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AN L'-TYPE FUNCTIONAL CALCULUS FOR THE LAPLACE
OPERATOR IN L*(R)

WERNER J. RICKER

i. INTRODUCTION
The Laplace operator L = —d?/dx? in L(R), 1 < p < oo, with domain
D(L) = {feL’R); f' €AC, " e L’(R)}

1s a closed, densely defined operator with spectrum (L) = [0,00); here AC is the
space of functions on R which are absolutely continuous on bounded intervals. For
0 <w <, let S, denote the open cone {z € C\{0}; larg(z)| < w}. Then it is

known that L, considered in LP(R) for 1 < p < oo, has an #(S,)-functional cal-

culus for every 0 < w < &, [9]. Operators admitting an #(S,,)-functional calculus
for some 0 < w < © have recently been investigated in the Hilbert space setting
by A. McIntosh [8] and A. Yagi [11]. The situation in Banach spaces is less clear and
more complex; some positive results due to M. Cowling can be found in [2].
Getting back to the Laplace operator, it is known for p = 2 that L is self-ad-
joint and so L admits a far more extensive functional calculus than that based

on #7(S,) for 0<w<n. Indeed, it is possible to form a continuous linear operator
Y (L) for every bounded Borel function iy on R* = [0, co) via the spectral integral

(L) = S (AE),

a(L)

where FE is the resolution of the identity for L. The question arises of whether this is
still the case for p # 2, that is, whether L is a scalar-type spectral operator (in the
sense of N. Dunford [3])? Then L would again admit a functional calculus with
respect to the bounded Borel functions on R*. Unfortunalely, this is not so [9].
Nevertheless, the aim of this note is to show that something positive can still be said
when p # 2.
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Fix 1 < p < oo and let .#® denote the Banach algebra of all (equivalence
classes of) functions m: R — C which are p-multipliers, equipped with the usual
multiplier norm " -.' . That is, " m, = [[m(D)|| where the operator norm of

m(D) is taken in the space L”(R). Here D = —id/dx is the closed, densely defined
operator in LP(R) with domain

2(D) = {f € L"(R); f € AC, [’ € L"(R)}

and m(D) is the bounded operator in L”(R) specified by the p-multiplier m, that is,

(DY)~ =mf, feltn L(R),

where * denotes the Fourier transform. Let y(x) = x2 for each x € R. Denote by
AP R*) the Boolean algebra consisting of those measurable sets £ < R+ for
which X0y belongs to .#(". So, if E € #/"(R*), then the bounded operator in
LP(R) given by

P(E) = (Xg = v)(D)

is a projection which commutes with L (see Section 4).

Let Z(L"(R)) denote the space of all continuous linear operators of L?(R) into
itself. Then P: &Z(P(R+) — #£(L"(R)) is a multiplicative, finitely additive set function,
For p = 2 the Boolean algebra of sets &/®(R*) is actually the g-algebra of all mea-
surable subsets of R+ and P(-), which is g-additive with respect to the strong oper-
ator topology in Z(L*R)), is the resolution of the identity for the self-adjoint
operator L. However, if p #2, then the range {P(E); E € &P (R+)} of P(-) is not
uniformly bounded in #(L"(R)), [9; Lemma 2]. Accordingly, the domain &7("(R*)
cannot be enlarged so that P(-) has an extension (with values in Z(L°(R))) to a
g-additive spectral measure on the measurable subsets of R+, [3; XVII Lemma 3.3
and Corollary 3.10]. Despite this difficulty the operator L can still be considered,
if suitably interpreted, as an unbounded scalar-type spectral operator in some well-
-defined sense; see (1) and (2) below. But, more importantly, it turns out that most of
the well known results for scalar-type spectral operators remain valid for L. The
reason is that it is still possible, due to some recent work of I. Kluvanek [6], to asso-
ciate with P some sort of an L!-type space of functions and an “integration process’

such that the integration mapping f»——>8fdP is a continuous algebra homomor-

0
phism. This L-type functional calculus for L, as distinct from other functional cal-
culi such as those based on BV(R*) or some #(S,,), say, is more in the spirit of
the classical theory of scalar-type spectral operators. Namely, the operators in the
range of the Ll-type functional calculus are approximable by linear combinations
of disjoint projectors which commute with L.
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It turns out, for each 2 € p(L) = C\o(L), that the function R,: x+> (x — 7)~1,

(=)

x € R+, belongs to this Ll-space and \ R,dP = (L — 7)1 In particular, the oper-

o
0

ator S(f/g)dP agrees with the usual definition of (f/g)(L) = f{L)g(L)~1, speci-

0
fied via the partial fraction decomposition of f/g, whenever f'and g are polynomials
such that deg(f) < deg(g) and g has no zeros in o(L). Actually more is true; the

L-functions with respect to P include the elements of #*(S,) in the sense that
the restriction to R+ of any element of #7(S,,), 0 < w < m, belongs to the Ll-space
of P. Furthermore, for fixed 0 < w < =7, the imbedding which sends f € #7(S,) to
its restriction on R* is continuous from #7°(S,) into L!(P).

For each n = 1, 2, ..., the function A" x — ¥} (), x € R*, is P-integra-
ble and

') (L) = {feL"(R) ;lim ( %/”.(”)dP)f exists in L”(R)}
with
@ Lf = lim ( S/”.(”’dP)f, feaL).

[}]

In addition, the Boolean algebra of projections { P(E) ; E € &/"(R+)} satisfies all
the essential properties of a classical resolution of the identity except the bounded-
ness requirement. Forexample, if £ € 7(P(R*), then the spectrum of the restriction

of L to the range of P(F) is contained in the closure E of E. Furthermore, an oper-
ator T € Z(L(R)) commutes with L, in the sense that T(Z(L)) = D(L) and TLf =
= LTf for every f € @(L),if and only if TP(E) = P(E)T for every E € o/")(R*),
It is also the case that the bicommutant of L is precisely the weak-operator closed
algebra generated by {P(E) ; E € &P(R*)}. This is, perhaps, somewhat surprising
since the Boolean algebra { P(E) ; E € &/")(R*)} is not bounded.

The paper is organised as follows. In Section 2 we give a brief outline of the
salient features of Kluvanek's theory [6] and establish a few related results which
will be needed in the sequel. Section 3 is devoted to a detailed study of the set func-
tion P(-) and its associated L1-space. In the final section we establish the identities
(1) and (2) along with the other results indicated above.
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2. CLOSABLE SPECTRAL SET FUNCTIONS

In this section we wish to outline briefly a self-contained summary of those
aspects of the integration theory developed in [6] which are needed in the sequel.

Let I' be an algebra of subsets of some set Q. The vector space of all I'-simple
functions is denoted by sim(I"). If X is a Banach space, then an additive and multi-
plicative map P: I' —» Z(X) such that P(Q) = I, where Z(X) is the space of all
bounded linear operators of X into itself, is called a spectral set function. In this
case P has an unique additive and multiplicative extension to sim(I") defined in an

obvious way; its value at an element f € sim(I') is denoted by \ fdP or simply by
o

P(f). In particular, P(7,) = P(U) for every U € I'. By a P-null set is meant any

subset U < Q for which there exist sets U; € I' such that P(U;) = 0, for every

j=12,...,and U & | U;. For a function f on Q, let

j1
o = inf{sup{| flw); 0 € R\ U};U € 4},

where A" is the family of all P-null sets. If {|f]|. = 0, then fis said to be P-null. Let

L™(P) be the algebra of all functions f on @ such that for every ¢ > 0 there exists
a function g e sim(I") for which ||f — gllo < &

We come now to the central notion in [6]. A spectral set function P: I' — #(X)
is said to be closable if

" n

lim | y° S/,:dp
j -1

H—o00 P o
0

)

=0

t

Q

whenever f; esim(I'), j = 1, 2, ..., are functions satisfying

j

® |

i1

£ !
Sfde]) < oo
P !

oo
and Y, fi(w) =0 for every w € 2 such that
j--1

oo

“4 Y fi(w)] < oo

j -1

If this is the case, then a function f on Q is said to be P-integrable if, and only if,
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there exist functions f; e sim(l'), j = 1, 2, ..., satisfying (3), such that
) flw) =Y fi(w)
j=1

holds for every w € Q for which the inequality (4) holds. The closability of P

guarantees that the operator Y, S_fde, denoted by P(f) or SfdP, is a well-defined

j
]

element of £(X). That is, it is independent of the particular sequence of functions
{J}Jml in sim(l’) satisfying the above stated properties. In this case,

{w €Q; Z | fi(w)l =oo} is a P-null set [6; Proposition 2]. The space of all
j=1

P-integrable functions is denoted by L(P). It turns out that L(P) < L™(P) and
Ifllo < IP(f)l, for every f e L(P). In addition, if f, g € L(P), then also fg € L(P)
and P(fg) = P(f)P(g). Thatis, L(P) is an algebra of functions. If f € L(P), then

©) 1PNl = inf 3, 1P,

where the infimum is taken over all choices of functions f; esim(I'),j = 1,2, ...,
satisfying condition (3), such that the equality (5) holds for every w € Q for which
the inequality (4) does [6; Lemma 3]. We note that the Beppo-Levi theorem is valid.
That is, if {f,}f_’_l < L(P) are functions satisfying (3) and f is a function on Q such
that the equality (5) holds for every w € @ for which the inequality (4) holds, then

oo

f € L(P) and S fdP = Yy, S f;dP, [6; Proposition 4]. However, the Dominated

i

Convergence theorem may not be valid in this setting; see Remark 1(iii) below.
Concerning the spectrum, it is the case that

) a(SfdP) =M {flw);weQ\U}, [feL(P).
3 Ue
Since the functional f »—->‘ Sf dPl is a seminorm on L(P) it is possible to form the
|
2

associated normed space, denoted by L1(P), by identifying any two elements of L(P)
for which this seminorm vanishes on their difference. It turns out that LY{(P) is
complete and the integration mapping

-f»——>SdP, f e L(P),

Q
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induces an isomorphism of the Banach algebra L!(P) onto the uniformly closed
algebra in £(X) generated by {P(U); U €I'}. This algebra is denoted by (P).
Using the fact that ||f]|.. = 0 holds for a function f € L(P) if, and only if, P(f) = 0,
it follows that L(P) can be realized as equivalence classes (modulo P-a.e.) of P-in-
tegrable functions on Q. If f € L(P), we will also denote || P(f)|} by lfll; or 'if“lLl(,,),

Fix 1 < p < co and let X = LP(R). Let &#” be the family of those measurable
sets £ = R for which 7, € .#Z/". Then &'? is a Boolean algebra of sets and
0: " - L(LP(R)) defined by

Q(E) = 14D), E s,

is a closable spectral set function with the property that a set U < R is Q-null if],
and only if, it is null with respect to Lebesgue measure on R, [6; Proposition 12].
Since there is no possibility of confusion, once p € (1, co) is fixed, we do not indicate
the dependence on p in the notation for Q.

A function f of bounded variation on R has a decomposition of the form f; + 5 +
-+ fa with f; € AC, f, continuous and singular (i.e. its derivative is zero a.c.) and f; a
jump function. If f vanishes at a point (or at — oo), then there is an unique de-
composition of this type with all three components f;, f, and f; vanishing at that
point. If f, is identically zero, then f is called non-singular.

LemMma 1. ([6; Proposition 16]). Let p € (1, oco). If [ is a non-singular func-
tion of bounded variation on R such that f(—oo) = 0, then f is Q-integrable.

Let f: R — C be a function. Then f and f denote the functions x +> f(x),
x € R, (the bar denotes complex conjugation) and x > f(— \) x € R, respectively.
If f € 4™, then f and f arc also p-multipliers and f So.= f . In par-
ticular, if £ €&/, then the set —E = {—t; teE} also belongs to sf”" since
)~(13 =J-k-

LeMMA 2. Let p €(1, o0).

() If f € L(Q), then also f € L(Q) and ||fHL 10 = |Ifll j1q,- In particular, both
Re(f) and Im(f) are Q-integrable.

(i) If f € L(Q), then also } € L(Q) and ||fll,1q, = 1/l

(iii) If f € L(Q), then [ € 4" and the operator SfdQ coincides with the mul-

R
tiplier operator (D) as deflned in Section 1.

Proof. (i) Let f =Y, %, )pu,y Where the E(k) are pairwise disjoint elements
k21

of #P. Then f'= ¥, 0,7, belongs to sim(#®)c L(Q) and S fdQ =
k:=1

R
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= i‘, o, O(E(k)). But, it is readily checked that i 2 Q(E(k)) = (D) where f(D)
ko1

k=1
is the multiplier operator corresponding to f (see Section 1). It follows from the
comments prior to the lemma and the definition of . ' that

®) 1l = DN =1 1o ="f = D = Il 10)-

If now f € L(Q), then there exist functions f; € sim(/"), j =1, 2, ..., satisfying
(3) — with @ in place of P and Q = R — such that (5) holds for every w € Q for

which (4) holds. Then \Lf“ 1 S sim(#P) and flw) = h) ]’J:(cb_) whenever
i1

o — o0 — -

Y, fi(w), < oo. It follows from (8) that Y j Sfde I\ < oo and hence, f e L(Q).
Joi1 j--1 {

R

The equality of norms |[fl|L:(Q) = |']fHL1(Q) follows from (6) and (8).
The final statement of part (i) is clear from the linearity of integral and the

identities Re(f) = (1/2)(f + f) and Im(f) = (1/2)i(f - f).
(ii) follows from a similar argument as for (i) using the identity Q(—E) =
= ¥ (D), EesP,

(iii) There exist functions f; € sim(#/(") < .# such that Y S }}fj dQ” < co
j=1 J 4
and f(w) = Y fi(w) for every w € R for which Z ifi(w); <oo. It was noted
jo1 i
earlier that {a) €R; Y, [fi(w)] = oo} is @-null and hence, also null for Lebesgue
j1

n
measure. So, i, = Y fi,n=1,2, ..., converges to f a.c. on R. Since each

¥, €. 4P and
S O o |
sup [\, < Y [l = Z [(S ,
n j=1 =14
it follows from a standard result about multipliers that the limit function f e .#("

and y,(D) - f(D) in the weak operator topology. But, ¥,(D) =Y f(D)=
o1

jo1

= ;\I: Sfj dQ. Since SfdQ = f} S]j.dQ (by definition) and the series converges in
j=1
R it

the uniform operator topology, then certainly E Sfde, n=1,2,..., converges

j=1
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to the operator SfdQ in the weak operator topology. It follows thatSfdQ = f(D).

R R

REMARK 1. (i) It follows from (7) and Lemma 2(i) that the Banach algebra
(@) < Z(L"(R)) has the property that each of its elements T has a Cartesian decom-
position 7= A + iB where A and B both belong to {@) and have real spectrum.
In particular, AB = BA.

(it) Lemma 2(iii) implies that Hfl\l_l(Q) = f ,forevery felL(Q).

@iii) If p # 2, then the space L}(Q) does not have the lattice property of a
classical L!-space. Indeed, whenever ' > 0 is a Q-integrable function which is not
zero almost everywhere there exists a measurable function g: R —» C such that
& < f(ae) but g is not Q-integrable. This follows from the inclusion L(Q) < .#(*
and [5; Theorem 1.12].

We conclude this section with a technical lemma which is needed later. First
however, we need some further notation. Let I(n) = (2", 2"+1], for every integer
n € Z, in which case 4 = {I(n) ; n e Z} U {—I(n); n € Z} is a dyadic decomposition
of R\{0}. If ¢: R — C s a function and J is an interval in R, then ¥(¢!J) denotes
the total variation of the restriction ¢! J of ¢ to J.

LEMMA 3. Let 1 < p <oo. Let y: R\{0} >R be a symmetric function
(i.e. Yy(—x) = Y(x), x € R\{0}) which is bounded and of class C*. Suppose that
sup{ V(¥ | I(n)); n € Z} < oo and {x el(n); lW(x) = a} is a finite set for each n € Z
and o > 0. Then y is Q-integrable.

Proof. Since y is symmetric it follows that
) M =sup{V(y!J); Jed} <o

and hence ¥ € #(? by the Marcinkiewicz multiplier theorem. We may assume
that p # 2 as the conclusion is obvious in that case. Accordingly, choose r € (1, co)
such that p lies between 2 and », in which case there exists 0 € (0, 1) such that p~1 =
= (1/2)0 + (1 — O)r—1. Let &€ > 0 be given. Since ¥ is bounded there exists an
integer k > 0 such that {Y(x);x # 0} < [—ke, ke]. For every n € Z, each set
{x €I(n); Y(x)| = se}, s = 1,2, ..., k, is finite and hence the sets

En, s)* = {x el(n); ¥(x) > se} and E(n, )~ = {x € I(n); Y(x) < —se}
are either empty or the finite union of closed, disjoint intervals contained in I(n).

Accordingly, the characteristic function ¥}, (resp. X, ,) of the set (—E(n, 5)*) U
U E(n, s)* intersected with J(n) = (—I(n)) U I(n) (resp. (—E(n,s)~) U E(n,s)"
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intersected with J(n)) is a symmetric r-multiplier for every n€Z and 1 < s < k.
Define (" = eXi, —eXy,, for each ne€Z and 1 <s<k, and let o™ =
k
= Y, ¢, n € Z. Then, for each n € Z, it is the case that
s -1
() ¢ and ¢{", | < s < k, are symmetric and supported in J(#),
(i) '9®(x). < 'Y(x) for each x €J(n),
(iii) sup{|y(x) — (p(")(x)'; x €J(m)} < ¢ and
(V) V(@™ — )| + Im) <V T() and V((se{ — §) " + Im)< V(Y. ),
for each s = 1, ..., k.
It follows from (iv) and subadditivity of total variation that
(V) V(™) < 4V(y 'I(n)) and V(s@{®) < 4V(y I(n)), for each n€Z and
s=1,...,k
Let ¢, be the function on R\{0] specified to be ¢{” on J(n), n € Z. The ine-
qualities (v) show that .

sup{V(se\"|J); J€d} <co, 1 <5<k,

and hence the Marcinkiewicz multiplier theorem (together with (9)) asserts that
5@ is an r-multiplier and there exists a constant «,, depending only on r, such that

soslir < o, {lis@slloo + sup Vispi J)} < o, ([0 + 453
&

Accordingly, the function @, 1 < s < k, which takes its values in {0, 4 ¢}, is
also an r-multiplier. We remark that if F(s)* = ¢;%({e}) and F(s) - = @7 ({—¢}),
then

=¢& Z /nx - Z Los = [(_\-) SZ[,‘(_\-)— =@ — o5

Hez, neZ

where ¢f = max{0, ¢} (resp. ¢; = max{0, —¢,}) denotes the positive (resp. nega-
tive) part of ¢, 1< s < k. Itis clear from the definition of (" that (p{")* = gy
and (p{")~ = s/,, s- Since V((q)(”)) Yand ¥ ((¢{™) ") do not exceed V(¢'™), for every
neZandl <5 <k, it follows from (v) again and the Marcinkiewicz multiplier

theorem that (o;? and @; are also (symmetric) r-multipliers. Accordingly, each ¢,
ke
1 € 5 < k, and hence also ¢ = Y @, is a linear combination of symmetric »-mul-
s -1
tipliers of the form 7, E € o/,
It follows from (iii) and the definition of ¢ that |jjy —
and (9) that

¢ll» < ¢ and from (iv)

sup{V(lp —¥) )T ed) < M

4 — 2609
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So, the Marcinkiewicz multiplier theorem implies that

(10) LY — ol <ale+ M)
Since |- ", = ||- |l We have also
) W=, <.

Then the logarithmic convexity of the norm in L%spaces together with (10) and
(11) implies that

Lo =, < Ea(e + MO

Let &* be the solution of (¢%)[a,(e* + M)]'~% = ¢, that is (e¥)71-0(* 4+ M) =
= o7 %Y1=, The solution exists because the function f(x)=x(x + M), x > 0,
with § = [6/(1 — 0)] > 0 is strictly increasing, f(0) = 0 and lim f(x) = co. Going

through the same argument with &% in place of ¢ gives a p-multiplier ¢ which is a
linear combination of symmetric p-muitipliers of the form %z, E e &/ (ie. ¢ €
€ sim(&/(")) and satisfies (cf. Remark 2(ii))

0 =Wl = to — ¥l <e

The completeness of L}(Q) and Remark 1(ii) imply that  is Q-integrable. 2

3. THE SPACE L\(P)

It was noted earlier that L is not a scalar-type spectral operator in L”(R),
P # 2, in the classical sense. Nevertheless, there is available a large family of projec-
tion operators P(J), J € /P (R+), as defined in Section 1, which commute with
L (cf. Section 4). We begin by showing that P is a closable spectral set function for

which the following preliminary result is needed. If f € L(P), then the operator S fapP
R+

will also be denoted byS far.
1}

LEMMA 4. Let 1 < p < co. If f € sim(ZP R +)), then foy € sim(#P) and

SfdP - S(fo 1)d0.

R
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. 3 1 . . [ » .
Proof. Let f= V' X5 where the E(k) are pairwise disjoint elements of
: = ‘

s/(P(R+) and let E = | J E(k). Then

k=1
’ n n
(12) feoy = Z akXE(k)ll‘-’- + Z o(I:;‘{_E(k)lli’- —f(O)XE(O)X{O)
k=1 k=1

and hence, foy € sim(#"). We have used the fact that if J belongs to H/®(R+)
then JY2 and — J12 belong to &/ since Xppe = (152N and X_pp=

=(Z,°‘/)X(~w‘0]. By definition of P it follows that

k=1

Sf 4P = 3, wP(E(Q) = Y, %IOER™) + Q(—EG]
k=1 '

N

But, the right-hand-side is precisely S(fo y)dQ; see (12).
: R

THEOREM 1. Let 1 < p < oo. The spectral set function P: s#P(R*) » Z(L7(R))
- is closable.

Proof. That &ZP)(R+)is a Boolen algebra of subsets of R+ follows from the ob-
servation that the collection of functions f: R+ — C for which foy € #" forms
an algebra under pointwise operations. It follows from the formula

(13) P(J) = (1,0 7XD) = QU + Q(—J'?), T e 4(RY),

and properties of Q that P is a spectral set function.
Suppose that f; € sim(«/?(R*)), j = 1, 2, ..., are functions satisfying (3)

and Y} f(w) = 0 for every ® € R+ such that [(4) holds. By (3) and Lemma 4 it
Jj 1

follows that Z

j=1

‘S(fj oy)dQ ” < oo. Furthermore, if v € R and % I(f; ° P)()] is fini-
) j=—1

|
'R

te, then f:“ f;(@?) < coandso f;fj(uz) = 0 (since u* € R*), thatis. §; (f;ov)(u)=0.
joo1 Je=1 Jast

Then the closability of @ (cf. Section 2) and Lemma 4 imply that

n

):Sf;dp“: lim |

j=1 n-o0
0

n

szov)dQ“:o. 7

Jj=1

lim
n-00
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Theorem | ensures the existence of the space L1(P). To make a more detailed
study of this space in relation to the operator L we require the following result.

THEOREM 2. Let | < p < oo. Let f: R* — C be a measurable function. Then
feL(P)if, and only if, foy € L(Q). In this case,

) \rar =\v-nae
P

Proof. Suppose f-7y e L(Q). Then there exist functions f; €sim(+/"),
J=1,2, ..., such that i ] S/’ dQl < oo and Y fi(u) = (f e y)(u) = f(u*) for every
i ;‘ i h

J o<l

fee)

u € R such that ¥ fi(w) <oco. Define g; = f;¥,, wyd =12 ... . Theng; e A

Jj 1

and Y] gi(w) = f(w?®) for all > 0 such that ¥ fi(w) <oc. So, for s > 0 we
i jo1
have
(15) f(s) = Y, gi(s'*) whenever ¥ 'gfs'®) = Y fi(s'?). < oo.
jio1 j=1 j=1
()

Fix j. Suppose f; =y a{/%
1

L,y With the sets E(k, j), | < k < n(j), pair-

k-

n(jy N : +
wise disjoint in &/'”. Then g, = Yy, ozf\."ZE(,\,‘j)Jr where E(k, j)y* = E(k, j) & R,
k-1

So, if s > 0, then
n(i) U n(j) 0
£ A N 1/2 — f A
(16) gi(s?) = Y "kl)/{E(k,j)*(s 12y = Yy o LE;»(,\_J)T(S_),
k1 ko1

where E*k, j)* = {1*; t € E(k. j)*]. Since

an Ugrgey) © 7 = Laiomey T o meiy) — Lo O%t0,cof Oop
for each 1 < k < n(j), itis clear that s = g;(s'"), s > 0, belongs to sim(.aZ/(M(R1))
for each j = 1, 2, ... . It follows from (13). (16) and (17) that
e a(jy .
S g(SAP(s) = Y aPPIEK. )*) =
J k=1
n(j) , .
(8 =y, aIQ(EGK, j)*) + O(—Etk, )*)] = g%,x).m(s)dQ(s) +
ko1
R

+§ ,7 f)™(s) dQ(s) = O(R¥) Sfde + S(zm,w)ﬁ)NdQ.
\VA{U,00 7
R R K
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By Lemma 2(ii) and the multiplicativity of Q we have

»

N0 = Y0401 < somoi- a0
b FE {i .
R K R

and hence (18) implies that

S “S (s‘/)dP(A) 2 JoR%]- 3, !S/’JdQ < .

11 11)

n

Combining this with (15) we have, by definition of P-integrability, that f e L(P)
and

(19) SfdP= zSg,(slfz)chs) g S{/“’""’/ o) 1003
) st
n{j)
see (18). For each j =1, 2, ..., let £(j) = | E(k,j)* and define
k—1

hy = % oo)f + (X oo)f, = g OO0 g,

Then /; esim(#") is symmetric, h (w) = f(,0), w € R, and

S{Z[O’«)fj + (zm’w)ﬂ-Y}dQ = S/zde, J=1,2,....

R R

In particular, Y} li{w)] < oo if, and only if, '} f(w]) <oo. It follows from

FE i1
(19) that
(20) YV fdP = Y S/ij do.
i e
Furthermore, if w € R satisfies E lh{w) < co, then 2 S{iw]) < oo and so
jl j 1

(fow) = flw?) = 5_’, fillw)) = 2 hi(w).
Since [y € LY(Q) it follows from the definition of integral that S(fe NdQ =
R

ghf dQ. Combining this with (20) gives (14).

I
0418

Rr
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The converse statement follows from the definition of integral and Lemma 4.

The following result is an immediate consequence of Lemma 2(i), Theorem 2
and the identities

Re(foy) = Re(f)ey and Im(foy) = Im(f)c7y,
valid for any function f: R+ - C.

COROLLARY 2.1. Let 1 < p < oo. If f € L(P), then also the functions Re(f),
Im(f) and f are P-integrable.

REMARK 2. (i) The obvious analogue of Remark' 1(i) applies to the Banach
algebra (P).

(i) Theorem 2 and Remark 1(ii) imply that

Wfipe =S p=17ie, [eLP®):

(iii) As for Q, if p # 2, then the space L'(P) does not satisfy the lattice pro-
perty of a classical Ll-spacc. Indeed, let f > 0 be a P-integrable function which
is not zero almost everywhere. Remark 1(iii) guarantees the existence of a measur-
able function g: R — C which is not Q-integrable and satisfies g' < fo7y (a.e.). So
at least one of the functions 870,00y OT 8% o0y is not Q-integrable, say gx (0,00)" Accord~

ingly, the function (gx ~ is not Q-integrable; see Lemma 2(ii). It follows that

)
[0,00)
h= 8o t (gx[o’w)Y also fails to be Q-integrable (the summands are disjointly
supported). If we define Y(x) = g(x!/2), x € R¥, then y is measurable and satisfies

Wl < fbut ¥ is not P-integrable as i = y « 7 is not Q-integrable (cf. Theorem 2).

Theorem 2 shows that the richness of the space of P-integrable functions de-
pends on that of the space L(Q) and, of course, on the Boolean algebra of sets
S7P(R*). For example, Lemma 1 and Theorem 2 imply that every non-singular
function of bounded variation on [0, co) which vanishes at infinity is P-integrable.
Or, if 0 < @ < m, then the restriction to R+ of any element from s#7(S,,) belongs
to L(P); see Theorem 4 below. It is worth noting that there are elements in L(P)
which are not of bounded variation. For example, if s € R, then the function
x +> el x € R, is Q-integrable [6; Corollary 19] and so Theorem 2 implies that the

function ¥ : x — e’ x e RY, is P-integrable. We have used here the identity

(W o) = el = emiosy _(x) + efy, (x), x€R,

which also shows that

S el *dP(x) = T_,0((—o0,0)) + T.O(R*)
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where T, is the operator, in L?(R), of translation by # € R, However, if s # 0, then
¥, is not of bounded variation. Similarly, there exist elements of L(P) which are not

the restriction to R+ of any element of (S, for any 0 < @ < . Indeed, if ¥,
were the restriction to R+ of a holomorphic function in S, then this would have
to be the function z ei“w, z € §,, which is not bounded when s < 0.

Concerning the richness of & ("(R+) it clearly contains all intervals in R* since
4 is known to contain all finite unions of intervals in R. To be sure there are
sets in &/»(R+) which are more complex than intervals or finite disjoint unions of
intervals. Indeed, if F is any measurable subset of R which is symmetric about
zero (i.e. ¥y = Xp) and such that x, € .#(", then the set F? = {t*;¢ € F} belongs
to o/P(R+). Alarge class of such sets can be constructed as follows. Let {/,},cz be
a Hadamard sequence of non-negative numbers, that is,

infli /A keZ} =r> 1.

Then R\{0} can be decomposed into the union of disjoint intervals of the form
(@, B] say, whose vertices belong to {4/, ; k € Z}. The Marcinkiewicz multiplier
theorem implies that any bounded function on R which is constant on each such
interval belongs to .#P. Let {J(k) ; k € Z} be the decomposition of (0, co) consist-
ing of intervals of the type indicated with vertices from {4,;k €Z}. So, if
{ay sk € Z} is any 0-1 valued sequence, then the function m : R+ —» C defined by
n =k2 X,y determines an element of &/(P(R+), namely the set m~({1}). This
€z

follows from the observation that {1}/%; k € Z} is also a Hadamard sequence and

moy =k§Z°‘k(XJ(k)1/e + Z—J(k)l/ﬂ)'
There are still other types of sets in &Z(P(R+). Itis known that for each connected
subset K of the circle group T = {z € C; |z] = 1} and for each s € R the function
1 — xg(e*?), t € R, belongs to .#"); see [4; Lemma 6], for example. Accordingly,
if seRand K < T are such that F = {t € R ;e € K} is symmetric about zero,
then F2 € ("(R™).

The following result shows that (P) contains the resolvent operators of L.

THEOREM 3. Letl < p < oo.If A € p(L), then the function R;: @0 — (v — 2)7Y,

w € R*, is P-integrable and S R,dP = (L — A)~Y. In particular, (L — )~ e{P)
[}]

for every A ¢ o(L).

Proof. If u is a square root of 4, in which case {—u, u} S C\R, then R, oy =
= (Y, - Yp)/2u where Y, (w) = (0 — w) ™! and Y,(w) = (w + w)~1, for each w € R.
Since both ¥/, and s, are absolutely continuous on R (as their derivatives belong
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to L1(R)) and vanish at —oc, it follows from Lemma 1 that y,, ¢, € L(Q) and hence
also R; <y € L(Q). Then Theorem 2 implies that R; € L(P) and

@1

°Lﬁ8

R,dP = S(R;. - )AQ = (2u)1 {Sv/ldg . Swde} .
R R

R

Now ¥, and ¥, are both p-multipliers (since L(Q) < .#®, for example) and it 15
not difficult to check that (D) = (D — u)~! and Yo(D) = (D + u)~L 1t follows
from (21) and Lemma 2(iii) that

S RidP = (u)(D — )™ — (D + )"},
0

But, the right-hand-side is precisely (D —u)~* (D + u)~* = (L — /)~! by the
resolvent identities for D. 2]

We conclude this section with the following result.

THEOREM 4, Let 1 < p < o0. If 0 < 0 < 7, then #™(S,) < L(P) in the sense
that the restriction to R* of any element y € #7(S,) is P-integrable. Furthermore,
if this restriction is denoted by ., then

Wil < 20l [ s @), xS

!

where %, is a constant depending only on p.

Proof. If § € H7(S,,), then it is clear thaty < y € #*(— Sazy, U Sq/zy.), Where
the same symbol y denotes the extension to C of y:x+—x% x € R, as defined
earlier. It is established in [9; Section 2] that

. . (1 .
(22) W o )OO < W o vlleo | I Sln( 5 w), x e RN\{0},
]
from which it follows that y = y{R is a p-multiplier and

.:wwzng,,sa,,nw»vnm/sin(;- )—an ' sin (;w)

for some constant «, depending only on p; see [9]. Granted for the moment that
¥ < 7R € L(Q), it follows from Theorem 2 that ¢R+ € L(P). Then Remark 1(ii) and
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Lemma 2(iii) imply that

o | N
!|'//R+”L](p) = I|'/’ oy ‘RHL‘(Q) = . l// oy R P < 9(p_ l//oo /’/ Sln( 2 w ) .

So, it remains to establish that i o y|R € L(Q) whenever y € #”(S,,). Since
J € L(Q) if, and only if, both Re(f) and Im(f) are Q-integrable (cf. Lemma 2(i)) and
¥ o /R is symmetric, it suffices to show that any R-valued, symmetric function ¢ on
R {0} which is the real (or imaginary) part of the restriction to R\ {0} of an element
from ,7(’°°(——S(1,2),., U Sajzw), say @ _, is Q-integrable. But, this follows from Lemma 3.
Indecd, in the notation of Lemma 3 it follows from (22), which is actually valid
for any element of %"“’(——Su/g)w U Sayze) and not just those functions of the form
Y oy (see the proof in [9]), that

sup{ V(@ | I(n);n € Z} < (o il In(2) / sin(-lw) < oo.

That {x € 1(n) ; lp(x)] = a} is a finite set for each n € Z and o > 0 is known; sce
[7; Theorem 8.2], for example.

4. THE CONNECTION BETWEEN L AND P AND SOME APPLICATIONS

The aim of this section is to establish the identities (1) and (2) and to deduce
some consequences from them. First we need some further notation and preliminary
lemmas.

LeMMA S, Let 1 < p < oo. Let {oz(n)}f 1 be a sequence of non-negative numbers

which increases to infinity. If ¥, denotes the characteristic function of [—a(n), o(n)],

for each n =1, 2, ..., then im y,.,(D) = im Q([—2(n), w(n)]) = I with respect to
n-00

H—=00

the strong operator topology in L(LP(R)).

Proof. Since {ZI(")}T’;1 converges pointwise on R to the constant function
1 and :

SUp{ Zu, p3 =1, 2,...] < oo,
it follows from a standard convergence result from multiplier theory that y, (D) = I
in the weak operator topology. In addition, %,.,(D)yum(DP) = Zuqy(D) where a(k)=
= min{a(n), a(m)} and hence, it follows that 7,.,(D) — f in the strong operator
topology, [1; Theorem 1]. Z|

Let T be a closed, densely defined operator in a Banach space X. Then its
dual operator 7% is the operator with domain %(T*) consisting of all
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x% e X* (the continuous duai space of X) such that there exists y* € X* with
the property

{Tx, x> =x, ¥, xeg(T).

The element y* € X* is uniguely determined by x*. Therefore a linear operator T*

with domain Z(7T%) can be defined by setting T#x* = y*, In particular,
(23) (T, x*) = x, T*x*), xeg(T), x*eg(T*).

The operator T+ is always closed. If X is reflexive, then 7% is also densely defined
and T7%% = T.

Of relevance to this paper is the set up when p €(l, o0}, X = LP(R) and
T is the Laplace operator L as defined in Section 1. In this case we will denote L
by L, if it is necessary to indicate in which space L is being considered. Then
Ly = Ly where p~t + ¢71 := 1; this identity includes the statement that Z(L,),
as defined via duality, is precisely Z(L,) as defined in Section 1. We remark that if
m € 4P, then also m € /@ and the dual operator of m(D,) is precisely m(D,);
here D, denotes the operator D of Scction 1 considered in the space L?(R). In par-
ticular, &/ (P(R*) = </@(R+). For the case 1 < p < 2 it is known that the oper-
ators D and L and their respcctive domains can be described in terms of the Fourier
transform. Namely, an element f of L”(R) belongs to @(D) (resp. 2(L)) if, and

only if, there exists g € L°(R), necessarily unique, such that g(¢) = g*f(%), teR
(resp. g(&) = éQf’\(g“)), in which case Df = g (resp. Lf = g).

LemMA 6. Let 1 <p<oo and 2™, n=1,2, ..., denote the function
Er> é,{om(g) ¢ e R*Y. Thea the identities

@49 (Sx‘f")dP)f= o~ 2, WLf, e (L),

are valid (in L’'(R)), for everyn = 1,2, ... . In particular, 2) € L(P).

Proof. Since (20 y) () = ¥y iz ](é), ¢ eR, it follows from Lemma

1 and Theorem 2 that AW e [(P), n =1, 2, ...
Fix n. Suppose that 1 < p < 2. If f e 2(L), then

@5) (( S /1<">d1>)f) (&) = (M DY) @) = 8, e RO

On the other hand, also

@6) Q= 2 iDL ) = sy iz 0O (E) = Exy_pre iz OE.
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Of course, we have used here Lemma 2(iii). Then (24) follows from (25), (26) and
the uniqueness of Fourier transforms.

Suppose now that 2 < p < co. Let P, (resp. Q) denote the spectral set
function P (resp. Q) considered in L”(R)and use a similar notation when considering
LYR) where p~* + g1 = 1. Then Py ,(E)* = P,(E), forevery E € &/(P(R*) =

oo

~ D(R*), and ( S ;;u)dp(p))"' = S),(")dP(q). Fix f € C2(R). Then

{O([— n72, ’71/2])(1;)L(p)ﬁ g = <L(p).f’ o([—n7, ’11/2])(q)g> =

= LLpf)"s @U—n, D)), & € CE(R),

where the element Q([—n'/2, #n*/?*]).,g of LI(R) is identified with a tempered distri-

bution in the usual way. Since (L, f) (&) = {fi‘f(é) is a Schwartz function and
the Fourier transform of the tempered distribution Q([—n'/2, n¥/?]), g is the tem
pered distribtion associated with the function Lz nm]g (using the fact that

X[_nl/g ”1/g] G./f/(‘n) it follows that

(L) (@A, ) 0)™> = <EFE), 2, s 12,2

But, by the definition of multiplication of tempered distributions by polynomials
it follows that

D, 7 g > = <Js B are g @D = <, O 0 DR,

Since A" oy € 4@ the tempered distribution (A < y)¢ can be identified with the
Fourier transform of the tempered distribution associated with the element

>

G 0 P)Dg = ( S ;ﬁﬂ)dp(q))g of ZA(R). Accordingly,

o0
~

(O, me L, 8 = <f( ( S /i<">dP(q))g) > -

0

=gy

for every g € C2(R). Since C*(R) separates points of L?(R) we can conclude
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that
27) Q=% Pl = giz”di’m Ik
0 !
This is valid for every f € CP(R). To establish (27) for arbitrary f € 2(L,,) we note
that both Q([—n"2, n'/%)), ands AP, are clements of Z(L"(R)) and that
0
CZ(R) is dense in the Sobolev space W2P(R) which, as a linear space, coincides
with @(L,). Thus, (24) is established. ]
THEOREM 5. Let 1 <p <oo and ', n=1,2, ..., denote the function
& éZ(O,n](é)’ EeR*. Then /" e I(P),n=1,2, ... .Inaddition,
(1) HL) = {]‘e LA(R) ; lim ( S;.de} 1 exists in L”(R)}
H n->00 )
and
oo
) Lf = lim ( &A(”)dP)f; fea(l).
n—o0 0
Proof. Llet feZ(L). Then it follows from (24) and Lemma 35 that
lim ( S /'.(”)dP)‘f'exists in L'(R) and equals Lf. So, f belongs to the right-hand-side
0

of (1) and (2) is satisfied.

o0

n—00

Conversely, suppose that ' € L7(R) and g = lim (S /'.(")dP)f exists in L"(R).
If 1 < p < 2, then the Fourier transform is a continuous mapping of L”(R) inte

LY(R), where p~! + g=1 =1, and so

(28) 2 = lim ((S }.("’dP)f)
0

12,12 — 1 pointwise on R, it follows from (25), (26) and (28}

-~

in LYR). Since 7
that

(29) £&) = lim (( S/‘Wdf’)f)}é),
4]

{—n

Ii—=00
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for a.c. ¢ € R. Then (28) and (29) show that g(¢) = é‘-ffz(;’) and so the definitions of L
and 9(L) in terms of the Fourier transform imply that f € @(L) and Lf = g. So,
(1) and (2) are established if p €(l, 2].

Suppose then that 2 < p < co. Let ¢ satisfy p~t + ¢g=2 = 1. Then | < ¢ £ 2
and so we know that {(S /l(’”dP(,,)) h } converges, in L%R), to L whenever
n-1

h e 2(Ly). In particular,

o

(30) S L) = hm <f, (S/'.(" )dP(,,,/1> . he2(Ly).
0

It follows from (30) the identities (S /“.(")dP(p))m =S APy, n=1,2,...,
0
and the fact that (S /".(")dP(p))f——»g in L?(R), that
0

Ly = <g, Iy, heZ(Ly).

By definition of the dual operator this means that /' € Z(L)) = 2(L,)) and L,,f =
= L&,/ =g. So, (1) and (2) also hold for 2 < p < ce. 7

REMARK 3 (i). It is clear from the proof of Theorem 5 (see also Lemma 5)
that the functions 27, n = 1,2, ..., in the statement of Theorem S can be replaced
by functions & — &y, (&), £ €RY, for n=1,2,..., where {B(m}m 1 is any
non-negative sequence increasing to infinity.

(if) The descriptions of Z(L) and L as given by (1) and (2) are analoguzs of
the “‘same’’ statements which are well known for {(unbounded) scalar-type spectral
operators; see [3; pp. 2251], for example.

We wish now to show that L exhibits still further similarities with scalar-type
spectral operators. Indeed, the associated Boolean algebra of projections
{P(E) ; E € 4 "R™")] satisfies all the required properties of being a classical re-
solution of the identity for L (see Dcfinition 2.1 of Chapter XVIII in [3]) except
the g-additivity condition. Namely,

(1.1 C 2(L) 2 APE) = {PE);[eL'(R)]
whenever E € .o7"(R+) is a bounded set,

(31.2) PEYL) € 2(L) and PE)Lf = LPE)f, [<Z(L),
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for every E eﬂ“f’(Rﬂ, and

(31.3) if E e "(R+), then 6(Lpyy) < E, where Lp(gy denotes
the restriction of L to the closed subspace Z(P(E)).

To establish (31.2) we note that if f € Z(L), then Lemma 6 implies

oo

( S 500g P) PE)f = P(E) (S N)dp) 1= P(E)O(In"2, n"*)L,

forcachm =1, 2, ... . Accordingly, Lemma 5 and the continuity of P(E) imply

oo

that lim ( S /'ﬁ’z)dP)P(E)f exists in L?(R) and equals P(E)Lf. It follows from Theo-

n-o0
0

rem 5 that P(E)f € @(L) and LP(E)f = P(E)Lf.
To check (3.11) suppose firstly that 1 < p < 2. Then

(PE))"(E) = [pl®) + 7_pilNNE), [ LP(R).

So, to show that P(E)f € @(L) it suffices, by the definition of L and Z(L) in terms of
the Fourier transform, to show that & — 2% (&), & e R, is a p-multiplier whenever
F e 7™ isabounded set in R. Since FS[—x, a] for some o > 0 and &3 (3) =
= C(_, (O)1p(0) it suffices to show that ¢ — &% (&) is a p-multiplier. But,
this is clear since the spzcified function is of bounded variation on R. Suppose that
p €(2,00). If g satisfies p~1 + ¢~1 = 1, in which case I < g < 2, then we have just
seen that Z(P(E),) S 2(L;)- So, Theorem 5 shows that

co
3 "
sup {El( S/"V(")dp(q) )P(E)(q)g:} = 1, 2, - .} < oo,
i v
0

for every g € LP(R) and hence, the Uniform Boundedness Principle, together with

co o0

the identities (S 2P, ) == S}.(")dP(,,), n=1,2,..., imply that

o

B i |
sup !’ ( SA(")dP(p) )P(E)(P) |i = Sup:
i i i “

noo
i

o

( S 200 dP(q))P(E)(q) i; < 0.
0

0

Since the sequence of operators { (S /".(")dP(p))P(E)(p,} converges (cf. proof of
0

n =1
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(31.2)) on the dense subspace Z(L,;) of LP(R) it actually converges at every
f€L”(R). Then Theorem 5 shows that P(E) f € 2(L,) for every feL’(R).

To establish (31.3) let J = E. If A ¢ J, then the square roots of ., denoted by
-u say, do not belong to the closed set —J¥2y JY2. Accordingly, there is ¢ > 0
with the property that if B(u, ¢) and B(—u, ¢) are the open balls in C of radius ¢
centred at w and —u, respectively, then

B, &) U B(—u, &] 0 [—J2 U ] = 0.

Let /1, (¢) = (&% — AT, ), £ € R, where X, ; is the characteristic function of R
intersected with the complement (in C) of B(u, &) U B(—u, &). It can be assumed
that ¢ is chosen so that R n [B(u, &) UB(—u, ¢)]is empty if 2 ¢ R¥. The function
h; . is of bounded variation and so belongs to AP for every 1 < p < oo. Let

hy@) = (L&) + XD (D), EeR.

Then /1, € 4" and

hy(&) =

(62 — /’{)—1 If é’ c E1/2 U (__ EI/Z)

{ otherwise.

Since P(E) = Q(EY2) + Q(—E'?) is a multiplier operator it follows that /,(D) com-
mutes with P(E) and so the range %(P(E)) of P(E) is invariant for /,(J). Accord-
ingly, the restriction, /1,(D)pE, of 11,(D) to Z(P(E)) is an element of L(Z(P(E))).
If 1 < p < 2, then using the formulation of L and @(L) in terms of the Fourier
transform, it can be checked that /1,(D)p, is the resolvent operator of Lp at the
point /. (in the space Z(Z(P(E))), of course). By duality, the restriction of /1,(D,))* =
= h,(Dy) to the range of P(E){, = P(E), is the resolvent operator of Lp(E,(q) at
A; here g satisfies p~* + g1 = 1. This shows, for all p €(l1, co), that 6(Lp)) S
€ J = E and establishes (31.3).

REMARK 4. It has been noted (for p # 2) that the only essential property of a
resolution of the identity for L that the set function P(-) fails to satisfy in the clas-
sical sense is that &Z(P(R*) is not a c-algebra and P(-) is not os-additive. There is
available, however, the following (weaker) substitute for this property, a special
case of which is Lemma 5.

THEOREM 6. Let {E(n)}ra & L P(R™Y) be a sequence of sets such that

E={weR? ’,1,‘,{2, L)@ exists}

is a measurable set with R*\E null for Lebesgue measure and supf||P(Em)|} ; n=
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=1,2,...} <oco. If
EMD = {@ e R* ;"]ir:: Lpw(@) = 1},

then E,EV e o/ "(R*) and {P(E(n))}, ., converges to P(EW) in the strong operator
topology.

Proof It F = EV* y (—E'Y?), then F < R is a measurable set such that R\ F
is null for Lebesgue measure and hence y, € A" with y.(D) = I. Since y, =
= ypoyit follows that E e &/"(R*) and P(E) = y«(D) = L Let F(n) = E(n)**y

—E(m)Y2, n=1,2,..., and FO = (EM)2 y (—EMV2 Using the identities

valid for each n = 1, 2, ..
(1)(S ) ( (1) °e y)(&) (])(&) E € R)

and the definition of E'V it follows that % ﬂll pointwise a.e. on R. Since

F(/)

sup sup, F(/;)(D)'l = sup,nP(E(n))jI < 00,

I'(n) P

it follows from a standard multiplier convergence theorem that the limit function
(a.e.) Z,,-(l) € M and L D) = 7 (1)(D) in the weak operator topology. That is,

ED e ZP(R*) and P(E(n)) — P(EM) in the weak operator topology. Ordering
the sets {E(n)} by inclusion it follows that

P(En)P(E(m)) = P(E{n) n E(m)) = P(E(n)), whenever E(n) < E(m).

Accordingly, the projections { P(E(n))} are naturally ordered in the sense of [1] and
so Theorem 1 of [1] implies that P(E(n)) — P(E™) in the strong operator topology
of Z(L"(R)). %,

One of the main results from the classical theory of scalar-type spectral oper-
ators (possibly unbounded) states that an operator commutes with a scalar-type
spectral operator if, and only if, it commutes with its resolution of the identity;
see [3; XV, Corollary 3.7 and XVHI, Corollary 2.4], for example. The proof of this
fact relies heavily on the countable additivity of the resolution of the identity. So,
it is perhaps somewhat surprising that this result still holds for L and P(-).

THEOREM 7. Let 1 < p < oo. A baumded operator T in L"(R) commutes with
L, in the sense that T(Z(LY) < &(L) and TLf = LTY, fe2(L), if, and only if,
TP(E) = P(E)T for every E < /P(R¥),



LAPLACE OPERATOR IN L™(R) 65

Proof. Suppose that TP(E) = P(E)T, E € #"X(R+). Then it is clear that

<«

T( SfdP) = ( SfdP) T, for every f esim(«/”(R*)) and hence, by definition
1]

of P-integrability also for every f € L(P). In particular, if 2" are the functions
specified in Theorem 5, then

T( S;f")dp) = (S).(")dP) T, n=12,....
0 0’

It then follows easily from Theorem 5 and the continuity of 7" that 7(2(L)) C@(L)
and TLf = LTf, fe%(L).

. The converse implication is more difficult to establish. We give only a brief
sketch of the proof’; details can be found in [10]. So, if T commutes with L, then it
can be shown that T(L — 2)~! = (L — AI)~T, J. € p(L). From this it is possible
to deduce that T commutes with P(J) whenever J is an open, bounded interval in
R* = o(L). Now, it is possible to approximate (D) in the weak operator topology
by linear combinations of projections (¥, ¢ y)(D), J < R*, J an interval, whenever
Y is a symmetric element from CP(R) n 4" and hence, Ty/(D) = y(D)T. Since the
operator y(D), for arbitrary symmetric elements € .#, can be approximated in
the weak operator topology by operators of the type ¢(D), where ¢ € CX(R) n AP

is symmetric, and every p-multiplier % ¢ y, E € &Z(P(R*), is symmetric, it follows
that

TP(E) = T(xg° 7)(D) = (x5° IUD)T = P(E)T,
for every E € o/(P(R+). %

The final result is an analogue of the von Neumann bicommutant theorem.
One version of von Neumann’s theorem states that the weak-operator closed algebra
generated by the resolution of the identity of a self-adjoint operator T in a separable
Hilbert space coincides with the bicommutant of T; see [3; XVII, Theorem 3.22
and Corollary 3.17] for the case when T is bounded. If we interpret the spectral set
function P: &/ P(R+) — L(LP(R)) as the resolution of the identity for L (which is
Jjustified by Theorem 5) and define the commutant {L}¢ of L as in the statement of

Theorem 7, then the following result is indeed an analogue of the bicommutant
theorem.

THEOREM 8. Let 1 < p < oo. Then the bicommutant {L}** of L coincides with
the weak-operator closed algebra generated by { P(E); E € &/"(R*)}.

Proof. If we combine Theorem 7 above with [10; Theorem 3] it follows that

(32) {L}* = {P(E); E e PR} = {p(D); ¢ € AP and ¢ symmetric},

5— 2609
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Now, the bicommutant of a family of operators is always weak-operator closed,
Accordingly, it suffices to show, by (32), that any operator of the form ¢(D), p € 4"
and ¢ symmetric, can be approximated in the weak operator topology by elements
from the linear span of {P(E) ; E € #")(R*)}, that is, by operators of the form

o]

W o YD) = Sl[/ dP where ¥ €sim(/P)(R*)). That this is possible is established

0

in the proof of Theorem 1 in [10]. 2]

REMARK 3. It is known that the weak-operator closed algebra generated by the
resolution of the identity of a scalar-type spectral operator actually coincides with
the commutant of the resolution of the identity whenever there exists a cyclic vector,
[3; XVII, Theorem 3.20]. In anticipation of a similar result being valid for the Laplace
operator L there arises the question of whether the spectral set function P admits a
cyclic vector, that is, whether there exists an element g € L”(R) such that the linear
span of {P(E)g ; E € #™(R*)}is dense in L?(R)? That this is not the case (for
1 < p < 2) can be argued as follows.

Let R be the bounded operator in L”(R) defined by

Rf:xw f(—x), xe€R,

for each f € L?(R). Suppose that P did admit a cyclic vector, say g. Noting that each
element in the linear span of {P(E); E € #P(R+)} is of the form (¢ » y)(D) for some
@ €sim(&P(R*)), it follows that there exists a sequence {i,} < sim(/"YR+))
such that {(, ° y)(D)g} converges to g + Rg in LP(R). Since the Fourier transform
is continuous from LP(R) into L'(R), wherep~* + ¢~ = 1, it follows that {(¢, - )&}
converges to & + (Rg)” in LY(R). By passing to a subsequence if necessary, it may
be assumed that {(,c y)g} converges a.e. on R to the function § + (Rg)~ =
= § + Rg. Accordingly, the complement (in R) of the set

F = {0 € R; lim@y,» N@EE) = 2(©) + &(—)}

is null for Lebesgue measure. Now, the set F can be decomposed into the disjoint
union of three measurable sets, say U, ¥V and W, where W = F\(U u V),
U= {weF;§)+&(—w) #0 and g(w) = §(—w)} and ¥V = {w € F; §(w) +
+ g(—w) # 0 and g(w) # &(—w)}. In addition, the sets U and W are symmetric
about zero and —V < (R\F). Accordingly, —V and hence, also V, is a null set.
So, U and W are disjoint, symmetric, measurable sets with R\(U U W) a null set.
1t follows that L R
g =&+ &xw

where g yy (tesp. &) is an even (resp. odd) function a.e. on R.

Let /1 € L7(R). Then there exists a sequence {¢,} in sim(&"*(R*)) such that

{(@., y)(D)g} converges to h in LP(R) and hence, {(¢,~ ¥)&} converges toh in L(R).
Passing to a subsequence if necessary, it follows, using the disjointness of U and W,
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that {(¢,y)gxy} converges to hyy a.e. on R and {(@,°7)&xw} converges to /Azxw a.e.
on R. Since (¢,°7)gyy is an even function (a.e.) and (¢, = )8 xy is an odd function
(a.e),foreachn = 1,2, ..., it follows that /Asz is even (a.e.) and lAzz,,, is odd (a.e).
This is supposed to be true for arbitrary /& € L”(R) which it is clearly not. This gives
the desired contradiction.
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