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SPECTRAL THEORY IN QUOTIENT FRECHET SPACES. II

F.-H. VASILESCU

1. INTRODUCTION

In the first part of this work [17], we have defined a spectrum and constructed
a holomorphic functional calculus for every morphism in the category of quotient
Fréchet spaces.

The aim of the present paper, which is a continuation of [17], is to define
a joint spectrum and to construct a holomorphic functional calculus for some
finite families of mutually commuting morphisms in the category of quotient
Fréchet spaces.

Throughout this work, by Fréchet space (briefly F-space) we mean a locally
convex topological vector space, which is metrizable and complete. We mention
that every linear space from this paper is automatically over the complex field C.

Let X be an F-space. A Fréchet subspace (briefly F-subspace) [21] of X is
a linear subspace Y < X that has an F-space structure which makes the inclusion
Y < X continuous. We shall designate in the following by Lat(X) the family of
all F-subspaces of X (which is a lattice under the sum and intersection of subspaces;
see, for instance, [17], Lemma 2.1). A quotient Fréchet space (briefly qF-space)
is a linear space of the form X/Y, where X is an F-space and Y € Lat(X) [21].

We shall also work with Banach spaces (B-spaces), Banach subspaces (B-sub-
spaces) and guotient Banach spaces (qB-spaces), which are defined in a similar
manner (see [18]). We shall occasionally use inductive limits of Fréchet spaces
(LF-spaces) and quotients of such spaces (qLF-spaces), whose meaning can be
easily deduced by the analogy with the above situations.

Let ¥ be a differentiable (i.e. C*) manifold and let X be an F-space. The
space of all indefinitely differentiable X-valued functions on ¥ will be denoted by
SV, X). The space &(¥, C) will be simply denoted by &(V). If ¥ is an analytic
manifold, then O(V, X) is the space of all X-valued functions, analytic on V.
The space O(V, C) will be denoted by (V).
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Let L be a linear space and let ¢ = (04, ..., 6,) be a system of indeterminates.
We denote by A”[e, L] the linear space of all exterior forms of degree p ino,, ..., 0,,
with coefficients in L. Obviously, A?[s, L] = {0} if p > n and A%e, L} = L. The
direct sum of the spaces A7[¢, L] will be designated by A[cs, L].

Let 2 = (4, ..., 4,) be an arbitrary family of endomorphisms of L and let
o = (0, ..., 0,) be a system of indeterminates (which is often said to be associated
with 2). Then we may define on A[s, L] the endomorphism

D =h @0+ ...+, ®0,.

If A is commutative, then §(1)°5(2) = 0. Therefore, if §°(}) = 5(/1)] APlo, L], it is
clear that the sequence

8% sl ")

(1.1) K(L,2):0 - A%s, L] ——>AYo, L}—> ... —— A"[6, L] -» 0

is a complex of linear spaces, which is called the Koszul complex associated to A.
The homology of the complex (1.1) will be designated by {H?(L, 2)},5,. The com-
plex K(L, %) will be sometimes denoted by K(L, §(2)) and its homology by
{HY(L, 6(2))},>0 (when we neglect the source of §(%)).

The family of endomorphisms 2 = (2, ..., 4,) is said to be nonsingular
(resp. singular) if the complex K(L, 1) is exact (resp. not exact). For further
details see [13], [14], [16] etc.

Let us briefly describe the contents of the present work.

The next section is devoted to the study of some properties of linear operator
(as we call here the morphisms) in gF-spaces. We take again some results from [17]
in a more general setting (which is needed in the sequel), by introducing an abstract
functor, whose properties systematize the subject.

The third section deals with the definition and general properties of the joint
spectrum of a (commuting) multioperator. We prefer the term of multioperator,
by analogy with multivector, multi-index etc. (and already used by J. L. Taylor
{15]) to that of n-tuple of operators (which is often pleonastic) or that of commuting
system of operators (since the word ““system’” has too many meanings).

The fourth section is dedicated to the construction of the Cauchy-Weil-Taylor
integral in quotient Fréchet spaces. We have added the name of Taylor’s to those
of Cauchy’s and Weil’s (see [14] for the corresponding concept in Banach spaces)
to emphasize his contribution to this remarkable construction. Although we basically
use the method of J. L. Taylor (and our work relies heavily upon the papers
[13] and [14]), we have taken into account the subsequent extensions and simpli-
fications from [6], [11], [12], [16], [5] etc.

The last section contains the construction of the holomorphic functional
calculus for some commuting multioperators, including the spectral mapping theorem
(see also [20] for a different construction). A version of the Shilov idempotent
theorem ends the present work.
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Thanks are due to L. Waelbroeck, whose suggestions improved a preliminary
version of this work.

2. LINEAR OPERATORS IN QUOTIENT FRECHET SPACES

Let X be an F-space. The family Lat(X) of all F-subspaces of X has some
remarkable properties. We have already mentioned that Lat(X) is a lattice with
respect to the sum and intersection of subspaces. It consists of all images of linear
and continuous mappings, defined on arbitrary F-spaces, assuming values in X.
The F-space topology of each member of Lat(X) is uniquely determined. Direct
and inverse images of elements of Lat(X) via linear and continuous mappings are
again F-subspaces. Finally, for each Y € Lat(X) we have the heredity property
Lat(Y) = {Z eLat(X) : Z < Y} (see [17], Lemma 2.1). We also note that if X, are
F-spaces, Y; € Lat(X;) (j = 1, 2) and u: X; — X, is a linear and continuous operator
such that u(Y;) < Y,, then u: Y, — Y, is also continuous, as a consequence of the
closed graph theorem.

Now, let X;/Y,, X,/Y, be qF-spaces. For every linear mapping u : X;/Y; —»
— X,/ Y, we define the linear space

(2.1) Gou) = {(x,y) € Xy X Xy 1y eu(x + Y))},

which will be called the lifted graph of u. Note that the graph G(x) of u is isomorphic
to the quotient G,(1)/(¥; X Y,), which explains the name ascribed to Gy(v). Note
that the mapping u is completely determined by its lifted graph.

If Ker(1) (resp. Im(u)) is the kernel (vesp. the image) of the mapping u, we
also set

Kery) = {x € X; : x + Y; € Ker(u)},
Img() = {y €X, 1y + ¥, € Im(u)}

(similar concepts have been defined in [2]).

2.1. DEfFINITION. A linear mapping u: Xy/Y, — X,/Y, such that G,(u) €
€ Lat(X; x X) will be called a linear operator (or simply operator) from X{/Y;
intO Xﬂ Yz-

There are several reasons to use the term of operator instead of that of morphisin
(in the category of quotient Fréchet spaces), as done in [17], Definition 2.3. One
of them is the following result, which extends Lemma 2.5 from [17].

If L,, L, are linear spaces, we denote by pr; (resp. pr.) the projection of
the Cartesian product L, X L, onto L, (resp. L,).
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2.2. LEMMA. Let X,/Y;, X,/Y, be qF-spaces such that Y; is closed in X;
{j = 1,2). Then every linear operator u from X,]Y, into X,|Y, is continuous.

Proof. The graph G(u) of u is clearly isomorphic to X;/Y;. Therefore
Go(w)/(Yy x Yy) is isomorphic to X,/Y,. Moreover, this isomorphism, say
2 Gou)/(Y; X Yp) = X/ Yy, is induced by m, = pry|Go(w). If 7y = pry|Gy(u), then
7, induces a mapping 71,: Go(u)/(Y; X Y,) = X,/ Y, such that u = 7,0 A7

We now use the hypothesis of the lemma. Since Y, is closed in X;, then
Yy % Yy = nyY(Yy) is closed in Gy(u). Therefore 77! is continuous, by the closed

graph theorem. Then it is clear that w = 7 = 77! is also continuous.

Lemma 2.2 asserts, in fact, that the category of F-spaces (whose morphisms
are the linear and continuous mappings) is a full subcategory of the category of
qF-spaces (which will be discussed later; see Ramark 2.4.1°).

The set of all linear operators from the qF-space X,/Y, into the qF-space
Xo/ Y5 will be denoted by #(X,/Y;, X,/Y,). 1t is known that this set, endowed with
the usual algebraic operations, is a linear space ([ 7], Proposition 2.6(1)). If X,/ Y, =
= XY = X,/Y,, the space L(X,/Y,, X,/Y,) is denoted by £(X/Y). The space
L(X]Y) is a unital algebra with the property that the inverse of every bijective
operator is still an operator ([17], Proposition 2.6).

23. LemMA. Let we P(X,)]Y,, XslYs). Then Kery(u) € Lat(X;,) and
Imy(u) € Lat(X,).

Proof. Since the projection pr, is continuous on X; X X5, Go(u) € Lat(X; < X,
and Img(u) = pry(Gy(u)), we must have Imy(u) € Lat(X,), by Lemma 2.1 from [17]
To obtain the other assertion, note that

(2.2) Kery(u) X Y, = Go(u) N (Xy X Y,).

Therefore Kery(u) X Y, € Lat(X; X X,). Since Kery(u) = pry(Kery(1) X Y,), we
infer that Kery(v) € Lat(X;).

2.4. REMARKS. 1° As mentioned in [17], the family of all qF-spaces with
the morphisms given by Definition 2.1 is a category that is designated by q#. It
coincides with the category with the same objects and the same morphisms that was
introduced in [21]. (It was L. Waelbroeck who observed, in a private communication,
that the morphism 7,, which occurs in the proof of Lemma 2.2, is what he calls
a pseudo-isomorphism [21], so that Definition 2.3 from [17] and Definition 3.4
from [21] provide the same class of morphisms.)

Lemma 2.3 shows that if u € £(X;/Y1, X5/Y,), then Im(u) = Imy(x)/Y, and
Ker(u) = Ker,(u)/Y, are objects in the category q%. The natural isomorphism
between G(i) and G,(u)/(Y; X Y,) indicates that G(u) can also be regarded as an
object in the category q.7.
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2° Let uy, € #(X,, X,) be such that u,(Y,) < Y,. Then u, induces a linear
mapping u : X,/Y, = X,/Y, by the equality u(x + Y;) = uy(x) + Y, (x € X)). It
is known that v € £(X,/Y,, X,/Y,) (see [17], Lemma 2.4). We-shall say that u is
a strict operator induced by u,. Let us mention that this concept appears in [21]
under the name of strict morphism.

A lincar operator u € #(X,/Yy, Xy/Yy) is strict and induced by a certain
opcrator u, € #(X,;, X,) if and only if

(2.3) Go(u) = Glug) + {0} X Y,

where the sum from the right hand side is direct, as observed in [22]. Note that
(2.3) provides, in particular, another argument to see that a strict operator is an
operator.

3° Letu € L(X,|Y,, Xp/Yy)and let Z; € Lat(X}) besuch that Z; o Y;(j = 1, 2),
and u(Z,/Y,) © Z,Y,. Then the restriction v = u|(Z,/Y;) is an element of #(Z,/Y,,
Z,]Ys), since

Go(v) = G N (Z, x Z,) € Lat(Z, X Z,).

Note also that u induces a linear mapping w : Xy/Z; — X,/Z, by the formula
w(x, + Z) = xp + Z,, where (x;, xp) € Gy(u). Owing to the inclusion u(Z,/Y,)c
< Z,|Y,, the definition of w is correct. Moreover,

Go(w) = Gyu) + Z, % Z, € Lat(X, X X5),

and so w € L(X,/Zy, X,/ Z5).

4° Let X/Y be a qF-space and let Z € Lat(X) be such that Z > Y. Then
Y € Lat(Z) and the qF-space Z/Y is called a qF-subspace of X/Y [21).

Let u € #2(X/Y). A qF-subspace Z/Y of X/Y is said to be invariant under u
if u(Z/Y) < Z/Y. In this case we can discuss thc restriction v € £(Z/Y) of u to
Z]Y and the operator w € #(X/Z) induced by u in X/Z, in virtue of the previous
remark.

We shall meet in the following a slightly more general situation. Namely,
let X,, Y, € Lat(X) be such that X;n Y = Y. Then the natural mapping /iy: X,/ Yy
— X/Y, which is the strict operator induced by the inclusion X, < X, is injective.
Thus the space X,/Y, is isomorphic to the qF-subspace (X, + Y)/Y of X/Y. The
mapping i, will be called the canonical embedding of Xy]Y, into X/Y. The qF-space
X,/ Yo will be said to be a qF-subspace of XY, by abuse of terminology. Ifu € £(X/Y)
and (X, + Y)/Y is invariant under w, we shall say, again by abuse of terminology,
that X,/Y, is invariant under u. As a matter of fact, in this case « induces an
operator uy € #(Xo/Yy) given by uy = iz u| (X, + Y)/Y))ip.
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More generally, if X;/Y; is a qF-space and X;/Y,; is a qF-subspace of
X;/Y;(j=1,2), and u e L(X,/Y;, X,/Y,) has the property u((X, + Y)/Yy) <
< (Xp2 + Y3)/Y,, then u induces, as above, an operator u, € L(Xo1/Yo1, Xoo/ Yoo)-
Since the construction of the operator u, is purely algebraic, it does exist as a
linear mapping even if X,;/ Yy, is no longer a qF-space but, say, a qLF-subspace of
X;/Y; (that is, Y,; is a LF-subspace of X,; and Xy;n ¥; = Y,;). In particular, we
can discuss invariant qLF-subspaces under operators on qF-spaces and the
linear mappings induced by them. We shall also say that u extends uy, if u, u, are as
above.

5° Let X;/Y; be qF-spaces, let u; € £(X;/Y)) (j = 1, 2, 3) and let §, € £(X,/Y7,
X Y), 6, € P(X,[Y,, X,/ Y,) satisfy the equations 8,5, = 0, d,u; = u,d; and Squy =
= uzd,. Then u, induces a linear operator w in the qF-space Kery(5,)/Imy(J,).
Indeed, we obviously have Im(5,) < Ker(d,), u,(Im(6,)) = Im(d,) and u,(Ker(d,)) <
< Ker(d,). Therefore, by 3°, the restriction uleer(éz) induces an operator
w in Kery(d,)/Img(d,).

Note also that if u,, u,, u; are bijective, then w is bijective too. Indeed, in
this case Ou7' = uz'd,, dyus! = uz'd,, and the operator induced by wz?! in
Kery(d,)/Imy(d,) provides the desired inverse of w.

The next result is a simple but useful description of the lifted graph of an
operator.

2.5. LEmMA. Let Xi/Y,, X,/Y, be qF-spaces and let G, € Lat(X; x Xp).
The following conditions are equivalent: ®

(1) G, is the lifted graph of some operator u € L(X,]Y;, Xo/ Ys)s

2) GonN(Yy X Xp) =Y, X Y,, Go+ V3 X Xy =X, X Xy,

(3) Gy o Y, X Y, and the complex of ¥-spaces

0 ¥, X Y32 Gy X (Y1 x Xp) D Xy x X, - 0
is exact, where a(x,y) = ((x,¥), —(x,») (x€Y,, y€Y,) and

IB((xly xz): (yla y2)) = (xl + y13 xZ + y2) ((xla xz) € GOs (yl>y2) € Yl X X2)‘

Proof. Since the equivalence (2) <> (3) is obvious, it is sufficient to prove
the equivalence (1) <> (2).

Let u e (X/Yy, X,]Yy), let Gy = Gy(u) and let (x,y) € X; X X,. We can
find a vector y* € X, such that (x, y') € Gy(u). Thus

x,3) =0x¥)+ 0,y =) eGu + Y; X Xz-

Moreover, if (x,y) €Gyn(¥; X Xz), then y € u(x + Yl) = u(Yl) = Y,, and so
{x,y) € Y; X Y,. Hence(}) = (2).
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Conversely, let G, € Lat(X; X X,) satisfy (2). Then for every x € X, we can
find pairs (x,, y) € Gy and (x,, — y) € Y; X X, such that

.4 (x,0) = (x1,¥) + (x, - ).

‘We define the mapping u : X;/Y, — X,/Y, by the equality u(x + ¥}) =y + Y,.
‘When x €Y, then in (24) we have x;, = x - x,€Y,, and so (x,»)€Gy N

n(Y; X Xp) = Y;nY,. This shows that u is correctly defined. It is easily seen
that u is also linear.

To end the proof, we have to infer the equality G, = Gy(w). If (x,y) € G,.
then the representation (x, 0) = (x,y) + (0, — y) is as in (2.4). Hence u(x + Y)) =
=y + Y, by the definition of u, that is, (x, y) € G,y(u). Conversely, if (x, }') € G,(w)
and (x,0) = (x;,y) + (x, — p) isasin (2.4), then (x,») = (x;,») + (x3,0) € G,.
Hence, asabove,u(x + Y;) = y + Yp,sothaty’ — y € Y,. Finally, (x, y') = (x, 3)-+
+ (0, ¥ — y) € G,, which completes the proof of the lemma.

From now on we shall fix a nuclear Fréchet space N. For every F-space X

we denote by N @ X the completion of the algebraic tensor product N ® X with
respect to the projective (or, equivalently, the injective) topology (see [8], [4] etc.).

2.6. REMARKS. 1° If X is an F-space and Y eLat(X), then the natural
imapping from N (;) Y into N 69 X is (continuous and) injective. Therefore, we
may identify N ® Y with its image in N ® X, via this canonical monomorplism
This allows us to assert that N (;9 Y e Lat(V (;<) X).

We shall frequently use another identification. Namely, if X;, X, are F-spaces
then the space N @ (X7 x X,) will be identified with (¥ ® X)) x (N (;9 Xo).

2° Let X be an F-space and let Y;, Y, € Lat(X). Then, with the above identi-
fications, we have the equalities

N+ =N@®Y+N@®Y,, Ne(hin¥)=N&¥)n(N® Y.
Indeed, we have the exact complex of F-spaces
05 NiNY, > Y, X Yoo ¥y + Yy = 0,

‘where a(x) = (x, — x) and f(x, y) = x + y. Then the diagram

A B« -~ 18 - ~ ‘
0 NN Y)——>N@ (¥ X ¥) —> N@ (¥, + ¥;) = 0

] N

0= (N@Y)N (NRY) > (NRY)Xx(N@Yp) > N®Y, + N Y, » 0



152 F.-H. VASILESCU

is commutative and has exact rows, where i, , i, are the inclusions, 0 is the canonical

identification (see the previous remark) and & (resp. f) is defined as a (resp. B).
The exactness of the lower row is obvious and the exactness of the upper row follows
from the fact that the tensor multiplication of exact complexes of F-spaces by a
nuclear F-space preserves the exactness [4] (this argument will be often used in this
paper). Therefore 7, and 7, must be equalities, which is precisely our assertion.

3° Let X/Y be a qF-space. Then, by the first remark, we may define the qF-space

2.5) Px(X1Y) = (N @ X)/(N ® Y).

This notation is not ambiguous when Y is a closed subspace of X. Indeed, in
such a situation we have the exactness of the complex of F-spaces

0-Y->X—-X/Y-=O0,

where the mappings are the natural ones, which implies the exactness of the complex
0-N®Y S N®X->N®X/Y) -0,

showing that the spaces N (;9 (X/Y)and (N (>A§ X)(N é Y)are isomorphic as F-spaces.

4° Let X, X, be F-spaces and let v € Z(X;', X;). Then Im(ly ®v)=N®

® Im(v) and Ker(ly ® V) = N® Ker(v) [8], where 1, is the identity on N.
Indeed, we have the exact complex of F-spaces

0 — Ker(v) - X; = Im(v) — 0,

where Im(v) is given the F-space structure induced by the algebraic isomorphism
between X,/Ker(v) and Im(v). Therefore we have the exact complex

-

& .
- N® Im(v) - 0,

Iy

0> N®Ker(v) > N® X,

whence we obtain the desired conclusion.

2.7. LEMMA. Let X be an F-space, let Y € Lat(X) and assume that N is
non-null. If N ®X=N ® Y, then X = Y.

Proof. We fix an element v, € N, vy # 0. Then the mapping 0 : X - N ® X
given by 0(x) = v, ® x is a topological embedding of X into N ® X. Analogously,
.?IY Yo>N®YVYisa topological embedding of Y into N ® Y. We first show
that Y is closed in X.Indeed, if {x;}, = Yis a sequence such thatx, — x (k — o0)
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in the topology of X, then vq ® x, = v ® x in N ®X = N(>§ Y. Since 0|Y is
a topological embedding, the sequence {x,}, must be also convergent in the topology

of Y, and hence x € Y. But the space N(;)(X/Y) is isomorphic to (N@X)/(N@Y) =
= {0} (see Remark 2.6.3°). Therefore X/Y = {0}, that is X = Y.

2.8. LeMMA. Let X /Y, X,/Y, be qF-spaces. Then for every ue £(X,/Y,,
Xy/Y,) there exists an operator @y(u) € L(pn(X1/ Y1), on(Xy, Yo)) such that
Golon()) = N @ Golu). In particular, (1) is uniquely determined by u.

Proof. We consider the exact complex of F-spaces
(2.6) 05 ¥, X Yy Golt) X (Y1 X Xp) 2 Xy X X, =0,

which appears in Lemma 2.5(3). If we multiply the compléx (24) by N and use
the canonical identifications from Remark 2.6.1°, we obtain the exact complex

0N Y) X (VO Y) > (NS Golw) x (N Y) X (V& Xy)

LIN®X) X (N @ Xy) >0,

where & and /? are defined as « and f, respectively. It follows by Lemma 2.5

that the space N @ G,(u), which is a member of Lat((N ® X)) X (N ® Xy), is

the lifted graph of an operator @u(u) € L(pN(X1/Y1), oy(Xo/Ys)). Clearly, oy(u)
is uniquely determined by uw.

2.9. LemMA. The mapping
LX)/ Yy, Xp/Ys) 2 u = pu) € L(opX\/Y1), ox(Xo] V)
is linear.
Proof. Let u', u"" be in £(X,/Y,, X,/Y,). Consider the F-space
Go = {((x, 1), (x, 1)) € Go() X Gy(u"")].
The range of the linear and continuous operator
@7 Gos ((x,31), (x, 32)) = (x, 31 + 3) €X) X X,

is precisely Go(u' + u'’). Let a be the mapping (2.7) and let K, be the kernel of .
It is clear that

KO = {((01 y): (0: - y)) € Go Yy € Y2}
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‘We have an exact complex of F-spaces

0 - Ky — G, 5 Gou' + ') -0,

where the symbol — denotes inclusion, which leads to the exact complex

05 N&Kyor N®Go—2s N & Gl + ") =0,
By canonical identifications, we have the equalities
N ® Gy = {(f,e0:(f, ) € (N ® Golt)) X (N ® Gy},
N®K = {((0,8),0,—g) eN® Gy:geN @ Yy},

Moreover, via these identifications, the mapping 1 ® « acts in the following way:
(1 ® a)((f; ), (/> 8)) = (fs & + - Since NQGo(t') = Golopy()) and N@Go(u'") =
= Gy(pp@')), it follows that 1 ® o coincides with the mapping (2.7) corresponding
to the operators ¢n(u’) and @y(u'’). Therefore the image of 1 ® o is equal to
Gol@n@') + @x(u'")). On the other hand, the image of 1 @ ais N ® G +u") =

= Gy(py' + u'")). Consequently, oyt + /") = @pu") + on").
Next, let ue Z(X,/Y, X,/Y5) and 2 € C\{0}. Then

Go(du) = {(x, 2y) : (x,¥) € Go(w)}.
If y is the linear mapping

Go() 3 (x,¥) = (x, 1y) € Go(Jur),
then we have:
Go(on(au)) = N ® 9(Go@) = (1 ® YN Golon®)) =
= {(f; 28) : (; &) € Golox(u))} = GoQpylu)).

Finally, if u =0, then Go(u) = X; ® Y,. Hence Gylpy()) = (N ® X)) X
X (N ® Y,), showing that ¢u(u) = 0. '

2.10. LeMMA. Let u € L(X /Y, Xo/Ys) and let v € L(X,/Y,, X5/Y;). Then
ox(vu) = en(v)Pn(u).

Probf. We proceed as in the previous proof. Censider the F-space

Go = {((-\‘) y): ()’Y: Z)) € Go(”) X GO(L)}
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Then the range of the linear and continuous mapping

2.9) Gy3 (5, 1),(0,2)) = (x.2)e Xy X X,

is precisely G,(vu). Let o be the mapping (2.8). Then the kernel of « is the F-space
Ko = {(0,), (7, 0)) : y € Ya}.

Hence we have an exact complex of F-spaces

00— Ko‘—> GO i> Go(vu) hd 0,

which leads to the exact complex

0> N®Ky> N ® Gy —s N @ Gylvus) — 0.
Note that

N® Gy ={((f,2) (g, ) €(N® Gy) x (N® Go(v))},
N®K,={(0,8),(80) eN®Gy:geN®Y,},

and that (1 @ )((f,2),(g, 1)) = (f,/) (via canonical identifications). Since
N®Gy() = Gy(on()) and N & Gy(v) = Go(@p(1)), we infer that the mapping 1®a
is precisely the mapping (2.8) corresponding to the operators ¢y(u) and ¢y(v),
Thus the image of 1 ® « equals Go(py(v) (). On the other hand, the image of
1®a is N® Goltu) = Go(py(ru)), and the asscrtion is established.

2.11. LemMA. Let u e X (X,/Y,, X,/Y,) be a strict operator induced by

uy € L(Xy, X,). Then pu) is the strict operator induced by 1y ® uy, where 1y is
the identity on N.

Proof. From (2.3) we infer that
N ® Gyu) = N® Gup) + {0} x (N ® Yy),

and the sum of the right hand side is direct. Note that the space N ® G(u,) is preci-
sely the graph of the operator 1y ® u,. Thus

Golpa) = G(ly ® up) + {0} x (N ® Y)),

‘whence it follows that ¢u(u) is induced by 1, ® u,, in virtue of (2.3).

2.12. COROLLARY. Let X|Y be a qF-space and let 1y,y be the identity of X|Y.
Then @y(ly,y) is the identity on n(X/Y).
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Proof. Indeed, 1y,y is a strict operator induced by the identity of X. There-
fore, by Lemma 2.11, @u(ly,y) is the strict operator induced by the identity of
N® X.

2.13. RemArk. If for every object X/Y in the category q# we denote by
on(X/Y) the object given by (2.5) and for cvery morphism u in the category q#
we let @u(ir) be given by Lemma 2.8, then the results obtained so far show, in
particular, that ¢, is a functor in the category q%. An alternate construction
of ¢y can be performed by using the general method indicated in [21].

We now summarize a part from the above results in the language of the
theory of categories [3].

2.14. THEOREM. Let N be a fixed nuclear F-space. Then @y is an additive
and covariant functor of the category qF into itself, which leaves invariant the class
of strict morphisms.

Proof. The assertion follows from Lemmas 2.8—2.11 and Corollary 2.12.

The results obtained up to now extend and often simplify assertions contained
in [17], Section 2. To obtain a complete extension of Theorem 2.9 from [17].
we shall study the modifications of the functor ¢, when onc acts upon the space N-

2.15. PropoSITION. Let N;, Ny be nuclear F-spaces and let 0 € L(N,, N,).
Let also X\/Yy, Xo]Y, be qF-spaces. If ), denotes the identity on X; and
0; € L(py (X;]Y), 0 (X;]Y))) is the strict operator that is induced by ()@lj
1 E}
(j =1,2), then for every u e L(X1/Yy, X,/Y,) the diagram

7y @
1
‘PNl(X],/ Y)— (le(X‘Z/ Y

S,

op )
(pNn(Xl/ Yl) -—— (pN')(X2/Y2)

is commutative.

Proof. Since 0 ® I; maps the space N, ® Y; into N, ® Y;, it follows that
0 ® 1;induces a strict operator from ¢, (X;/Y) into ¢, (X;/Y;). Let 1, be the identity
1 2

of Gy(u) and fet 0, = 0 ® 1,. Then the diagram

Ny ® Gy()— (N, ® X,) X (N, ® Xs)

.

No ® Golt) = (Mo ® X)) X (N, @ Xy)
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is commutative, where 0(f, g) = (0 ® 1), (0 ® 1,)g). If (£, &) € Gy, (1)), then
O f, g) € Go((qu(u)). Therefore

0@ 18 €0y (0 & 1Y+ Ny ® Y1) = o (0(/ + N, ® Y)).

Since (0 ® 1,)g € 0,00, (F + N, ® Y1), we infer easily the desired conclusion
2 2 N1 .

2.16. REMARKS. 1° First of all we present an observation related to the pre-
vious proposition. Namely, if X{/Y,, X,/Y, are qF-spaces, then for every
u e L(X,/Y, XoYy) we have the equality

(2.9) Py gn, (1) = Oy (@ ).
Indeed,

Go(@x, v, () = My ® Ny @ Gy(1) = Ny ® Gl () = Gy (0, (1)-

2° Let A be an arbitrary algebra. Assume that the nuclear F-space N is a
left A-module such that the linear mapping L, given by L,(v) = av (v € N) is
continuous for every a € A. Then for each F-space X the space N ® X is still an
A-module (with the action induced by L, ® 14, a € A). With these conditions, for
every operator u € ¥(X,/Y;, X,/Y,) the operator ¢y(u) is an A-module homo-
morphism. This assertion is a simple consequence of the fact that ¢.(X,/Y,),
on(X5/Y,) and Gy(pp(u)) are A-modules.

3° Let N, be a nuclear F-space and let ¥, bz a closed subspace of N,.
Then for every qF-space X/Y the natural mapping from ¢, (X/Y) into ¢, (X/Y)
1 2

(see Proposition 2.15) is injective. This is clearly equivalent to the equality
MOV, ®Y)=M&Y,

and it follows from general arguments of short exact sequences of complexes.
Let us sketch a direct proof. Let N3 = N,/N,, which is also a nuclear F-space [8],
let i : Ny = N, be the inclusion and let k : N, - N, be the canonical mapping.

If fe (N, ® X)n(N, ® Y), then
(k ®1)f = (k @ 1)(i ® 1)f = 0.

Therefore (k @ 1y)f = (k ® 1,)f =0, and so fe N, ® ¥, by the exactness of
the complex
i®1 k@1,

0N, ®Y—>N,®Y—>N,® Y »0.
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This shows that (p& (X/Y) is a qF-subspace of ¢, (X/Y) (see Remark 2.4.4°).
1 2
Hence, if u € Z(X,/Y;, X,/Y,), then ¢, (u) extends ¢, (u), because of the re-
1 2

lations
Gule,, (@) = Ny ® Go(u) = Ny ® Go(w) = Go(p,, (1).

A particular case that interests us is the following. Let N, = N be a nuclear
F-space which is also a unital algebra whose multiplication is separately continuous,
so that 2° applies. In addition, if N, = C-1, then X/Y is canonically isomorphic
to (le(X /Y). In this case, the operator @y(u) can be regarded as an extension of

the operator u € P(X/Y1, X,/Ys).

4° Let V be a differentiable manifold. Then &(V) is a nuclear F-space [8].
Therefore the results of this section can be applied to N = &(V). We shall denote
in the following by &(V, -) the functor ¢ £ given by Theorem 2.14. Note that

the morphisms obtained via &(V, -) are also &(V)-module homomorphisms, by 2°.

5° Let ¥ be an analytic manifold. Then @(¥)is a nuclear F-space [8]. Hence
we may apply the results of this section to N = (V). The functor @ pary will be

denoted in the following by «(V, -). It follows from 2° that this functor yields
¢(V}-module homomorphisms.

Since O(V) is a closed subspace of &(¥), it follows from 3° that &(V, u)
extends (¥, u) for every v € Z(X)/Y,, X,/Y,) (sec also {9], Remarque 1). Note
also that ¢(¥)is an algebra as in the end of 3°. Hencc the operator «(V, 1) extends
in turn the operator u (if we regard X;/Y;as a qF-subspace of «(V, X;/Y}), j = 1,2).
In particular, if ue Z(X/Y), then X/Y is invariant under «(¥, v) and «(V, XY}
is invariant under (¥, 1) (sec Remark 2.4.4°).

6° Let C be the one-point compactification of the complex plane C. For
every open set V< é we set 0(9(V) = @(V) if V$OO and n(')(V) = {je @(V) :
:f(c0) = 0} if V' 300. Since (0(¥) is nuclear, we may consider its functor ge(V, -).
it follows from 3° that (¥, u) extends 4¢(V, u) for every ue L(X;/ Y1, Xo'Yo).

The functors 4&(V, -) and &(V, -) can be used to define a concept of spectrum.
for every u € Z(X/Y) [17]. Let us recall this definition. If ¥V < C is an open set,
let ¢, be the operator from ,«(V, X/Y) into o(V, X/Y) induced by the multiplication
with the coordinate function (. Let also u, be the operator ,«(V, u) followed by
the canonical embedding of 4o(V, X/Y) into «(V, X/Y).

A point we C is said to be regular for u [17] if there exists an open set W 3 w
such that for each open subset V' < W the operator {, — u, € L(e(V, X/Y),
+(V, X]Y)) is bijective. The complement in C of the set of regular points for u
is denoted by o(u, X/Y) and is called the spectrum of u. The set o(u, X/Y), which
is obviously closed in C, is nonempty, provided X # Y [17].
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According to the standard terminology, we shall say that the operator
u € ¥(X/Y)is regular if the point oo is regular for u. This is equivalent to the com-
pactness of the set o(u, X/Y) in C.

In what follows N will be again a fixed nuclear F-space.

2.17. LEMMA. Let u € L(Xq/Y1, X,/Y,). Then we havethe equalities Imy(py(u)) =
= N ® Img(n) and Kery(py@) = N @ Kery(u).

Proof. Since Imy(u) = pry(G,o(w)) and N is nuclear, we have:
N ® Img(u) = N & pry(Gy() = (1 ® pro)(V ® Go(w)) =
' = (I ® pra)(Goloyw))) = Img(pn(u)),

because 1 ® pry, is just the projection on the second coordinate in (N ® X)) X

X (N® X,), and by virtue of Remark 2.6.4°.
To obtain the second equality, note that

(N ® Kery(w)) X (N ® Yy) = Golox() n(N @ X)) X (N ® Yy),

by (2.2) and Remark 2.6.2°, Thus Kery(py()) = NV ® Kery(), again by (2.2).

2.18. COROLLARY. Let u € (X, /Y, Xo/Y,) and v € L(X,/Y,, X,/ Ys) be such
that vu = 0. Then we have the equality

on(Kery(v)/Imy(u)) = Kery(@n(v))/Img(@x(u0))-

Proof. Since vu =0, and hence Imy(u) = Kery(v), we also have gpy(t)oy(u) = 0,
and so Img(py(1)) = Kery(pp(v)). The stated equality is now a simple consequence
of Lemma 2.17.

The last two results can be applied to get some information about the complexes
in the category q&%. Let

p=1 P £

X/Y,u): ... s Xe|yr ., Xp+1jYp+1 .

be a complex in the category q#. Since Ker(x?)/Im(wP~') is isomorphic to
Ker,(u?)/Img(u?~1), the homology of the above complex remains in g%, by Lemma 2.3,
We shall designate this homology by {H?(X/Y, 1)} pez.

2.19. PROPOSITION. Let

W1 u? uP2
X/Y,u):... — XP|YP — 5 XP|YP oy |,
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be a complex in the category qF and assume that N is non-null. Then

oy ont)

((pN(X> Y)> (PN(u)) e (PN(XI,/YP) _—...

is a complex in the caregory qF such that
H(on(X]Y), o)) = ou(HP(X]Y,u)), pe€Z.

In particular, (XY, u) is exact if and only if (px(X]Y), n(w)) is exact.

Proof. That (o (X7Y), oy(u)) is 2 complex whose homology is described as
in the statement follows from Corollary 2.18. In particular, the exactness of (X/Y. u)
implies the exactness of (py(X/Y), @x(w)).

Conversely, if (opp(X]Y), @n(u)) is exact, then we have the equality
Né)lmo(u”-l) = N®Ker,(u?) for each p. From Lemma 2.7 we deduce that
Imy(u”~1) = Kery(u?) for all p, that is the exactness of the complex (X/Y, u).

The last result of this section is an F-space version of Proposition 5 from [19].

2.20. PROPOSITICN. Let

p-1 Pl

iu ’l”
XY, uy:... —— XP|YP » XPH1[Yr+l 5

be a complex in the categorv qF such that u? is a strict operator induced by
uh e Z(XP, XP+Y) for all p. The complex (X|Y,u) is exact if and only if the
complex of F-spaces

pm1 4 2
v T
(210) .. L—) X oy Yr+l > XP+1 3¢ Yr+2 L
is exact, where
p
P = ( Uy -1 p+1 )
+1 P41 1
ubtlup  —uf | Yo+

and 1, is the identity on Y* for all p € Z.

Proof. Since (X/Y, u) is a complex, we must have Imyw? ) c Kery(u®) for
every p. Note that Img(u”™1) = Im@i~") + Y? and XKer,(u?) = (uf)~H(¥Y?+3),
from which we derive, in particular, that (2.10) is a complex. Therefore the complex
(X/Y, u) is exact if and only if

ImuZ=Y) + Y? = )" Y(¥Y?+), pel.
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This is equivalent to the fact that the system of equations

P-1 =
Up Xp-1 = Vp =X

Pl P—1.. —
ul)(u() )‘p——l - yp) = yp--l

has a solution (x,_;, ¥,) € X?~*X Y? for each given pair (x,, y,.;) € X? X Y?+1
with the property that ufx, — y,., = 0, where p is arbitrary, which means just
the exactness of the complex (2.10).

3. THE JOINT SPECTRUM OF A MULTIOPERATOR

Let X/Y be afixed qF-space. In this section we intend to define a joint spectrum
for some finite families of commuting operators from Z(X/Y).

3.1. DEFINITION. A finite family u = (uy, ..., u,) c L(X/Y) will be designated
as a multioperator. X wju, = wu; (j,k =1, ..., n), then uis said to be a commuting
multioperator. If every u; (j =1, ...,n) is regular (see Remark 2.16.6°), then the
multioperator u will be called regular. If each u; (j = 1, ..., n) is a strict operator
(see Remark 2.4.2°), then the multioperator # is said to be strict.

In this section we shall mainly work with commuting regular multioperators,
-which will be briefly designated by c.r.m. We denote by { = ({;, ..., {,) the family
of coordinate functions in C”, that is {}(z) = z; for all z = (z;, ..., z,) € C" and
J =1, ...,n. When no confusion is possible, we shall also denote by {; the multi-
plication operator by the function {; in any of the spaces «(V, X/Y), e(V, X/Y)
{see Remarks 2.16.4° and 2.16.5°), as well as in direct products of such spaces etc.,
where ¥V < C" is an arbitrary open set. For every multioperator # = (i, ...,u,) we
denote by «(V, u) (resp. &(V, u)) the multioperator (o(V, u,), ..., «(V, u,)) (resp.
eV, w), ..., eV, u))).

Let us observe that if X,/Y,, ..., X,/Y, are qF-spaces, then the natural iso-
‘morphism .

XYDX ... X (X,)Y) > (XX ..o xX) (Y, %X ... XY,)

allows us to regard direct products (or direct sums) as qF-spaces. We shall make no
distinction between such spaces in the following. In particular, the Koszul complex
obtained from gF-spaces is a complex of gqF-spaces.

3.2, DEFINITION. Let u = (i3, ..., u,) < L(X/Y) be a c.r.m. The resolvent
set p(u, X/Y) of u is the set of those points w € C" for which there exists an open
set Waw such that

H?(o(D, XY),{ — (D, w) = {0}, p >0,

a1t — 2609
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for each open polydisc D = W. The set o(u, X/Y) = C™\p(u, X]Y) will be called the
Jjoint spectrum of the multioperator u (compare with [13], [11], {19], [27], etc.).

The family of differentials d{ = (d{,, ..., d{,) will be regarded in what
follows as a system of indeterminates associated to the multioperator V = (¢fezy
..., 0/0Z,). Therefore the operator 5(5) (see the Introduction) is precisely
0 = (0/0z)d, + ... + (9/oz)dE,.

If veZ(X]Y), since Gye(V, v)) = 6, Go(v)), it is clear that &V, v}
commutes with the operator induced by 6/0z; in &(V, X/ Y) (also denoted by 0/0z;) for

allopen V < C"andj = 1, ..., n. In particular, (e(V, u), 5) is a commuting multi-
operator for every commuting multioperator u = (), ..., u,) < L(X/Y).

3.3. LeEMMA. Let V < C" be a Stein open set. Then thé complex

0 = oV, XIY) L5 6V, X]¥) —5 AYdT, &(¥, XY= ..

. —J—> AdC, &V, X]Y)] = 0,
is exact, where iy is the canonical embedding.
Proof. The exactness of the complex
080, Y)W, X) - &V, X]Y) -0,

where the mappings ars the natural ones, implies the exactness of the sequence of
complexes

0 - K(&W, Y), 9) » KEW, X), ¢) = KV, X]Y), ) -0,

from which we derive the exactness of the long homology sequence '
.~ H/(EW, Y),0) - H(EWV, X), 0) - HP(e(V, X]Y), &) —

- HP+Y(EW, ¥), D) — ... |

(see, for instance, [7],1.2.2). Since ¥ is a Stein manifold, then we must have
Ho (W, Y), 0) = {0} and H?(&(V, X), ) = {0} for all p > 1. (These facts are well
known for scalar-valued functions [10]; the case of vector-valued functions can
be casily derived by tensor multiplication.) The same argument implies the exact-
ness of the complex

0 - O, Y)—> O, X) > H@EV,X]Y),d) -0,
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which shows that K_er(’ﬁ‘]c( V, X]Y)) is isomorphic to «(V, X/Y), via the cénonical
embedding i, .

3.4. REMARK. The argument from the proof of the previous lemma also works
for finite direct products of complexes of the given type. For instance, if ¢ = (gy, ...
., 0,) is a system of indeterminates, then the complex

0 — Alo, oV, X|Y)] o, Alo, &V, X/Y)] N

— AYdT, Alo, eV, X)) - ... =2 A'[dE, Ao, e(V, X] )]} = 0
is exact for every open Stein set ¥V < C".

3.5. LemMA. Let u = (u,, ...,u,) c L(X]Y) be a crm. and let V be a
Stein open set in C'. We have

Ho(o(V, X]Y), L — o(V,u)) = {0}, p=>0
if and only if

He(e(V, X[Y), € —e(V,u), 7)) = {0}, p >0

Proof. The complex K = K(e(V, X/Y), ({ — &(V,u), V)) can be regarded as a
double complex K = (K”%),50,450, With the differentials 5({ — &V, u)) and 2,
where K77 are the exterior forms of degree p in oy, ...,0, and of degree ¢ in
dg,, ..., d¢,, with coefficients in e(V, X/Y). If "HY(K) is the gth homology space of
K with, respect to 0, then, acocording to Remark 3.4, we must have ""HYK) = {0}
if ¢ > 1. This shows that the conditions of Theorem 1.4.8.1 from [7] are fulfilled. In
virtue of this theorem, if we denote by L the subcomplex of K consisting of those
exterior forms which can be written as & = &g + ¢ + ..., Where éno is a form
of degree p in gy, ..., g,, of degree zero in dg y s dg,,, and 05,,0 = (), the embed-
ding L — K provides an isomorphism between the homology of L and that of K.
It follows from Remark 3.4 that the complex L is isomorphic to the complex of
exterior forms in @, ..., ¢,, with coefficients in «(V, X/Y).

3.6. REMARK. The proof of Lemma 3.5 actually shows that the space
H(o(V, X]Y), {— eV, u))
is isomorphic to the space

He(e(V, X[Y), (L - oV, u), 7))

for every p > 0. This fact might be used as the starting point of an approach to a local
spectral theory in this context (see also [6], [16], [5] etc.).
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3.7. LeMMA. Let W < C" be an arbitrary open set and let £y (X[Y) be the sheaf
associated to the presheaf U — ¢(U, X|Y) (U<W open). Then e,(X|Y) is a fine sheaf
whose space of global sections on W coincides with e(W, X]Y).

Proof. The sheaves &,(X) = &,(X/{0}), ex(¥) = 2, (¥Y/{0}) and &, (X]Y)
are fine since they are invariant under multiplication by indefinitely differentiable
functions with compact support. Moreover, if I'(s, (X]Y)) is the space of global sec-
tions of &,,(X/Y), then, from the exactness of the complex of sheaves

0 = &y (Y) > £,y(X) - &y(X]Y) -0,

where the mappings are the natural sheaf morphisms, we deduce the exactness of
the complex of global sections

0 = I'(ey(Y)) = I'(e(X)) = I'(en(X[Y)) - 0

{sce [10], VLA for details). But it is visible that I'(e,,(Y)) = §(W, Y) and I'(g;y(X)) =
= §(W, X). Therefore I'(g,(X]Y)) = e(W, X|Y), as claimed.

3.8. THEOREM. Let v = (uy, ..., u,) < L(X]|Y) be a cx.m. Then:
(1) for every open Stein set V < p(u, X|Y) we have

Ho(o(V, X[Y), { — o(V,u)) = {0}, p>0;
(2) for every open set W < p(u, X|Y) we have
Ho(e(W, X|Y), (L — (W, u), V)) = {0}, p>0.
Proof. (1) Let 2,(X]Y) be the sheaf associated to the presheaf U — (U, X|Y)

(U = V open) and let o, (X]Y) = AP[o, 0(X]Y)] (p > 0). Definition 3.2 implies
the exactness of the complex of sheaves

én—l

3.1 0 = 2, X/ Y) 2, oy (X]Y) LGN oy (X]¥) >0,

where the sheaf morphisms are induced by the family {6({ — &(U, u))}y . Note
that every sheaf ¢, (X/Y) is acyclic. Indeed, if we set

ey, pdX|Y) = A%dL, Ao, 6, (X[Y)]], ¢ >0,
with &,(X/Y) given by Lemma 3.7, then the complex of sheaves
i Fi 5
(.2) 0 = oy JX[V) Loty o X/¥) —> ... ~> 8y, ,(X]Y) >0

is exact, by Remark 3.4. Let us observe that (3.2) is a fine resolution of the sheaf
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op,, (X]Y), as a consequence of Lemma 3.7 (since every ¢y , (X/Y) is a finite direct

product of copies of ¢,(X/Y)). Hence the complex of the spaces of global sections

associated with (3.1) is exact (see [10}, VI.B). But this is precisely our assertion (1).
(2) Set

ew.(X]Y) = A"[(s, 40), ep(X/Y)], m > 0.

By Lemmas 3.5 and 3.7, the complex of fine sheaves

3.3) 0 — &, o(X/Y) i> ew 1(X]Y) -(1-1-—> .

is exact, where the sheaf morphisms d™ are induced by the family {6(¢ — (U, u)) +

+ b}vc,y. Then the complex of the spaces of global sections associated to (3.3) is
exact (by Corollary VI.A.4 of [10]), which is just our assertion 2).

We shall prove in the following some elementary properties of the joint spec-
trum (see also [13] or [16] for Banach or Fréchet space operators).

3.9. LEMMA. Let u = (g, ...,u,) « L(X|Y) be a cx.m. Then we have the
inclusion :

(34) . ou, X]Y) < o(uy, XYY X ... X o(u,, X]Y).

Proof. Let w € C” be a point that is not in the right hand side of (3.4) together
with an open neighbourhood W of it. Let D = W be an open polydisc, D = D, X ...
...% D,, where D; is a disc (j = 1, ..., n). Then there exists an index j such that
D; n o(u;, X|Y) = @. From the definition of the spectrum of an operator (see
Remark 2.16.6°), it follows that the operator (; — «(D;,u;) is invertible on
«(D;, X[Y). Then the operator o(G;, {; — #(D;,u)) is also invertible on
«(G;, o(D;, X|Y)) (as follows from Theorem 2.14), where

Gi=Dy X ... X D;_1XDjyy X ... XD,.
But the space o(G;, o(D;, X/Y)) is isomorphic to <(D, X/Y) and the operator
G;, [; — o(D;, w))) can be identified with the operator {; — o(D, u;), via this
isomorphism, by Proposition 2.15 and Remark 2.16.1°. Therefore the operator
{; — o(D, uy) is invertible on o(D, X/Y). This implies that the multioperator
{ — (D, u) is nonsingular, by Lemma 1.1 from [13]. In other words

H(o(D, X]Y), { — o(D, u)) = {0}

for all p > 0. Since D < W is arbitrary, it follows that w € p(u, X]Y).
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3.10. THEOREM. Let u' = (uy, ..., u,,U,1,) < L(X]Y) be a crm. and let
u=(u,...,u,). If n,: C"*' - C".is the projection on the first n coordinates, then
we have the eqaulity n (a(u', X|Y)) = o(u, X]Y).

Proof. Let w € p(u, X/Y) and let W < p(u, X/Y) |be a neighbourhood of w as
in Definition 3.2. Let also D = W be an open polydisc. Then the complex
K(<{D, X]Y), { — (D, u)) is exact. Let D,,, be an arbitrary disc and let
D' = DX D,,,. From Proposition 2.19 and Remark 2.16.1° we deduce readily
the exactness of the complex K(«(D’, X/Y), { — o(D’, u)). Then the multioperator

(C - ['(D’a ")3 En+1 - (’(D'a un+l)) = (5, - p(Dl5 "’))

is nonsingular, by Lemma 1.3 from [13], where {' = ({, {,+). Hence no point
w' = (W, w,,;) € C"*! can be in (v, X/Y), that is w ¢ n,(a(e/', X/ Y)).

Conversely, let D < C” be an arbitrary polydisc. Let us first observe that the
operator «(D, u,,,) acts naturally on the space Alo, «(D, X/Y)] (which is a direct
product of copies of (D, X/Y)). Moreover, we have

L — (D, w)a(D, Uy 4q) = o(D, Uy 4q) 0L — (D, u)),

which shows that +(D, u,.,) induces an operator, say o”(D, u,,,), in the space
H?(«(D, X]Y), { — +(D, u)) (see Remark 2.4.5°).

Let us assume now that o(v, X/Y) & n,(c(u’, X/Y)). We shall prove that this
hypothesis leads to a contradiction. For, let D,.; < C be an arbitrary disc. We

first show that the operator {,., — #(D,,q, <°(D, u,.,)) is bijective on the space
(Dyi1, HP(6(D, X/ Y), { — +(D,u))). Indeed, let w € o(u, X/ Y)\r,(c(u', X/ Y)) and let
Wo+: € C be fixed. Then w' = (w, w, ;) € p(t', X/Y). Let W' be a neighbourhood of
w’ provided by Definition 3.2. With no loss of generality, we may assume that
W' = WX ... XW,XW,a, with W, « C (j=1,...,n, n+1). If D; c W,
arc arbitrary discs, we let D denote D, x ... xD, and D' = DXD,,,. Then the
complex K(o(D', X]Y), ' — «(D', w')) is exact. If we proceed as in the proof of
Theorem 3.1 from [13] (see also [19], Proposition 1), we infer that the operator
{41 — (D', u,y,) induces an isomorphism of the space H?(«(D', X/Y),
{ — o(D’, u)) onto itself. Cut this space is isomorphic to (D, .., H?(«(D, X[Y),
{ — ¢(D, u))) and the isomorphism induced by {,., — (D', ut,.,) becomes «(D, 1,
{or1 — (D, u,4y)). This establishes the bijectivity of the operator «(D, .,
{osy — (D, u,,,)). Since D, is arbitrary, we have obtained the inclusion

C < p(™(D, U 41), H(o(D, X]Y), { — (D, w))).

We shall prove that the operator «”(D, u,,) is regular. For, let G < C be an
open neighbourhood of the infinity such that the operator

Corr — (Waa1dg 7 0e(G, X/Y) - ¢(G, X]Y)
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is bijective (the operator (u,.,); is defined as in Remark 2.16.6°). Then the operator
A?[6, 4e(G, (D, X|]Y))] ~ Ao, o(G, (D, X|Y))]

induced by {,,, — (u,41)¢ is also bijective, where ¢ = (04, ..., 0,) is a system of
indcterminates associated with the multioperator u. Therefore the operator

oG, H'(e(D, XIY), { — o(D, u))) » (G, H(s(D, X]Y), { — «(D, u)))

induced by {,.1 — ¢”(D, u,,,) is bijective too (sce Remark 2.4.5°), so that
«"(D, u, ) is regular. In other words, the spectrum of <?(D, u,,,) is empty for
each p > 0, which is possible only if H?(¢(D, X/Y), { — «(D, w)) is null for all p
(and D). On the other hand, since w € a(u, X/Y), we can find a polydisc D and
an index p such that H”(«(D, X|Y), { — «(D, 1)) # {0}. This contradiction
concludes the proof of the theorem. '

The next result is a version of the so-called projection property of the joint
spectrum.

3.11. THeOREM. Let u = (uy, ...,u,) =« L(X/Y) be a crm. and let J =
= {ji,..dpy € {1, ...,n} be a family of distinct integers, with 1 < p < n. Set
U, = {”G’ R "f,,}' If m,:C"—=C? is the projection z =(zy,...,z,) 22, =
= (z,-l, cee z,-p), then we have the equality o(u,, X|Y) = n,(c(u, X|Y)).

Proof. The assertion can be easily obtained, by combining Theorem 3.10
with the method from [16], Lemma 11{.9.6.

3.12. COROLLARY. Let u = (uy, ...,u,) < L(X[/Y). Then the joint spectrum
o(u, X]Y) is compact and nonempty, provided X # Y.

Proof. The compactness of o(u, X/Y) follows from Lemma 3.9. Since the pro-
Jjection of o(u, X/Y) on the j** component equals the spectrum of u;, and the latter
is nonempty for all j =1, ..., n, then o(u, X/Y) is nonempty.

Let X,/Y, be a qF-subspace of X/Y that is invariant under the c.r.m. u =
= (ty, ..., u,)c LX]Y) (ie. X,/Y, is invariant under each u;,j =1, ..., n). Assume
that the multioperators induced by u in both Xy/¥, and in X/(X, + Y) (see Re-
marks 2.4.3° and 2.4.4°) are regular. Then we can discuss the joint spectra of the
multioperators that are induced by v in Xy/Y, and in X/(X, + Y), which are denoted
by alu, Xp/Y,) and a{u, X/(Xy, + Y)), respectively.

3.13. PROPOSITION. The union of any two of the sets o(u, X|Y), o(u, XolYy)
and o(u, X/(Xy + Y)) contains the third.

Proof. This result is a version of Lemma 1.2 from [13] (see also [16], Remark
IV.LL7). Let iy: X,/Yy — X/Y be the canonical embedding and let k,: X/Y —
— YV/(X, + Y) be the canonical mapping. Let also D < C" be an arbitrary poly-



168 F.-H. VASILESCD

disc. Since the complex

i k
0 = Xo/ Yo —> XY =5 X)(X, + ¥Y) >0

is exact, then, in virtue of Proposition 2.19, the complex

0 - +(D, XO/YO)ﬂo(D, X/Y) ib—'li‘i (D, Xj(Xg + Y)) >0
is also exact. Hence the sequence of complexes
0 = K(«(D, X/ Yy), { — oD, u)) - K(o(D, X]Y), { — (D, u)) -
= K(s(D, X/(Xo + Y)), { — o(D, u)) » 0
is exact. Therefore there exists a long exact homology complex
. = H?(o(D, Xy|Yy), { — (D, u)) - H?(o(D, X]Y), { — o(D, u)) ~
- HP(o(D, X|(Xy + Y)), { — o(D, 1)) = ...

from which we easily derive our assertion.

As in the case of Banach space operators [13], for commuting multioperators
in gB-spaces one can give a “pointwise”” definition of the spectrum [19]. We shall
show in what follows that Definition 3.2 and the corresponding definition from [19]
provide the same concept of joint spectrum in qB-spaces.

3.14. REMARK. A morphism in the category of qB-spaces (briefly designated
by q#) is defined in [18] as a finite superposition of strict morphisms and inverses
of bijective strict morphisms (called in [18] pseudo-isomorphisms). On the other
hand, if X,/Y,, X,/Y, are gqB-spaces and v: X;/Y; — X,/Y, is a linear mapping;
we may say that v is an operator (in q#) if G4(v) is a B-subspace of X;xX,. by
adapting Definition 2.1 to this case. One can see that a linear mapping is a morphism
in g4 if and only if it is an operator in q4. Indeed, strict morphisms and inverses of
bijective strict morphisms are operators (as in [17], Lemma 2.4), so that their super-
positions are still operators. Conversely, every operator can be written as a com-
posite of a strict morphism and the inverse of a bijective strict morphism (see the
proof of Lemma 2.2).

Nevertheless, a natural question arises in this context. If X,/Y;, X,/Y, are
gB-spaces and v : X,/Y; — X,/Y, is a morphism in the category qZ, is v also a
morphism in the category q#? (In other words, is g4 a full subcategory of q7 ?)
Before proving the announced equivalence of joint spectra, we shall settle this
question, whose answer happens to be-affirmative.
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3.15. ProrositioN. Let Xi/Y,, Xo/Y, be qB-spaces. Then for every
ve L (XY, X5 Y,) the lifted graph Gy(v) is a B-subspace of the B-space X; X X,.

The proof of this assertion is based upon an auxiliary result:

3.16. LEMMA. Let 0 » Xy = X —» X; — 0 be an exact complex of F-spaces

and continuous mappings. If any two of the spaces X,, X, X; are B-spaces, then
the third is also a B-space.

Proof. If either (X, X) or (X, X;) is a pair of B-spaces, then the assertion
is easily obtained. Therefore it suffices to deal with the case when (X,, X;) is
pair of B-spaces.

With no loss of generality we may assume that X; « X and X; = X/X,.
Let {s,},>: be an increasing family of seminorms which defines the topology of X.
Since X, is closed in X and the restriction of the topology of X to X, induces
a B-space structure, there exists an index n, such that each seminorm s% = s,,]X0
is a norm for # > n,, and any two norms from the family {sﬁ},,;,,o are equivalent.

Similarly, since X; has a B-space structure, there exists an index #; such that
each seminorm s, that is defined by s, on X; (ie. six + X;) = inf{s,(x + y) :
1y €X,}, x€X)is a norm for n > n,, and any two norms from the family
-{Sn},,?,,l are equivalent.

Let n = max{iy, n;} and let s’ = 8,05 s = s ., where n'’ =z n'" = n Hence
8" < 8. We shall show that there is a constant C > 0 such that s’ < Cs". If
this were not true, we could find a sequence {x,}, = X such thats'(x)) < 1 for all k&
and s"(x,) > 0o (k »o00). Let C; >0 be a constant such that s, < Csk.
Therefore

sk (x + Xo) < Cisl(x, + Xo) < Cis'(x) < G

The definition of s}, then shows that we can choose a sequence {y}, = X, such
that 5"'(x, + ) < G, + L.
Next, let Cy > 0 be a constant such that 5%, < Cys?,. Then

SO <8 +y) +5() <" +y) + 1 <G+ 2
Therefore s(y,) < Co(C; + 2), so that
$(x) < 5"+ 3 + 570 € G+ 14 Co(Cy + 2) < oo,
which contradicts the choice of the sequence {x.},. This shows that any two

seminorms of the family {s,},>, are equivalent. Therefore they must be equivalent
norms, inducing a B-space structure on X that is equivalent to the original structure.
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Proof of Proposition 3.15. We have the exact complex of F-spaces

pr
0 = {0} X X, = Go(t) —> X; = 0.

Since both {0} x X, and X, are B-spaces, it follows from Lemma 3.16 that G,(v)
must be a B-space too.

We shall deal in the following with commuting multioperators acting in the
gB-space X/Y. Let us remark that a multioperator on a qB-space is automatically
regular, since every operator on a qB-space in regular, as follows from [I8].

Let v = (uy,...,u) <= L(X/Y) be a commuting multioperator (bricfly,
a.c.m.). Then the joint spectrum of u can be defined as the set of those points w € C~*
such that the complex K(X/Y, w — u) is not exact [19] (which adapts verbatim the
corresponding definition from [13]). Let us denote, for the moment, by oy(u, X/Y)
the joint spectrum of u obtained in this way. We intend to prove the equality
og(u, X/Y) = o(u, X/Y) (which holds for Banach space operators [6], [16]).

3.17. PrOPOSITION. Let u = (uy, ..., u,) < L(X[Y) be a c.m. which is strict,
Then we have the equality oo(u, X]Y) = olu, X/Y).

Proof. Let u® = (1, ..., u?) © £(X) be a (not necessarily commuting) multi-
operator such that u) induces w; (j =1, ...,n). Let w¢ oo(u, X/Y). Then there
exists an open neighbourhood W of w such that the complex K(X/Y, z —u) is
exact for each z € W (see [19], Proposition 6). By Proposition 2.20, we infer that
the complex

. {lp(z—-uo)
.o Mo, X] X Ao, Y]

(3.5)
d p(z -y

AP+, X] x A7+¥g, Y] > ...
is exact for cvery z € W, where

67(z — u" — 1y ) '

ar(z — u%) = (5p+1(z Pz — uY)  — SPH (s — uo)lx\"“[a, Y]

32(z — 1% is defined as in the Introduction, 1, is the identity on A?[g, Y] (p > 0}
and ¢ = (6,, ..., 06,) is a system of indeterminates.

With the terminology of [13], (3.5) is an analitically parametrized complex
(of finite length) on W. By Theoren 2.2 from [13], it follows that the complex

14
. = Mg, 6(D, X)] % AP+[a, O(D, Y)|-—>
(3.6)

4
s Ao, 0D, X)X AP+s, O(D, Y)] ~ ..
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is exact for each polydisc D = W, where 47 is the multiplication by the function
z = d”(z — u®). The exactness of (3.6) implies, again by Proposition 2.20, that
the complex K(o(D, X/Y), { — o(D,u)) is exact (the multioperator o(D,u) is
induced as a strict multioperator by «° in a natural way; see Lemma 2.11 from
[17]). Since D < W is arbitrary, we must have w ¢ a(u, X/Y).

Conversely, let w ¢ a(u, X/Y)and let D 5 w be a polydisc such that the complex
K(e(D, X|Y), { — «(D, u)) is exact. Then the complex (3.6) is exact, by Proposi-
tion 2.20. To obtain the exactness of (3.5), we can use an inductive argument
from the proof of Proposition II1.9.1 in [16]. We leave the details to the rcader.

3.18. REMARK. Definition 3.2 is invariant under similarities in the cate-
gory qZ. In other words, with the notation of Definition 3.2, if X,/Y; is another
qF-space and if 0 € Z(X/Y, X/Y,) is bijective, then o(v, X;/Y;) = o(u, X/Y), where
v=(v,...,0)and v; = Ow;0~* (j =1, ..., n). Indeed, for every polydisc D = C"
we have

(D, v) = (e(D, O)o(D, u))o(D, )2, . .., (D, 0)o(D, u,)o(D, 0)~%),

that is «(D, v) and «(D, u) are similar, whence we derive our assertion.

Analogously, the definition of the joint spectrum denoted here by a,(v, X/Y)
is invariant under similarities in the category q#.

3.19. THEOREM. Let X|Y be a quotient Banach space and let u = (u, ..
co ) < L(X]Y) be a cm. Then we have the equality ao(u, X|Y) = o(u, X/Y).

Proof. It is known that every qB-space is isomorphic in the category q# to
a so-called standard gB-space. Moreover, every operator defined on a standard
qB-space is strict (see [18] for details). Therefore every commuting multioperator
is similar to a commuting multioperator which is strict. Our assertion then follows
from Proposition 3.17 and Remark 3.18.

For n =1 see also [23].

4. THE CAUCHY-WEIL-TAYLOR INTEGRAL

In this section we shall construct a certain linear mapping, which will be called
the Cauchy-Weil-Taylor integral in quotient Fréchet spaces. First of all we shall
present the algebraic framework, mainly due to J. L. Taylor [14], in a slightly
modified form (see also [6], [11], [16] etc.).

Let A be a complex algebra with unit, let L,, L bc left A-modules and let
iy: Ly — L be an injective A-module homomorphism. Then the elements of A can
(and will) be regarded as endomorphisms on each of the spaces L, L, and L/iy)(Lg)
(as a matter of fact, L, and iy(L,) will be sometimes identified).



172 F.-H. VASILESCU

4.1. DeFINITION. Let 4, L,, L and i, be as above. Let also A = (4, .
..., 4) © A be a commuting family. The triple (L, L,, 4) will be called a Cauchy-
~-Weil-Taylor system (briefly a CWT-system) if the family of endomorphisms
induced by / in L/iy(L,) is nonsingular.

We shall fix in the following a commutative family of elements of A of the form
(a,d), where a =(ay,...,a,) and d = (dy, ...,d,). The families a and 4 will
be associated with the families of indeterminates ¢ = (o, ..., 6,) and 7= (13, ...
... T,.), Tespectively.

Assume that (L, Ly, (a, d)) isa CWT-system. We shall define a linear mapping
R(a)r : H(L,d) - H"*?(L,, d) for each p > 0, which will play a central rdle in
our constructions. This mapping will be obtained in three steps:

1) Let 5 : Afr, L} - A{(0, 1), L] be given by the equality s¢ = & A 6, A ...

. Ao, (¢ €Alr, L). It is clear that s defines a chain map of degree n of the
complex K(L, d) into the complex K(L, (a, d)). In particular, s determines a linear
mapping

(4.1 s HP(L, d) —» H"+2(L, (a, d))

for each p > 0.
2) The exact complex of 4-modules

i k
0 = Ly —> L —5 Lfio(Ly) — 0,

where k, is the canonical mapping, induces the exact homology complex

... = H?(L,, (a, d)) —’-(l—:» Hr(L, (a, d)) ki) HP(L}iy(Lg), (a,d)) > ... .

Since (@, d) is a CWT-system, we have H?(L[iy(L,), (a,d)) = {0} for all p > 0.
Therefore there exists an isomorphism

42 i§ : H*(Ly, (a,d)) - H?L, (a, d))

that is induced by i, for each p > 0.

3) Let 7, be the projection of the space A[(o, 1), L,] onto the space Alr, L,].
It is easily seen that =, induces a chain map of degree zero from the complex
K(L,, (a, d)) into the complex K(L,, d). In particular, there exists a linear mapping

(43) n:g : HP(LO ’ ((l, d)) - H (LO: d)

induced by =, for every p > 0.
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We can now define the desired mapping by the formula
@4) R(@) = (— 1yms+2(ia+2) =37,
for each integer p > 0.

4.2. REMARKS. 1° Let us mention that (L, L,, (a, d)) (with L, = L) is called
in [14] a Cauchy- Weil system if a is nonsingular on L/L,. From this property of a
one can derive the nonsingularity of the family (@, d) on L/L, (via Lemma 1.3
from [13)), and so the construction of (4.4) can be performed. It is easily seen that
the general properties of the mapping (4.4) (see [14], Section 1) are the same if
we use either the concept of Cauchy-Weil system from [14] or that slightly more
general of CWT-system (more adequate to our methods) given by Definition 4.1.
For this reason, we shall refer to [14] when discussing the properties of the mapping
(4.4); their proof is practically the same (see also [6] and [11]).

2° Let V be a differentiable manifold and let X be an F-space. We shall
denote by &y(F, X) the set of those functions from &(V, X) that have compact
support. Clearly, &,(V, X) is an LF-space. If Y € Lat(X), then we have &,(V, Y) <
< &y(V, X) and the inclusion is continuous. Therefore we may define the qLF-space

@5) 8oV, X[Y) = 5(V, D)leolV, Y).

Since &V, X)n 8V, Y) = &,(V, Y), it follows that (¥, X/Y) is a qLF-subspace
of the qF-space &(V, X/Y) (see Remark 2.4.4°).

Now, let X,/Y;, X,{Y, be qF-spaces and let u € £(X,/Y;, X,/ Y,). Since &(¥, u)
is an &(V)-module homomorphism (Remark 2.16.4°), it is easily seen that

&V, )(&o(V, X1) + E(V, Y1)IE(V, 1)) = (Eo(V, Xyp) + SV, 1p))/E(V, Yy).

Therefore there exists a linear mapping
“.5) eV, 1) : &V, Xa/ 1) = eV, X,/[Y)

that is induced by &(V,u) (Remark 2.4.4°). In particular, if X,/Y; = X/Y = X,/Y,,
then (¥, X/Y) is invariant under &(V, u).

3° Let V as above and let L < V be a closed set. We denote by &(L) the
space of those functions from &(V") whose support is contained in L. The space &(L)
is closed in &(V), and hence it is nuclear [8]. Let &, -) be the functor ¢y given
by Theorem 2.14 for N = &(L). If X/Y is an arbitrary gF-space, since &(L, X) n
n&V,Y) = &L, Y), it follows that &(L, X/Y) is a qF-subspace of &V, X/Y) (th
meaning of £(L, X) is obvious). If .L is compact, then thers also exists a canonical
embedding of &(L, X/Y) into &(V, X/Y). '
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4° Let U = C™"™ be an open set. A closed subset L < U is said to be C"-
compact in U if the subset L n (C” x K) is compact for every compact subset K < V,
where V is the projection of U on the last m coordinates ([14], Definition 3.2).

If X is an F-space, we denote by &,(U, X) the family of all functions from
&(U, X) whose support is C*-compact in U. Clearly, &(U, X) has a natural structure
of LF-space. Moreover, if Y € Lat(X), then (U, Y) < &(U, X) and the inclusion
is continuous. Therefore we may define the qLF-space & (U, X/Y) as the quotient
&, X)/6,(U, Y), by analogy with (4.5). Furthermore, if X,/Y;, X,/Y, are qF-spaces,
there exists a linear mapping &, (U, u) from ¢,(U, X,/Y;) into &(U, X,/Y,), which is
defined by analogy with (4.6), for each u € #(X,/Y,, X,/Y,). The operator & (U, u)
is the operator induced by &(U, 1) (Remark 2.4.4°).

4.3. DerINITON. Let X/Y be a qF-space, let U < C"** be an open set and
let g,(X/Y) be the sheaf defined in Lemma 3.7. Let also « = (&, ..., «”) be a family
of sheaf morphisms of ¢,(X|Y) into itself. We say that « is an admissible system of
sheaf morphisms of e,(X]Y) if the following conditions are fulfilled:

(1) If of, is the mapping induced by «” on (W, X/Y), then o, is an &(W)-
-module homomorphism and (o}, ..., o}, 0/0z,,...,0/0Z,,,) is a commuting
multioperator on W, X]Y) for all open W< U and p=1,...,n where
(215 ..., 2,4+, is the variable in C"*",

(2) For every C'-compact subset L < U the qF-space (L, X/Y) is invariant
under a};, ..., o} (Remark 2.4.4°).

For an admissible system of sheaf morphisms o = (o, ..., «") of ¢,(X/Y)
we shall denote by oy,(2) the complement in U of the union of those open sets
W < U such that if a; = (2, ..., a%), then

(4.7) HY&(G, X|Y), (g, V) = {0}, p>0,

for every open subset G < W, where V7 = (9/0%,, .. 0102, 4 )

4.4. REMARK. Since ¢y(X/Y) is a fine sheaf (Lemma 3.7), equation (4.7)
holds for each open set G < UN\oy(a), in virtue of [10], Corollary VI.A4 (see
also the proof of Proposition 3.8(2) above).

4.5. LeMMA. Let { = ({1, ..., L,vm) be the system of coordinate functions
in C"m et o = (2%, ...,9") be as in Definition 4.3 and let ¢ = (d,, ..., 0,) be
a system of indeterminates associated with o. Let also L, M be closed neigh-
bourhoods of ay(e) in U such that L is in the interior of M and let W = UN\L.
Then for every y € Al(s, d7), &(U, XjY)] such that (5(xy,) + 'ii)(r]}W) = 0 there exists
ne € Alo, d0), e(M, X|Y)] with the property that n — iy (1) € Im(S(2y) + 3). where
iy y is induced by the canonical embedding ¢(M, X|Y) N U, X/Y).
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Progf.. We choose a function 0 €(U) such that 0 = 0 in a neighbourhood
of L and 0:-= 1 in'a neighbourhood of UNM. Since (5(ay) + )(y|W) =0, the
equation 'IIW = (8(ayy) + 0)¢ has a solution & € A[(e, d0), &(W, X/Y)], by Remark
4.4, Then the form 0¢, extended with zero on L, has the property that n — (5(¢,) +
+ (7)05 is null in a neighbourhood of UM, by the choice of 0 and ¢&. Itis then
clear that there exists a form 5, € Al(o, dg—), (M, X/Y)] such that iM,U(no) =5 —
— (8(ay) + D)0E.

4.6. LeMMA. Let « be as in Definition 4.3. If the set ay(a) is C"-compact
in U, then (e(U, X|Y), e,(U, X]Y), (ay, V7)) is a CWT-system.

Proof. We have to show that the multioperator induced by (xy, V) in
&(U, X|Y)[it(e,(U, X|Y)) is nonsingular, where i} is the canonical embedding
£,(U, X]Y) = &(U, X]Y). This is equivalent to saying that if n € A[(e, d{), &(U, 'X/Y)]
i1s such that '

Oy + ) € Allo, ), it(e (U, X/Y))],
then there exists ¢ € A[(e, d0), &(U, X/Y)] with the property
1 — (3(ay) + 0)¢ € Al(o, d0), ib(e,(U, X/Y))].

But the choice of n shows that (6(xy) +79)(;IIW) =(, where W = U\L, and
L, « U is C'-compact. If L, is a C"-compact neighbourhood of ¢,(x) and L =
= L, U L,, then, by Lemma 4.5, there exists ¢ € A[(a, d0), &(U, X/Y)] such that

n— (8(xy) + 9)¢ € Al(o, d0), iy o(a(M, X]Y))),

where M is a C"-compact neighbourhood of L, from which we derive easily our
assertion.

4.7. ReMARKS. 1° Lemma 4.6 shows, in particular, that if U < C" and
oy(2) is compact, then (e(U, X/Y), e(U, X/Y), (¢y, V7)) is a CWT-system.

2° We need later a different version of Lemma 4.6. Namely, if 6,(x) <« C” x K,
where X < C" is compact, then (s(U, X/Y), ¢,(U, X/Y), (dU,'V)) is a CWT-system_
The proof of this assertion follows along the lines of the proof of Lemma 4.6. Neverthe-

less, one needs a finer version of Lemma 4.5, Specifically, if n from the statement
of this lemma satisfies

n € Al(a, d0), is y(x(S, X/ Y))],
then we can choose a form

&y € Al(o, d0), iy y(e(T, X/ Y))]
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such that n — iy y(n,) = (8(2y) + 0)¢,, where S, T are arbitrary closed subsets
of U, with § contained in the interior of 7, and iy v, is y are the canonical embed-
dings in &(U, X/Y).

Indeed, since

’IIW € A[(O’, dZ)s iS,W(a(W’ X/ Y))]a
it follows that we can choose a form
¢ € Al(o, 40), iz wle(W, X]Y))]

such that y[W = (3(az) + )¢, by applying two times the argument from the proof
of Lemma 4.5 (as in the proof of Corollary II11.8.2 from [16]). If 6 is chosen as in
the proof of Lemma 4.5, then the form &, = ¢ satisfies our requirement.

Now, if 1 € Al(o, d0), &,(U, X, /Y)] is such that

(6(xo) + 01 & Al(o, D), if(el(U, X]Y))],
by the above remark there exists a form ¢ € A[(e, d0), (U, X, /Y)] with the property
1 — (8(ey) + ) € Al(o, d0), if(e0(U, X/ 7)),

showing that (e(U, X7Y), &(U, X]Y), (@y, V) is a CWT-system.
We shall give in the following some details concerning the “integration”

in certain quotient topological vector spaces introduced above. First of all we shall
make our notation more specific.

Let U = C"™*™ be an open set and let V = =x,,(U), where x,,: C"*" - C" is
the projection on the last m coordinates. We denote by (z, w) the variable in C"+™,
where z = (z,, ...,z,) €C* and w = (Wy, ..., w,) € C™. Let also { = ({4,..., )
and o = (o, ..., ®,) be the coordinate functions in C” and C™, respectively.

We set 0" = (9/0z,)dly + ... + (8/6z,)dL,, &' = (8/6w)dmy + ... + (3/3W,)d®,
and d = ' + 0. We also use the operators &' = (8/0z)d¢, + ... + (8/8z,)d¢,,
" = @fow)dw, + ... + @low,)dw,, 0 =0 + ', d =8 + 0, d" =03+ 0",
d=4d +d”, as well as the systems of differentials d{ = (d¢,, ...,d¢,), df =
= (d¢,, ...,dl) and do = (d,, ..., d®,), which are regarded as systems of

indeterminates.
We now define some linear mappings. The first of them is the mapping

o0 Adly A ... A dl, of the space A[(d, dw), &, (U, X/ Y)] into A[(d¢, dT, d),
&(U, X|Y)], which obviously induces a chain map of degree n of K(&(X/Y), d)
into K(ey,(X/Y), &' + 0).
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The next mapping is defined from the space A[(d{, d{, dw), &(X]Y)] into
Aldw, &(V, X]Y)] in the following way. We write the form 5 € A[(d{, dZ, dw),
(U, X]Y)] as n = wdfl AdG A LA df,, A d{, + x, where x contains only
terms of degree less than 27 in d¢,...,d¢{,, dg,, ...,df,,. Then ¢ =g +
+ Aldw, &,(U, Y))], with g € A[dw, &(U, X)], and we may define

4.8) Sn = Sg di, A dl A ... A AL A dE, + A[d@, £V, Y],

where d{; A d{y A ... A dl, A.d{,is regarded as (2i)" times the Lebesgue measure
in C". Since g € A[d®, &,(U, X/Y)], the integral from the right hand side of (4.8)
makes sense for each w € ¥ and yields an element of A[dw, &V, Y)]. Moreover,
if g € A[d@, &,(U, Y)], then the integral of g is an element of Aldw, &V, Y)), so
that the right hand side of (4.8) depends only on the coset ¥, and therefore only
on 7. Let us observe that (4.8) induces a chain map of degree — 2n from

K(e(U, X]Y), 0" + 0) into K(e(V, X]Y), &"). Indeed, we have

S(d' + 0"y = SE",pdg‘l AdG Ao AdG A A+
+ Sd’x + 85’7 = 5"8%

since Sd’x = 0 by Stokes’s formula (note that the coefficients of y are classes of

functions with support C"-compact).
The composite of the above chain maps provides a mapping

(4.9)  H"#e(U, X|Y),8) 5 & —»Séd{l A ... Adl, € HGV,X|Y),d)

for every p > 0.

4.8. REMARKS. 1° If we replace the space &(U, X/Y) by the space ¢(U, X/ Y
and perform the previous construction, we obtain a similar mapping

(4.10) H"*?(e(U, X|Y),d) > & —»S«fdcl A ... AdL, € HP(e(V, X[Y),T").

Indeed, the corresponding modification of (4.8) shows that Sn is an element of

Ald®, &(V, X/Y)] if 1 € A[dL, 40, d®), &(U, X/Y)).

12 — 2609
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In addition, it is easily seen that the diagram-
H"(e(U, X[Y), 8) = H™P(ey(U, X[Y), &)
(4.11) pP 1 'p::ﬂll
Ho(e,(V, X]Y),3") - H &V, X1Y), ")

is commutative, where the horizontal mappings are induced by the canonical embed-
dings, p"*? is the mapping (4.9) and pj*? is (4.10).

2° Let L < U be-a C"-compact subset. Then we have a mapping
(40)IW”MLXH%695~S§«IA“.Adgeﬁqumyxﬁ)

such that the following diagram

H"2(e(L, X[Y), &) — H™ P(ey(U, X[Y),8)

nep
“.13) — l

Hr(e(V, X]Y), &)

is commutative, where the horizontal mapping is induced by the canonical embedding
&L, X]Y) - &(U, X|Y) and p2*P is the mapping (4.12). Indeed, the construction
of (4.12) can be obtained in the same way as that of (4.9).

Unlike (4.9) and (4.10), the mapping (4.12) is a morphism in the category qF
(it is easily seen that (4.12) is the strict operator induced by the usual integration).

4.9. DerFINITION. Let U < C"™ be open, let V = n,,(U), let X/Y be a qF-
-space and let « = (a1, ..., ") be an admissible system of sheaf morphisms of ¢,(X/Y)
such that the set oy(x) is C"-compact in U. Then there exists a mapping

R(ay)? : HY(e(U, X]Y), 0) » H"*?(e,(U, X Y), &)

for each p > 0, given by (4.4) and Lemma 4.6. Then the element

SR(“”)"‘” A G A A AL € G, X, E),

which is obtained via (4.9), will be cailed the Caucly-Weil-Taylor integrd) (briefly,
the CWT-integral) of < Hr(e(U, X|Y), ).
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~ .. In particular, the CWT-integral maps the spaée (U, X1Y), identified with
H(e(U, X]Y), ) (see Lemma 3.3), into the space (¥, X/Y), identified with

H eV, X]Y), 2. o :
All the previous considerations remain valid for m = 0, when we take C" = {0},

V = {0} and &V, X/Y) = X/Y. In this case the CWT-integral takes values in X/Y
for p = 0 and is null for p > 0.

4.10. ProposITION. The CWT-integral is a linear operator.

Proof. We shall show that the CWT-integral can be obtained as a super-
position of morphisms in the category g%, so that it is itself a morphism in this
category. Since the space ¢,(U, X/Y) is a qLF-space but not a qF-space, the corres-
ponding mapping (4.2)

it HP(e(U, X]Y), 3a) + 3) —» HP(e(U, X/Y), 8(tg) + ¢)

is not a morphism in the category Q7. It is therefore necessary to express the CWT
integral in a different way.

Let L, M be C'-compact neighbourhood of ¢,(«) in U such that L is cont-
ained in the interior of M. Let J be the restriction of d(xy) + 9 to the space
A"{(o, 4¢, dw), (U, X1Y)] for a fixed p > 0. Analogously, let 67 (resp. ;') be the
corresponding operator that is obtained when &(U, ) is replaced by &(L, -) (resp-

by &(U, -). If Z{, = Ker(6f)), Z = Ker(67) and ZI* = Ker(6};'), then we have
the commutative diagram

ZI’ 31 ZI’
S

in which the mappings are induced by the canonical embeddings. Let also B} =
= Im(6{1). Then the composite of i, and the canonical mapping

Zy - Z4 B = HP(e(U, X|Y), 8(ay) + 8)

yields a surjective mapping j,. Indeed, by Lemma 4.5, for every # € Z}, there exists
7o € Z such thatn — iy(n,) € Bfy. Let N} = Ker(j,). Then j,induces an isomorphism,
say ji.u, from Zj /N onto Z§/BY .

Similarly, if Bft = Im(6{ 1), then the composite of i, and the canonical
mapping Z%t — Z¥ 1/B” 1 yields, as above, a surjective mapping j, . Since Z%/B%!
and Z%/B}, are isomorphic via the corresponding mapping (4.2) (designated above
by i{/Y), we must have the equality Ker(j,) = N7 . Therefore, we have an isomorphism
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J¢ly from ZP/NY onto ZFY/B%', which is induced by j,, such that the diagram

Pl

HYe(U, X|Y), () + 3) ——> HA(U, X|Y), 8ay) + )

(4.14) ‘k /Z;

is commutative. Moreover, Z/N7 is an object in the catcgory q%, since j, is a
morphism in this category (see Remark 2.4.3°).
We now show that there exists a natural mapping from ZZ/N% into

HP(g(M, X|Y), 8). Indeed, let 7, be the projection of the space A[(a, d(, dw), (L, X/ YN
onto A[(d{, dw), &(L, X]Y)] (see also equation (4.3)) and let

Mot ZE = Al(dC, dw), e(M. X/ Y)]

be the composite of the restriction of 7, to Z} and the map iy 5 induced by the

canonical embedding (L, X/Y) — &M, X/Y). Since 7, intertwines 8(xy) + 0 and 3,
we must have

7e(Z2) = Ker(0|A%[(dC, d®), (M, X]Y))).

We' also have
@.15) o (VD) = Im(0]A?-Y(dL, d), e(M, X/ Y)).

Indeed, if n € N2, then i(n) = 65 1(&,) for some ¢, € AP Y(o, d{, d@),
e(U, X/Y)]. Moreover, 6,",‘1‘5,[(U N\L) = 0. Hence, by Lemma 4.5, we can find
& € Ar-1(o, d{, dw), &(M, X]¥Y)] such that & — iv,u() € Im(6¢7"), where iy y is
induced by the canonical embedding &(M, X/Y) — &(U, X/Y). Therefore iy(n) =
= 0y &) = 0f Yy p(£), so that iy y(y) = 5§ €. From this equality we obtain
the inclusion (4.15). Consequently there is a mapping

(4.16) 5, ZEINE - H?(e(M, X]Y), 9)

induced by =, ,, which is a morphism in the category q#. Moreover, the diagram

'np —_—
H?(e,(U, X]Y), 8(ay) + 0) ——> H?(e,(U, X/Y), 9)
@.17) fszI I iy

P

Z2IN? ~—— HP(e(M, X|Y), 0)
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is commutative, where 77 is given by (4.3), jI:l; occurs in (4.14) and #;y is induced
by the embedding &(M, X/Y) — (U, X|Y).
The commutativity of the diagrams (4.13), (4.14) and (4.17) shows that

(“.18) PP A P s = PR PR TS,

and the right hand side of (4.18) is a morphism in the category q# , that is the CWT-
-integral is a morphism in the category q%.

4.11. REMARK. Let U < C"*™ be open and let X/Y be a qF-space. Let
also v € Z(X/Y). As we have mentioned in the previous section, the operator
&U, v) commutes with every differential operator 9/0z;, j =1, ...,n or 8/ow,,
k =1, ..., m. This leads to the conclusion that &(U, v) induces an operator e?(U, v),
acting in H?(e(U, X/Y), &) for each p > 0 (see Remark 2.4.5°). Similarly, if ¥V =
= 1,(U), then &V, v) induces an operator ”(V, v) in H?(e(V, X]Y), 9"’y for all
p =0

Let also note that the family {e(W, v) : W < U open} defines a sheaf morphism
of the sheaf &,(X/Y). Let &(v) denote this sheaf morphism. Then we have the
following.

4.12. PROPOSITION. Assume that (2, ..., 2" &(v)) is an admissible system of
sheaf morphism of ey(X]Y). Then we have the equality

SR(%)”S”(U, Y AdG AL AdE, =, D)SR(“u)”‘// Adl A LA,

for all y € H?(e(U, X|Y), 5) and p = 0, provided oy(a) is C"compact in U, with
= (al, ..., a").

Proof. If we denote by £(U, v) the action induced by &(U, v) in A[(s, d{, dm),
&(U, X]Y)], it follows from the hypothesis that

E(U, v)(3(ay) + 0) = (5(ay) + DU, v).

Therefore (U, v) induces an operator £7(U, v) acting in H°(e(U, X/Y), 8(zy) + 6)
(by Remark 2.4.5°). It is clear that s”eP(U, v) = £7(U, v)s”, where s? is the correspond-
ing mapping (4.1). One can easily see that e(L, v) (resp. &(M, v)) induces in Z7/N%
(resp. in H(e(M, X|Y), 9)) a mapping §7(L, v) (resp. e”(M, v)) such that z7(U, i u=
= jP u&?(L, v) and nf ,EP(L, v) = e?(M, v) n2, »r (for notation see the proof of Pro-
position 4.10). The only fact which remains to be proved is the equality

(4.19) PLEPEP(M, v) = eP(V, ©) PP
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Equation (4.19) will be derived from the formula

(4.20) ‘ | ‘s(M, o = eV, v) Sn

o

where 7 € A[(d¢, dC, dw), &(M, X[Y)] and Sn is defined by (4.8), where one replaces

& (U, ) by &(M, -), and its value is also in A[dw, e(V, X/Y)]. Notice that if M, > M
is C'-compact in U, then

4.21) S:'M,Mn(n) = Sn

for all n e A[(d¢, d¢, dm), e(M, X/ Y)], where i“”Mo is induced by the embedding
(M, X]Y) - e(My, X]Y).

First we obtain a version of (4.20). Namely, if M’ X M’ < U is compact,
where M’ < C" and A" < C™, then

{0

0
4.22) S e(M' X M", o) = e(M"", U)S n

— 0
for every n € A[(d¢, d¢, dw), e(M’ x M, X]Y)], whereS 7 is defined to be an ele-

ment of Aldw, e(M", X/Y)], which is possible in this case by an obvious modification
of (4.8) (see also Remark 4.8.17). We have in fact

0
(423) SP] = i.M”,V S i,

with 7 induced by the embedding e(M”, X/Y) — e(V, X/Y). Let us also observe
that in (4.22) (as well as in (4.20)), the operators constructed from v via ¢ are,
as a matter of fact, direct products of copies of the corresponding operators, for
which we keep the same notation.

Let us prove (4.22). Since Gy(s(M’ X M”,v)) = 6(M") ® Gye(M”", V), if
(Y, rs) € Gole(M' X M", ), then (S%’S%) € Go(e(M", v)), from which we

derive easily that (4.22) holds {as in Lemma 4.3 from [17]).

We can now obtain (4.20). Let {f;};e;=&o(V) and {g.}rex = 6p(U) be parti-
tions of unitary such that supp(fjg,) = Mj, > Mj; which are compact subsets
of U so that M}, = C"and M) < C™. Let also M = M U (M}, X M;.'). We fix 4
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form n € A|(d{, d{, d®), &(M, X/Y)]. Since M is C’-compact, the family {fg,}rex

contains only a finite number of non-null forms for each index j. Moreover, for
every pair (j, k) there exists a form -

1 € Al(dE, dT, dw), s(MJ, x M}, X]Y)]

such that iM’Mjk(fjg,‘.n) = IM“M M ('m) Then, by (4.21) and (4.23) we have:

il

SG(M, v =Y ./}SB(M, =Y, Y, SH(M, v)fign =

jed jel keKk

. .
= 2 2 SIM;RXMJ,!:*MJA- (e(Mj, My l)'l,k) =

jel kek

=% Y IM,, VS (M, x My, vy =

jeJ keK

0
Z Z IA,N e(M}, L)S N =

jeJ kek
- %y, v)S s, () = X oV, ) Sfm ¥, v)Sn,
jeJ kek jed

where we have used the equalities

, "M,Mjkg(”[, v) = S(M/k’ U)ijl,}\'[jky

—_ rr 0y
&My, v)i MMM T ’Mk XM, L(MJA X My, v)

and

;/E(M;‘” L\) = 8(V, U-)ij\[;,:.V s

which follow from Proposition 2.15. Since ¢(M, v), e(V, v) and the integral are chain
maps, from (4.20) we infer (4.19), which completes the proof of the proposition,

4.13. REMARKS. 1° Let U < C"*" be open, let X;/Y;, X,/Y, be qF-spaces
andleto = (o, ...,a")and f = (B, ..., f”) be admissible systems of sheaf mor-
phisms of g,(X;/Y,) and gy(X,/Y,), respectively. Let v e J(Xl/Yl, X,/Y,) be such
that (W, v)ojy = Blye(W, v) for all open W < U and j = 1, ..., n. Then

eV, 0)(S(aty) + &) = (3(By) + O)e(W, v)
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and &(U, v) induces an operator

(U, v) : Ho(e(U, X3/ Y1), 8) - HP(e(U, X,]Y,), d)

for each p > 0. If, in addition, both sets ay(«) and oy(f) are C’-compact in U,
then we have the equality

SR(/?U)”s”(U, Y AdG A Lo AdE = e (V, v)SR(aU)Pu// Adi A Lo AdE,

for all ¥ € H?(e(U, X,/Y;), 8) and p > 0. The proof of this assertion is practically
the same as the proof of Proposition 4.12. We leave the details to the reader.

2° The above result holds for m = 0 too. In this case it can be stated as
follows:

SR(BU)%(U, Yy AdG A L. AdE, = uSR(ocU)"(// Adl oA Lo AdE,

for every ¥ € ¢(U, X,/Y;) (sec the comment after Definition 4.9).

4.14. PROPOSITION. Let U', U" be open sets in C'*"™ let U=U" y U”

and let a = (o, ..., o") be an admissible system of sheaf morphisms of ey(X]Y). If
the set ay(«) is C"-compact in U and oy(e) < U' n U, then

SR(ozU,)"(n,(/lU') Adl A ... AdE =SR(aU,,)P(x//|U”) Adl A ... AdL,

Jor every Y € HP(e(U, X/Y),.é) and p > 0.

Proof. With no loss of generality we may assume that U’ < U"” = U, and
therefore oy(x) = U’. Then au,(oz) < op(®) and o (@) is C'-compact in U'. By
Lemma’ 46: (E(U, X/Y)a 81(U3 X/Y)a (aU’ 6)) and (S(U'9 X/Y)3 EI(UI: X/Y)’ (“U" 6‘))
are CWT-systems. If we use the embedding ¢,(U’, X/Y) — &(U, X/Y), the proof of

Lemma 4.6 (with minor modifications) shows that (e(U, X/Y), &,(U’, X/Y), (¢y, V)
is a CWT-system. If r : &(U, X/Y) — &(U’, X/Y) is the restriction and i designateg
various canonical embeddings, then we have the commutative diagram

(U, XY) «—— &,(U, X Y)

(U, X|Y )< e,(U", X] Y.
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By Proposition 1.10 from [14] we infer that the diagram

Rz U)p

He(s(U, X|Y), 3) H™+2(g,(U, X|Y), §)

(4.24) P I w} I;nw
14

_ RG,)? —
H(U, X]Y),3) 0, B (e (U7, X)), B)

is commutative, where r? (resp. i"+?) is induced by  (resp. by i). Since the composite-
of i"+P and the mapping (4.9) equals the mapping (4.9) when defined from
H"*7(e,(U', X]Y), 9) (as in Remark 4.2.8°), our assertion is a straightforward conse
quence of (4.24).

4.15. REMARK. Proposition 4.14 shows a certain independence of the CWT-
-integral with respect to the set U containing the “joint spectrum’” of « (see also
114], Proposition 3.11). From now on the CWT-integral will be often denoted by

(4.25) SR(a)ljx Adl AL AL

for arbitrary € H?(e(U, X/Y), 0) and p > 0.

4.16. DEFINITION. Let U = C"*™ be open, let V = n,(U) and let y be a
morphism of the sheaf ¢,(X/Y). We say that y has a proper extension to the sheaf
2y(X/Y) if there exists a morphism ¥ of ey(X/Y) such that ¥, .. = &W’, v,.)
for every open W' X W' < U with W' < C" and W" < C" (here we identify
the spaces e(W ' x W, X/Y)and (W', (W', X]Y))). More generally, if g = (8, ...
..., f™ is a family of morphisms of ¢,(X/Y), we say that § has a proper extension
to the sheaf e,(X/Y) if there exists a family f = (8% ..., ™ of morphisms of
gy(X]Y) such that ﬁ" is a proper extension of f? forall g =1,...,m

The next result is a Fubini type theorem for the CWT-integral (see also [14]
Theorem 3.6).

4.17. THEOREM. Let U <= C"*™ be an open set, let V the projection of U
on the last m coordinates, let X|Y be a qF-space and let o = (&%, ..., a") (resp.
B=(F, ..., B"™)) be an admissible system of morphisms of ey(X/Y) (resp. ,(X/Y))
such that the set oy() (resp. oy(f)) is C'-compact in U (resp. compact in V).
Assume that B has a proper extension B to the sheaf ey(X/Y) such that (o, B is
an admissible system of morphisms of €y(X/Y). Then the set oy(«, ﬁ) is compact
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and we have

SR(ﬁ)(SR(oz);// Adl A LA dg,,) A doy A .. A day, =

=SR(a,/})w AdG A oo AdE A dey A L. A do,

Jor every € (U, X]Y).

Proof. We first note that o,(f) < C' X 6,(p). Indeed, if W’ = V is an open
set such that

HYEW”, X[Y), 8(8,.) + &) = {0}, p >0,

and W' x W' < U for some W' < C", W’ open, then, by Proposition 2.19 above
and Lemma 1.3 from {i13] we have:
H(sW', W™, X]Y)), s(W', 8(B,,.) + &) =
= HPeW' X W', X]Y), 3(Bu-xw) + &) =
= Ho(e(W' X W', X|Y), 8(Bw w~) + 0) = {0}

for all p > 0. From this observations we obtain readily the inclusion au(f)’) c ' x
x o,(B). Using again Lemma 1.3 from [13] (or Lemma 1,2.3 from [16]) we obtain
the inclusion

(4.26) o,(%, f) < oy(@) n (C" X 6y(B)).

As the right hand side of (4.26) is compact, it follows that the set o,(2, B) is compact.
In particular, (e(U, X/Y), ¢(U, X/Y), (2, By, 7)) is a CWT-system, by Remark
4.7.1°. Note also that (&,(U, X/Y), &(U, X/ Y), (2, By, V) is a CWT-system, by
Remark 4.7.2°. Therefore (e(U, X/Y), e(U, X/Y), (ay, By, V7)) is a CWT-system and
R(oy, /fu)0 = R([fu)"R(au)", by virtue of Theorem 1.13 from [14]. For this reason
we have the equality

SR(&,B)([/ AdlG A Lo Aadl A doy, A L. Ado, =
(4.27)
=S(SR(/§)R(1) yoAdGg A LA d{,,)/\ do, A ... A do,

for all ¥ € (U, X/Y) (see Remark 4.15).
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Next we obtain the equality

Sa(/?u>f AdG A .. A=
(4.28)

=5(/3‘,)S§ Adl A LA d,

for all ¢ € Al(o, 7, d, d@), &,(U, X1Y)), where 6 = (6,,...,6,)and © = (ty,...,T,)
are systems of indeterminates associated with o and B (or B), respectively.
Equality (4.28) follows in the same way as (4.20). We only note that if W' x
X W' < U is an open set with W' < C* and W' < C™, then 5(ﬁ;yrx;y") =
= &(W’, 6(B,,.)), since Bis a proper extension of B (Definition 4.16). This makes

available the argument from the proof of (4.20). We leave the routine details to
the reader.

We can now proceed as in the proof of Theorem 3.6 from [14]. Namely,
frcm (4.28) we infer that the diagram of complexes

K(e(U, X]Y), 3(By) + 8) «—— K(eo(U, X/Y), 5(By) + &)
K@V, X]Y), 3(8,) + §7) «—— K(eo ¥, X]Y), 5(8,) + &)

is commutative, where the chain maps i are induced by the canonical embeddings

and the chain maps p are defined as in (4.8) (see also Remark 4.8.1°).
Since the diagrams

KU, X]¥), 3 —— KU, X/Y), 5(By) + )

K@V, X]Y), 8"y — KV, X]Y), 5(By) + &

L))
~—

P

and
KU, X]Y), 8(Bo) + &) — s K(eo(U, X/ ¥), %)
KoV, X[Y), 5(8,) + 8" —Zs K(eo(V, X[ Y), 5)

arc obviusly commutative, where s and =, are defined as in (4.1) and, respectively,



188 : F.-H. VASILESCU

(4.3), we obtain the commutative diagram

~  RGY" -
H(5,(U, X[Y), &) H"*"(ey(U, X]Y), 0)

(4.29) l 1

0

R(g,)

He(V, X[Y),¢") H™@e(V, X]Y), 3"")

with p" and pi*™ given by (4.9) and, respectively, (4.10). Finally, from (4.27)
and (4.29) we infer easily the desired conclusion.

4.18. PROPOSITION. Let U = C™™ be an open set and let (&, ..., a" Yy, - . .,
cees Vins o3 Vuis oo os Vun) De an admissible system of morphisms of the sheaf
ey(X/Y). Let also B/ =yt + ...+ ;0" (i=1,..,n),a=(d ...,a" and
B = (B, ..., b"). If the sets ay(o) and oy(B) are C'-compact in U, then

SR(ﬁ)(det(vjk>;,k=1>¢ NG .. A dE, =

=SR(°M/ AdlG A Lo AdeE,

for all y € o(U, X]Y) (where “det’’ stands for determinant).

Proof. This assertion follows easily from Definition 4.9 above and Proposi-
tion 1.11 from [14].

4.19. LEMMA. Let U < C be an open set and let & be a morphism of the sheaf
ey(X]Y) such that the singleton (2) is an admissible system. Assume that there exists
a compact set K < U such that LN is bijective. Then

SR(«)w AdE = S(aU\Krl(wlU\K)dc
r

for every ye o(U,X[Y), where I' is a finite system of Jordan curves that surrounds K.

Proof. We proceed as for the proof of Lemma 3.14 from [14].
Let y € o(U, X|Y) = H%e(U, X|Y), 0) and let 0 € £(U) be equal to zero in a compact
neighbourhood of K and equal to one outside another compact neighbourhood of
K. Then we define the element ¢ € e(U, X/Y) by the formula ¢ = (ozU\K)’1 ((pl UN\K)
in UN\K and ¢ = 0 on K (via a canonical embedding). Since 9/0z and (e )t com-

mute, it is easily seen that dp € AYd{, e,(U, X/ Y)] and that R(a)y equals the homo-
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logy class of dp in H'(ey(U, X/Y), 3). Therefore

SR(a)n// Adl = Sé(p A d¢ =Sd((pd¢) = S(pd{ =
r

=S(a,,\,()-1(¢|0\1<>dc,

r

by Stokes’s formula,

4.20. COROLLARY. Let U < C be an open set and let V< V < U be an open set

with Vcompact. If ¢ and w are the coordinate functions on U and V, respectively,
then we have

Y|V = E] SR(C—w)II/ A dg

i
Jor every Y € o(U, X/Y).

Proof. We consider the qF-space »(V, X/Y) and the operator (induced by)
w, acting on this space. Note that { — w induces an admissible system on the sheaf

ey(o(V, X|Y)) and that { — w is bijective on &(W, o(V, X/¥)), with W = U\V.
By the previous lemma we have

1
2ni

SR(C o) Adl = —‘:S(c — )Wt
27r1‘r

for every W € o(U, o(V, X/Y)), where I' is a contour surrounding the set ¥ in U.
In partticular, if § € o(U, X/Y) = (U, (¥, X/Y)) and if ¢ =g + O(U, Y),
where g € O(U, X), then

S(c ~ w)-1yd = S(c — )igdl + OV, ¥) =
r

r
= 2niglV + O, ¥) = 2niy|V.

42)1. LEMMA. Let U = U, X ... %X U, be an open set in C" and let B/ be a
morphism of the sheaf €, (X/Y) that has a proper extension ﬁf (j=1,...,n)tothe
J

sheaf e (X]Y) such that B = (Bl, ces [}”) is an admissible system of morphisms of
e(U, X/Y). Assume that for each index j there exists a compact set K; < U; with the
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property that ﬁfyj is bijective, with W ; = U;\K;. Then we have the equality

SR(B)i/,A Al A ... AL

Men

=S...Sal WX L X)) AL .. dL,
r

1 n

Jor every € o(U, X, / Y), where I'; surrounds K; in U; and

W = oWy X oo X W XWX XW, (Bl

Proof. The assertion follows from Theorem 4.17 and Lemma 4.19, by
induction. ‘ ’

4.22. COROLLARY. Let U = Uy %...xX U,=C" be an open set, let V; -!71 <U;

be an open set with 171 compact, let {; (resp. w;) be the coordinate function on U;
(resp. V) (j="1;...,n)'and let { = ({y, .2, ), @ = (w15 .. ., @,). Then we have

-. \/"lV":*(é‘?lt-i‘)jZSR(C-@J)l!! A df A A dg,

Jor all ye (U, X[Y), where V.=V x ... x V,.

Corollary 4.22 does not provide a strong enough assertion for our purpose.
Nevertheless, by using it we shall prove a stronger version. We start with an auxi-
liary result. - o oo

4.23. LEMMA. Let U < C" be an open set and let f = (f', ..., 5" be an
admissible system of morphisms of the sheaf ey« ((X]Y). Assume that

EUXU, X]Y), e(UXU, X|Y), Boxgs 7)),

@, &V, X|Y)), &(U, &V, X[Y)), (Byxvs V)

are CWT-systems for some open V < U. Then we have the equality

SR(ﬁuxv)opUxV) Adl A oAl = (S RBuei) ¥ A 4Gy A ... A dc,.)i
Jor all Yy € s(UX U, X]Y).
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Proof. The following diagrams of complexes are commutative:

K(e(Ux U, X|Y), )= K(e(Ux U, X]Y), §(Byxy) + ) «iK(al(Ux U, X/Y), 5(ﬁuxvj +0)

.

K(&(U, oV, X]¥)), D)= K(e(U, o(V; X] 7)), 5(Buxy)+ 0 < KeoU, eV, X[ V), 5(Boxy)+s

Ke(UX U, X]Y), 8(Buxv) + &) — Ke(Ux U, X[Y), & -2 K(e(U, X]Y), &)

{ i 1

KGo(U, oV, X|Y)), 6(Bu) + &) — K(alU, oV, X[Y)), &) > KV, X]¥),3")

wher¢ the mappings s and n, are given by (4.1) and, respectively, (4.3), p is the mapping
(4.8) and i (resp. r) designates various canonical embeddings (resp. restrictions).
When passing to homology spaces, the commutativity of the above diagrams implies
readily the desired equality..

4.24. PROPOSITION. Let U < C"be open and let ({[w) = ({i,:.., {y, 01, ..,0,)
be the coordinate functions in UX U. Then we have the equality ’

(4.30) W= ——_—SR(C — @)y AdG A A L. AL
1

Jor every Y € o(U, X/Y). .

Proof. We check first that the hypothesis of Lemma 4.23 is fulfilled, when
V=D c Dc Uis a polydisc and § = { — o. Indeed, it is easily seen that
(4.31) » -‘ quu»(ﬂ) = {(Z, W) eUxU:z= W} ’

and the right hand side of (4.31) is obviously C"-compat in U x U. We also note

that if D "D < U is a polydisc; then { — w | D, when regarded as a sheaf mox-
phism of the sheaf g,(s(D, X/Y)), satisfies :

@432) ou({ — wD) = D,

and the-right hand side of (4.32) is compact. The inclusions (4.31) and (4.32) show
that

((UXU, X|Y), e(Ux U, X|Y), ({ — @), 7)),

(e(U, (D, XIY)), &(U, &D, X|Y)), ({ — wD, 7))
are CWT-systems, by virtue of Lemma 4.6 (see also Remark 4.7.1°). Therefore,
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if @ denotes the element defined by the integral (4.30), then, by Lemma 4.23, we
have

oip=- " QSR(c—waD)w;D)AdclA . Adl =YD,

B i2ni)"
where the last equality follows from Corollary 4.22. Since ¢ | D = | D for every

polydisc D < U, we must have ¢ = ¢, and this completes the proof of the propo-
sition.

5. ANALYTIC FUNCTIONAL CALCULUS

Let X/Y be a fixed (non-null) qF-space. In this section we shall construct an
analytic functional calculus associated with every commuting regular multioperator
from £(X/Y).

5.1. DEEINITION. Let w = (4, ..., u,) < L(X/Y) be a c.rrm. Then the set
o(u, X/Y) is compact and nonempty in C*. Let U o o(u, X/Y) be an open set. If
&) = (e(wy), ..., &u,)) is the family of sheaf morphisms induced by u on g,(X/Y)
{more precisely, induced by the family {(s(W, w,), ..., &W, u,)): W < U open}),
it follows from the previous results that { — e(u) = ({; — e(uy), ..., {, — &(u,)) is
an admissible system of sheaf morphisms of g,(X/Y). Moreover, a,({ — &u)) =
= g(u, X/Y), as a direct consequence of Theorem 3.8. Let f € O(U) and let ¢ € X}Y.
Since X/Y is a qF-subspace of (U, X/Y), then f¢ € (U, X/Y) and we may define
the integral

s.0) flapt = »—‘,—--Sk(c— oV, W)ifE A A .. A dL,.
(2ri)?

Formula (5.1) provides an analytic functional calculus for the multioperator
#, whose precise meaning is given by the following result (which is a version of Theo-
rem 4.3 from [14]).

5.2. THEOREM. Let u = (uy, ..., u,) < L(X/Y) be a cr.m. and let U >
>0(u,X|Y) be an open set. Then (5.1) provides a unital algebra homomorphism of €(U)
into the subalgebra of £ (X|Y) consisting of all operators on X|Y which commute with
every operator commuting with w,, ..., u,. Moreover, {{(u) = u; forall j=1, ...,n

Proof. Let iy: X/Y — +(U, X]Y) be the canonical embedding. Since (5.1) is
2ni)=" times the composite of i, and the CWT-integral, it follows from Proposi-
tion 4.10 that f(u) € £(X]Y) for every f € O(U).

As a matter of fact, f(¥) commutes with every operator v € ¥(X/Y) that
commutes with u,, ...,u,. We note first that

(5.2) iyo = o(U, v)iy
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for every v € Z(X/Y), which follows from Proposition 2.15 (with N, = C, N, =
= @(U) and 0 the inclusion C < O(U)). If, in addition, v commutes with u,,...., u,,
then, by (5.2),

Fuyoe = ——-]-.—SR(C — o U, w)eU, )(fE) A Al A .. AL, =
(i)’

- L USR(C— o(U, )fE A by A .. A dE, = of0)E
2ni)"

for each ¢ € XY, as a consequence of Proposition 4.12 (see also Remark 4.13.2°)
Let P be a complex polynomial. If we want to compute P(u) as given by (5.1).

we may assume, with no loss of generality, that U= C", in virtue of Proposition 4.14.
Therefore

Py =-. ~1;_ SR(C —&ChuPPE Al A ..o AdE, =
2mi)”

(5.3)

T 188“ L a"PEAL, ... AL,
Qni)"

rl "

by Lemma 4.21, where
W= o(WiX ..o X Win XWX oo XW,, (G — oW, u)~h),
W;=C\o(u;, X|Y) (j=1, ...,n) and I'y, ..., T, are sufficiently large circles.

Note that o/ = ({; — «(W,u))~1, with W = W,;x ... X W, (via a natural iso-
morphism). Therefore, if we take the monomial P (z) = z:" (k, > 0), then

1
(2niy”

S Scxl P Al L dL, =

rl n

I .
= —(2_7”-)'18 e S a(l....,n—l)S(é’" - (’(Wn ’ II))_IP"fdgl e an =
rl n—-1 "

1 k

= —\... e TACT VA Y's PP
(27‘(i)" S S n 1 i—1
rl n-1

where

aleen=2) = ({; — oW, )" .. (o — oW, u,_ )"t

and W' = W;x ... xW,_, (we have used here Lemma 4.3 and Theorem 4.11
from [17]).

13 — ¢.2609
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This shows, by induction, that the right hand side of (5.3) is precisely the oper-
ator obtained from P when the variable z; is replaced by u; (j =1, ..., n). In par-
ticular, the identity of @(U) is mapped on the identity of X/Y and {;(u) = u; for all j.

The mapping f — f(u) is obviously linear. Let us prove that it is multiplicative.
If £, g € O(U), we have:

fugls = —- SR(C — U, DO ( SR(w — (U, u)g(@)E A da) A dE =
(2riy"
- ! SR(w — sUXU, ), { — o(U X U, )fQg@) A 4 A dF,
2ni)*”

by Proposition 1.10 from [14] and Theorem 4.17 above (which applies, since the
sheaf morphisms we work with have evidently proper extensions), where we have put,
for simplicity, d® = dw, A ... A do, and dl=dl A ... A dg,.

As in the proof of Theorem 4.17 from [14], we tranform the multioperator
(0, —wy, ...,0, —u,, &G —uy,...,¢ —u,) by the matrix (y;)i%_., where
Ve = Lifk = j, vy = —1ifk = n + jand yj = 0 otherwise. Since det (y;);x = 1,
from Proposition 4.18 we infer that

L SR(w — (UXU, ), { — aUX U, ) (Og(@) A dis A df =
(2mi)" .
- L SR(w = (UXT, i)Dg(@)E A dd A dF =
Qri)?
=1 SR(: (U, u))f(C)(SR(w — (@) da) A df =
Qni)?"
- -1—.81«(& (U, iz & A 4F = (WS,
(2mi)”

where we have used Proposition 4.24, which concludes the proof of the theorem.

5.3. COROLLARY. Let O(o(u, X|Y)) denote the algebra of germs of analytic
functions defined in neighbourhoods of the set o(u, X|Y). Then the mapping (5.1)
can be defined as a unital algebra homomorphism of O(o(u, X|Y)) into L(X]Y).

Proof. Indeed, by Proposition 4.14, the mapping (5.1) commutes with restric-
tions. A

5.4. PROPOSITION. Let X,/Y;, X,|Y, be qF-spaces and let b € L(X,]Y,, X, Y,).
Let aiso u=(uy,...,u)c LXJY) and v = (v, ..., 1v,) € L(X,/Y,) be c.r.m.
such that bu; = vb (j =1, ...,n). If f is analytic in a neighbourhood of the set
o(u, X/YY) U a(v, X,/Yy), then bf(u) = f(v)b. '
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Proof. This is a consequence of Remarks 4.13.

We shall prove in the following that the spectral mapping theorem still holds
in our context (see Theorem 5.11 below). To this end we need some auxiliary results.

5.5. LeMMA. Let u = (uy, ..., u,) < L(X/Y) be a cxm. and let V be an
analytic manifold. Then

D) ooV, w), oV, X]Y)) = o(u, X|Y)
and

(i) fle(V, w) = o(V, f)

for every f analytic in a neighbourhood of o(u, X|Y).

Proof. The complex K((D, X|Y), { — «(D, u)) is exact for some polydisc
D < C"if and only if the complex K(o(D, &(V, X/Y)), { — o(D, o(V,u))) is exact,
by Proposition 2.19. From this remark we easily infer (i).

Let us deal with (ii). Let U > o(u, X/Y) be an open set .on which the function

f is defined. The mapping

5.9 X/Ys & - fC eo(U, X|Y)

will be denoted by p,. Let also

.5 C 5% o(U, X]Y) » H'(o(U, X]Y), 8( — (U, w) + 0),

which is given by (4.1).

We shall use in the following some mappings which appeared in the proof of
Proposition 4.10. Namely, let L, M be compact neighbourhoods of o(u, X/¥) in
U such that L is contained in the interior_of M. Then there exists an isomorphism

5.6 Jiu: ZiNE — H'((U, X|Y), 8({ — &(U, w) + d),
which occurs in (4.14). Let also

G nG,r: ZYNL — H'(e(M, X|Y), 0),

-which is given by (4.16), and let

(5.8) phe s H'(s(M, X|Y), 3) = X]Y,

which is an “integration’’ defined by (4.12).
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According to (4.18) and (5.1), we must have -
(3.9 N Sl = Qi) piemy a(L,u) TS -

1In order to prove (ii), we can apply the functor o(V, -) to (5.9) and compare the
result with the version of (5.9) when f(u) is replaced by f(<(V, ). Using Lemmas
2.11, 2.17, Corollary 2.18 and Proposition 2.19, it is easily seen that the mappings
oV, 1y), o(V,s9), oV, ji u), o(V, 7% M) and «(V, pis) can be respectively identified
with the mappings (5.4)—(5.8) that correspond to f(«(V, u)), which shows that (ii)
holds.

5.6. REMARK. Let v = (uy, ..., u,) « Z(X/Y) be a cr.m., let Uoo(u, X/Y)
be an open set and let ¥ be an analytic manifold. In virtue of precedmg lemma,
for every I € o(U, #(V, X]Y)) we may define the integral

ch) = - -',--SR(c— oV, ) h A ALy A ... A dE,,
(2ni)” '

which is an element of «(V, X/Y). An argument used in the last part of the proof of
Theorem 5.2 shows that

C(fh) = flo(V, uC(h) = o(V, f))C(h)

for each f € O(U), that is, C is an O(U)-module homomorphism (a similar assertion
occurs in [16], Chapter IIT, equation (9.2)).

5.7. LEMMA. Let v = iy, ..., u,) < L(X]Y) be a cx.m. and let { be ana-
Iytic in a neighbourhood of 6(u, X]Y). Then the operator f(u) is regular.

Proof. As a matter ot fact we shall prove the inclusion o(f(v), X/Y) <
< flo(u, X]Y)). Let wy € C \f(o(u, X/Y)). Then we can choose two open sets
W < € and U < C” such that w, €W, o(u, X/Y) < U, f is defined in U and
W n f(U) = 0. Let G' =« W bean arbitrary open set and letw be the coordinate
function on G = G’ n C. The function g(z, w) = (w — f(2)) ! is analytic on UX G’
(we set g(z, o0) = 0 ifco € G'). Similarly, g,(z, w) = wg(z, w) (with g,(z,00) = 1)
and g,(z, w) = —f(2)g(z, w) (with g,(z, co) = 0) are analytic in UXG".

Let
(5.10) 0(g)h = - —11- --SR(C —&U, (G, ) gh A Al A ... A d{,,

(2m1)"
where 11 € «(G, X}Y) is arbitrary. Then 0(g) is an operator on (G, X/Y). Moreover

(5.11) (@ — f(o(G, )0 = 0(g)w — f(o(G, ) = h,
by Remark 5.6.
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If G’ 5 0o and 0'(g) is defined by (5.10) with G replaced by G', then 0'(g) is
an operator on «(G’, X/Y) whose restriction to +(G, X/Y) is precisely 0(g), by Re-
marks 4.13. Note that 0'(g) takes values in ,-(G’, X/Y). Indeed, if / € o(G', X/Y),
then

h = 0'(g)h + 0'(g)h.
But
hG = wd(g)(hG) + 0(g)(hiG),

which shows that 0(g)h!G) = (0’(g)h)iG is the restriction of an eclement of
0?(G’, X]Y). Therefore

(@ — oG, f))0" (g)h = h.
Since » — o(G', f(u)) is injective by (5.11), it follows that
w — oG, fW): 9o(G', XIY) = o(G', X]Y)
is bijective, and so 6(f(u), X/Y) < f(a(u, X]Y)).

The next result is a version of Proposition 4.6 from [14].

5.8. ProposirioN. Let (uy, ..., u,, ¥y, ..., 0,) < L(X/Y) be a c.x.m. and set
w= (U, ... u), v=_(0,...,0,) If fis analytic in a neighbourhood of the sct
o(u. X/Y) v o(v, XIY), then (G, f(u) — f(v)) acts as the zero operator on
HF(o(G, X]Y), o(G, u — v)) for every open set G = C" and each p > 0.

Proof. Let U > o(u, X]Y) U o(v, X]Y) be an open set in the domain of defi-
nition of /. Let also n € A?[o, +(G, X[Y)] be such that §((G, u — v))y = 0, wherc ¢
is a system of indeterminates associated with 1 — v. By Corollary 1.15 from [14], we
infer that

(R — &(U, o(G, w) — R(C — &(U, o(G, D))y =
~ 5(s(U, o(G, u — V)G,
where & € A?~Y[g, H"(s,(U, o(G, X]Y)))}. Therefore
" (o(G, ) — o(G, SO =

= (2ni)"‘S(R(C — &U, G, u))) — R, — e(U, o(G, o)) fy A d&y A ... A dg, =

= Qni)~"6(e(G, u — 17))S£§dcl A oo AdE,,

which is the desired conclusion.
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5.9. COROLLARY. Let ut = (uy, ..., u,) < L(X]Y) be a cx.m. and let U >
o g (u,X|Y) be open. Then for every f € O(U) and each polydics D =« D < U the

operator o(D, f(11)) acts as the operator f(§) on H?(o(D, X|Y), { — o(D, u)) for all
p =0

Proof. The assertion is a direct consequence of the previous proposition. We
only observe that a({, «(D, X/Y)) ¢ D < U (as in (4.32)).

5.10. Lemma. Let u=(u,...,u)c LX]Y) be a crm., let Uo>
>o(u, X|Y) be open and let fe@U). If 0 €a(u, X]Y), we have 0 ¢ o((u, f(u)),
X/Y) if and only if f(0) = 0.

Proof. Let D < C"*! be a polydisc and let ({, {,+1) = ({1, ..-5 (s {eq) bE
the coordinate functions in C"+1. We have an exact complex

. = H~Yo(D, X|Y), %) —» H?(¢(D, X|Y), B) -
(5.12)

> HP((D, X]Y), @) 2 Ho(o(D, X/Y),0) > ...,

where o = { — o(D, w), B = ({ — o(D, u), {,+1 — o(D, f(u))), and the connecting
homomorphism 0? is induced by { ., — (D, f(u)) (see {13}, Theorem 3.1 or [19],
Proposition 1). By virtue of Corollary 5.8, the actions of the operators {,., —
— o(D, f(u)) and {,., — f({) are equal on the spaces H?(¢(D, X/Y), o) for all p > 0.

If £(0) # 0, then we can choose the polydisc D such that {,., —f({) # 0
on D. Therefore 67 is an isomorphism for every p. Then the exactness of (5.12)
shows that H*(¢+(D, X/Y), B) = {0} for all p > 0, so that 0 ¢ o((u, f(), X/Y).

Conversely, assume that 0 ¢ o((u, f()), X/Y). Then the hypothesis f(0) =0
leads to a contradiction. Indeed, if f(0) = 0, then we may assume that the polydisc
D in (5.12) is of the form D = Gx D', where G = C", D" = Cand f(G) = D’. More-
over, H?(o(D, X|Y), B) = {0} and the mapping 67 is an isomorphism for all p > 0.
Let 8,: O(G) — O(D) be given by (0,h) (2, z,+,) = I(2) (h € O(G)) and let 8,: O(D) —
— 0(G) be given by (0,k)(z) = k(z, f(2)) (k € €(D)). Then 6,0, is the identity on
O(G). We denote also by 0, (resp. 8,) the mapping induced by 0,®15 (resp. 0,R15)
from Als, o(G, X|Y)] (resp. Alo, o(D, X/Y)]) into Als, «(D, X/Y)] (resp. Ala, 2(G,
X/Y)]), where ¢ is a system of indeterminates associated with { — (G, u) (or with
{ — (D, u).

Let # € A?[o, (G, X[Y)] be such that 8({ — (G, u))y =0. Then &({ —
—o(D, u))fin = 0. Since 07 acts as {,., — f({), we can find elements ¢ € AP[g, o(D,
X/Y)] and 1 € Ao, o(D, X/Y)] such that

01 = (L1 — SN + (L — (D, u)i.
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Notice that 0,(({, .+, — ALNE) = 0. Hence
0,01 = 11 = 8(C — o(G, u))0s.

This shows that H?(o(G, X|Y), { — &(G, u)) = {0}, from which we derive easily
that0 ¢ a(u, X/Y). This contradiction shows that f(0) # 0, and the proof of the lemma
is completed.

We can now prove the desired version of the spectral' mapping theorem (see
aiso [14], Theorem 4.8 or [16], Theorem 111.10.4).

5.1). THEOREM. Let u = (u, ..., u) < L(X|Y) be a crm., let U>
oo(u, X|Y) be an open set in C* and let f= (fi,...,[) € OU, C*. If flu)=
= (h(), ..., fu@)), then o(flt), X|Y) = flo(u, X[Y)).

Proof. In virtue of Theorem 3.11, it suffices to prove that for every f e @(U, C™)
one has

o((u, f(w), X/Y) = {(z, w) e C"*" : z e o(u, XIY), w = f(2)}.
This equality is a simple consequence of the following statement:

(P,) If zy € a(ut, X|Y), we have (z,, 0) ¢ o((u, f(1)), X|Y) if and only if f(z,) # O.

Let us remark that (P,) is a direct consequence of Lemma 5.10.
Assume that (P,,) is satisfied for some m > 1. The statement (P,,.,)i5 then
implied by the following condition:

(Prur) If (20, 0) € 6((n, f(1)), X[Y), then (z9,0) ¢ o((u, f'(w)), X]Y) if and only
If fuei(z0) # 0, where f,.1 € OU)is arbitrary and f' = (f, fip+1)-

Indeed, if (zy, 0) ¢ o((u, f'(w)), X/Y) and (z,, 0) €o((u, f(1)), XjY), then
Sm+1(z0) # 0 by (P,,11), and hence f'(z,) # 0. If (zo, 0) ¢ a((u, f(w)), X]Y), then
Sf(zg) # 0 from (P,), and thus f'(z,) # 0.

Conversely, if f'(z,) # 0, then either f(z,) # 0 or f,,,.(z,) # 0. In the first case,
that (z,, 0) ¢ o((u, f'(1)), X/Y) follows from (P,,), via Lemma 1.2.3 from [16], and in
the second case the same thing follows from (P;, +,)-

Note that condition (P}, .,) is a consequence of Lemma 5.10. Indeed, if
G(z, W) = f1,41(2) (z € U, w € C™"), then G(u, f(u)) = f,n+1(), by Theorem 4.17, and
therefore Lemma 5.10 applies. This completes the proof of the theorem.

5.12. REMARK. The above proof of Theorem 5.11 can be somehow simpli-
fied if one takes into consideration the inclusion o(f(v), X/Y) < f(o(u, X]Y)), already
obtained in the proof of Lemma 5.7.

We end this work with an extension of J. L. Taylor’s version of Shilov’s idem-
potent theorem (see [14], Theorem 4.9 and [16}, Theorem 111.13.5). We prove first
an auxiliary resuit.
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5.13. LemMMA. Let u = (u, ..., u,) < L(X/Y) be a cr.m. and let j € L(X|Y)
be an idempotent that commutes with uy, ..., u,. Then j(X|Y) is a qF-subspace of
X/Y that is invariant under w,, ..., u,. Moreover, o(u, j(X|Y)) < o(u, X/Y).

Proof. It is clear that j(X/Y) is a qF-subspace of X/Y that is invariant under
My, ..., U,. .

To prove the spectral inclusion, let D < C” be a polydicsc, let o be a system of
indeterminates associated with { — (D, u) (or with { — «(D, ulj(X/Y))), and
let n € A”[o, o(D, j(X]Y))] be such that 6({ — «(D, u | j(X/Y))y = 0. Since j(X;Y)
is a qF-subspace of X/Y, we may regard n as an element of A”{e, (D, X/Y)].
Moreover, ({ — «(D, u))y = 0.

Now, assume that H'(¢(D, X|Y), { — (D, u)) = {0} for all r > 0. Then, in
particular, there is a form { € A?~{g, (D, X/Y)] such that 8({ — (D, u))¢ = 5-
It follows from the results in the second section that (D, j(X/Y)) = «(D, )){(«(D,
X/Y)) (by Lemma 2.17) and that

AD, u j(X]Y)) = (D, w)e(D, j) (o«(D, X[Y))
(see Remarks 2.4, 2.6 and Lemma 2.17). Therefore «(D, j)y = 5 and
O — (D, ulj(X]Y))e(D, j)X = 1.
Since p is arbitrary, this shows that
H"(o(D, j(X]Y)), { — o(D, ulj(X|Y))) = {0}

for all p > 0, from which we infer easily that a(u, j(X/Y)) < o(u, X|Y).

5.14. THeOREM. Let u = (uy, ...,u,) < L(X|Y) be a corm. such that
o(u, X/Y) = Ky U Ky, where K|, K, are compact and disjoint sets. Then there
exist qF-subspaces X,|Y, Xo/Y of X|Y that are invariant under u, ...,u,, and
with the following properties :

M) X/Y = X)/Y + X,/Y, (X1/Y) n (X,/Y) = {0}
@) o(u, X,[Y) = K,, r=1,2.

Proof. With no loss of generality we may assume that both K, and X, are non-
empty (otherwise the assertion is trivial). Let U, o K, (r = 1, 2) be open sets such
that U; n U, = @. If y, is the characteristic function of U; in U; U U,, then
71 € G(U, u U,). Then the operator j = y,(#) makes sense and is an idempotent
on X/Y, by Theorem 5.2. We set X; = Imy(j) and X, = Img(l — j). Since j
commutes with u,, ..., u,, the spaces X,/Y and X,/Y are invariantunder u,, ..., u,.
The properties X/Y = X,/Y + X,/Y and (X;/Y) n (X,/X) = {0} are obvious.
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Let us prove that a(u, X,/Y) = K, (r = 1,2). We have o(u, X,/Y) c o(u, X]Y),
by Lemma 5.13. From Proposition 5.4 we deduce that y,(u|(X}/Y)) = 1, ()|(Xy/Y).
If a(u, X3/Y) N K, # O, then k = (1 — x)(u] (X,/Y)) is a non-null idempotent
in 2(X,/Y), since a(k, X,/Y) = {0,1}, in virtue of Theorem 5.11. On the other
hand, k = jk = 1, ()1 — 7 (u)i(X1/Y) = 0, which is a contradiction. Therefore
o, Xi/Y) < K. Similarly, o(u, X,/Y) < K;. These inclusions are actually equali-
ties. Indeed, since X,/Y is isomorphic to X/X,, it follows from Proposition 3.13 that

ou, A, Y) =K, U Ky < o(u, X,/Y) U olu, X5/Y),

so that o(u, X,/Y) = K,, which completes the proof of the theorem.

5.15. REMARKS. 1° Letu = (i, ..., u)c£(X/Y)beac.rm. and let £ € X/Y.
Assume that there is a form

@ € A", d0), e(C", X/V)]
such that
(6 — &C", u) + &)p = oy A ... Ao,

where ¢ = (6y, ..., 0,) are indeterminates associated with ». Then we must have
<=0
Indeed, in this case the projection on A[d{, £/(C", X/Y)] of the form

(=)o, A ... A0, — (3 — &(C", u)) + O)o)

represents the coset R({ — &(C”, #))¢ and is null in C". Hence
& = (2ni)™" SR(C —oC ) EAAL A ... AdL, =0.

2° The previous observation can be used to prove that the pair (X;/Y, X,/Y)
with the properties (1) and (2) from Theorem 5.14 is uniquely determined. Indeed,
if (X{/Y, X3/Y) is a pair with similar properties and if £, € X;/Y, we can write

Ey =&+ &, with £, € X]]Y (r = 1,2). Then we can find forms

¢, € A"=Y(a, d0), &(V,, X|Y)]
such that
O — &(V,, w) + Do, = &L =& — &,

where V, = C"\K, (r = 1,2). Since ¥, n V, n o(u, X/Y) = O, we may assume
@IV, NV, = @,|V; n V,, which shows that &; has the property of the vector &
from the preceding remark. Therefore &, = 0, that is X/Y < X{/Y. Similarly,
XolY < X3/Y. That X{/Y < X;/Y and X3/Y < X,/Y follows analogously.



202 L e F.-H. VASILESCU

REFERENCES

1. AusrecHT, E., Spectral theory on quotient spaces, Communication presented at thé 9th OT
Conference, Timisoara and Herculane, Romania, June, 1984.
. ALBRECHT, E.; VasiLEscu, F.-H., Stability of the index of a semi-Fredholm complex of Banach
spaces, J. Funct. Anal., 66(1986), 141 —172.
3. Bucur, L.; DELEANU, A., Introduction to the theory of categories and functors, John Wlley &
Sons, London--New York —Sydney, 1968.
4. Douapy, R., Produits tensoriels topologiques ct espaces nucléaires, Astérisque, Séminaire de
Géométrie Analitique, 1974, Exposé I.
5. EscHMEIER, J., Local properties of Taylor’s anmalytic functional calculus, Invent. Math.,
68(1982), 103116,
6. FrunzA, S.; The ‘Taylor spectrum and spectral decompositions, J. Funct. Anal., 19(1975),
390—421.
7. GODEMENT, R., Topologi¢ alzébrique et théorie des faisceaux, Hermann, Paris, 1958.
8. GROTHENDIECK, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math.
Soc., No. 16, Providence, 1965.
9. GROTHENDIECK, A., Sur certains espaces de fonctions holomorphes. I, J. Reine Angew. Math.,
192(1953), 35--64.
10. GunnNing, R. C.; Rosst, H., Analytic functions of several complex variables, Prentice-Halk
Inc., Englewood Cliffs, N. J., 1965,
11. Putmvar, M., Three papers on several variables spectral theory, Prenrint Serics in Math.,
INCREST, Nr. 43, 1979.
‘12. PUTINAR, M., ‘Functional calcilus with' sections of an analytic space, J. Operator Theory,
4(1980), 297 —306.
13. TavLor,J. L., Ajoint spectrum of several commuting operators, J. Funct. Anal. ,6(1970),172—191.
14. TAvLOR, J. L., The analytic functional calculus for several commutmg operators, Acta Math. N
125(1970), 1-—38.
15. Tavror, J. L., A general framework for a multi-operator functional calculus, Adv. in Math.,
9(1972), 183252,
16. VasiLescu, F.-H., Analytic functional calculus and spectral decompositions, Editura Academiei
and D. Reidel Publishing Co., Bucurcsti and Dordrecht, 1982,
17. VasiLescu, F.-H. » Spectral theory in quotient Fréchet spaces 1, Rev. Roumaine Math. Pures
Appl., 32(1987), 561--579;
18. WAELBROECK, L., Quotient Banach spaces, in Banacl Center Publications, Vol. 8, Warszaw,
1982, pp. 553—562.
19. WAELBROECK, L., The Taylor spectrum and quotient Banach spaces, in Bamuh Center Publi-
cations, Vol. '8, Warszaw, 1982, pp. 573--578.
20. WAELBROECK, L., Holomorphic functional calculus and quotient Banach algebras, Studia
Math., 75(1983), 273 —-286.
21. WAELBROECK, L., Quotient Fréchet spaces, Rev. Roumaine Math. Pures Appl., to appear.
22. ZaANG Harrao, Fredholm theory for morphisms in quotient Banach spaces, Rev. Roumaine
Math. Pures. Appl., to appear.
23. ZuanG HaiTAo, Generalized spectral deccmposmons (Romanian), Dissertation, Unhersity
of Bucharest, 1987.

3

F.-H. VASILESCU
Department of Mathematics, INCREST,
Bd. Pdcii 220, 79622 Bucharest,
Romania.,
Received April 28, 1988.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


