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COCYCLES AND FACTORIZATION IN ANALYTIC
OPERATOR ALGEBRAS

BARUCH SOLEL

1. INTRODUCTION

Let M be a o-finite von Neumann algebra and 4 = M a (not necessarily
selfadjoint) subaigebra of M. An’ invertible operator 7 in M is said to have
Sactorization with respect to S if we can write T = UA where U € M is a unitary
operator and both 4 and A4-?* lie in £. ‘

The factorization problem with respect to non selfadjoint operator algebras
was studied by several authors. (See [1], [2], [4), [7], [8], [11], [12], {13], [14]).

This problem is known to be related to the problem of similarity among non
selfadjoint algebras.

In the present paper we study factorization with respect to analytic subalgebras
associated with a o-weakly continuous action o of a locally compact abelian
group G on M. Let I' be the dual group of G and I be a positive - semigroup
(such that X n (— Z) = {0} and I is the closure of its interior). Then the analytic
subalgebra of M associated with « and X is

M(Z) = {a e M :sp,(a) < I}

where sp,(-) is Arveson’s spectrum.

It is known that every nest subalgebra of a von Neumann algebra M is of
the form M*(R,) where o is a o-weakly continuous inner action of R on M.
In particular, if M = B(H), we obtain all the nest algebras (for which the factorx-
zation problem was extensively studied).

In order to make the statements of the main results clearer we shall assumé,
for the rest of this section, that X totally orders I'; i.e. XU (— Z) = I'. Otherwise,
a condition called admissibility would have to be imposed on T (see Section 2).

In Section 2 we associate with every invertible operator T in M an a-cocycle
a(T) and we show (Theorem 2.3) that T can be factored with respect to M*(Z)
if and only if a(T) is trivial (i.e., a(T) ~ 1).
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We use it to show that if M is G-finite relative to « (see Definition 2.5(2))
and Tin M is invertible then 7 can be factored if and only if M is G-finitc relative
to 27 (where 2f(x) = a(T) )« (x)a({T)(t)* for x in M).

This extends a result of D. Pitts [11] for nest subalgebras.

We also show (Theorem 2.10) that M can be embedded in a Jarger algebra
(pamely in M ® B(L*G))) with an action of G that agrees with a on (the image of)
M (namely x ® ad /. where 7 is the regular representation) and such that, in this
larger algebra, every invertible operator in (the image of) M can be factored.

In Section 3 we study the relation a(7") ~ 1 (i.e., a(T) is quasi-equivalent
to 1) for an invertible operator T in M. We show (Theorem 3.5) that a(T) ~ 1
ifand only if T = ¥ u;4; where 4, are outer operators (to be defined in Section 3)
in M*(Z) and w; are partial isometries in M such that vfu; is the range projection
of 4;, Y uuf = I and the central support of Vufu;, in M* (= {a € M : 2(a) = q,
t€G)), is I. We call this property a weak factorization.

We show an example of an operator that has a weak factorization but not

T
a factorization (Example 3.4). However, if both M and M™ are properly infinite
(or both are abelian) then (Lemma 3.8) weak factorization implies factorization.

2. FACTORIZATION

Let M be a o-finite von Neumann algebra and let G be a locally compact
abelian group with the dual group I'. Let o = {«, : t € G} be a representation of G)
as a group of x-automorphisms of the von Neumann algebra M such that t — 2,(u
is o-weakly continuous for every a in M. (We call it an action of G on M.)

Let ¥ = I' be a positive semigroup; i.e.

HZ+2ci;

@iy Zn(~ 2) = {0}; and

(iii) Z is the closure of its interior.

The analytic subalgebra associated with (x, Xy, A3(2), is defined by

M%) ={acM:spa) & X}

where sp,(-) is Arveson’s spectrum. (For details see [9]).

We can assume, by choosing an appropriate representation, that there is a
strongly continuous unitary group {W,:t € G} that implements «; ie. ,(q) =
= WaW¥. Using Stone’s Theorem we find a unique projection-valucd measure
P(-) on I' such that

W, = S ¢t gy dP(g), 1 €G.

r
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" Given an invertible operator T in M and g in I’ we let 0, be the projection
onto the subspace [7P(g + I)(H)] (where [B] is the closed linear subspace spanned
by B and / is the Hilbert space on which M acts).

Given a projection-valued measure P({-) we say that the invertible operator T
in M is (P, 2)-admissible if there is a projection-valued measure Q(-), on the Borel
subsets of I', such that for ¢ in I', Q(g + %) = Q,. :

Clearly if I is totally ordered (i.e. if £ y(— X) = I') then every invertible
operator in M is (P, X)-admissible.

Note also that if the measure Q(-) exists it is unique (see [10, 8.3.10].

Suppose now that 7' is (P, X)-admissible and Q(q + %) = Q, as above.
Then we can define a strongly continuous unitary group

U, = S<r, 4> d0(@). 1€G,

r
and a group of =x-automorphisms of B(H),
y(S) = U,SUF, teG, SeB(H).

We can also define a group of »-automorphisms of M’ by setting

BAS) =W, SWi, SeM,teG.

Note that if sps(S) € ¢ +  for some ¢ in T, then (by [9, Theorem 2.13]) SP(p +
+ Z)(H) = P(p + q + X)(H)foreveryp in I Since S isin M’ we have SQ,(H) <
S @, (H) for all p in I' and therefore, using [9, Corollary 2.14],

sp.{,(S) S g+ I
We can now conclude from [9, Corollary 2.11] (with @ being the inclusion map
of M’ into B(H)) that
WSWk = B[(S)=USU* SeM,teG.
Hence, for every ¢t in G, UWF e M and U MU} = M.
We now define o’(S) = U,SU* for S in M and
aoT)() =UWF e M.

Then a7 is an action of G on M and a(T) is a unitary a-cocycle since for s and ¢
in G,
a(T)(1s) = U W = UWIW UWIWE = a(T)(s)aa(T)(t));
and T
a(TYs™") = USW, = o7 Ha(T)(s)").
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Lemma 2.1. Suppose T is invertible and is (P, X)-admissible. Then o' is
the unique action of G on M satisfying

Mg+ 5) = TMg + DT, qeT.

Proof. Let Q(-) be the projection-valued measure satisfying Qg + XWH) =
= [TP(q + £)(H)], ¢ €I'. Then an operator S in M is in M“T(q 4+ 2y if and
anly if

SOp+ D) =00 +9+DSQp+ I, pel,

(by [9, Corollary 2.14]). But this holds if and only if T-1ST maps P(p + X))
into P(p + q + Z)(H) for every p in I'; hence if and only if T7-1ST € Mg + X).
The uniqueness follows from Corollary 2.11 of [9] (with @ = identity).
7l
The lemma shows that a7 does not depend on the choice of the implementing
unitary group {W,}.
Following {15, §20] we denote by Z (G, U(M)) the set of unitary x-cocycles
of G in M.
For a cocycle a in Z (G, U(M)) the equation

@)(x) = a(H)a,()a(t)y*, xeM

defines an action of G on M whose fixed point algebra is denoted by
M (={xeM:(w),(x) =x,teG)).

Given a and b in Z(G, U(M)) we say that a and b are equivalent and
write @ ~ b if there is a unitary operator u in U(M) such that a(s) = u*b(s)z (1)
for all s in G.

Let #, be the type I, factor with the system of matrix units {e; ; : 1 < i,/ < 2].

Write M = M @ F.. Then 2 ® id is an action of G on M. For a and b in
Z(G, UM)) we define ¢'= c(a,b) : G — M by

e(s) = a(s) @ en + b(s) ® e, s5EG,
and
Fla,b) = {x € M : xb(s) = a(s)a(x), s € G}.
We then have

ProposITION 2.2. {15, Proposition 20.2].

(1) ¢ = c(a, b) is in ZygiaG, UM)).

2) I® ey and I ® ey, are in Me.

(3) a and b are equivalent if and only if I ® e,, and I ® es, are equivalent

projections in M©.
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(4) F(a, a) = M°.

(5) H(a, b) = Z(b, a)*.

6) #(a, w) F(w, b) = H(a, b) for w in Z G, UM)).

(D If x is in F(a, b) with polar decomposition x = v|x| then |x}| € #(b, b)
and v is in F(a, b).

(8) M¢ =.5(a,a) ® ey + F£(a,b) ® ery + F(b, ) @ ey, + F(b,b) ® €.

THROREM 2.3. (1) Suppose T and S are invertible operators in M that are
(P, Z)-admissible. Then a(T) ~ a(S) if and only if T = USA where U is in U(M)
(the unitary operators in M) and both A and A~* lie in M*(Z).

(2) For an invertible operator T in M, T can be factored with respect to M*(X)
if and only if T is (P, X)-admissible and a(T) =~ 1 (where 1 is the trivial cocycle
Isy =1, s €G).

Proof. (1) Suppose first that T = USA where U € U(M) and 4 € M4Z)n
0 M*(Z)~1. Then for ¢ in T,

[4P(g + Z)(H)] = P(g + Z)(H)
and therefore,
[TP(g + Z)(H)] = U[SP(q + Z)(H)].

Since both 7 and S are (P, X)-admissible, there are unique projection-valued
measures Q(-) and F(.), such that

O(q + Z)(H) = SP(q + Z)(H)
and

F(g + 2)(H) = TP(q + Z)H).
Hence F(-) = UQ(-)U*. Tt follows immediately that
a(T)(t) = Ua(S)()a (U¥), ted.

For the other direction, if a(T)(r) = Ua(S)()x(U*), t € G, then F(.) =
= UQ(-)U* where F(-) and Q(-) are as above. Hence, for every q in I,

(TP(g + Z)(H)] = [USP(q + Z)(H)]
and consequently,

S-WU*TP(q + Z)XH) © P(q + Z)(H).

This implies that S-*U*T lies in M¥(Z)n M*(Z)~L
(2) follows easily from (1) as a{I) = 1.

N



300 . BARUCH SOLEL

The following corollary now foilows immediately from Theorem 23.12 in {15].

COROLLARY 2.4. Let M be a properly infinite semifinite von Neumann algebra,
G be R and t be « normal semifinite trace on M such that T %, = ¢ 't, t €R.
Then every invertible operator T in M can be factored with respect to M*(R.).
2]
DerINITION 2.5. (1) An expectation from a von Neumann algebra M onto
a von Neumann subalgebra N is a o-weakly continuous linear map & from M
onto N such that “¢i =1 and @ - P = &,
(2) Let f be un action of G on M with a fixed point algebra M5 Then Af
15 called G-finite relative to [} if there is a faithful expectation @ from M onto M¥
such that

b, =P, ted.

THEOREM 2.6, Suppose M is G-finite relative to « and T is an invertible
operator in M. Then T can be fuctored with respect to M*(Z) if and only if T is
(P, Z)-admissible and M is G-finite with respect to oT.

Proof. Suppose first that 7" can be factored. Then T is (P, ¥)-admissible
and a(T)(t) = U« (U*) (see the proof of Theorem 2.3). Then for S in M,

A1(S) = a(T) D (S)a(TY:(t) = Ux (U*SU)U*, teG.

Hence M*" = UM®U* and ¥(S) = UP(U*SU)U* defines a faithful expectation
onto M" (where @ is a faithful expectation onto M%). If >z, = ¢, ¢t € G, then
Woul =¥, teG. Hence M is G-finite relative to a7.

Assume now that 7T is (P, X)-admissible and M is G-finite relative to both z
and o7. Let ¢ be ¢(1, a(T)) (in M = M @ F,) and let % be 2. Then

2 x @ en) =4,(x) @ey and  x(x ® eg) = 4] (X) @ en

for tin G. For Sin M* (= Mc) with 20, S #£ 0, write S = Z S;; ® e;;. Then
either S); # 0 or Sy, 5 0. Assume that S); # 0. Then, by [6, Proposition 1],
there is a normal state ¢ on M thatis a-invariant and a(S);) # 0. Write ()}, x; @
® e;) = a(xy,). Then & is a normal state on M that is Z-invariant and satisfies
6(S) # 0. The case where S,, # 0 can be dealt with in a similar way. We can
now use [6, Proposition 11 and conclude that M is G-finite relative to %. There
is therefore a faithful expectation & from M onto M¢ that is d,invariant for
every ¢ in G.

Now let € M be T® e + T2 ® e5,. Then 7% = I. Let O(-) be the pro-
jection-valued measure associated with T; ie. Qg + Z)(H) = [TP(g + X)(H)1,
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g € I We now write P( ) for the pm}ectmn-vqlued measure P(-) ® e1; + O(-) ® egp-
Then for Sin M and 7 in G,

&(S) = W,SW?,
where

- S<r, g d(g).
r

We ﬁave, for gin T,

TP(@+2)=TP(g+ X Qen + T0G + 2) ® ey =

=0@q+ IDITP(g+ ) ®en+ Plg+ ITQ( + 2)@eyp =
= P(q + DTP(g + X).
Hence T is in M*(Z). Since
= (I ® e )T(I @ ) + (I @ )T @ e11)

and both I ® e, and I ® ey, lie in J_fl‘-‘ = d~>(ﬁ~l), we have,

H(I) = I @ e)PTW ® ex) + (I ® ex)HTI ® eny).

Hence (M) =T, ® e + T, ® e, for some T,, Ty in M. By [9, Theorem 3.8
the expectation @ is multiplicative on M%(Z). Hence &(T)? = I and therefore T, =
= T§*. By Proposition 2.2 (8), Ty lies in £(1, a(T)). Let T, = U|T,| be its polar
decomposition (and U is unitary since Ty, is invertible). Then, by Proposition 2.2(7),
Uis in #(1, a(T)). Hence Ua(T)(t) = a(U), t €G. Thus a(T) =~ 1 and, using
Theorem 2.3, this completes the proof. %

When I is totally ordered then every invertible operator is (P, X)-admissible.
‘We therefore have

COROLLARY 2.7. Suppose I is totally ordered (ie. 2y(—2)=T), M is
G-finite relative to % and T is an invertible operator in M. Then T has a factori-
zation with respect to M*(Z) if and only if M is G-finite relative to oF.

For inner actions of R this result was proved by D. Pitts [11].

CorOLLARY 2.8. Suppose I' is totally ordered and M has a faithful normal
semifinite trace t such that

() 100, =1, t€G; and

(i) v restricted to M® is semifinite.
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Then every invertible operator T in M such that T restricted to MT s semifinite
can be factored with respect to M*(Z).

In particular, if © is finite and ©=2, = © for every t in G then every invertible
operator can be factored.

Proof. Suppose 7 is a faithful normal trace satisfying (i) and (ii) and T e M
is an invertible operator such that the restriction of 7 to M=" is semifinite. Then,
by [i, 6.1.3(4)], there is a unique faithful normal expectation @ (resp. ¥) from A
onto M= (resp. M“T) such that for every 4 in M*® satisfying 1( A)) < co and for
every B in M=T satisfying t('B)) < oo we have

1(SA) = t(P(S)A)
and
©(SB) = ©(¥(S)B)

for every S in M. But then 1(2,(S)4) = (t-2,)(SA) = 1(SA) = ©(®(S)A). Hence,
by the uniqueness of @, ® is a-invariant. Similarly ¥ is aT-invariant (note that
teol =1 since al(S) = «(T)(t)x(S)a(T)(t)* and a(T)(t) is in U(M)). Now use
Corollary 2.7. &

For the case where 7 is finite this result was proved by Arveson in [1, Theo-
rem 4.2.1]. (In fact, Arveson proved it for every finite maximal subdiagonal algebra,
not only those that are analytic subalgebras.)

When G is compact M is G-finite relative to any action of G. We therefore
have the following. :

COROLLARY 2.9. Suppose G is compact and T is an invertible operator in M.
Then T can be factored with respect to M*(Z) if and only if T is (P, X)-admissible.

In particular, if G is compact and if T is totally ordered, then every invertible
operator can be factored with respect to M*(X).

THeoReM 2.10. Ler «, {W,}, P(-) and X be as before. Let T be an invert-
ible operator in M that is (P, X)-admissible. Then the operator T@ I, in M ®
® B(L¥G)), can be factored with respect to M ® B(LXG)Y®*%(Z) where 1 is
the regular representation of G on L¥G); ie. (2, f)(s) = f(t - 5), and (ad 7. )(S) =
= A,SAF for S in B(L¥G)).

Proof. By [15, 20.4(2)] the cocycles a(T) ® 7 and 1 ® 4 (in Z,gie(G,. M ®
® B(LX(G)))) are equivalent. Hence there is a unitary operator U in M ®
® B(L*G)) such that

(a(T) ® (1) = Ul @ A)(t)(x, ® id)(U*) =

=UIQ+)W, @DUWF®I), teC.
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Hence

@T) @)1 = @)@ HOUI® 2} =
= UW, ® W)U*WF ® i¥) = U@x ® ad ) (U*), t&G.

Thus a(T)® 1 ~ 1 (as o ® ad i-cocycles). It is easy to check that a(T® I) =
= a(T)® 1 and the result now follows from Theorem 2.3. %

3. WEAK FACTORIZATION

Let a and b be two a-cocycles in Z (G, U(M)) and let M, &, c(a, b) and
F(a,b) be as in the discussion preceding Proposition 2.2. Following [3] we say
that @ and b are quasi-equivalent (and write a ~ b) if I ® e,; and I ® e,, have the

same central support in M¢ (the fixed point algebra of ).

Lemma 3.1, Write

e(a, b) = sup{u*u 1 u is a partial isometry in F(a, b)}.
Then
(1) e(a, b) is in Z(MP), the center of M®, and e(b, a) is in Z(M?®).
(). a~bif and only if e(a,b) = e(b,a) = L

Proof. (1) As F(a,b)“#(a,b) = 5(b, a)#(a,b) < F(b,b), e(a,b) lies in
F(b, b) = MP. If v is a unitary operator in M? then

ve(a, byv* = sup{vw*uv* : v is a partial isometry in J(a, b)}.

Since uv* is also a partial isometry in #(a, b) (if u is), then ve(a, b)v* < e(a, b)
for every unitary operator v in MP® Hence e(a, b) is in Z{MP).

(2) For every partial isometry u in $(a,b), let & be u ® e;s € M°. Then
(I ® et = u*u ® e,y. Hence, if e(a, b) is I, the central support (in A7[”) of
I®ey is I®en + I ® ey, Similarly for I ® ey,.

Now assume that a ~ b. Write z for I — e(b, a) and assume z # 0. Since
the central support of z ® e, is contained in the central support of I ® e,,, there
are non zero projections z, € M* and z, € M® such that z, < z and 2z, ® e, is
equivalent to z; ® ey, in Me. Hence there is some partial isometry & in M¢ such
that " =z, ® e;; and %% = z; ® ey,. But then & has the form # = u ® e,
for some w in S(a,b) and wu* = z,, u*u = z;. Therefore z, = wu* < e(b, a).
Since z, € z = I — e(b, a), we get a contradiction.
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Lemma 3.2. (1) Suppose u is a partial isometry in $(a,b) and p is a pro-
Jection in M® such that uu“p # 0. Then there is a non zero partial isometry v
in $(a, b) such that ve* < p and v*v < u¥u.

(2) There is a partial isometry w in $(a, b) such that

(i) whenever u is a partial isometry in $(a, b) and u*w =0 then u u<w™y !
and
(it) the central support of w*w in M® is e(a, b).

Proof. (1) By the comparison theorem there is a projection z in Z(M¢) and,
partial isometries vy, v, in M* such that e, = zp, v,0f <z, ey, = (I - D™,
and o,t¥ < (I - z)p. Now, if ¢, 5 0,let vbe vFzuand,if e, # 0, let v be eo(T- - Z)u
This completes the proof of part (1).

(2) We can use Zorn's lemma to find a maximal family of partial isometrics
{u)} in F(a, b) such that {wu¥} is an orthogonal family of projections and so is
{ufu}. We let wbe Yu,.

Let ube a partial isometry in $(a, b) such that w*w = 0. If *u(l -- w*w) £ O
then, using part (1) (with «* in place of ©), we find a partial isometry v in 5(a. b)
such that v < I-- w*w and oo™ < w® < I — ww®, But this contradicts the
maximality of {u,). Hence wuu < whw.

For part (ii), assume that = is a central projection in AZ® such that w™irz = ().
Then we can find a non zero partial isometry u in.(a, b) such that u®n < z provided
r < e(a, b). The maximality property of w now implies that wu®ww* # 0 und.
thus, we can use part ([) to get a partial isometry © in (a, b) satisfying vo¥ < wi®
and ¢¥v < v*u < z. Then w¥r is a non zero partial isometry in M?® with initial
projection smaller than = and final projection smaller than I - z. Since = is central
this is a contradiction. i

Lemma 3.3, For a and b in Z (G, UM)) there is a family {u;:i > 1 of
partial isometries in $(a, b) such that
@) {uufF :i > 1} is an orthogonal family of projections with sum e(b. a).
(i) For every i, ufu; < ufu,.
(iti) The central support of ufu,, in M is e(a,b).

Proof. Let w be as in Lemma 3.2(2) and Jet {x.} be a maximal family of
partial isometries in .#{a. b), containing w, whose final projections are pairwise
orthogonal. Write f for e(a, b) -- Y u k. If £ # 0 then there is a non zero partial
isometry u in .#(a, b) such that uu®f # 0. Using Lemma 3.2(1) there is a non zcro
partial isometry ¢ in (¢, b) such that ve* < f. This contradicts the maximality
of {u_}. Thus f = 0. Since M is o-finite {,} is at most countable and we are dore. 7'}

If a(T) is a cocycle associated with an invertible operator T in A and {7}
is equivalent to 1 then it is quasi-equivalent to 1. The converse is false as the folicw-
ing example shows.
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Examere 3.4. Let H be L2[0, 1], P, be the projection onto L0, 1], 0 <f <1,
and Q, be the projection onto L0, 1/2] @ L?[1/2,1/2 + #/2]. Write

1 1
Ws=Sei”dP, and Us=Se“‘dQ,, s €R,

Q 0

and oy = adW,, f, =adU, (on M = B(H)). By [7] there is some invertible oper-
ator T in B(H) such that [TP,(H)} = Q,(H), t €[0, 1]. Hence a(T)(s) = UW*.
Since {P,}’ is an abelian algebra but {Q,}’ is not, T cannot be factored with respect
to B(H)*(R.) (this is the nest algebra associated with the nest {P,}). Therefore a(T)
is not equivalent to 1.

Define isometries u, and u, on H as foilows:

2f2n W O0<gr<1)2
u =4 !
() { 0  if1j2g¢
0 if 0ger<1)2
(upf)(t) = .
2f(2t—1) if 1/2 < ¢t

for f in L¥O, 1].
Then wfu; = ufu, =1 and wu} + uuf = 1. Also, for every 0<s< 1 and
i=1,2, w,P, = Qu; Hence

uW,=Uu;,, seR,i=1,2.
We therefore have

u; = Usuin = Ustas(”i) = a(T)“s(ui)'

Tt follows that u; lie in £(a(T), 1) and u}¥ lie in F(1, a(T)) for i = 1, 2. Therefore
«(a(T), 1) = e(l, a(T)) = I and, by Lemma 3.1, a(T) is quasi-equivalent to 1.

Let o, Z, W and P(.) be as in Section 2. An operator A in M is said to
be outer if

(i) the range projection of 4 is in M<; and

(i) for every ¢ in TI', [4P(q + 2)(H)] = [A(H)])n P(g + Z)(H).

(Note that this definition is consistent with Arveson’s [2].) It follows from
the definition that every outer operator is in M*(Z). Also, if A is invertible, then A4
is outer if and only if both 4 and A-! lie in M*(Z).

An invertible operator 7" in M will be said to have a weak factorization
with respect to M=*(Z) if there are partial isometries {u; : i > 1} in M and outer
operators {4, :i > 1} such that the following are satisfied.

(1) ufu, is the range projection of 4, for every i.
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(@) {wuf ;i > 1) is a family of orthogonal projections with sum 1.
(3) The central support of V ufu; in M* is I.
(4) T = Y, u;A; (where the convergence is in the g-weak topology).

TiroreM 3.5. Let T be an invertible operator in M. Then T has a weak
Tactorization with respect to M*(Z) if and only if' T is (P, Z)-admissible and a(T) ~ 1.

Proof. Suppose first that T has a weak factorization; ie., T =Y u;d;
where A4; are outer operators with range projections ufu;, Y wa® =1 and the
central support of V u}u; in M® is I. Then, for every ¢ in T,

(Q,(H) =) [TP(g + E)H)] = ¥,© u{4.P(g + D)(H)) = ¥,© u;P(q + E)(H).

Hence Q, =Y, u;P(q + Z)u}. Define the projection-valued measure Q(-) =¥, u,P(-)uii".
Then Q, = O(g + Z), so T is (P, Z)-admissible. Write

U, = S(t, g>dQ(g), teG.

Also, we have for j > 1,
ubQ(:) = P()ui
(as wFu; = 0 if i #j). Hence u}U, = W} and

uta(T) = a(u}).

Therefore u} € #(1, a(T)) and u; € #(a(T), 1). Since YuuF = I, e(1, a(T)) = I and.
since the central support of V ufu; is I, e(a(T), 1) = I. Thus a(T) ~ 1.

For the other direction, suppose T is (P, X)-admissible and a(T) ~ 1. Then
e(l, a(T)) == e(a(T), 1) = I and, using Lemma 3.3, there are partial isometries
fu; 17 > 1} in #(a(T), 1) such that {uuf} is an orthogonal family of projections with
sum I, ufu; < wfu, for every i, and the central support of uju, in M2 is L

Write A; = ufT. Then Y uf T = Y, u;A4;. Also, [A(H)) = [u} T(H)] = ufu(H).
For g inI' and i> 1, [4,P(g + ZXH)] = [ufTP(g + 2)H)] = uFO(g + X)IT)
where Q(g + Z)(H) = [TP(q + 2)(H)].

Since u} €.#(1, a(T)) we have,

uFa(TY(1) = 2, (u}) = WaiW¥, 1€G.

We write a(T)(t) = U W7 where U, = S(t, g>d0(q), and get,

urU, = Wauf, teG.
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Hence
u*Q(q + 5) = Pg + Du¥, qerl.
We now have,
[4:P(q + Z)(H)] = [urQ(g + Z)(H)] = [P(q + Z)u}(H)] =

= [P(q + Dyufu,(H)] = [P(q + Z)Y(H)]n [A,(H)).

Hence A; is outer for every /. A

LemMA 3.6. Let T =Y, u;d; be a weak factorization of an invertible oper-
ator T in M. Then for every i and every y in H there is some z in H such that

Az =Ayy and Az =0 for every j # i.

Proof. Let z be T-'u;A;y. Then Az = ufTz = ufu;A;y = A;y; and A4z =
¥udy =0 if i # j. %

= ufTz = ufu;A;
A set {A4;} of outer operators will be called independent if for every i and

every y in H there is some z in H such that A,z = A,y and 4;z =0 for i % j.

PROPOSITION 3.7. Let T > 0 be an invertible operator in M. Then the follow-
ing properties are equivalent.

(1) 12 is (P, X)-admissible and a(TY?) ~ 1.

(2) T = Y A} 4; for an independent set of outer operators {A;} such that the
central support of 'V p; in M= is I (where p; is the range projection of A;).

Proof. If (1) holds then T%2 has a weak factorization and
T = (TY3)*T? = ()_‘ uiAi)*(Z u;d;) = Z AtufuA; = 2 ATA;.

Lemma 3.6 shows that {4} is independent. Hence (2) holds.

Now assume that (2) is satisfied. Since T =Y 4¥4;, we have | T*2x|* =
= Y 14;x|]* for every x in H. Define u}? by ufT"?x = 4;x for x in H. Sincc
(T42x]| = ||A;xll and T(H) = H, uf is well defined and |ju}|| < 1.

Write K = ¥,® H; where #; = H and define V from H into Kby VT2 =
= Y, ®A;x. Then V is an isometry since

1Tl = ¥ Apx]

From the independence of {4} it follows that V(H) contains all finite sums
Y.® Aih;, h; € H. As V'is an isometry its range is closed; hence V(H) =Y ® A,(H).
Let F; be the projection in B(K) with range H;. Then F;VT*2x = A,x. But then
(see the definition of u¥ above) ¥ = F;V (identifying H with H;) and F; commutes
with the range projection of V. Hence u«f is a partial isometry in M with final
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space A,(fI). Also, for every i, TAxi = ufTx; ="uuF7'x’. But then
TTPExEE = Y twuT3v % Hence for every y in H,

DR MRS

1t follows that Y wpf = I Hence T = Y upiT = Y, u;4;. Using Theorem 3.5, (1)

follows. |

As we saw in Example 3.4, we might have an invertible operator T in M
that has a weak factorization (equivalently «(7) ~ 1) but cannot be factored (i.e.
a(T) = 1). The following lemma shows that, in some cases, a(T) ~ 1 would imply
a(T) =~ 1.

Lesmwa 3.8, Suppose T has a' wealk factorization and either
(Y)Y M= and M are both properly infinite, or

2) M* and M T are both abelian.

Then T can be faciored with respect to M°(X).

Proof. If both are properly infinite the result follows from {15, 20.2(13)].
Suppose now that both 472 and M=" are abelian and T = Y u:4; as in the definition
of weak factorization. Then, for i # j,

0 = wufuufu; = wuluuiu; = vuiu;
(as ufu; = 0 and both v} and wuf are in M"). Hence {u*u;} is an orthogonal
family of projections in Af*. Since M? is abelian and the central support of V ufu;
is I, we have Y ufu, = I. We also have Zu,-u,* = I. Hence U = Y, u; is a unitary
operator in .£(a(T),1). Hence a(T) ~ 1 and T can be factored. A

Examere 3.9. Let H be L%0,1] and P,, 0 <t < 1, be the projection
onto L0, t]. Let f: [0, 1] — [0, 1] be an order isomorphism that does not preserve
the Borel sets of measure 0 (see [5]). Then there is (by [7]) an invertible operator T'
in B(H) such that [TP ()] = Py,,(H). However, there is no unitary operator U
in B(H) such that UP(#) = P;,(H). Hence T cannot be factored with respect
to B(H)*(R,) (where « is as in Example 3.4). Since B(H) = {P,}’ = B(H)*", both
algebras are abelian 2nd 1.emma 3.8 shows that T does not have a weak factorization
with respect to B(H)*(R,). %)
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