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TYPE 11I, TRANSFORMATIONS OF MEASURE SPACE
AND OUTER CONJUGACY OF COUNTABLE
AMENABLE GROUPS OF AUTOMORPHISMS

S. I. BEZUGLYT and V. Ya. GOLODETS

INTRODUCTION

The present paper is a study of the classification of dynamical systems (groups
of automorphisms of a measure space). In contrast to classical problems of ergodic
theory primary among which is the classification of automorphisms up to isomor-
phism (conjugacy), we are here interested in a weaker relation of equivalence, the so
called outer conjugacy of groups of automorphisms. Such problems have recently
become attractive in connexion with the developing trajectory theory of dynamical
systems and also with the study of automorphisms of von Neumann algebras. A,
Connes and W. Krieger [6] suggested necessary and sufficient conditions for outer
conjugacy for automorphisms from the normalizer of the approximately finite group
T of transformations of a Lebesgue space preserving a measure (type 11). We solved
a similar problem for the case where for the group I there is no invariant measure
(type 1) [2], [3]. Thus, a complete system of invariants of outer conjugacy of actions
of the group Z lying in the normalizer N[I'] of I', has been found.

There naturally arises the problem of the study of outer conjugacy of the ac-
tions of groups having a morg complex structure than the group Z has. This became
possible after the problem of description of abstract groups which are ranges of
cocycles of approximately finite groups of automorphisms was solved [9]. First,
we found a complete system of invariants for outer conjugacy of actions of coun-
table amenable groups from the normalizer of the group I' preserving a finite or
infinite measure [4]. By the methods developed in [4], necessary and sufficient con-
ditions for outer conjugacy of actions of countable amenable groups were then prov-
ed for the case where I' is of type III, (0 < 2 < 1) [1].

In this paper, the most comphcated case of the type 11I, group I of auto-
morphisms is considered. The main result of the paper is that necessary and
sufficient conditions for outer conjugacy of the actions p, and p, of the countable
amenable group G, such that p(g) e N[I']l. i = 1,2, are found.
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Section 1 presents certain preliminary discussion required to proceed to sub-
sequent presentation. The next three sections contain the proof of the principal result
of this paper. Sections 2 and 3 consider special cases of actions of a countable ame-
nable group lying in the normalizer of a type III, group. The concluding section proves
the central theorem in the general situation. Section 4 deals with the problem of
existence of an action p of a countable amenable group G, such that p(g) € N[I'],
g € G, where I is an a.f. type III, group of automorphisms. This problem is natu-
rally subdivided into three cases: (A), (B) and (C) (see Subsection 2.2). In this paper
we fully study the case (B), which finds a direct application, and present an example
showing possible realization of the cases (A) and (C). These cases cannot be consi-
dered without using some new ideas and the solution of the problem of their rea-
lization will be supplied in a subsequent paper.

We are grateful to the referee for useful advice.

1. PRELIMINARIES

1.1. In this section we shall present some preliminaries on ergodic theory which
we shall need below. Definitions and more detailed results may be found in [L6],
[12], [20], [10], [19], (8]

The set of all automorphisms of a Lebesgue space (X 4, w) will be denoted by
Aut(X, B, p). Let I' be a countable subgroup from Aut(X, %, u)*). The set of the
automorphisms from Aut(X, £, u), whose trajectories are contained in the trajec-
tories of the group I, is called the full group of automorphisms [I'] of the group I,
ie.

[I'} = {y e Aut(X, B, p) : yx €eI'x for p-ae. x €X}

where I'x = {gx : g € I'} is the trajectory. of x.

The set N[I'] = {R € Aut(X, 8B, p): RI['|/R-1=[I']} which is clearly a sub-
group in Aut(X, 4, p) is called the normalizer of the group of automorphisms [I'].

The group of automorphisms I' is called approximately finite (a.f.) if there
exists an automorphism 7" such that [I'] = [T].

Two groups of automorphisms I'; < Aut(X;, %,, y,) and I'y c Aut(X,, %, pa)
are called weakly equivalent, if there exist a one-to-one measurable map ¢: X; — X,
such that [I}] = ¢~YTI',)e and the measures g, and ¢ o, are equivalent (denoted by
Ho ~ @ o pty).

The ergodic group of automorphlsms I' < Aut(X, 8, 1) is called a type II; (Ils)
group, if there exists a measure v ~ u such that gov = v for any g € I' and the
measure v(X) is finite (infinite). If there is no I'-invariant measure equivalent to the
measure p, then the group I' is called a type IIT group. Type III groups admit a

“) This paper deals only with countable groups.of automorphisms.
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further classification by introducing a set r(I'). By definition, a number r € r(I'),
if for any ¢ > 0 and any set 4 of positive measure there exists a set B < 4 (uB > 0)
and an automorphism g € I' such that gB < A and for p-a.e. x € B

._10
l% K (x)——r]<s.
| du |

The set r(I') is closed in [0, oco) and r(I)\{0} is a subgroup of R* = (0, co). Conse-
quently, r(I')\{0} may only be one of the following groups: {1}, {i": n € Z} (0 <
< 2 < 1), R%. Respectively, the group I is type III,, or III, (0 < 2 < 1), or 1II,.

1.2. Let us describe in more detail the a.f. ergodic groups of type 1II, auto-
morphisms as was done in [18].

Let (X, 4, 1), (Y, #, v) be Lebesgue spaces with u(X) = 1, W(¥) = co and
Qe Aut(X, 2, u), SeAut(Y, B, v) ergodic automorphisms, where Sov = v
(i.e., S is type ).

For any automorphism ¥ € N[S] the measure V-0 v is also S-invarjant and
S-ergodic; therefore, there exists a number ¢(¥) € R such that

(1.1) V-1oy = e?PMy,

Let ¢(x) be a measurable real-valued function on X such that ¢(x) > 6 >0
and let x = U, (x € X) be a measurable field of automorphisms of (Y, &, v)
(i.e. the map (x, y) — (x, U,)), where U, € Aut(Y, &, v), is measurable in X x Y).
Suppose that U, € N[S} and

1.2) 0(9) = B(U) + log IZF (%)
du

for p-a.e. x € X. Consider the following automorphisms from Aut(X X ¥, 4 X &,
uXxv) = Aut(X,, %y, p):

(1.3) Qo(x,») = (@x, Uyp), So(x,3) = (x, 5y).

Evidently, Q, € N[S,] and therefore the group of automorphisms ¢ with @, and
S, as generators will be a.f,

In [18] the following statements are proved:

(1) the group ¥ is an ergodic a.f. group of type III, automorphisms;

(2) any ergodic type 11T, automorphism T is weakly equivalent to a certain
group 9(Q, ¢);

(3) two type III, groups of automorphisms %(Q, , ¢;) and ¥(Q,, ¢,) are weakly
equivalent to each other, if and only if the corresponding special flows
{W(01, ¢1) (1)} and {(W(Q,, ¢,) (1)} constructed from the basis automorphisms Q,
and @, and the ceiling functions ¢, and ¢,, are isomorphic (the definition of the
special flows may by found, e.g. in [16], [20]).
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1.3. Recall the definition of the modulus of an automorphism (see [2], [3],
[I1h and the properties of automorphisms from N[%(Q, ¢)].

If I' = Aut(X, 4, i) is a certain group of automorphisms, then the group
I'y « Aut(X X R, # X &, uxt) — where t is the usual Lebesgue measure on R —
dual to I' is generated by the automorphisms

dg

(1.4) galx, 1) = (gx, u + log — (x)) ger.

The flow of the automorphisms {T,},er, T,(x, u) = (x, v + 5) commutes with
the group I',. Therefore, if &(I'y) is the measurable hull of the partition of the
group I'y into trajectories, then on the quotient space (X x R)/E(T,) the flow (T
generates a quotient flow {W,(s)},er which is called the flow associated with the *
group T,

If R eN[I], then R, € N[I'y] and the automorphism R, defines on (X x R)/(T,)
a certain automorphism denoted by mod R which is called the modulus of the auto-
morphism R. Consider the centralizer of the associated flow:

CW,} = {y € Aut((X X R)E(Ty), (uxD)E(Ty) 1 yW (1) = W (1)y}.

Then, we easily see that mod R € C{W,.}.
If the group I' of automorphisms of the space (X, 4, i) preserves the measure
p and R € N[I'], then the number

dR7 et (x) mod R
dp

is called the modulus of the automorphism R. This definition is quite consistent
with the above definition of the modulus.

Let now I' = %(Q, ¢). The flow associated with " will be a special flow
constructed by the base automorphism Q@ -* and the ceiling function ¢(Q ~1x).

The following main properties of automorphisms from the normalizer of the
group ¢4 = ¥(Q, ¢) have been found in {3]:

(a) the map R - modR: N[l - C{W,} is a surjective homomorphism;

(b) for any automorphism R € N[#], there exists an automorphim g €[¥]
such that

(1.5) gR(x, ) = (ax, V.y),

where the automorphism « belongs to N[Q] and x — V, (x€ X) is a m.easurable
field of automorphisms taking values in N[S]. Automorphisms of the form (1.5)
will be called skew products.
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We shall need the following result presented in [17] (see also [16]): for any
flow of automorphisms there exists a special flow isomorphic to it, whose ceiling
function takes only two values; Because an a.f. group of type III, automorphisms is:
entirely defined by the flow associated with it, and (see (1.2)) the equality

d(ie X )(Qo(x, 3))

oy

is true for p-a.e. x € X, then the above result suggests that for any a.f. group of
type Ti[, automorphisms there exists a group weakly equivalent to it, all its elements
having the Radon-Nikodym derivative taking values in a countable set, e.g. in
the group A(ry, ry) = {riry':n, m € Z}, where r, > 0, r, > 0 and logr,, logr, are
rationally independent.

1.4, 1In the group of all automorphisms of the Lebesgue space (X, 4, p) with
the probability measure u one may introduce the concept of the distance between
automorphisms. The formula

d(T, S) = u({x e X: Tx # Sx}), T, S e€Aut(X, 4, 1)

defines a metric that is called the uniform metric. Weak convergence in Aut(X, 4, 1)
is defined as follows. If T € Aut(X, 4, p), then on LNX, 4, 1) there is a linear
operator U(T) defined by

(UTY)x) = AT 5 )d“”(—)—*)-, feliX, @, .

du(x
Put

o Uy — USHEN 2 + IU(TY) — U(S )Gl 2

d(T,8) =¥ =
79 = B =0T + T UG5,

where {¢}%, is a countable sequence of functions dense in L'(X, 4, p). The
metrics o, and d,, allow to introduce a topology on the group N[I'], where
I' « Aut(X, &, 1). We shall say that a sequence {R,, >, of elements of N[I'] con-
verges to R e N[I'], if d4,(R,, R)— 0 and d (R,gR;*, RgR™Y) -0 as n - oo for
any g € I'. Then, N(I') becomes a topological group and the topology introduced
is generated by the metric

1 d(RigRi*, Ryg R:™)
2% ] + d (RgRY, RygiR: M)

d(Ry, R) = d(Ry, Ry) + g

where Ry, R, eN[I'l and I = {g, : k € N}.
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In [12] it was proved that N[I'] is a complete separable group. Here is also a
result of [12] which will be used below. If S € Aut(X, &, u)and Sopu = p, u(X) =
then the closure of the full group [S] in the metric d coincides with the set
{R e N[S]:mod R = 1}.

1.5. In this work, we use the concept of an array as it was introduced in
118]. The following notation will be used: 1 = 1y for the identity automorphism of
the space (X, 4, u) and e for the unit of the group.

Let I' be an ergodic group of automorphisms of (X, 4, u). The expressiou

(1.6) &= (4, 5 AC), 9, )

will be called a I-array of the set A = X, u(4) > 0, if the following conditions are
fulfilled:

(1) = is a finite set of indices;

(1) UA(I) =A, AD) n AG) =9 (@ #])), w4d@)>0;

(iii) v(J, DAG) = A(), G, 1) =1, 3y, i)y(iy, &) = vy, 1), v(j, Dx €T,
for a.e. x € A(i), i, j € E.

Denote by %(¢) the finite group of automorphisms of the set A generated by
v, j), i,j € Z and by Z(£) the collection of sets of the form U A(), where
4z e

We will refer to pairs (A7), y(j, i), i, j € £ as elements of the array &.

Let two I'-arrays be defined: &, = (4, E, A(:), y(-, -)) and &, = (4(@,), 2,
B(-), (-, -)), where iy € E. Define a new I'-array ¢, X &,, which we shall call the refi-
nement of the array &, with respect to &,, according to the equality

§1X52 (A9 '-‘X'Q C( > ’): T(' N ))’

where C(i,n) = y(i, ig)B(n), (iy, ny; i, n) = (i, ig)o(ny, n)y(lo, D), iy, 1,0 EZ,
n,m €.

We shall also call the I'-array (1.6) transitive, because for any two sets A(i)
and A(j) property (iii) in the definition of the array is true. If this property is not
true for all sets, then such an array will be called non-transitive. A typical example

n
of non-transitive array is the I'-array ¢ = || &(i) consisting of a disjoint union of
i=1

the transitive arrays &é(i). Namely, let a set 4 be represented as a disjoint union of
the sets A(i),i = 1,2, ...,n and let the I'-array &(i) = (A(),[1,M.], 4,(), (-, )

be defined on the set A(i). Then the restriction of the I'-array ¢ = | &(i) to the
ie=]

set A(i) coincides with the array £(i). In this case, the transitivity components (i.e.
the transitive subarrays) are the arrays g(z) defined on the sets A@),i = 1,2, , R

Below we shall use the notation 49 = u G((i), P = LJ P(g(z))
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_ If the I'-array ¢ given in (1.6) exists, it will be said to be defined over the par-
tition (4, =2, A(+)). .

1.6. Let I' = Aut(X, %, 1) and H be a locally compact'separable group. A
measurab e map «: X X I' - H is called a cocycle with the values in the group H, if
for any g,, g, from I’ the equality

()] u(x, g182) = a(geX, &) alx, &)

is fulfilled for p-a.e. x €X.
An example of a cocycle is the Radon-Nikodym cocycle 7 : X xXI' —» R*%

.y du(yx)
D= e

Ifa:XxI' — His a cocycle and the group I acts freely, then o admits natural
expansion to a map &: Xx[I'] - H which also satisfies (1.7). We shall assume all
cocycle which will be considered to be expanded up to cocycles of full groups of
automorphisms.

1.7. Let G be an abstract countable group. An action of the group G on
(X, %, 1) is an injective homomorphism p of G in Aut(X, 8, p). ‘
Let I' = Aut(X, 48, p), p, and p. be actions of the countable group G on
(X, 8, 1), where p(g) eN[I'], g €G, i =1, 2. The actions p, and p, are called
outer conjugate, if there exists an automorphism R € N[I'] such that for anyg € G

pi(g) = R7py(g)¥R,
where y = y(g) €[I].
The problem of the outer conjugacy is significant only if the actions p, and
p. of the group G are outer to I, i.e. there i§ an element g of the group G such that
The results of [5] directly lead to a statement important to subsequent presen-
tation.

THEOREM 1.1. Let T € Aut(X, B, p) be an ergodic automorphism and p an
action of an amenable countable group G on (X, B, i) such that p(g) e N[T], g €G.
Then the group of automorphisms generated by p(G) and [T] is a.f.

For a countable group G and an ergodic group of automorphisms
I' < Aut(X, 4, ;) define the automorphisms J(g), g € G such that

A(g) eN[I',
(1.8) 2(81)2(g2) = (g1, g2)2(g; 8>

A(g)(g=1) e[I],
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where y(g,, g,) €[] for g, and g, from G. The map 4 : G — N[I'] satisfying (1.8)
will be called a p-action of the group G. This term is analogous to the projective
group representations (see, e.g. [15]). It follows from (1.8) that the automorphisms
(-, -) satisfy the following relation for a 2-cocycle:

(1.9) 82> 22 P21, 828) = Vg1, 82)7(8:82, &),

where y(g,, g:x)m']) = Ag)r(gs, gAY, &1, &2, 83 €G.

THEOREM 1.2, Let I' he an af. ergodic group of automorphisms of (X, 4, 1)
and let 2.: G = N[I'] be a p-action of a countable amenable group G on (X, %, p).
Then, the group of automorphisms generated by X(G) and [I'] is a.f.

Proof. Consider the Lebesgue space (XxG, uxy), where y is the Haar

reasure on G and the group of automorphisms I' = Aut(X x G, uxy) with the
generators

v(x, k) = (yx, k), yeT,

w(M(x, kY = (x, hk), h e, (x,k)eXxQG.

Obviously, I is an ergodic a.f. group of automorphisms. Define for each 1 € G
the automorphism ¢(#) € [I'] by the formula

t(M(x, k) = (y(h, h—K)x, h—k),
where y(h, h~1k) satisfies (1.8). Then,
e(h) M x, k) = (y(h, k)~ x, hk).

Put /4(g) = Ag)x1, g €G; then /y: G — N[l:] is a p-action the group G, and the-
refore for any g, h e G '

(1.10) ho(8)lo(I)io(gh) 1 (x, k) = (v(g, Mx, k).

By (1.9):

o(h) "D u(g)e(gh) 1 (x, k) = (ph, k) Py(g, hk)y(gh, h)~1x, k) =
(1.1D)
= (y(g, Mx, k).

From (1.10) and (1.11) it follows that

(@ e(Mi(e) te(@)uv(gh) = = /(@) e(h)Ao(gh) !,
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whence
(1.12) v(g) (@) u(h) 22yl = v(gh)~1).(gh).

Put /o(g) = u(g)22,(g), g € G. Relation (1.12) shows that i;: G — N[I] is an action

of the group G. By Theorem 1.1, the group of automorphisms generated by [f] and
/¢(G) is a.f. Thus we obtain the statement of the theorem. %

THEOREM 1.3, Let G be a countable group, I' a type 11, or 111 ergodic group
of automorphisms of (X, B, ) and let 2: G — N[I'| be a p-action. Then, there exisi
automorphisms y(g) €[I'], g € G such that g — v(g)A(g) defines an action of the
group G.

Proof. We can assume g’ X)) = oo and the set X to be represented as a disjoint
union X = ) X, , where u(X,) = co, g € G. Let a(g), g € G be automorphisms from
4€G

[I'] such that o(g)X, = X,,, i € G and o(g,)o(g:) = 0(£:8), &1 g2 € G. Choose for
any g € G an automorphism u(g) €[I'} having the property: wu(g)i(g)X, = X,,
where ¢ is the unit of G. Put, forg e G,

V(©)x = o(u(@Ago( A g)"'x, xeig)X,, hed.

Then y'(g) €[] and y'(g)A(g): X, — X, forallh € G. Check that 2'(g) = y'(g)i(g)
commutes with ¢(/1;), i, € G. Indeed, for x e X,, h € G

o(ln)A' (g)x = ol Mu(g)(ga(h)x =
= q(/lllz)u(g)).(g)a(hl/l)‘U.(g)‘]/'.(g)a(hl).\‘ = J(g)o(ky)x.

Thus, we can apply to the p-action /’: G — N[I'] the method that was used to prove
Theorem 1.2.

1.8. In this paper, we shall use the terminology and the facts of the measur-
able groupoid theory (see [10], [19], [8]). Note that the results and the proofs of the
paper can be expressed in the terms of the groupoid theory. However, we use the
characteristic approach. of the ergodic theory to study the countable groups of
automorphisms of the measure space, becausc we intend to essentially use defini-
tions and facts of [6], [2], [3], [4], [12], [18].

We remind the reader of terminology. By (#, C) or simply by s# we denote
a measurable groupoid, where C is a class of Borel measures containing a quasi-
-invariant symmetric measure on 2. For an element x €, r(x) and s(x) denote
the left and the right units of x respectively, and xy and x~* denote the prdduct of x
and y, and the inverse element of x, respectively. The space of units of the groupoid
H# will be denoted by #, A .Borel function f: # — @ (3¢ and ¢ are measurable
groupoids) is called a homomorphism, if for a.e. (x, y) for which the product xy
is defined, the equality f(xy) = B(x)B(y) is true. In particular, ¥ may be a group.
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The groupoid s is called approximately finite (a.f.), if # = H#,, #, =
k:l

< )+, and every groupoid £, defines on the space of units F#? = #® a
finite relation of equivalence.

Later on an important role will play the cohomologic Bures-Connes-Krieger-
+Sutherland theorem presented in [13].

THEOREM 1.4. Let 4 be an a.f. groupoid, G a Polish group, H a normal Borel
subgroup in G, and H the closure of H. Let B, and B, be Borel homomorphisms from
G in G such that By = B, (mod H). Then, there exist Borel maps h: %9 — H and
P:X = GO S H such that

(1.13) Ba(v) = h(MPFNBDP(()) ™, v €9.

Since we shall need formulae from the proof of Theorem 1.4, we shall present
in the Appendix the highlights of the proof, according to [13].

2. OUTER CONJUGACY. I

2.1. G will denote everywhere in this paper an arbitrary countable amenable
group. By ¥ = 4(Q, ¢) we shall denote an a.f. ergodic group of type III, automor-
phisms defined on (X;, 4,, o) = (XX Y, & X F, ux v)according to (1.2) and (1.3)
by the automorphisms Q,, S, and the function ¢(x). By p we shall denote an action
of the group G from N[¥(Q, ¢)], ie. p(g) € N[%(Q, ¢)], g € G. Recall that we
exclude the trivial case where the action p is such that p(g) €[9], g €G.

In view of the results of [2], [3] (see (1.5)), there exists for every g €G an
automorphism #(g) € [¢] such that

(2.1) 1(2)p(g)(x, ¥) = (a(@)x, VLg)y), ge€G,

where a(g) € N[Q], x = V., (g) (x € X) is a measurable field of automorphisms taking
values in N[S]. Put

p(g) = tg)p(2), g€C.
Then,
p(g0p(g2)(x, ¥) = t(g)p(g)t(g)p(gr)(x, ¥) =

2.2) = 1p(g:82)(x, ) = 11(2:82) " p(@1£:)(%, y) =

= t'(a(g182)x, V. (8182))),
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where ¢, t' € [¢]. On the other hand,
2.3) p(g)p(g:)(x, ¥) = (a(g)a(g2)x, Vatey(g)Vi(82)y)-

Let us denote:

Zn, U, x) =11y , n=0

-1 -1
UQ_lx v Uan , n<0.

Comparing (2.2) and (2.3), we conclude that the automorphism ¢’ € [¢4] is a skew
product, i.e.

t'(x, y) = (@Q"9x, Z(n(x), U, x)s.y),

where x — s, €[S] is a measurable field of automorphisms. Consequently, for a.e.
xeX

@4 0" Pa(g,g)x = a(g)a(gy)x,
2.5) 5:Z(n, U, a(818)X)V(£:82)y = Va )+ (g)Vi(82)y,

where n,(x) = n(a(g:8,)x), s, €[S] with the automorphism x — 0"™x -belonging

to [Q].

Similarly,
p(&) (%, ») = (alg) 7%, V-1, (8) %)
and ‘
p(&)(x, ¥) = 11p(2) Mx, ¥) = tilalg~Vx, Vi(g~YW).

Therefore, there is a measurable function x — m(x) such that
2.6) Q" Wa(g~Y)x = a(g)'x,
(27) o-xZ(m U a(g_l)x)Vx(g_l) =V a(g™ )x(g)_l’

where o, €[S], x e X.

ReMARK 2.1. (1) It follows from (2.2) — (2.7) that the automorphisms p(g) €
€ N[%] and a(g) € N[Q], g € G define the p-actions p(-) and a(-) of G. Thus, the
group generated by a(g), g € G and [Q] is a.f. (Theorem 1.2).
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(2) Any automorphism g € [Q] may be extended to an automorphism ¢, € [¥]
as follows: if gx = Q"™y, then we shall set g,(x, ¥) = (Q"¥x, Z(n, U, x)y). Thus,
it follows that if in relation (2.1) for a certain g, € G it is truc that a(g,) € [Q], then
the automorphism #(g,) € [¢] may evidently be chosen to be such that p(g,)(x, )) =
= (x, V{go)y), i.e. algy) = 1. Hence, by an appropriate choice of the automor-
phism 1(g) €[%], one can arrive cither at a(g) ¢ [Q) or at a(g) = 1.

Lemma 2.2, Let
(2.8) H={geG:alg) =1}

Then, H is a normal subgroup of the group G.

Proof. The cases of H = {e¢} and H = G are trivial. Let # € H and for any
g € G we shall consider ghg—'. In Subsection 1.3, the surjective homomorphism
mod: N[¥] - C{W4(-)} was defined. Then,

mod p(ghg~") = mod p(g) - mod p(/1) - mod p(g) .
Thus h € H if and only if mod p(lh) € {W,(-)}. Therefore, modp(ghg~") €
€ {W4(-)}, whence ghg-le H. s

We shall now present another formula which we shall need later. Since for
heH and g €G, according to Lemma 2.2, ghg™* = I’ e H, then p(g)p(h) =
= p(h")p(g) or tp(g)p(h) = p(h)p(g), where t € [¥). We have

p(h)p(g)x, y) = (a(g)x, Vawlh)Vi(g)y),
p()p(h)(x, ¥) = (a(g)x, VAV.(h)y),
whence we sec that 1 €[S,] and therefore,
2.9) SV = Va1 Vile),

where x — s, €[S].

Note that from (2.1) and (2.4)—(2.8), the sct of automorphisms p(G) forms
a group modulo [¥], the set p(H) forms a group moduio [S], and the set a(G) forms
a group modulo [Q].

2.2. Consider two actions p, and p, of the group G which belong to
N[%(Q, ¢)]. Our principal result is the following criterion for outer conjugacy of
the actions p, and p, (the required definitions may be found in Subsections 1.2,
1.3 and 1.7).



_TYPE 11§, TRANSFORMATIONS 15

THEOREM 2.3. In order that the actions p, and p, of a countable amenable
group G such that p(g) € N[9(Q, @), i = 1,2, g €G, where = 4(Q, @) is an
ergodic group of type 11, automorphisms, should be outer conjugate, it is necessary
and sufficient that the following conditions should be fulfilled :

(2.10) mod p,(g) = h~'mod p,(g)h, g€,
A1) {g€G:pg) €l9)} = {g €G : pylg) €[9)),

where the automorphism h € C{W 4(-)} and C{W (-)} is the centralizer of the
flow associated with 4.

We will divide the proof of Theorem 2.3 into three parts, representing three
distinct cases. In each part, we shall formulate and prove a theorem analogous to
Theorem 2.3. Note also that the necessity of conditions (2.10) and (2.11) follows
immediately from the definition of outer conjugacy; thus it is only their sufficiency
that is to be proved. '

LeEMMA 2.4. Let 4(Q, ¢), G, py, ps be the same as in Theorem 2.3 satisfying
conditions (2.10) and (2.11). Then, there exists an action p}, isomorphic to the action py
and such that

mod p,(g) = mod py(g), g€G.

The proof follows from the results of [3} (see Subsection 1.3): it is sufficient
to choose in N[#(Q, ¢)] an automorphism R, for which modR =/ (the
automorphism /1 being the same as in Theorem 2.3), and to use the fact that
the map mod is a homomorphism. Then, put p;(g) = R-1p,(g)R, g €C.

Thus, in proving Theorem 2.3, we may replace (2.10) by the condition

2.12) mod py(g) = modpy(g), g€G.

Now, if we apply the results of Subsection 2.1 to the actions p, and p; ,
we shall have

(2.13) t(8)p(8)(x, ¥) = pg)x, y) = (alg)x, Vi(g)y), i=12
Applying [3, Proposition 1.5} to j,(g), pa(g), g € G, we may assume that
2.14) D(Vi(g) = ®(Vi(2)),

(2.15) | ay(g) = ay(g) = a(g), g€G.

Therefore, it follows from (2.8) and (2.15) that H, = H, = H.
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Thus, for the actions p, and p, from N[¥] sat1sfymg (2.12), there are only
the following three possibilities:

(A) the group H is trivial: H = {e};

(B) the group H coincides with the group G;

(C) the group H is a proper subgroup of G.

The case (C) is general. In the concluding section we shall discuss the question
of possibility of the realization of the cases (A), (B) and (C). The situations (A)
and (C), generally speaking, are possible only for some groups %(Q, ¢). In Sub-
section 4.1, we construct an example of a type III, group ¢ for which the cases (A)
and (C) are realized. Lemma 4.3 (see below) shows that the case (B) is always
realized.

In this section we consider the case (A), while (B) and (C) will be studled
in two subsequent sections.

2.3. Theorem 2.3 becomes, in case (A), the following:

THEOREM 2.5. Let ¥ = 9(Q, ¢) € Aut(X X Y, B X F, uxv), pg) e N[¥],
i=1,2 g€G and modpg) = modp,g), g€G. Let also pi(g) be deﬁned
according to (2.13) and the automorphisms a(g), g € G satisfy the condition
a(g) # 14, g # e. Then, the actions p, and p, of the group G are outer conjugate.

(Note that the condition of Theorem 2.5 lead to the equality (2.11).)

Proof. Let # be the cﬁuivalence relation generated by the automorphisms a(g),
g€ Gand Q. By Theorem 1.2 and Remark 2.1, & is a.f. Any element (x, y) € #
uniquely defines the quantities n = n(x, 7) and g = g(x, y) by means of the equality

yx = a(g)Q"x.

Let us define the homomorph1sms B, and B, from 5 in N[S] in the followmg
way. Approximately finiteness of o# implies that there exists an automorphism
R € Aut(X, 4, p) such that its full group [R] defines the groupoid #. Then
Rx = Q"a(g)x, where n = n(x), g = g(x). Put in this case for i =1, 2:

(2.16) Bix, Ry = WL = Z(n, U, a(@)x)Vi(g), xeX
and define for anyn € N

2.17) B, R = Wines ... Wi Wi,

(2.18) Bl R = Wi )L (W),

Thus, by means of (2.17) and (2.18) the maps B; (: = 1, 2) are homomorphisms
of the groupoid +# in N[S].

1t follows from (2.14) and (2.16) that 3, = f5, (mod [ST), where the closure [S]
is considered with respect to the topology in N[S] generated by the metric d (see
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Su'bsectionA1.4). Therefore, épplying Theorem 1.4, we obtain the maps P : X — [S]
and o:5 — [S] such that

(2.19) B:() = a(Pr(y) B (MP(s(v)), v €l
For the element y = (x, Q) € #. it follows from (2.19) that
(2.20) « = 6,(x)P(Qx)~U.P(x)

and for y = (x, a(g)) € # we have

(2.:21) Vi(g) = a,(x)P(u(g)x)~'Vi(g)P(x),

where 6,(x), a,(x) €[S].

Put P(x,y) = (x, P(x)y), then PcAut(X x Y,2Z x #, u X v). It follows
from (2.20) that P-1Q,P = Qu0, (0, €[S,)), i.e. P € N[4(Q, ¢)]; from (2.21) it
follows that for any ge G

(2.22) P1p1(8)P(x,y) = 04pa(g)(x,¥), o, €[S,).

Equation (2.22) shows that the actions p, and p, are outer conjugate via the
automorphism P.

3. OUTER CONJUGACY. II

3.1. In this section we shall study the case (B) (see Subsection 2.2), i.e. the
situation where the automorphisms p,(g) are of the form

G.D pig)x, ») = (x, Vi(g)y), ge€G,i=1,2.

Recall that in this case the group H = {g € G : a(g) = 1} coincides with the whole
group G. Theorem 2.3 becomes as follows.

THEOREM 3.1. Let p, and p, be actions of a countable amenable group G
on (X XY, BXF, uxv)y=WXy,%B,, 1) such that plg) e N[9(Q, ¢)], i =1,2
and pAg), g € G satisfy (3.1). Then, p, and p, are outer conjugate if and only if

(3.2) d(Vig) = Vi), g¢€C
and
(33) Gy =1{geG:Vig) €[ST} = {g € G : V¥(g) €[SI}.

Clearly, conditions (3.2) and (3.3) are necessary for outer conjugacy. We
proceed now to prove their sufficiency.

2 — 2609
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Note that the group G, is a normal subgroup of the group G. If G, = G,
then the statement of Theorem 3.1 becomes trivial. Therefore, we shall assume G,
either to be a proper subgroup of G, or G, = {e}. The two cases are considered
simultaneously. A

Let I'; be an a.f. group of automorphisms of (X,, %,, u,) constructed by
p(G) and %(Q, ¢), i = 1, 2. According to the results presented in Subsection 1.3»
the function ¢(x) may be assumed to take on only two values: logk, and logk,.
Therefore, the Radon-Nikodym cocycle r of the group % takes on values in the
group A(ky, ko) = {kiky :n,m € Z}.

Since p(g) € N[9(Q, ¢)], g € G we have

(34) Vé\(g)UxV‘é(g) = st.ia i=1, 27

where x — 5%, € [S]. Then, from ergodicity of Q and (3.4) it follows that ®(Vi(g)) =
= const for p-a.e. x € X. Since (3.2) is valid, put for i =1, 2

P(Vi(g)) = log(g).

Thus, for any y eI’l: and a.e. x € X
i r(xo, 7) € Z,

where 2 is a countable subgroup of R% with k,, k, and 7(g), g € G as generators.
Every element y of I'; (i = 1, 2) may be represented as

(3.5 X = pi@txe, X = (x,¥) € Xo,

where ¢t €[¥] and g = g(x,) € G. If the same element y is represented as yx, =
= p(g)tx,, then evidently g7'g € G,. Hence we may define a map o;: Xy X I'; —
~ G = G/G, by setting

(36) “i(xo, ')’) = g’

where g € G and contains the element g € G defined in (3.5). It is easy to see that
a; ({ =1, 2) is a measurable cocycle.

3.2. For the sake of simplicity, we omit for the time being the subscript 7
and assume that the group of automorphisms I' < Aut(X,, %,, U,) is generated by
the groups p(G) and %(Q, ¢), where p(G) = N[%(Q, ¢)]. Besides, on Xy X I' there
are two cocycles defined: a : X, X I' = G and r: X, x ' = Z.

If A< X,, po(4) > 0, then denote by {I'], the group {y €[I'] : yx, = x, for
lig-a.e. Xo € X\ A4}
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THEOREM 3.2. Let T <= Aut(X,, %,, no) be as above and let A an arbitrary

subset in X, of finite measure. Then, there exists a sequence of I sarrays &, =
M

k
= U &) such that
j-=1
o M
D Iyxo = (U U 9E0))x, for ae. xo € A, where [I')) =[I'],;
Feo-1 =1
[ Mlc
2)BnA=c¢ (Pl l_]1 Q’(Ek(i)));

3) on any clement of the array () (i=1,2,... . M, k=1,2,...) the
cocycles o and r are constant;

4) for any fixed k € N the sets on which the arrays are defined form a partition
of the set A.

We shall premise the proof of Theorem 3.2 with the following statement,

LEMMA 33. Let I and A as in Theorem 3.2; let ¢ >0, D < A be given
with py(D) > 0; let T be an automorphism of the set A such that [T]=1[I,.

m

Then, there exists a I ;~array { = U {; of A, for which.
i=1

(@) l‘o({xo €A :Txy € (f(‘:)xo}) > (1 ——‘8);10(.4) N

(b) there exists a set D' € P({) such that
Bo(D A D) < gpg(A);
(c) on any element of the array (, the cocycles o and r are constant.
Proof. Let & = (4, [1, N], C(.), y(-, -)) be a I' ;-array of A such that
. - . I 8
3.7) ({5 €42 Txo €5(E)x)) > (1 = 2—) ()
and for a certain D" e@(f)

(3.8) 1o(D A D) < -:-;L‘,(A).

Let us take in C(1) a subset C’ such that for any automorphism y(j, 1)
(j=1,2, ..., N) the function r(x,, y(j, 1)) takes only a finite number of values
from the group X, when x, € C’. It will be also required that

(3.9 Ho(C(H) — C) <6,

where the number § > 0 will be chosen later. Divide the set C’ into subset C’(i),
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i=1,2,...,p such that for a.e. x, € C'(¥)

(3.10) r(xe, ¥(j, 1)) = 6(j) = const, j=1,2,...,N.
Then,
N p N ’
A = (U U U 1)C'(i)) U (U y(j, )(C(1) — c’)),

jolio1 j-1
This union consists of disjoint sets.
By {'(f) we denote a I -array which results from restriction of the array &
to the set CIJ y(j, DC'(7), i =1,2, ..., p. On the set
jL
J N

3.1 A" =0, I(C(A) = C)

j=1

take the trivial array {'(0), i.e. put %({'(0)) = {1}, 2({'(0)) = A".

Remind that in the group %(Q, ¢) (and therefore in I') there is an auto-
morphism Sy preserving the infinite measure y,. Introduce the concept of S,-
-expansion for the I'-arrays {'({), i = 0, I, ..., p. Suppose that for the arrays {'(¢)
and {'(;) there exists an automorphism s €[S,] such that for some j, j, €[l, N]

(3.12) sy(j, DC'G) = y(j, 1)C'(i)
or (for i = 0)
s4" = y(jr, DC'(@y).

Then, from the two I'-arrays {'(i) and ('(i,), one can straightforwardly construct
a I-array f’ taking into account (3.12) which will be called the S;-expansion of
the arrays ('(/) and {'(i,). By applying the operation of S;-expansion to the set
{¢@) :i=0,1, ..., p}, we obtain the set of the I'-arrays {E’(i) =12, ..,p}

Py <P
Choose now a number ¢ > 0 such that (3.9) and (3.11) should lead to the
inequality

(3.13) mm3<§mu>

- 7y -
Then, there obviously exists a set D’ € I 2({'(7)) such that
i1

(3.14) ;Mﬁano<;mu>
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and, therefore, (3.8) and (3.14) lead to the inequality
(3.15) 1D A D) < ; 1tg(A).

Now, since

[ 9@ < () 9@

ii=1 i-:1

and, remembering (3.13),

Ho ({xo €A :9()x, = .Elll g(['("))xo}) > (1 - ‘2—) Ho(A),

then (3.7) becomes
(3.16) Ho ({xo €A:Tx, € ,~.L1 @'(CN'(i))xo ) } > (l — ;) wo(A).

~ pl ~
Note also that on any element of the array (" = U {'(/) the cocycle r is
i=1

constant by construction (see (3.10)).

Then, let us do the following. Repeat for every array f (/) all the constructions
made previously for the array &, so as to reach the constant cocycle a. Namely, every

array f’(i) generates a finite collection of I-arrays {n,(i) :n =1,2,...,n} such
that on any element of the array (i), n = 1,2, ..., n; the cocycle o is constant.
After that, enlarge each of the Iarrays {n,():n=1,2,...,n;,i=1,2,...,p}
with respect to S,-expansion. Denote the resulting set by {{(i) :i=1,2, ..., m}.

Construct the arrays #,(7) so that the approximation of the automorphism 7 and

the set D should become worse by no more than ;uo(A). Then, it follows from

m

(3.10), (3.15) and (3.16) that the array { = U {(/) satisfies the conditions of
. i1
the lemma.®) %

Proof of Theorem 3.2, Let {¢]2., be a sequence of positive numbers mono-
tonically converging to zero and {D,}72 , a sequence of sets, dense in #n A and

containing each element an infinite number of times. Apply Lemma 3.3 for ¢ = ¢,
M

1
D = D,. The resulting I' ,~array & = U &,(7) satisfies the conditions (a) to (c)
i=1

*) This lemma could be proved in the same way for the cocycle axr.
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of Lemma 3.3, where (/) is an array over the partition (4,(7), [1,L;], B(-))
M, M
and |_) A4,(/) = A. Consider the set B = LJl B,(1) and choose on it a I ,~array

i=:1 i=:3
such that By(1) € 2(n), i €[l, M,) and the refinement of the array &, by n, ie.
the array ¢; X n should have the following properties:

(317 Mol{xo € A 1 Txy € 9(&; X n)xo}) > (1 — 322—) Ho(A),

/" 1
(3.18) uo(Dy A DY) < "2‘32,

where D;' € #(E; X ). Then, we perform to the array » what we did to ¢ in
the proof of Lemma 3.3. Namely, we distinguish in B %()-invariant subsets on
which the cocycles « and r are constant. By the operation of S,-expansion, we

obtain the finite set of the arrays {&,(i) :i = 1,2, ..., M,}, such that 2(¢)) <
M, M,

< Ll 2(E,(0). Then, the array &, = U &,(i) has the following properties: the
=1 =1

group ¥(&,) approximates the automorphism T accurate to &, and the set D,
is approximated by a set D; € #(£,) also accurate to &, . In constructing the arrays
1:(j), the approximation worsened by (1/2)e, as against (3.17), (3.18) (see the proof
of Lemma 3.3). Note that any set from 2(£)) is in 2({,); thus, the array &,
is a refinement of &, .

By continuing this procedure a countable number of times, we arrive at a

M oo

sequence of I'-arrays { & = uk1 {,‘(i)} satisfying conditions (1)—(4) of the

k=1
%

4

theorem.
3.3. THEOREM 3.4. Let I'; be the group of automorphisms of (X, By, 1) =
=X XY, B X F,puxv) generated by p,(G) and %(Q, ¢) as above in Sub-

section 3.1; let a; be the cocycle from X, X I'; with values in G = G|G, defined
according to (3.6), i = 1, 2. Suppose that conditions (3.2) and (3.3) of Theorem 3.1
are fulfilled. Then, there exists an automorphism 0 € Aut(X,, B,, uy) such that
O[I110 = [I'y] and 0o po = py,

ay(xo,7) = ay(0x4, 0907, vy €[]

Jor pgae. x, € X,.

Proof. Choose a measurable set 4 < X X Y having the following property
for p-ae. xeX

(3.19) v4) = v{yeY:(xyed) =1,
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so that po(4) = 1. Fix also a sequence of positive numbers {¢,}3>, monotonically
converging to zero and a sequence of sets {D,}°, dense in #,n A and such

that each of its elements D, appears in it an infinite number of times.
N

Lemma 3.3 leads to a I'j-array {; = Llj {,(i) of the set A such that
i==1 .

and the following inequalities are fulfilled
{3.20) po({xg € A : Tyxg € 9(L)x0}) > 1 — &,

3.21) Ho(Dy A DY) < gy,
. N :
where [T;] = [I], D; € Z({,) and | 4,(i) = 4. Besides, for u,-a.e. x, € A;,(i)()
i=1

(3.22) ay(xo, y1(8)(j1 7)) = const,
{3.23) ri(xo, 11(8)(j1,J)) = const
for all j, j; €[1, Ny())-

Nl
Let us consider a partition of the set A into ¥, N,(i) parts such that
i-1

N, N,
(3.29) A= H A1), A1) = jL=J1 A1),

all these unions consisting of disjoint sets. The sets 4{(i)(j) are to be chosen so that
for p-a.e. x €X and all je[l, Ny, i €[1, N]

(3.25) {yeY:(x,») e 1OM) = v{y € Y : (x,5) € 4.
In particular, one may take in (3.24) A4;())(j) = A4:G)(j).
N
Let us show that over partition (3.24) of 4, a I'-array {} = L]1 {1(}) may
i=1

be defined. Indeed, from (3.22) and (3.23) it follows that if o, (x,, 7.())(ji, 7)) = & €G,
ri(xo, 1Dy, 0)) = 6 € X for x4 € A,(i)(j), then relations (3.5) and (3.6) give

{(3.26) 1@, J) X0 = pa(g) tiXo,

where g € g, 1, €[¥9] and

3.27) © X, ty) = ot(g) L
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Npte that if also y,())(jiy, J)xe = P(g)1(x,) with g’ € g, t] €[¥], then, as 1(Gy) = 1,
r(xo, 1) = nlx,, ). Put now for x, € A;())(j),

(3:28) ' ¥ )X = Pa(8)hXo,

where g’ is an clement from 2. Since (see (3.2)) #(Vi(g)) = ¢(Vig)) = P(Vig)
for p-a.e. x € X, then, by using (3.25), we have

v({y € Y : (x,¥) € Y1), NADG)}) =
(3.29 = v({y € Y : (x,») € n(O0h, NADD} =
= v({y € Y : (x, ») € A(N(j)})-
Therefore there exists an automorphism s € [S,] such that
(3.30) sYIO s NADG) = 410G
(the automorphism s evidently depends on 7, and j,). Put
nOG D = sEHOG D, j=12,.. ,N@, i=12, .., /N,

where s(i, j) satisfies (3.30). The elements y,({)(j, 1) generate over the partition
(A1), 11, M(D], A1G)()) a T'p-array

4@ = (40, [, M@, 4DC), 16 -)

Nl
fori=1,2,...,N.. Put {; = U {()). We see from the construction of the s~
i=:1

-array (; that
(33]) th(xo ’ )’1([)(]1 5])) = 12(x(’9 s ))1’(')(]1 ’j))’
(332) r(x, (D, 7)) = ralxg, 11D, 7))

for x, € A,(0)(j), xo € A, Joh €1, My(D]-
The second step of the proof is as follows. From Theorem 3.2, there exists a
N

2
Ty-array (5 = U (i(7) of the set A4 refining the I',-array (] and such that 2({;)
i =1

approximates the set D; accurate to &, and %({;) approximates the automorphism 7T,
([T,] = [[,]) on a set with a measure larger than 1 — ¢,. Otherwise, for (.
inequalities similar to (3.20) and (3.21) are valid. In addition, if {(i(i) =
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= (A3), [1, Ny(D], AXD(-), p3G)(- 5 ), then
%(xg, Va(D)(ji,)) = const,
ro(xo, vi())(jr, J)) = const

for xq € Ay()(j), J, i €[], No(i)].
By repeating the arguments used at the first step of the proof, construct a

N2
I'j-array {p = _Ul Lo(0), Goi) = (A(D), [1, No(D)], A(i)(-), 72()(-, -) of the set 4
such that v
v({y €Y : (x, ) € AN = v({y € Y : (x, ) € ()},

(3.33) %(Xo, Vo)1 1)) = aalxo, v2(D)(jr> ),
(334) ".1(x0 > ))2(1)(]1 ’ J)) = "2(}"(’) > 75(’)(/1 ) j))

for xo € An)(j), Xp € AXD(), Jjy n €11, ND)), i €11, Nol.

In this case, we make the I';-array so that it should be a refinement of the
I;-array {,. Note that even if at the first step we took A(i)(j) = A;(i)(§), then at
the second step A5(i)(j) is not generally speaking equal to 4,(i)(j), because the groups
of automorphisms %({;) and %({,) are different.

By repeating the above steps of the proof an countable number of times, we
obtain finally two sequences {{,}.; and {({;}s2, of I';- and I',-arrays, respectively,
which satisfy all conditions of Theorem 3.2. Moreover, it follows from (3.31)—
—(3.34) that on the elements of the arrays with identical indices the cocycles «;
and «, (and r, and r, as well) take the same values. Then, it is obvious from
these facts (for details see [4, Theorem 2.3]) that there exists an automorphism
6, mapping the set A onto itself, such that 6,[I],07" = [I';], and

(3.35) o (xg, V) = ax(0yx0, 007", v €[]4-

Since, according to the construction, the automorphism 0, conserves the partition
{x} x A, of the set A (see (3.25), (3.28)—(3.30)), then it is of the form

(336) 01(x> y) = (-xa 01x J’)a

where x — 6, (x € X) is a measurable field of automorphisms. It also follows
from the construction that 6,0 p, = .

Let us conclude the proof of the theorem. By virtue of ergodicity of S and
condition (3.19), there exists an automorphism s, € [S,] such that

(3.37) XxY=Usid, siAnd=0, neN.

neZ
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The automorphism s, and the group [I';], generate the full group of automorphisms
(), i = 1,2 (see [7)).
Define an automorphism 0 € Aut(X X Y, @ X #, u X v) by

(3.38) Oxo = 540,55 "%, X, €554, n€Z.

Obviously, 0[]0~ = [I',] because 05,0~! = s,.
Any automorphism 1y, € [I';] may be represented as

(3.39) Y1Xo = 5§ V150 "Xo

where x, € s34, y; € [[1]4 and m = m(x,) is defined from the condition y,x, = s5'A.
From (3.35) and (3.39), we have for y, €[I}]

ey(Xo, ¥1) = ty(xq, 5071850 ") =
(3.40) ’ )
= ay(55 "X, Y1) = (0155 "X, 017101 %),

where x, €.s§A. It is included in (3.40) that the cocycles «; (i = 1, 2) are equal to e
on the elements from [Sy).
On the other hand, it follows from (3.38) and (3.39) that

07,0720x, = Osg'y150 "xo = 55'0,7,07 0155 " x,
for x, € s§A. Therefore, for x, € sjd, ne€Z
(0o, 071071) = ap(Oy55 "xo, 50017107 Y) =
(3.41)
= oy(6,155 "%, 017107 ).
By comparing (3.40) and (3.41), we find that
(3.42) ota(xo, 1) = 0a(0xg, 09:0°Y),  y, €[I4]. %

LEMMA 3.5. Any automorphism 0 from Aut(X,, B, , 1), satisfying the conclu-
sions of Theorem 3.4, is in N[%(0, ¢)].

Proof. Proceeding from the definition of the cocycles «;, i = 1, 2 we have that
(3.43) [9] = {y €[} 0(x, 7) = €}
Therefore, if in (3.42) we take y, € [#], then in virtue of (3.43), we shall have

00,0~ €[9],
ie. 0 e N[¥]. . %
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Proof of Theorem 3.1. For any element g € G there exists in Xo=XXY
a set of positive measure E(g) such that for x, € E(g) and a certain y,(g) € [I},]

o, (o, 11(8)) = 0a(0x0, 07:(8)0Y) = 8.
Using relations (3.5) and (3.6) ,we find for x, € E(g)
78X = p1(®)xo,
07,(8)0~20xy = ps(g')t'0x,,
where g, ¢’ € g and t,t' €[%]. Therefore,
(3.44) P1(®)txe = 07 1p,(g)'0x,, x4 € E(E).

From the definition of the group G,, we have p,(g)t; = py(g"), f; € [4]. Therefore,
(3.44) is for x, € E(g) as follows:

{3.45) pr(g)xo = 01 55()ta0x,,

where 1, € [9]. However equality (3.45) is indeed true for ps-a.e. x, € X,, which
follows from ergod1c1ty of the group ¢ and Lemma 3.5. It follows from (3.40)
that 8 € N{S,}. This proves outer conjugacy of the p-actions p, and g, and thus
of the actions p;, p, as well. %

- REMARK 3.6. From the construction of the automorphisms 0; and s, (see
(3.36) and (3.37)), the automorphism 0 providing outer conjugacy is as follows:

(3.46) 0(x, ») = (x, 6,y),
where x — 8, (x € X) is a measurable field of automorphisms. As well, the auto-

morphism 0 preserves the measure u X v = p,, i.e. the field of automorphisms
x - 0, preserves the measure v.

4. OUTER CONJUGACY. III

4.1. Let us study the case (C), where there exists a proper subgroup H = G
(H is a normal subgroup) such that (see (2.13)), for i = 1,2

(41) : ﬁi(g)(xy y) = (X, V;(g)y)a g €H,

4.2) pi(g)(x, y) = (a(g)x, Vi(g)y), a(g) #1x, g€ G — H.
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,lLe't
Gi=1{g€G:ple) l9(Q, 0}, i=12

LEmMMA 4.1. Let p, and p, be actions of a countable amenable group G
lying in N{9(Q, @)} such that for p(g), g €G, i = 1,2 relations (4.1) and (4.2)
are fulfilled. Let also

4.3) mod p,(h) = mod p,(h), h e H,
(4.4 G§ = G},

where H is defined in (4.1). Then the action p, is isomorphic to an action p, such
that pi(h) = py(h), h € H.

Proof. Tt is easy to see that the group G§ (= G}) lies in H and is a normal
subgroup. Then relations (4.3) and (4.4) show that for the actions p, and p,
of H all the conditions of Theorem 3.1 are fulfilled. Therefore, according to Remark
3.6, there exists an automorphism 0 € N[#] of the form of (3.46) for which

Opy (0~ = py(h)t, h e H,

where t = t(h) € [4]. Thus, the action pi(h) = 0p,(h)0~1, h € H satisfies the condi-
tion of the lemma. 1Z)

REMARK 4.2. (1) In the group %(Q, ¢) constructed from the automorphisms
Q, and S, according to Subsection 1.2, the automorphism S, may be replaced
by a weakly equivalent automorphism S, , the group %(Q, ¢) being thus replaced
by a weakly equivalent one. Moreover, the measurable field of automorphisms
x — U, € N[S]may also be replaced by any other measurable field of automorphisms
x — Uy € N[S’] provided that &(U,) = ®(U.) [18].

~ (2) We may choose an ergodic automorphism S’ € Aut(Y’, #', v') such that
S’ev' = v, v(Y’) = co and such that there exists a flow {7} ,er in the normalizer
N[S8'] for which T o v’ = e'v'. To do so, it is sufficient to take as [S’] the group
of automorphisms dual to an a.f. ergodic type III;, group (see (1.4)).

_1 °
(3) The function P(U)) = ¢(x) + log qu_ﬂ.(x) may be chosen to take
1

a countable number of values. Indeed, by Subsection 1.3, ¢(x) € Ak;. ky)
and the measure g may be replaced by an equivalent measure u' such that

dQ 1oy’
g

lo is a piecewise constant function. As a result of such replacements,

the group %(Q, ¢) transforms into a weakly equivalent group.
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The following statement shows how the case (B) can be realized for an arbi-
trary a.f. type Ill, group %. ’

LeMMA 4.3. Let 9 = 4(Q, ¢) be an a.f. ergodic type 11, group, H a count-
able amenable group, Hy, a normal subgroup of H, G, a normal subgroup of H,
and of H, A+ H - R% a homomorphism such that A(Hy) = 1. Then there exists
an action p, of the group H on (X X Y, B X F, u X v) such that

(45) Po(h)(xs y) = (X, VO(/,)y), heH,
(4.6) po(H) = N[¥9], py(Gy) < (4],
“.7 mod Ve(h) = A(h), heH.

Proof. Consider the amenable group H = H/G, which is finite or countable.
Let T be an automorphism of a space (X;, 4, , i) preserving the finite measure g, ,

% the Haar measure on the group H. According to the results of {9], there exists
a cocycle for the action of T on X,, ¢ : X, X Z — H such that the automorphism

4.8) T(xy, &) = (Tx;, §¥(x,, 1))

of the space (X, X H, s, X %) is ergodic. Define an action of the group H on X, X H
by the formula

’ - e . “ -
(4.9) P (&)xy, &) = (x1, g81), g E€H, (v, g1) €Xy X H.

Then, for any g € H the automorphism p’(g) has the following properties:

(4.10) p'(g)o (i X %) = 1y X %,
@.11) p'()T = Tp'(g),
and

4.12) p(g) =1=geG,.

Now, let us apply Remark 4.2 and considerin (Y’, &#’, v')an automorphism S’
preserving the infinite measure v’ and such that in N[S’] there is a flow {R,}

having the property R o v' = ¢*v'. Define now an action p’’ of the group H = \H/H,
by

(4.13) p'(B)Y = Riog:ny’s heH,

where /1 € li. Because A(hy) = i(hy), if hy = hohy (g € Hy), then (4.13) defines
indeed an action of H.
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Let us use again Remark 4.2, and replace the group [S,] by a weakly equi-
valent group of type II,, automorphisms with the following automorphisms of

the space X X X; x Hx Y as generators (see (4.8)):

(414) (1 X i‘ X 1)(X., xl ’ §7 y') = (X, Txl 3 §¢(«\'p ])9 y'):
(415) (1 X l X SI)(xa x17 §>y’)=(x» xlaga S’y)
Define also an automorphism Qg by

(4.16) Oy(x, x1, 8, V") = (Qx, x;, &, ULy,

where a measurable field of automorphisms x — Uy is chosen so that |for p-a.e.
xeX

4a7) - ' Ui € {(R}P. s DU = O(UY).

The existence of such a field follows from the fact that, as stated by Remark 4.2
the function ®(U,) may be regarded as piecewise constant. It is clear that the group
of automorphisms %’ generated by automorphisms (4.14)—(4.16) will be wzakly
equivalent to the group %(Q, ¢).

~ Let us define now, according to (4.9) and (4.13), the desired action of the
group H satisfying (4.5):

(4.18) ), X1, 8, 1) = (x, p'(h)(x1, &), p"(h) ¥"), "heH,

where the element /- of the group H is such that A eh. Tt is easy to make sure
that (4.18) defines the action of H.The action p, of the group H is not free, because.
its subgroup G,, according to (4.12) and (4.13), acts identically. When h, € H,,
(4.10) and (4.13) show that py(/1iy) preserves measure, i.e. the automorphism

P
Vo(h)(xl H] ga yl) = (xl 5 hg > Rlog j(h)yl)

has the property: mod V°(/,) = 1. From (4.13) and the properties of the flow
{R}2 _,, follows (4.7). If h, € Gy, then (4.12) and (4.13) lead to the relation
polhy) =1, ie. pGy) < [9]. From (4.9), (4.11) and (4.17) follows the validity
of (4.6).

We shall show now that for any countable amenable group G one can realize
the case (C). The case (A) is considered similarly.

Let H be an arbitrary normal subgroup of G. The role of the Lebesgue
space (X, 4, u) will be played by the group {0, 1}9/¥x% with the Haar measure,
and we shall define the action of the group G/H X Z as the Bernoulli shift on
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{0, 1}9/HxZ_ Denote by a the action of the subgroup G/H x {0} and by {Q"}
the action e X Z. The action a of G/H x {0} may be regarded as a non free action
of G for which H acts identically. Standard arguments (see e.g. [16]) readily
prove that the automorphism Q on (X, £, p) is ergodic. It follows from Lemma 4.3
that on the Lebesgue space (Y, &, v) there is an action ¥ of the group G, such
that ¥(g) € N[S], g € G, where S is a type II, ergodic automorphism. Moreover,
Lemma 4.3 shows that V may be chosen in such a way that V(g)U UV(g),
where U € N[S]and mod U = e” # 1. Put

p(g)(x, ) = (a(e)x, V(g)y), ge€G.

Then, p(g) € N[9(Q, ¢)], g € G and the action p satisfies the case (C).

This example shows that there exist type IlI, groups % such that the cases
(A) and (C) can be realized. In the meantime, for some groups of type III, auto-
morphisms these cases cannot be realized. E.g., if a group ¢ is such that the centra-
lizer of the associated flow {W(-)} is trivial (see, e.g. [14]), then the cases (A)
and (C) are impossible. We shall discuss this point in more detail elsewhere on
the basis of a study of the properties of cocycles of countable automorphisms
groups. Here we shall formulate without proving the following statement:

Let {Wy ,(t)} be a flow of automorphisms, associated with a type III, a.f.
group %(Q, @) such that there exists an action a : G = C{W, ,(¢)} of G, and for
a normal subgroup H < G the automorphisms «(/h) € {Wy ,(-)}, # € H. Then,
there exists an action p : G - N[¥(Q, ¢)] of G, for which mod p{g) = «(g), and
the automorphisms p(g), g € G satisfy the case (C),i.e. a(f) =1 <« h e H.

4.2. Let the actions p; and p, of G be such that the p-actions p; and p,
satisfy (4.1) and (4.2). From Lemma 4.1 it follows that the p-actions p, and p,
of the group H may be thought to coincide. Moreover, if we consider the action
VO(h), h € H of H constructed in Lemma 4.3 and such that mod V() = mod p,(h),
i =1, 2, then it follows from Lemma 4.1 that the actions p, and p, are isomorphic
to the actions p; and pj, such that for them p/(h) = Vo(h), h e H,i = 1, 2. Thus,
we shall be able now to assume without loss of generality that the actions p, and Pa
satisfy the relations:

(4.19) pi)(x, y) = (x, V(h)y), heH,
(4.20) p)x, ¥) = (ale)x, Vi(g)y), g€G—H,i=1,2,

where H is a normal subgroup in G and a{g) # 1 for g ¢ H.
The principal theorem in the case (C) is as follows:

THECREM 4.4. Let %(Q, @), G, H be the same as above and the actions
P1> p2of the group G satisfy relations (4.19), (4.20) and p(g) e N[¥9),g € G,i = 1, 2.
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Let also for g€ G—H
(4.21) P(Vig) = o(Vig)).

Then the actions p, and p, are outer conjugate.
Before proving this theorem, we will prove the following two lemmas.

LemMA 4.5. Let S be an ergodic type 11, automorphism of a Lebesgue space
(Y, F,v), Sev=v;, Ha countable amenable group and V an action of H on
(Y, F, v) such that V(h) € N[S), h € H. Suppose that there exists an automorphism
R e N[S] preserving the measure v for which

4.22) RV(h) Rt =sV(h), heH,

where s = s(h) € [S). Let T € Aut(Y, F, v) be such that [T] coincides with the full
group generated by S and V(H). Then R € N[T} and there exists in [T} a sequence
of elements {¢,}%_, such that ¢, €[S] and d(c,,, R) >0 as m — oo, where the
metric d was introduced in Subsection 1.4 and convergence of o, to R is considered
in the group N[T].

| Proof. Consider in Y a subset 4(0) with measure v(4(0)) =1 and let the
automorphisms y, € [S] be such that the sets 4(0) and y,4(0) = A(n), n € N form
a partition of Y. Denote Hy = {h € H: V(h) €[S]}. Construct also, as was done

in Section 3, a cocycle o on the full group [7T] with values in the group H = HIH,-
For an automorphism ¢ € [T] and x € Y, we have

(4.23) tx = sV(h)x, sel[S], heH.
Put for ¢ defined in (4.23)

(4.29) a(x, t) = h € H,

where 1 € .
Use the result of [4], proving that on the set A(0) there exists a sequence
of T-arrays {£,}%., having the following properties:

(1) &, is a refinement of £,, n € N;

o0
(2) the group \_J 9(£,) has the same trajectories as the automorphism T ;
7 =1

(3) the o-algebra generated by ) #(£,) coincides with &F;

n=:1
(4) the cocycle « and the Radon-Nikodym cocycle r are constant on the
elements of the array £,, n e N.
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Construct the required automorphisms o,,, m € N. Let {,, = (¥,[0, N, — 1],
E,(), 0,(-, -)) be the array constructed by ¢, and the automorphisms y,, n € N;
consider the partition RE, = (Y, {0, N, — 1], RE,(-)). Since the measure of the
sets E,(0) and RE,(0) is equal, there exists an automorphism f,, € [S] such that
fuEn(0) = RE,(0). Put now for y €y,,()E(0), neN, meN, je[0, N, — 1]

(4'25) o-lﬂy = ‘Ryll(sl'"(j) R— l,f;n(sm(j) - 1}’"— 1)”

where §,,(j) = 0,,(J,0).

By virtue of (4.22) and the constancy of the cocycles « and » (see (4.24)) on
elements of the array £, , m € N the automorphisms o,,, m € N are easily seen
to belong to the group [S].

It remains now to verify that, in the group N[T], the automorphisms o,
converge (in the metric d) to R as m — co. Let us prove first that {c,,} converges to
R in the weak metric d,, (see Subsection 1.4). Indeed, let ¢ >0 and let 4 be an arbi-

«w M
trary set from &. Then there exists M € N such that in | {_) Z(7,{,) there is

n=1m==1

for sure a set B for which v(4 A B) < &. Since

(4.20) WRAAG,A) < W(RAARB) + v(RBAG,,A)
and

T w (V0 m(NEn(0)) = R(7,8,(NE(0))

for n, meN, jel0, N,, — 1], then RB = ¢,B for all m = M. It follows from
(4.26) that v(RAAG6,4) <2eform 2> M, ie. d(R,qd,) =0 asm —oco.

Now, by applying equality (4.25), we see that for y € Ry, 6, ()HE,(0), n, n, €N,
meN, jelo, N, —1]

am(yﬂlém(j)_ly;l)alzly =
= 0u(¥n0m() 707 D0 m(Af 2 *RE,() 1y 'Ry =

4.27)
= amvnl.ﬁ;lRém(j)—l'y"_l.R‘l =

= Ryn RYoyi v SR8 ()97 1Ry = R(yn 8D~ IRy

Since the full group [T] is generated by y,, n € N and |_J %(¢,,), the convergence

m=1
of o,,to R as m — oo in the metric d is a corollary of the equality (4.27). Thus,
it is proved that d(g,,, R) = 0 as m — co. A

3 ~ 2609



34 S. 1. BEZUGLYI and V. Ya. GOLODETS

LEMMA 4.6. Let the automorphism R be the limit in the metric d of a se-
quence of automorphisms {R,}2., from N[T]such that R,V(h)R;* = s,V(h),h € H,
neN, where H, T, S, o« and V are the same as in Lemma 4.5. Then

RV(WR-' = aV(h), heH,

where ¢ = o(h) €[S].

Proof. From the convergence of R, to R it follows that in the uniform metric
d, the sequence of automorphisms {R,V(I)R; 1>, converges to RV(/)R-1. As the
cocycle o« on the element R, V(IDR;! is equal ho(h el;) for all n € N, we have

a(x, RV(IHR-1) = h.

From (4.23) and (4.24) it follows that RV(IHR-1x = o, V(h)x = aV(h)x, where
and /i belong to the same class /1.

Proof of Theorem 4.4. (The proof will essentially use the proof of Theorem 1.4

presented in the Appendix.) Define on (X, 4, u) a p-action of the group G = G/H
assuming for p-a.e. x €X

(4.28) a(@)x = a(g)x,

where Z is an element from G such that g € g. Since a(H) = 1, then (4.28) correctly

defines a p-action of the group G independent of the choice of the elements g.
We have the obvious relations following from (2.4) and (2.6):

a(g) e N[Q],
a(g,8,) = qa(ga(gy), a(@)™' = q'a@™"),

where ¢, ¢’ € [Q]. Denote, as in Theorem 2.5, by # the a.f. groupoid generated

by the p-action a of G and [Q] on (X, &, u). Let R € Aut(X, &, ) be an auto-
morphism such that its full group {R] generates .
Construct two homomorphisms B, i = 1,2 from # to N[S]. Because

Rx = Q"a(g)x, where n = n(x), g = g(x), then put
4.29) Bix, Ry = Wi = Z(n, U, a(g)x)V(3).
For n € N put

Bix, R") = Won-a, ... Wi WL,

(4.30) _ .
Bix, R°")y = W)™ ... (Wen)™', i=1,2 xekX
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Thus, relations (4.30) show that the maps f;, defined by (4.29) on the element R,
can be extended to homomorphisms of the whole groupoid s#.

From (4.21) it follows that §; = ff, (mod [S]). Thus, all the conditions of
Theorem 1.4 are fulfilled. We conclude from this theorem that there exist measurable
maps x — s(x) € [S] and x — Py(x) € N[S] for which

4.31) W2 = Py(Rx)='WLP,(x) s(x).

The proof of Theorem 1.4 (see Appendix) implies that Py(x) = lim P,(x),
k-oo0
where P,(x) € N[S]. Let us show that for every k e N, h e H

(4.32) Px)VORP(x)"1 = sV,  s¥(x) e [S]

for a.e. x € X. The automorphism P,(x) is defined via the automorphism P,_,(x)
bysmeans of relations (A.2), (A.4) and (A.15). Therefore, it is enough to check
(4.32) only for P(x) and Q(x) (see the Appendix) satisfying (A.4) and (A.L5),
respectively.

We have

P(x) = 5,(x)Ba(x, RMPy(x, R") ! =
(4.33)
= (Wi . WAL (Wit )Y s,(X) €[S,

where we assume n > 0. Therefore,

P(x)"WWP(x) = sp(WW g, ... WAIFR)™L L. (W )71 X
(4.34)
X VW i o WAL L (Wi )7 sy(x) e [S].

Consider for i = ], 2 the expression
(W) WUMW, = (Vi(go ) Z(m, U, a(g,y)y)~* X
4.35)

X VUIZ(m, U, a(go)V(g0), Y EX,

where the number m is defined from the equality Ry = Q"a(g,)y. Since p;(h) €
€ Nf#], then, by (4.19) and Lemma 4.3

Uz Wh)U, = s,Vo(h)
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and therefore (4.35), according to (2.9), becomes
. WH W (Wi =
(4.36)
: = sy (V3 (&) TV U)V(&o) = s,/ VO(hy),

where /i, = ggthg,. Thus, the right-hand side of (4.34), according to the equality
(4.36), becomes simpler and (4.34) leads to the following relation for p-a.e. x € X:

4.37) P(x)" VP (x) = ss(xyVo(), heH
Further, for
O(x) = PLOBi(x, RNO()By(x, K™Y, xeX

(see (A.15)) the function P(x) commutes with Vo(/) up to [S]. Since Q,(x) is defined
in quite the same fashion as P(x), the function Q,(x) has the same property. Consider

OV U(MQ(x)~ = P(x)Bulx, RNQ:(x)Bi(x, R)~1 X
X VB(x, RQ(x)Bi(x, RYIP(x)™Y, x€X.
According to (4.36) and (4.37), we have for x € X
(4.38) Q) UMQ(x) ™ = sy(x)V(h),  s4(x) €[S].

Thus, equalities (4.37) and (4.38) prove (4.32).

Now let us apply Lemmas 4.5 and 4.6. Because Py(x) is, for almost every-
where fixed x € X, the limit of P,(x) as & — oo and because for P, (x) (4.32) is valid,
then for Py(x) the following relation is true:

{4.39) Po(x) " VR)Py(x) = so(x)VOh), heH

for a.e. x e X.
Consider the automorphism Rj(x, y) = (Rx, Wly), i = 1,2. Formula (4.31)
shows that

(4.40) Pi'RyPosy = R§,

where Py(x, y) = (x, Py(x)y), s, € [S,]- Further, since Qx = R"¥x and a(g) ¢ [0]
for all g, we have

(4.41) (RO ™(x, ) = (Qx, V(M) U,s5(x)y),

where s;(x) €{S] and the element A = h(x) € H does not depend on i, because it
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is defined by group relations between representatives of co-sets. Therefore, it follows
from (4.40) and (4.41) that for ae. x e X

Po(Qx) TV AMUPo(x) = sg(x)V (MU
or according to (4.39),
(4.42) Po(Qx) U Py(x) = s4x)Us,

where s4(x), s(x) € [S]. Equality (4.42) proves that P, € N[%].
For the same reasons we infer

@43 Po(a(@)0) VHR)Pox) = VHE)SH00),

where s¢(x) € [S] and g is a representative of a co-set of the group G/H.

Let us conclude the proof of the theorem. Let g be an arbitrary element of
the group G and g an element from G such that g and g lie in the same co-set
of the group H, i.e. g = gh. Make the following calculations by using (2.4), (2.5),
(4.42) and (4.43):

Po(a(g)x) M VHg)Po(x) = Po(Q"a(g)a(h)x) 'V (gh)Py(x) =
= Po(Q"a()x) " Z(n, U, a(g)x)VA(2)V (INPy(x) =
(4.44) = Py(Q"a(8)x)'Z(n, U, a(g)x)Py(a(g)x) X
X Po(a(8)x) 7V HUZ)IPo(x)Po(x) 2V () Py(x) =
= Z(n, U, a(g)x)Vi@)V°(h)sy(x) = Vi(g)s1o(x).

Thus, (4.44) proves that Pgp,(g)P, = px(g)sh, g € G, where s, €[S,]. Since
P, € N[¥], outer conjugacy of the actions p, and p, of G is proved. %

APPENDIX

Proof of Theorem 1.4 (sketch). The idea of the proof is as follows. Since ¥

oo
is an a.f. equivalence relation, then 4 = | J %,, 9, < 9,,, and every equivalence
k1

relation ¥, is finite type 1. First, the statement of the theorem is proved for every
%, and the respective maps P, and /, are constructed so that they have limits
P and h as k — oo. The required result will be obtained by passage to the limit.
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LemMMa ALl Let 4 be a type I, (n < oo) equivalence relation, X, f, P,
G, H be as above in Theorem 1.4, d be a complete metric on G compatible with
the topology of the group G and x — &(x) : X - R* a Borel map. Then there exist

Borel functions It : 4y — H and P : X — H satisfying (1.13) and
(A1) d(P(x),e) < e(x), xeX.

Proof. Let A(0) © X be a Borel set intersecting each %-orbit at exactly one
point. Put

(A2) P(x) =e¢, xe€A0).
As in [13], let us construct the Borel map /i(y) for y € s~1(A(0)) such that

d(h(@) 7 Ba(DBi(y) 715 €) < &(s()),
(A.3)
' () =e, 7y =(x,x)es HA(0).

For y € s71(4(0)) and y = r(y), let us define

(A.4) P(y) = h() 7 Bo(nBy(») ™"

Then, P is defined almost everywhere on X and, according to (A.3), satisfies (A.1).
For y € s71(4(0)), (1.13) is fulfilled, which follows from (A.2) and (A.4).
For y € r~1(A(0)), put

(A5) h(y) = PUr(yNBi(0)P () ~(y ") P())B(y) 2P (7).

For any y € @ there exist y, € r"1(A(0)) and y, € s71(A4(0)) such that y = y;y,.
Therefore, put

") = h@) PGB P(s(ry) h(ve) X
X P(s(y DB (y)) " P(r(y)

(A.6)

Simple calculations using (A.5) and (A.6) show that (1.13) is fulfilled. From the
equality f, = B, (mod H) it follows that P € H. 7|

LeMMA A2, Let G, X, By, Bo, G, €(-), d be the same as in Lenuna A.)l. Let
# be a type 1,, equivalence relation (m < oc) and # > 9. If & > 0 is given, then

there exist Borel maps k :# — H, Q : X = H such that, when y € J.
(A7) KHQUENBMOE) ™ = B,

(A.8) ky) =), ve9g,

(A.9) d(P(x), Q(x)) < 9, xeX.
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Proof. Let A(0) and P(x) be the same as in Léemma A.l. Put s, = #|A(0),

(A10)  B(xo) = {geG: sup d(P(x)Bx, xp)gh(x, xp)%, P(x)) > 6},

X, X )EW
(A.1D) go(x) = inf{d(e, &) : g € B(xy)} = dist(e, B(x,)).

By applying Lemma A.l to the equivalence relation o, and the function gy-),
we find the Borel functions Qp: A(0) — H, k,:#, = H such that

(A.12) Bo(7) = ko(NQolrNBNQo(s(N) ™, 7 €#4,
(A.13) d(Qo(y), &) < &), ¥y € 4(0).

For (3, x) € # there exist unique y,, x, from A(0) for which (y, y,) €%,
(x, Xy) €9, (yy,xy) €Hy. Put for (y, x) e

k(y, x) = h(y, o)) PO, yo)ko(Yo» Xo)Ba(3s ¥o) T1P(y) ™1 X
(A.14) X PPy, ¥0)Qo(¥0) Bi(Vo » X0)Qolx0) (g, X) X

X Qolxo) Bi(¥o > X0) T2Q0(30) *Bu(y, ¥o) THP(M) Y,

(A.15) Q(x) = P(x)Bi(x, x0)Qo(xo)Br(x, x0) 7.

Calculation using (A.2), (A.6), (A.12), (A.14) and (A.15) proves that (A.7) and

(A.8) are true. From (A.10), (A.11), (A.13) and (A.15), (A.9) follows.
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