad: U(#) —~ Aut(') is onto). For n € P set

I(my = {(u,y) e U(H)Y X T 1, = Adu},

and note that X(n) is a topological twist over I'. A twist representation of X(n) on
the constant Hilbert bundle # x I'® is given by

P& s(v)) = Wé, r(v))  for (u, y) € X(n) and { €A,

One checks that (#(# X I'°, Adp™) = (# x I, 7).
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12. PrRoPpOSITION. Jf (E, 1) is an elementary C*-T-bundle with (E) == 0, then
there is = @ P and a projection pe M(A 33 I such that (E, 1) = (4 32 I, z?).
Furthermore, (E, 1) is isomorphic to an elementary C*-T-bundle associated 1o a twist
representation of X(w).

Proof. Let 1 denote the trivial action of I' on #” X I'® and consider the elemen-
tary C*-I-bundle ((# ::I') ® E, 1 ® 7). Choose a rank-one projection ¢ <.
and note that ¢ ® Ipc M((H - T™ ® EY®7. Since dE) = 0, (# X)) ® E is iso-
morphic to .4 ", Hence, there is 7 € P, such that

(A XTYRE 1@1) = (¥ XTI T):

let p @ M(A# < T be the projection corresponding to ¢ ® 1, under this iden-
tification. By construction one has (E, 1) = ((#" < I'")?, T7). Let V(p) . # > I'" be the
sub-bundle {(¢, x) € # <I'": p& = ). By the invariance of p under =, one has

Prmbs = papysn for all ¢ € Z(n).

Thus, one obtains a twist representation of Z(x) on V(p) by restriction; denote this
twist representation by (¥(p), p™ V(p)). It follows that (£, 7) = (#°(V(p)), Ad p™ ¥V(p)).F]

13. REMARK. Given n, '€ P,., it is not hard to see that X(r) = X(=') it =
and n’ are cocycle equivalent, (alternatively, exterior equivalent) that is, there is a
strongly continuous map u: I' — U(J#") such that (cf. {25], Proposition 2.5):

i) oy = Adunr, for yerl,

i) w. = um(u) for (y, y)el?.
Exterior cquivalence follows by defining ¢ : I' — Aut(M.(#7)) in the usual manner:

r n al-:) - (nr’(an) ";-”-,-(“12))
Nag an rlag i . (ap)
Choosing an isomorphism ¥ ® # = 2 induces an isomorphism Aut(#" ® J) =
=~ Aut(#) and hence a map P X P, — P denoted (%, ') —» n ® ©". One has that
Xr®nr') = X(n) % Z(#') (see Proposition 11); and, hence, exterior equivaience

classes (in P,) form an abelian group (under tensor products) isomorphic to 7, (T).
Two elements 7, n’ € P, are said to be cohomologous if there is a strongly
continuous map /i : ' — Aut(.#") such that:

md(s() = h(r(y))n,. forall yer

( cf. [25], Proposition 2.5); that is, = and =’ are cohomologous iff (4 XI", ©) =
= (A x T =m'). The obstruction to lifting /i to a continuous mup b M- U(#)
(so that /i(x) = Ad/;q.\')) is an element w{/) € HNI'", T) (cf. [30]; the asso-
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ciated principal T-bundle over I'® is given by W(h) = {(u, x): h(x) = Adu} <
< U(sf) x I'Y). Further, one has [Z(m)] = [Z(n")] + d'(w(h)) (see § 3.7 and [21],
§ 4.5).

14. PrOPOSITION. Let 1, 71’ € P, then (A XTI, ) ~ (A x 7Y iff ClZm))=
= I[Z(n)). '

Proof. * = " By Theorem 3.4 of [1] we may assume there to be a n’ € P,- such

that 7’ and n'’ are cohomologous and 7 and n'* are exterior equivalent (cf. [4], § 9);

then [Z(m)] = [Z(=n")] = [Z(n")] + d'(w) for some w e HXI'®, T) and &[I(n)] =
= OMZ'(n’)] since ker &* = Imd*.

<="" Choose n"" cohomologous to n’ such that 2(n) = X(x"'). %

15. DeFINITION. Let & denote the collection of isomorphism classes of elemen-
tary C*-I-bundles; set 3. = {[E, 1] £ & : (E) = 0}.
16. COROLLARY. The map 8 : &5 — H¥I, T) given by 8 (E, t) = ¢{Z(n)],

where n € P is such that (4 xXI'°, ) = (# XTI’ ® E, 1 ® 1), is a complete inva-
riant for Morita equivalence.

Extending the invariant 6 will require consideration of pull-back bundles.
If p: A — I' is a homomorphism of sheaf groupoids and (E, ) is an elementary
C*-I-bundle, set p*(E) = E = A° and define an action ¢%(t) of A on ¢*(E) by the
formula: '

(,9"‘(‘[);_(8, S(;.)) = (Tw(;_)(e), l(j.)) for 7 € A, e e Es((p().))'
One checks that the pair (p*(E), ¢*(z)) is an elementary C*-A-bundle. If m € M(E)*®
then @*(m) € M(¢*(E))**® (see Addendum 2).

17. ProroSITION. Suppose (E, 1) and (E’', ©') are elementary C*%-I'-bundles and
let @ : A — I be a homomorphism of sheaf groupoids. Then:

) If (E, 1) ~ (E', ©') then (9*(E), ¢*(2)) »~ (9*(E"), ¢*(z")),
i) (p*(E ® E ), 0*( ® 1) = (9*(E) ® p*(E"), ¢*(1) ® ¢*(r')).
If n € Py then @*(n) € Py where ¢p*(n); = 7,;y; moreover, Z(¢*(n)) = ¢*(Z(n)).

Proof. The verification of these assertion is straightforward. %

ilet ¢*: &p — &4 be a given by @*[E, 1] = [9*(E), ¢*(1)].
Lety: X — Z be a local homeomorphism and let £ be an elementary C*-bundle
over Z. We define an action 7 of R(/) on Yy*(E) = £ = X by:

T, (e X') = (e, x)  for (x, x') € R, e€ Ey,y.

Evidently, the pair (y*(E), 1) is an elementary C*- R(lﬁ) bundle. Observe that
M(E) = MEY~(E)).
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18. LeMMA, Every elementary C#-R(Y)-bundle is of this form.

Proof. Suppose (F, ) is an elementary C*-R(¢/)-bundle. Consider the equivalence
relation on F given by , thatis, f € F, ~ f' € Fif Y(x) = Y(x') and [ = =z, ().
and put £ = F; ~. We show that £ is an elementary C*-bundle over Z when endow-
ed with the quotient topology. The bundle projection p: E — Z is given by:

Pfl=¥(x) iffek;

evidently, Fy, = E, so the fibers are elementary C*-algebras. The continuous scc-

-~

tions C(F) may be identified with the o invariant sections of F viz. C(E) = {g &
€ C(F) : g(x) = 2y, g(x")}. To show that E satisfies Fell's condition, choose = ¢ Z
and x € X with Y(x) = z; let U be an open neighbourhood of x such that U is
injective. Since F satisfies Fell's condition there is p € Cy(F) and a neighbourhood
V of x with V' < U such that p, == 0 for x ¢ U and p_ is a rank one-projection for
all x e V. Now let ¢ € C(F) be defined by .

g = a(x, X)p.- if there is x' € U with Y(x) = Y{(x')
t 0 otherwise.

Under the above identification ¢ provides a continuous section of £ which is a rank-
-ocne projection over the neigbourhood ¥(¥) of z. One checks that

(F, %) = (Y™(E), 7). &

Let I' be a sheaf groupoid.

19. TueoreM. There is a (surjective) map 8y : &y — HYI, T) satisfving the
Jollowing properties:

]) 61‘(E3 T) = 51‘('5” TI) W‘(Es ‘f) H (E’a TI);

) IO(E®F, 1t ®x) =0(E, 1)+ 0(F, »);

i) If m € P then d (& X I'°, ) = (@),

iv) If ¢: A = I' is a homomorphism, 0 40 = @%d,.

Proof. First observe that if ¥: X - I' is a local homeomorphism, then
wy b (',-’r,, is a bijection which preserves tensor-products. Further, if (E, <)
and (E’, t') are elementary C*-I-bundles, then (E, 1) ~ (E', ) iftf (=¥(E).
73(1)) o (RUUE"), n¥(r")). We extend 6 from &% to &1 ; let (E, 1) be an elementary
C#-I'-bundle and choose a local homeomorphism ¢ : X — I'’ such that Y *3(E) = 0.

Set 6,(E, t) = (af) 2P (nE(E), nf(z)) — (recall that one has the isomor-
phism n; : H*(I', T) = H*(I'Y, T)) and note that J is well-defined.It remains to
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check that the invariant is natural with respect to homomorphisms. Let ¢ : A - T
be a homomorphism of sheaf groupoids; if n € P then o@*[# xI°, 7] =
=[A XA, nop] and ¢*(Z(n))= Z(n - ¢). Hence,

OA(@*[A XT?, 7)) = @[ Z(M)]) = @*P[Z(M)] = @*(S (A XT°, T)).

By tensoring with the constant bundle " xXI'° we may assume that (iv) holds for
&Y% For arbitrary [E, 1] € &, choose a local homeomorphism ¥ : X — I'® such that
Y*(6(E)) = 0 and note that 0: X * A° > A° is a Jocal homeomorphism (X'* 4° =
= {(x,») € X X A% Y(x) = ¥(3)}) with 0%(d(p*(E))) = 0. Let ¢: A° > TI¥ be
given by @(x, 2, x) = (x, ¢(4), x') and note that one has a commutative diagram
of sheaf groupoids:

It follows that n* « @*[E, 1] = ¢ o n[E, 1]. Since n3{E, 1] € &v, 3 ,(p*(RE[E, 1)) =
= (7)""((5r.,,(n$[E, 7])). Naturality follows from the commutativity,of the diagram:

HYA%, T) o HYIV, T)
wt .
HY(4, T) <2~ HYT, T)
and the fact that n* and =} are isomorphisms. Z)

If a: G = Aut(A) is an action of a discrete group on a separable continuous
trace algebra, let I', = G x A denote the sheaf groupoid associated to the action
of G on the spectrum of A. Let E(A4) denote the elementary C*-bundle associated
to A (s0 A = Cy(E(A))) and & the action of I', on E(4).

20. COROLLARY. If o:G - Aut(4) and PB: G — Aut(B) are actions of a
discrete group G on the (separable) continuous trace algebras A and B, then « and
B are Morita equivalent (see [4], 3.1) iff there is an isomorphism ¢: I', — I'y stcly

that Or,(E(4), &) = ¢*3r(E(B), B).

5. ADDENDA

ADDENDUM 1. Continuous cocycle cohomology. For the convenience of
the reader, we show that the complex of (non-normalized) continuous cochains
may be realized as that resulting from the application of the invariant section functor
to a relatively injective resolution (cf. [17], [22}). The cohomology of this complex
is then given by the functors ¥, which from the viewpoint of relative homological
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algebra (cf. [24], Chapter I1X) are the derived functors of the invariant section
functor with respect to a smaller class of short exact sequences.
Let I' be a sheaf groupoid.

DeriNiTION. A I-morphism f: A — B is said to be strict if there is a sheuaf
morphism /i: B* > A4° such that {0 = f%f%and /2 : Af°h (that is, (ker /) is a direct
summand of 4" and (Im£)" is a direct summand of BY).

. 5 & . . .
A sequence of I-morphisms ... — A= ... is said to be strict oxact at
it it is exact and both f/ and g are strict.

Recall that a I'-sheaf J is a relative injective, if for any strict I'-monomorphism
Jji A — B one has j%: Hom(B8, J) = Hom,(4, J} is surjective. A relatively injeciive
resolution of a I'-sheat A is given by a sequence

0o A0 L.

where each J” is a relative injective and the sequence is strict exact at each point.

Let H¥(I', A) denote the cohomology of the complex S,.(J*) (note that thisis inde-
pendent, up to natural zsomorphmm, of the relatively injective resolution Lh()s&,ﬂ)
The covariant functors H%(I', -) are characterized by the properties:

1) HAI', A)= S,(A4);

i) H(I, J): - 0 for n >0 and J a relative injective;

iii) For each strict short exact sequence 0 -» 4 — B — C — () there are natural
connecting maps 67 such that the following is a long exact sequence:

02
0 - HXI", A) - HXTI', B) = HXI'. C) — HNT. A) - . ..

611
veo = HAT, C)—> H"*YT, A) -

We construct a relatively injective resolution of a I'-sheaf A.
Set It = {74, ... 7a): 7 €1, s(3) = r(7::1)} (With the relative topology
of the (n -+ 1)-fold product) and define ¥, $: 1"+ > T by F(Yar ... T) == 7o)
and S(Yos « - - s V) =8(). I o2 S A) is defined by the presheaf S(U, J") :- S‘( s YU ),
r “(A)). Thus, an element f € J! is represented by a continuous function f: §%(U) —
- A with f(y,, ..., 7.) € 4,¢,, and where U is some neighbourhood of x. The action

of I' on J® is defined by “‘right translation’, just as with J(A4) (cf. §1); we write:

GOy oo 7)) = TGy -0 72y)  where feJdi,, yaT.

Note that J(4) = J(A") and J?*Y(A) = J(J'(A)?); hence, J" is a relative injective
for each » > 0.
Define e¢: 4 = J by e(a)(y) = ya (for ag Ay, and d,:J" ~J"* by

n

(dnf)(?m R "»’0f('}'1a ceey Yas1) }: (‘-l)k+l TWos o o oy ViVidrs - os Toer)

he:l
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Hence, one has a complex of I'-sheaves:

[
0 —>A—9J°——).I‘

To show that this yields a relatively injective resolution it suffices to show that the
underlying complex of sheaves has a contracting homotopy. Let f:(J9)° — A
be given by «(f) =f(x) for f€J? and let s,:(J"*Y)0 - (J")* be given by
ol Y¥as o o) = (=1 Y (Ygs <. o5 Vs 8(3,)). Claim:

i) re* = id%,

i) % + s,df = idJo,

i) d)_ss,m1 + s} = idjn.
We verify (iii); given f € J™

(l-"udr?f)(')’o 3 e ey 7’::) = (—])”+l(dl(l)f‘)(y0 LA Vn’ 4S('y”)) =

= (D (s s s SR+
n-1

+ X Do, o Pirrs s Tus ST+ S(Gos s 7)
k0

'(dg—lsn—lf)(?()’ LI | yn) = "I’I)(Sn—lf)(yl 3o 'yn) +

n=1

+ Z (——])k+](sn—1f.)(7)0’ oy VaVras o0 e yn) =
k0

na1

= ("-l)”[yoj())ls cees Vus S(vn)) + Z (_—‘])’H.?/‘(yﬂ’ < et ))k'J)k-fl; ] )’ns s(yll))]'
. . T . k-0

Combining these two equatlons yields (m) Verification of (i) and (i) is left to the
reader. The continuous cocycle cohomology /7¥(I", A) may thus be |dent1ﬁed w1th
the cohomology of the complex:

S0 > SHJY) > ... .

Note that S(J") = {f: I"+ - A : f(y,, ..., V) €A, and € S(I)ifff(y, . .-
e Vi) = f(¥o, - - -, v,) whenever s(y,) = r(7). Hence fe S(J") iff it is indepen-
dent of the last variable and one may identify S,(J”) with S(J7-Y) (note SH{J?) is
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identified with S(4)). Under these identifications the boundary map (d,),, : S,(.J*) -~
- §;(J**Y) is given by

r--1
W)Yo o) = Jof e )+ 3 (DR s Pidlieae o T
k0

+ 0 -0 Yy ooy Yaeq)  for n >0
o) . 1)) = ps(7)) -~ flr(v)).

This yields the standard complex of (non-normalized) continuous cochains (cf. [35]).

ADDENDUM 2. Elementary C*-bundles. For the convenience of the reader,
we assemble a collection of standard results mostly relating to continuous trace
algebras but phrased in bundle-theoretic terms. 1n [11] Fell introduced the notion
of Banach bundle as an alternative to the formalism of continuous fields of Banach
spaces (see [7], Chapter 10). It the base space in question is either locally compact
or paracompact, it follows from a result of Douady and .dal Soglio-Hérault (ap-
pended to Fell’s monograph [12]) that the two points of view are equivalent. We
will tacitly assume that the base space of each Banach bundle considered is locally
compact and that the bundle itself is strongly separable (i.e., the total space of the
bundle is second countable; see [11], Proposition 1.8). This will ensure that the
Banach space of continuous sections vanishing at infinity is separable (see [12],
Proposition 10.10). We recall Fell’s definitions (sce [12]).

Let n: E — X be a continuous open surjection such that each fiber £, = & ~%(x)
is a (non-trivial) Banach space. The pair (E, n) is said to be a Banach bundle with
total space E and base space X if the following maps are continuous:

i) E— R+ given by ¢ — e/,

i) ExE — E given by (¢, ¢') e + €',

iif) CXE - E given by (4, e) — /e,
and if for every net {e,} < E such that jie,; — 0 and a(e,) — x, onc has ¢, -+ 0 ¢ E,.
We shall also say that £ is a Banach bundle over X. The continuous sections are
denoted C(E) (or C(X, E) if the dependence on X is to be made explicit); Douady
and dal Soglio-Hérault show that for every e € E there is /' € C(£) such that f(n(¢)) ==
== ¢. Moreover, given a collection of Banach spaces {E,: x € X} and a lincar sub-
space V< ] E, such that {v,: ve ¥V} is dense in E, for each x and the map x -~

- "t is continuous for each v €V, there is a unique topology on 1] £, making
it into a Banach bundle E such that ¥V < C(E) (cf. [11], Proposition 1.6). Hence
there Is a one-to-one correspondence between continuous fields of Banach spaces
and Banach bundles. Let Cy(E) denote the Banach space of continuous sections
which vanish at infinitiy (note that C,(E) is the closure of C(£), the compactly sup-
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ported continuous sections, in the supremum norm); by our standing assumption
that Banach bundles be strongly separable, Cy(E) is separable.

If each fiber E, in a Banach bundle (E, n) is a Hilbert space, (E, 7) is called a
Hilbert bundle; the inner-product (-, -) is clearly continuous E* E — C. We require
that (-, -) be conjugate-linear in the first variable so that Cy(E) becomes a right
Hilbert Cy(X)-module with inner-product {(f; g>(x) = (f(x), g(x)) for f, g € Cy(E).

If each fiber in a Banach bundle (£, =) is a C*-algebra and both multipli-
cation, ExE — E (write (e, €') — ee’) and involution E — E (write ¢ — ¢*) are con-
tinuous, then (E, =) is said to be a C*-bundle. Note that Cy(F) is a C*-algebra with
pointwise multiplication and involution. We say that (£, n) is an elementary C*-bundle
if each fiber is elementary (i.e. E, = #(#) the algebra of compact operators on
a Hilbert space #) and if for every x € X there is an open neighbourhood U of x
and p € Cy(E) such p(x’) is a rank-one projection for alt x” € U (this is called Fell’s
coudition). If (E, ) is an elementary C*-bundle then Cy(E) is a continuous trace
algebra ; conversely, given a continuous trace algecbra A, there is a unique elemen-
tary C*-bundle 7: E — A such that 4 =~ Co(E). We define the Dixmier-Douady
invariant of an elementary C*-bundle E to be that of the associated algebra of sec-
tions Cy(E). Thus, if E is an elementary C*-bundle over X, one obtains an element
S(E) € H¥X, T). In order to state the relevant properties of this invariant in this
context, we must introduce a few more definitions.

If V' is a Hilbert bundle over X, we define the associated elementary C*-bundle
(V) in such a way that Cy(A (V) = A(Co(V)) (cf. [7], 10.7), where A °(C,(V))
is the algebra of compact operators on the Hilbert module Cy(¥V).

Set A#°(V), = #'(V,) and let the topology of # (V) be defined by the finite rank
operators. Given an elementary C*-bundle E, onc has d(E) =0 iff E = (V)
for some Hilbert bundle ¥ (see [7], Theorem 10.7.15).

Suppose E and F are elementary C*-bundles over X. The tensor-product
E ® Fis again an elementary C*-bundle over X with fiber (E ® F), = E, ® F, and
with bundle topology determined by the family of sections Cy(E) ?x Cy(F)

{where e denotes algebraic tensor product). One has S(E ® F) = §(E) + 4(F)
{see [6], Theorem 1).

We say that an elemeatary C*-bundle E is stable if Ex (# XX)®E
{alternatively, Co(E) = A4 ® Co(E)) where )" % X is the trivial bundle with cons-
tant fiber #'. Since such a bundle is evidently locally trivial we may invoke Theo-
rem 10.8.4 of {7] (see [8], Theorem 11) which says in our context that there is a
bijective correspondence between isomorphism classes of stable elementary C*-
~-bundles over X and H3*(X, T) (given by E — o(E)).

1t follows that if E and F are any elementary C*-bundles over X then 6(E) =
= 0(F) ff (X' XX)® Ex(# X X) ® F (since §(# xX) = Q).

As stable isomorphism and strong Morita equivalence are one and the same
for separable C*-algebras [1}, it is proper to think of the Dixmier-Douady invariant
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as a complete invariant for strong Morita equivalence of elementary C*-bundles
over a given space. Instead of introducing the notion of equivalence bimodule in
the bundle context we resort to the linking algebra characterization (see [1],
Theorem 1.1). :

If E is an elementary C*-bundle over X and m € M(C,(E)) is a multiplier,
then m defines two fiber preserving bundie maps on E by right and left multiplication
which we write ¢ € E — ¢m and ¢ € E — mie; there is a family of multipliers m,
€ M(E,) such that if ¢ ¢ E, then em = em, and me = me (and such a family
of multipliers vields a multiplier for Cy(E) precisely if the resulting maps on K
are continuous). Write A (Cy(E)) = M(E) when multipliers are regarded as bundle
maps. If p € M(E) is a projection such that p. # 0 for all x € X, set ¥ = {¢ ¢ £
e = pep). Evidently. E” is an elementary C*-bundle and §(E) = 6(E”) (one has
Co£7) == pCy(Ep).

Let Eand E’' be elementary C*-bundles over X ; E and E’ are said to bestrongly
Morita equivalent if there is an clementary C*-bundle F and projections p. p’' €
€ M(F) with pp’ = 0 and p, £ 0, p; # 0 for all x, such that Ex F? and E' = }.
In this case, it is clear that C,(F) and Cy(E") are strongly Morita equivalent in the
usual sense (in a manner that respects the identification of spectra). One has HE) :=
= §(F) iff £ and F are strongly Morita equivalent.

Let (E, m) be a Banach bundle over X and f: Z — X a continuous map; set

fHE) = {(e,2) 1 m(e) = flz)} = ExZc ExZ and observe that f*(£) is a Banach
bundle over Z. If E is an elementary C*-bundle then so is f*(£); furthermore, one
has d(f*(E)) = f*(3(£)) (see [34], Proposition 1.4). If m € M(E) let f*(m)e M({*(E))
be given by f*(m)e, z) = (me, z) and (e, Z)f“(m) = (em, z). If Fis another elemen-
tary C*-bundle over X one has f*(E ® F) = f*(E) ® f*(F) (the isomorphism is
given by (¢ ® g, 2) = (e, 2) ® (g, 2)).

ADpDENDUM 3. Ultraliminary groupoids. The cohomology of a certain class of
sheaf groupoids is “‘computed’ in terms of the cohomology of an approximating
szquence of subgroupoids. We shall make use of lim!, the (right) derived functor
of 1im for inverse scquences of abelian groups (see [38]). Briefly, given an inverse
sequence of short exact sequences

04, >B.-C, -0,
one obtains a six-term exact sequence:
() 0— ],"}2.41.' — ]‘_EIBL - “iﬁC,\ - .iir_r.llAl‘ - Li_n_‘ﬂBA - lim* C; -0,

since the higher derived functors vanish.
We associate a sheaf groupoid to a sequence of local homeomorphisms

Yo—>>X,—>X,—> ...
% 2 @
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set I'y = R{@g-10 ... 0@y for k > 0 (and I'y = X)), and note that I', < I'y4, <
< XyX Xy. PutI' = I, and note that I is a sheaf groupoid with unit space I'® =
K

= X, (= I’} for all k). Such a groupoid is called ultraliminary (cf. [20], § 4). An action

of I" on a sheaf A4 (over X,) is then given by a family of compatible I',-actions and

one has Sp(A4) = () Sy, (4). Recall that #(I',) and £ (X)) are equivalent categories
K

(see §0.9) and let 4% denote the sheaf over X corresponding to A; one has
Sr(A) = S(45).

PropoOSITION. With notation as above there is a short exact sequence
©) 0 - lim*H"-Y(X, , 4%) - H'(I', A) - imH"(X,, A%) -0,
. "

Jor each n > 0, where {, is the map given by functoriality,

Proof. We verify (x) for n = 1, and then use a dimension shift argument for
n > 1. Recall that we may regard HYI', 4) as isomorphism classes of short exact
sequences of I-sheaves:

0~A4-B-Z 0.

That ¢, is onto follows from the fact that a I'-action is determined by its restric-

tions to I',. We identify ker {, with a subquotient of Z;(4). Consider the following
subgroup of Z (A):

H=1{heZ(4):¥Yk >0, 3f € S(4) such that i(y) =

= fr@) — vf(s()) Yy e L]}
One checks that Imdc H and ker{, = H/Imd. Moreover
H = tim S(A)/Sr(4);
by applying (3 ) to the inverse sequence of short exact sequences:

0~ Sr,(4) —> S(A) > S(4)/Sp,(A) >0

one obtains

ker{, = Hjimd = lim'Sr,(4) = Im*H%X,, 4¥)

(since 1im'S(4) = 0). Thus, () holds for n = 1.
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We prove the general case by induction. Suppose (*) holds for n. Let @ = Q(A)
be the I-injective constructed in § 1. Since @ is of product type one has that
H"(X,, Q%) = 0. Consider the square:

H(I, Q/A) — limH"(X,, O/ AF)

u

H(T, A) —s lim B (X, , AY).

i1

Since the vertical arrows are isomorphisms and the square commutes, ., is onto.
To show that ker {, ., = lim'H"(X,, A*) follows as above if n > 1.
In order to check that ker{, = lim*H'(X,. A") we need to show

) mHX,, QY/AY) = limHY(X,, AY).

Note that lim'H°X,, Q") = 0(since HY(I', Q) =: 0); applying (%) to the inverse
sequence:

0 — HO(XR, A/‘) — H"(Xk, Q!z) — IIO(Xk, Qk)/HO(Xk, Ak) -0

shows that lim'H(X, , 0%)/HX,, 4°) = 0. Finally, applying (4) to the inverse
sequence:

0 - H(X,, O HY(X,, 4%) — H(X,, Q%A% —~ H(X,, 4*) >0

yields (=#). |

Ultraliminary groupoids with X, compact were called hyperfinite relations in
[21], § 6. The above proposition has its origin in the calculation of the twist group
of a hyperfinite relation (cf. [21], §6.11). This result resembles Milnor's lim! se-
quence for computing the cohomology of a union of CW-complexes (see [26]).

Research supported by A.R.G.S.
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