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ALGEBRAIC AND TOPOLOGICAL K-FUNCTORS
OF COMMUTING #»-TUPLE OF OPERATORS

R. N. LEVY

In the present paper we consider, from a cohomological point of view, com-
smuting and essentially commuting n-tuples of linear bounded operators, acting on
2 Banach space. In Section 1, for an arbitrary commuting »-tuple T of operators
we construct an element ' (T) of the Grothendieck group of the category of all
coherent sheaves on C"™\o (T), where o (T) is the joint essential spectrum of T.
More precisely, ' (T) is the alternated sum of the homology sheaves of the complex
of holomorphic sections of the parametrized Koszul complex of T. On the other
hand, for any essentially co mmuting n-tuple T we define a topological invariant
K(T) € KA(C™\0(T)). Proposition 1.4 shows that K(T) can be considered as a
generalization of Ext(7), defined by the Brown-Douglas-Fillmore theory in the
case of essentially normal operators in Hilbert space. Further, we show that the
elements 2 (T) and K(7T') are related by some natural transformation of functors.
This implies that the essential spectrum of a commuting n-tuple T with K(T)# 0
must contain the boundary of a bounded complex set. This fact gives an obstruc-
tion to the lifting of an essentially commuting n-tuple, i.e. to representing an essen-
tially commuting n-tuple as a compact perturbation of a commuting n-tuple. This
obstruction depends on the complex geometry of the joint essential spectrum o (T').
As another application of the results of Section 1 we obtain a characterization
of all commuting n-tuples of essentially unitary operators in Hilbert space. Further,

we give a short proof of Boutet de Monvel's formula for the index of a Toeplitz
operator on a strongly pseudoconvex manifold.

In Section 3 we prove the functoriality of %#°(T) and K(T) under suitable
functional calculus of operators. This allows to obtain corresponding index theorems
and shows that K(T), resp. ¢ (T), determines the index of all matrix functions of 7.
By generalizing the arguments, used in the proof of the functorality of 7 (7),
we obtain in Proposition 3.3 further information about the structure of the joint
Fredholm spectrum of a commuting n-tuple. In Section 4 we have collected the
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technical results, necessary for the first tree sections (most of them are ,,folklore-
-type” or *“‘well-known™).

The main results of this paper were announced in the short communi-
cation [17]. In the mean time there appeared two papers [5] and [23] treating
related subjects. The paper [5] contains the treatment of the particular case when
the Fredholm spectrum is an 1-dimensional subset of C”. In [23], Theorem 3.1,
there is a proof of the functoriality of the index of a commutative n-tuple T, or,
equivalently, of the functoriality of the component of 2#°(T) of (maximal) dimension
n. Our results are also related to the works of several other authors, for instance
(22}, 18], [9], [10].

Throughout the paper the system X (z) = { X, di(z)} will be called a continuous
(holomorphic) complex on the domain U, if X; are Banach spaces and d,(z): X; ~
- X;41 are continuous (holomorphic); operator-valued functions on U with
d;41(2)odyz).= 0. Denote by ¥X (0X) the sheaf of germs of continuous (holo-
morphic) X-valued functions on U. If X (2) is a continuous (holomorphic) complex
on U, then the complex of sheaves %X (2) ={%X;,d(z)} (resp. €X (z) =
= {0X;,d(z)}) will be called a complex of continuous (holomorphic) sections
of X (2).

I am grateful to Professor M. [Putinar for his interest on this work
and for several useful remarks.

1. MAIN DEFINITIONS

In his fundamental papers [25] and [26] J. L. Taylor introduced the notiom
of | parametrized Koszul complex (we shail denote it by K (T, z)) of a commuting
n-tuple T of bounded linear operators acting on a Banach space. We recall the
inductive definition of this complex. In the case » = 1 the Koszul complex of .the

single operator T acting on the space X is simply 0 - X iiX - 0. Let T =
=(Ty, ..., T,_5, T,) be a commuting n-tuple, z = (z;, ..., 2,-1,2,) = (z’,z,)bea
point of C”, and K (T, z') be the parametrized Koszul complex for the n — 1-tuple
T =(Ty,...,T,_y) in the point z' € C*~1. Then the operator 7, — z,I defines
an endomorphism of the complex K (7', z'). The cone of this morphism is by defi-
nition the parametrized Koszul complex of the n-tuple T at the point z. In this
paper it will be denoted by K(T,z)= {K,.,d,.(z)}};o. It is easy to see that the

n .
) copies of the
i

Banach space X. Note that all the differentials 4,(z): K; — K;;, of the complex
K (T, z) are linear and hence they are holomorphic functions of the variable z € C%

The Taylor spectrum o(T) of the commuting n-tuple T is by definition the
set of all points z € C* such that the complex K (T, z) is not exact (see [25)).
The essential Taylor spectrum 6, (T) of the commuting n-tuple T (sce [22], 8], [10])

i-th term K; of this complex is equal to the direct sum of (
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is the set of all points z such that the complex X (7,z) is not Fredholm, i.e.
it has at least one infinite dimensional homology group. Finally, define the Fredholm
spectrum og(T) of T as the complement of ¢ (T) in o(T).

The complex UK (T, z) of holomorphic sections of K (T,z) is a complex
of sheaves on C”. Denote its homology sheaves by #(T), i =0, ...,n. One can
see from Lemma 4.2 that the union of supports of all #(7T) coincides with o(7T).
It follows immediately from Corollary 4.4 that:

PROPOSITION 1.1. All the sheaves #(T) are coherent on C™\o(T). The
Fredholm spectrum o¢(T) is a bounded complex subset of C™\o.(T).

This assertion can be considered as analogous to Gleason’s theorem on the
holomorphic structure of the set of finitely generated maximal ideals of a commu-
tative Banach algebra.

Let M be a complex manifold. Recall that the algebraic K-group Kﬁlg(M)

is defined as the Grothendieck group of the category of all coherent sheaves on M.

More precisely, the generators of K§'®(M) are the classes [#] of coherent sheaves &

on M, and the relations are determined by the short exact sequences
0-F -9 - # -0, corresponding to the relations [¥] = [#] + [#].

DerFinITION. For a given commutative n-tuple T of operators we denote by
A(T) the element of the group K3¥(C"™\o(T)), determined by:

n

H(T) = Y, (— DD

i=0
From Lemma 4.6 it follows:

ProposITION 1.2, Suppose that the commutative n-tuple T’ is a finite-dimen-
sional perturbation of the commutative n-tuple T. Then A (T") = H4(T).

In fact, if di(z), d{(z) are the differentials of the Koszul complexes of T and T,
respectively, then it is easy to see that dy(z) — d}(z) is a finite dimensional operator,
not depending on the parameter z. By applying 4.7 and summing over all i, we
obtain the invariance of (7).

In the case of a single operator 7T the element &’ (T) has the form % (T) =
= Enj-lu ; where luj are one-dimensional trivial burdles on the bounded com-

ponents U; of C\o(T), and each »; is equal to the index of T— zI for z € U;.
(It is casy to check that the sheaves with zero-dimensional support do not contri-
bute to A '(T).) For any essentially normal operator 7 the collection {n;, Uj},
called the *“‘spectral picture of 7°°, plays an important role in the Brown-Douglas-
-Fillmore theory. So, for a commutative n-tuple 7" the element #(T) can be consi-
dered as higher-dimensional analogous of the spectral picture of an operator.
We shall sce below that for any commutative n-tuple T of eséentia]ly normal
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operators in Hilbert space the element #(T) determines T up to unitary equi-
valence modulo compact operators.

The element £ (T) can be described more explicitely if it has a Jordan-
-Hélder decomposition, i.e. if it can be represented in the form:

H(T) = Y- [0 ]

where n; are integers, M; are irreducible complex subsets of ax(T), and 0, denotes
the structure sheaf of the complex set M. In any case the above decomposition
for the homology sheaves and their alternated sum holds locally on og(T).

ExampLE. Denote by S the right unilateral shift acting on a separable
Hilbert space and consider the couple T = (S% S%). Then it is easy to sec that
H(T) = 2-[04), where M is defined by M = {(z, w) eC?:z% = w? |zl < 1}. This
can be shown directly or appllying the theorem of functoriality proved in Section 3.

The element 5#°(T) can be defined in a more general situation. Namely,
suppose that all commutators [T}, T;] are finite dimensional operators. Then in
the same way as above one can define the Koszul system K (T, z) = {K;, d,(2)}.
Now this system is not a complex, but it is easy to see that the composition
di+1(2)odi(z) of two consecutive differentials is a finite dimensional operator.
Therefore for any i and z the space imd(z)/kerd;_,(z) nimd,(z) is finite dimen-
sional. Define, as above, the essential Taylor spectrum of T as the set of all zeC"
such that at least for one / the space kerd,(z)/imd;_,(z) n kerd,(z) is infinite
dimensional. For two subsheaves &%, ¥ of a given sheaf we shall denote by
&F N @ their symmetric difference in the Grothendieck group: # A ¥ = F/F n
N%—%/#n%. Then for an n-tuple 7, commuting modulo finite dimensional
operators, we define:

H(T) = Y (—1) kerd,(z) A imd,_,(z)

=0

where d,(z) are considered as morphisms of sheaves.

The only difference between this case and the commutative one is that in this
case the support of #(T) may be an unbounded subset of C”. For this reason,
it seems apropriate to modify slightly the definition of 2#°(T). Note that the para-
metrized Koszul complex K (7, z) may be extended from the affine space C” to
the projective space CP"; indeed, if w,, ..., w, are the projective coordinates in C",
then near infinity one can consider the Koszul complex of the operators wgT; —
—wyl, ..., wT, — w,I. Thus, we consider #(T) as an element of K3%(CP™\o(T)).
All the theorems concerning 5¢°(T), proved in the present paper for the commutative
case are still valid for the case of finite dimensional commutators. We omit the
proofs, which may be obtained from the proofs in the commutative case by small
modifications.
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Now we shall define the corresponding topological invariant. Let the n-tuple

=(Ty, ..., T,) of linear bounded operators, acting on a Banach space, be
essentlally commutative, ie. all the commutators [T}, T;] be compact. Then the
Koszul system K (T, z) of T is an essential complex, i.e. the composition of any
two consecutive differentials is a compact operator. The essential Taylor spectrum
o(T) of T is the complement in C" of the set of all z such that the essential
complex K (T, z) is essential Fredholm in the sense of the definition given in
Section 4 (see [22] and [8]). When T is commutative, we must compare this
definition of ¢.(7) with the definition given above. If T acts in a Hilbert space,
it is easy to see that these definitions are equivalent. In the case of Banach space,
the essential spectrum, given by the second definition, is in general larger than
that given by the first definition. Indeed, it may happen that at some point z
the homologies of the complex K (T, z) are finite dimensional, but the kernel of
some differential of this complex does not have a direct complement. In the rest
of the paper, treating commutative n-tuples, we shall assume the first definition,
and while treating essentially commutative n-tuples we assume the second one.

By applying the construction of Section 4 to the essential Fredholm complex
K (T, z), we obtain an element of the topological K-group K%C"\o(T)), which
will be denoted by K(T). (In the case of a commutative n-tuple we may apply
directly Lemma 4.5.) The definition of K(T) is an obvious generalization of the notion
of index of essentially commuting n-tuples (cf. [22]). In some particular cases K(T)
is completely determined by the index of the essential Fredholm complex K (7, z)
for some values of z. For instance, if B and S are the unit ball and the unit
sphere in C”, and 7 is an essentially commutative n-tuple with ¢ (7T) = S, then
K(T) is equal to k [1g], where 1 is the trivial one dimensional bundle on B,
and k is the index of K (T,z) at an arbitrary point z € B. However, in general,
the index of X (7, z) may be identically zero (this is always satisfied if C"\o (T)
is connected), but K(7") may be nonzero. Below we prove that K(T') is the index
class of T, i.e. K(T') determines in a natural way the index of any matrix-function
of the operators of T in a suitable functional calculus.

The invariance of K(T) under small or compact perturbations of T follows
immediately from Lemma 4.10. More precisely:

PRrROPOSITION 1.3. Let T be an essentially commutative n-tuple of operators.
If T is a compact perturbation of T, then o (T") = o (T) and K(I") = K(T). If F
is a closed subset of C"\6.(T) and the essentially commutative n-tuple T’ is suffi-
ciently close to T in the operator norm topology, then ¢ (T)YnF = @ and the
restrictions of K(T") and K(T) to F coincide.

Suppose that X is a Hilbert space and the essentially commutative n-tuple T
acting on X consists of essentially normal operators, ie. all the commutators
T;, T}¥] are compact. Then there exists a unique x-homomorphism f— f(T) from
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the algebra C(o(T)) of continuous functions on ¢,(T) to the "Calkin algebra U(X) =
= L(X)/K(X), such that z(T) is the class of T;, for all i, 1 < i < n. Hence the
n-tuple T determines an element of the Brown-Douglas-Fillmore group Ext(c (T)),
which will be denoted by Ext(T). In [15] the Alexander duality homomorphism
D: Ext(F) - K¥C"\F) for a compact subset F = C" is described.

PropoSITION 1.4. For any essentially commuting n-tuple T of essentially
normal operators acting on Hilbert space, the element K(T) is Alexander dual to

Ext(T), ie. K(T) = D(Ext(T)).

COoROLLARY. If o (T) is homeomorphic to a finite CW-complex, then K(T)
determines T up to a BDF-equivalence.

Note that in [1] M. F. Atiyah describes the dual of Ext(7") by using a Clifford
algebra. One can prove that our construction is equivalent to his. However, since
in [1] there is no proof, we prefer to give a direct proof of the duality between

K(T) and Ext(T).

Proof of 1.4. Recall the construction from [15]. Let F be a compact subset
of C", and & € Ext(F). Then for any metric space M the element { dercrmines
a homomorphism y,,(¢) : K{F X M) — K°(M). Let U = C"\F, and denote by I
the natural embedding i: F X U — (C* x C")\4, where 4 is the diagonal in
C” x C". Denote by p the generator of the group KY(C"” x C*\4). Then the
Alexander dual’ of £.is equal to the image of the element i*(u) € K{(F X U) under
the homomorphism yy(&).

Consider the case F = o(T), & = Ext(T). Let M be a metric space and
G(z,m), z€ F, me M, be an invertible continuous matrix-valued function on
F x M. Then the image of the class of G(z, m) under the homomorphism y,,(&)
coincides with the element of K®(M), determined by the continuous vector-function
G(T', m) on M with values in the Calkin algebra. Denote by z = (z, ..., z,) and
w = (w, ..., w,) the coordinates on jthe first and the second copies of C" in
{C" x C")\4. Then the generator of the group X*(C" x C*\4) can be rcpresented
by the Koszul complex of the functions z, —wy, ..., z, —w,, which is exact on
{C" x C)\4. Applying yy(¢), i.e. replacing z; by T;, we obtain a representation
of the Alexander dual of the element Ext 7" by the Koszul complex of the operators
Ty—wl, ..., T,—w,[ for we U = C'\o(T). '

Now we shall consider a more general situation. Let T = (7y, ..., T,) be
an essentially commuting n-tuple of operators acting on the Banach space X,
and let T = (74, ..., T,) be the corresponding ‘n-tuple of elements in the Calkin
algebra A(X). Let A be a commutative subalgebra of A(X) containing 7. Suppose
for simplicity that 4 is semisimple and that the Gelfand transforms of the elements
11, ..., T, separate the points of the spectrum of A, and therefore the -spectrum
of A can be identified with a compact subset F of C” containing o (T). If f(z) is
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@ function on F belonging to A, then we shall denote by f(T') the corresponding
glement of A(X), and by f(T)—an arbitrary operator representing it. We shall
show that the functional calculus f(z) = f(T) determines an element ¢ of the
group K,(F), i.e. a natural transformation of functors y,,(£) : K{(F x M) — K(M).
Indeed, fix the compact M and denote by A,, the Banach algebra consisting of
all continuous functions f(z, m) on F X M such that f(z, m,) € A for any fixed
my € M. The corresponding norm is ||f{z, m)l|AM = st:l]g”f(z, m)||,. The Novod-

vorski theorem [20] shows that any element t of the group KYF x M) can be
sepresented by an invertible matrix G(z, m) with entries in 4,,, and that this repre-
'sentation is unique up to homotopy. Then the element y,(£)r € K%AM) can be
defined as the class of the A(X)-valued function G(T', m), depending continuosly
on the parameter m € M. Using the construction quoted in the proof of 1.4, one
can see that the restriction of K(7T') on C"\F coincides with the Alexander dual
of £. This implies:

PROPOSITION 1.5. Suppose that L(z) ={L;,d(z)} is a bounded exact com-
Dlex of free finite dimensional A-modules. Then L(T) ={L; ® X,d(T)} is an
essential Fredholm complex of Banach spaces, and its Euler characteristic (i.e. the
Euler characteristic of any equivalent complex — see 4.9) is given by the formula

UL (T)) = <IL (2], K(T)>

where [L (2)] is the class of L (z)in the group X)(F), and{ -, *) denotes the natural
pairing between KY(F) and K(C*\\F).

Proof. If Sy(z) : L; - L;_, are homomorphisms of A-modules such that
Si41(2) 0 di(2) + di_4(2) 0 S2) = 1d, then S;,«(T)ody(T) + d;_s(T)o S(T) = Id +
+ compact operator, and therefore the essential complex L (7) is Fredholm. Further
‘we have

ALAT)) = vpd OIL,(2)] = <L), &> = ([L.(2)], K(T))-

Now we are going to describe the connection between °(T) and K(T) for

a commutative n-tuple 7. We shall use the natural morphism «,,: Kg'g(M) -
—+ K°(M) for a complex manifold M, constructed in the Atiyah-Hirzebruch work
T2]. Briefly, the action of o, can be described as follows: Let % be a coherent
sheaf of @p-modules. Denote by M the underlying real-analytic manifold of M.
Then % determines a coherent sheaf £, of modules over the sheaf 22,, of germs
-of real-analytic functions on M. The manifold M, can be embedded as a real-

-~analytic submanifold in some complex Stein nmanifold M (M is in fact a neigh-
borhood of M in its complexification — see [12]), and the sheaf %, can be extended

up to a uniquely determined coherent sheaf & on M. For any compact subset F
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of M one can choose a locally free resolution R, — & — 0 of the sheaf %, defined

in some neighborhood of F in M. The class of the corresponding complex of
vector bundles on F does not depend on the choice of the resolution and determine
an element of the group K°(F). Then, taking the limit over an exhausting sequence
of eompact subsets of M, one obtains the element o,,(¥) € K°(M).

Let T be a commutative n-tuple of operators and U = C™\ ¢, (7).

ProrositioN 1.6. The image of A (T) under the homomorphism oy coincides
with K(T).

COROLLARY. If for the commutative n-tuples T and T' we have o (T) = o (T')
and ' (T) = A(T"), then K(T) = K(T").

Proof of 1.6. Denote by s#,(T) the homology sheaves of the complex OK (T, z)
on U. Then the corresponding real-analytic sheaves 3,(T), coincides with the
homology sheaves of the complex %K (T, z) of real-analytic sections of K (7, z).
Let U be a Stein neighborhood of Ug in its complexification, and let K be the
canonical extensions of K (T, z) (considered as a real-analytic complex on Up)
on U. Let F be a compact subset of U, and H, be a holomorphic complex of
vector bundles, quasi-isomorphic to K, on some neighborhood of F in U. Then
the restriction of H, to F is a real-analytic] complex of vector bundles, quasi-
-isomorphic to K (7, z), and therefore represents the restriction of K(T) to F.
On the other hand, it is easy to see that the homology sheaves of the complex Z2H,
of real-analytic sections of H_ on F coincide with s#,(T); and therefore the complex
H_ represents the restriction of «y(£(T)) to F. The proof is complete.

In a particular case the construction of ay can be simplified. Let & be a
coherent sheaf supported on ox(T"), and suppose that there exists an open set P~
such that 6x(T) = V < C"\o(T), and the sheaf % has a bounded locally frce
resolution R, —» % — 0 on V. Then the corresponding complex of holomorphic
vector bundles determines an element {R] of the group KoV, ¥V'\oJ (T)). It is
easy to see that [R ] coincides with «,(#). By using the excision homomorphism,
one can consider [R] as an element of K%(C"\ o (T), C"\o(T)) and therefore as
an element of K%(C*\ ¢ .(T)). Since the morphism « is compatible with the excision
homomorphism, then in this group the element [R ] coincides with «,(%) again.
If under the above conditions we have 5 (T) = [#] then the image of [R] in
Ko(C*\o.(T)) will coincide with K(T).

The invariant K(T) determines the corresponding element in cohomology.

For any essentially commuting n-tuple T denote ch(T) = ch(K(T)) € é HIU),
' i=0

where U = C"\¢(T) and H'(U) is the i-th cohomology group of U with coeffi-
cients in C. On the other hand, in the paper [21] one defines the Chern character
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ch(#) in Hodge cohomology for any coherent sheaf ¥ on a complex manifold.
Hence we have a homomorphism ch : K3¥(U) - éH""'(U), where H?I(U) is.
§::0

the Hodge decomposition of HP+9(U). It is easy to see that the construction o
Chern character in [21] agrees with the Atiyah-Hirzebruch construction, and there-
fore the following diagram is commutative:

KsU) — U . KYU)

] N

@ HY(U) —— .. @ H¥(U)

(the morphism in the bottom row is the embedding, determined by the Hodge
decomposition). Hence we obtain:

Prorposition 1.7. If T is a commutative n-tuple, then ch(T) belongs to
@ H"(U).
0

Since K(T) is invariant under compact perturbations, Proposition 1.7 gives.
us an obstruction for a given essentially commutative n-tuple 7 to be a compact
perturbation of a commutative n-tuple. Another obstruction will be given in the
next section.

One can construct a Chern character ch (T') with values in the homology
groups. Since ch(7T) is defined as an element of the group @H(U, UN\o (7)),
then its Poincaré dual is an element of the group H,(og(T)*), where op(T)* is
the one-point compactification of o(T); this element will be denoted by ch (7).
More explicitely, the linear functional

w - SCO/\Ch(T)

U

defined on the space of all differential forms e with compact support in U, is.
a closed current supported in ¢g(T) and represents ch (7). The above construction
can be localized. Fix an open subset V of U = C"\o(T), and let M = ¥V n og(T).
Then in the same way as above one defines the local invariants £ (T) € Kg‘g(M ),
K, (T) e KV, V\M), chy(T) e @ H*(V, V\\M) and ch_(T) € ® H,(M*). Since
the Chern character commutes with restrictions, then ch,(T) and ch ,(T) coincide
with the corresponding restrictions of ch(7) and ch (7)), respectively. The Chern:
character of an n-tuple T of commuting operators can be calculated directly from
its Koszul complex. For the local Chern characters this is easy: one can take a
holomorphic complex of finite-dimensional spaces, locally quasi-isomorphic to



228 R. N. LEVY

K (T, z), and calculate its Chern character by the use of the methods, developed
in [21]. The global construction is more complicated and will be described elsewhere.
Here we shall compute top-dimensional component of ch (7). Let M be an irre-
ducible complex set, and let % be a coherent sheaf on M. Then there exists an
open Zariski subset M° of M such that the restriction of % on M0 is locally free.
Denote by dim.# the dimension of the resiriction of % to MP; since M is irre-
ducible, then M4° is connected and the dimension does not depend on the point.
Now suppose that the Fredholm spectrum o(T) of the commuting n-tuple 7T is
a complex set of dimension not exceeding p, and let {Ma} be the family of its irre-
ducible subsets of dimension p. Denote k,; = dims#(T)|M,, and let k, =

=: x (— l)ika,i'
1
PRrOPCSITION 1.8. Under the above conditions we have:

ch(T) = ¥, kM) + terms of dimension < 2p—2,

where [M,] denotes the fundamental cycle of M, in the group Hy(065(T).).

Proof. For any « denote by M¢ an open Zariski subset, dense in the regular
part of M,, such that all the sheaves 57,(T) are locally free on M?. Then o (T)\J M2

is a complex set of complex dimension < p—1. Let ¥ be an arbitrary open ball
in C"\o(T) such that M, = V' nog(T) is contained in some M?. Then standard
arguments show that in the group @ H, (M) we have ch (T) = k[My]. Denote
by ¢ the element ch (T)— ¥, k,[M,] of the group @ Hy(o(T)*). Then for any ball V

satisfying the above condition the restriction of & is equal to zero in the group
@ H,y(My). This means that the component of dimension 2p of ¢ is equal to zeros
Since ch (T) contains only components of even dimension < 2p, this proves the
proposition.

Now we shall give an explicit formula for the regular case. Let N be a
p-dimensional complex manifold in C”, M — a precompact domain in N, E —an
analytic vector bundie defined on some ncighborhood of M in N (we shall
denote by the same symbol the corresponding locally free sheaf of @y-modules).
Let T be a commutative n-tuple of opzrators with o(T) = M, 0x(T) = M, and
s¢(T) = i, E, where i is the embedding of A/ in C" Then ch({T) (in fact, its Alexander
dual in @ H,(bM)) can be computed by a standard procedure. Let ¥ be a suffi-
ciently small neighborhood of 3/ in C"\bM. Then the couple (M, ¥) may be
identified with the zero section of the normal bundle of 24 and somge neighborhood
of it in the total space of the ncrmal bundle respectively. Dzanote by 7 the pro-
jection of the normal bundle on if, and by {,E — the Koszul-Thom complex of
the normal bundle, tensorized by =n*E. Then i,Eis a locally free resolution of
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the sheaf i ,E on V and determines an element of the group K°(V, ¥\ M). Applying
the excision homomorphism to this element, we will obtain the element K(T) in
K*(C*\bM) (see Proposition 1.6 and the remark following it). The Riemann-Roch
theorem (see [14], § 24.5) asserts that

ch(i,E) = ich(E) u Td(TM))

where in the right side i;: @ H*(M) — @ H¥*+2"=P(V, P\ M) denotes the Thom-
k k

-Gysin homomorphism in cohomology. By using the excision homomorphism, one,
can consider both sides of this equality as elements of @ H?*(C"\bM, C"\M).
or simply of HZ(C"™\bM). Denote by 1,, the element of H°(N\bM), corresponding
to the characteristic function of M, and by [bM] € H,,_(bM) —its Alexander
dual on N. If bM is smooth, then [bM] is its fundamental cycle. The element i)(1,,)
is in Alexander duality with [bM] on C". One sees that:

ch(T) = ch(i1E) = i\(1,; v ch(E) v TA(TM)).

Since E can be extended over bM, one can consider the restrictions of ch(E) and
Td(TM) on bM (we shall denote them by the same symbols). Finally, we obtain:

PROPOSITION 1.9. Under the above] conditions c¢h(T) is the Alexander dual
of the element (ch(E) y TA(TM)) n [bM] of ® H¥(bM).
In the next section we give an application of this resuit.

2. APPLICATIONS

In the present section we give some immediate consequences of the results
of the preceding one. At first, we construct an obstruction for lifting essentially
commuting tuples of operators. Let T = (T3, ..., T,) be an essentially commuting
n-tuple of operators acting on a Banach space. We will say that T' can be lifted
1o a commuting n-tuple if there exists a commuting n-tuple 77 = (77, ..., T,) such
that 7/ — T are compact operators for i = 1, ..., n. Since the element K(T) is
invariant under compact perturbations and since for a commuting n-tuple 7' the
element K(T') comes from an element of the group K%(C*\o(T), C"\o(T)), we
obtain:

PROPOSITION 2.1. Suppose that the essentially commutiné n-tuple T can be
lifted, and K(T') # 0. Then o, (T) contains the boundary of some bounded complex
subspace of C*™\o(T).

Indeed, in this case the complex space ox(T") can not be empty or zero dimen--
sional, '
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This assertion can be made more precise. Let F be a compact CW-complex.
Denote by F, the p-skeleton of F and by i,: F, — F the natural embedding. Then
we have a filtration of the group K,(F) by the subgroups K{(F) = im i,,. For any
¢ e K (F) denote degl = min{p : ¢ e K5(F)} (this degree is always odd). Note
that if ch : Ky(F) » @ H(F) is the Chern character, then degé > degch(¢). Let T
be an essentially commuting n-tuple, and suppose that ¢.(T) is homeomorphic to
e finite CW-complex. Denote the Alexander dual of the element K(T) by DK(T) &
& Ky(o,(T)).

PROPOSITION 2.1". Suppose that the n-tuple T, satisfying the above conditions,
can be lifted to a commutative n-tuple, and deg DK(T) = 2p — 1. Then o (T) contains
the boundary of some bounded complex set of complex dimension greater or equal

io p.

Proof. Suppose that T is a compact perturbation of the commuting n-tuple 7.
Denote by ¥ an open neighborhood of ¢,(T) with smooth boundary such that ¢ (7)
is a homotopical retract of ¥V, and bV intersects transversally the regular part
of og(T). Denote by & the maximal complex dimension of og(T). Then the set
M =bVnog(T)is a CW-complex of dimension 2k — 1. Denote by # the embedd-
ing of C\V in C"\o(T). Then r*K(T) belongs to the group K&C*"\V,
C™\(V U 6¢(T))). This means that the Alexander dual of r*K(T) belongs to the
image of K,(M) in K(¥) under the homomorphism of embedding, and
therefore belongs to K3*~(¥). Since 6.(7T) is a homotopical retract of ¥ and the
filtration is invariant under a homotopical equivalence, then DK(7T) belongs to
K2%-=Y((T)). Therefore, k > p, and o(T) is the desired complex subspace of C"\o(T)-

Since K(T') is the index class of T (see Proposition 1.5), then the degree
of DK(T) can be estimated from below if we know the indices of the functions
of T (for instance, if there exists a function of T with nonzero index, then K(T)#0).
The proposition above shows that if the n-tuple T with non-trivial index
class lifts, then the essential spectrum must satisfy some complex-geometric condi-
tions in C". This condition can be easily formulated in the particular case when
the essential spectrum is an union of submanifolds of C". Recall that the complex
tangent bundle T°(M) of the submanifold M is defined by the formula T%(M) =
= T(M)niT(M).

COROLLARY 2.2. Suppose that o (T) is a finite union of submanifolds of C~
with complex tangent bundles of complex dimension less or equal to p—2, and
let degDK(T) > 2p — 1. Then the n-tuple T can not be lifted.

Proof. Suppose that T lifts to a commutative n-tuple 7', and denote by A4
the complex set ox(7"). From Proposition 2.1 one can see that the complex dimen-
sion of A is greater or equal to p. Applying the theorem of Chirka [6], we obtain
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that the closure A of 4 is a complex subset of C”. Since A is bounded, we obtain
a contradiction.

As application, consider the question of lifting one-dimensional Toeplitz
operators. Denote by S the unit circle, considered as a boundary of the unit disk D
in ", and by P — the orthogonal projection from L? = L*(S) onto the Hardy
space H® For any function f € C(S) we denote by T; the Toeplitz operator on H?,
T, = PoM;, where M, is the operator of multiplication by f in L2 If f belongs
to the algebra A(D) of continuous functions on S, having a holomorphic conti-
nuation on D, then 7} is simply the muitiplication by f. For a given n-tuple of
continuous functions f = (f, ..., f,), one may ask whether the n-tuple of operators
T, = (Tfl, cen, T/”) lifts. Obviously it does if all f; belong to A(D). The next propo-
sition shows that under some regularity conditions the general case reduces to the
above by a change of the parameter.

PROPOSITION 2.3. Let f = (f,, ...,f,) be an n-tuple of continuous functions
on S and suppose that f is a monomorphic map of S in C" and the image I'y of f
is a 2-smooth curve in C". Then the n-tuple of operators T, lifts if and only if
there exists a continuous map h : S — S, and functions g, ..., g, € A(D) such that

Ji=gioh, i=1,.

Proof. We prove first the sufficiency. Let 7}, be the Toeplitz operator with
symbol /1. Then || T3|| = 1 and we have an A(D)-functional calculus for this operator.
‘The operators g,(T}), - .., g,(T%) commute and are a compact perturbation of
Ty - .oy Ty, rtespectively, ie. Tp lifts.

Suppose now that T lifts. The essential spectrum of 7, coincides with I7,
and the Alexander dual of K(7}) coincides with the fundamental cycle of I. There-
fore, by Proposition 2.1, there exists a bounded (one-dimensional) complex subset
M < C"\I;, with bM = I';. Using the Harvey-Lowson theorem [13], we obtain
the existence of a closed subset £ of I of zero linear measure, such that on I\ E
the couple (M, Iy) is an 1-smooth regular manifold with boundary. Since I is
connected, then M is irreducible, and there exists a proper map g : D —» C”,

=(gy .-.,&,), whose image coincide with M. Theorem 33 of [7] shows that
this map can be extended up to an l-smooth map from D to C”. The standard
monotonicity argument shows that g induces an one to-one map from the boundary
S of D to Iy. Denote h = (ng)'lof' then 4 is continuous and f; = g,oh
i=1,"...,n The proposition is proved.

In particular, one can see that the n + L-tuple (Ty,, ..., Ty, T) lifts iff it is
commutative, i.e. iff all f; belong to A(D).

Combining our approach with the Brown-Douglas-Fillmore theory, one can
obtain classification theorems for some classes of commuting tuples of essentially
normal operators in Hilbert space.
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PRroposITION 2.4. Suppose that T = (Ty, ..., T,) is a commuting n-tuple of
essentially selfadjoint operators, ie. all T;— T¥ are compact. Then K(T) = 0.
Moreover, if 6(T) is a finite CW-conplex, then T is a compact perturbation of
a commuting n-tuple of normal operators.

Proof. Since all T are essentially selfadjoint, then its essential spectrum:
is real, and therefore the joint essential spectrum o,(7) lies in R”. Since there are no-
bounded complex subsets of C*\R”, then, using 2.1, we obtain that K(T) = 0.
The last assertion follows from 1.4.

Consider the case of a commuting n-tuple of essentially unitary operators,
ie. of an n-tuple T = (T}, ..., T,) such that for all i the operators {/ — T*T, and
I—T,T} are compact. First we give some examples of such n-tuples. Let f= (f;,. . ..f,)
be an n-tuple of functions from A(D) such that | fi(z)| = 1 for all i and z, |z} =1
(note that in this case f(z) can be extended in a neighborhood of D and can
be represented as a finite product of factors of the type 8(z— a)(1 —za)~*
with |0) = 1, |a < 1). Then T} = (Ty,....Tr)and T = (Tf-l, cees Tf}.) are com-
muting n-tuples of essentially unitary operators.

For a given compact set F < C” we denote by Dy the n-tuple of commuting,
diagonal operators with joint essential spectrum equal to F.

PROPOSITION 2.5, Suppose that T is a commuting n-tuple of essentially uni-
tary operators and ¢ (T') is a finite CW-complex. Then there exist two finite families
{1 {ef) fo= U5 ... 9, 88 = (g, . . ., &%) of the n-tuples of functions of the type
considered above, such that T is unitarily equivalent to a compact perturbation of
the n-tuple

T'=@7T)®©T) ® Dy

Proof. Since all the T are essentially unitary, then o (7)) is a subset of T” =
={z=(a,...,2): /2] =1,i=1,....n},and it is easy to see that the dimension
of ox(T') is less or equal to one. Indeed, if 4 is a component of ox(T) of dimension 2,
then recalling the fact that T has no complex tangent vectors, and using the theorem.
from [7], we obtain that A4 is a complex subset of C”, which is a contradiction. It
is easy to sec that the one-dimensional part of (T is contained in the closed unit
n-disk D”. Denote W = {(zr, - sz ]zl > 172, i =1, ...,n}. Then any irre-
ducible component of 6x(T) has non-empty intersection with D"\W. Since o (T n
N (D"™\W) = @, then this implies that ¢.(7") has finitely many irreducible one-di-
mensional components. Therefore, the element 57 (T) has the Jordan-Hélder decom-
position of the form:

H(T) = ¥, m[M,)— ; ng[Np)
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where M, , N; are irreducible one-dimensional complex sets, and m,, n, are naturat
numbers. Since T” is real-analytic, then, by using another theorem of Chirka (see
[7], Section 1), one can see that M,, N, can be extended on some neighborhood of
D”. Therefore there exist holomorphic maps f*, g# from the unit disk D in C into C",
which can be extended in a neighborhood of D, such that f(D) = M,, g#(D)=N;.
Let T’ be the n-tuple defined above. Then we have o(T") = o (T) and therefore
Ext(T") = Ext(T), which completes the proof.

The situation simplifies if one considers the class of T in the group Ext(T").
Recall that two n-tuples T, T’ generate the same element of Ext(T”) iff T @ Dy»

is unitarily equivalent to a compact perturbation of 7° @ D_». If T is a commuting

n-tuple of essentially unitary operators, then og(T) is one-dimensional, and therefore
the dual of K(T) belongs to the group K}(T") = Z". Then Ext(T) is determined by

an n-tuple k = (ky, ..., k,) of integers. Denote by V the unilateral right shift
(ie., T.), and let ¥V = (V% ..., V") if all &, > 0.

PROPOSITION 2.5'. The n-tuple T is equivalent in Ext(T") to an n-tuple of the

type V"' @ (V*)’, where m and p are n-tuples of nonnegative integers.

Indeed, take the n-tuples m, p of nonnegative integers such that k=m—p.
Then it is easy to check that the n-tuple V™ @ (V*)” generates the same element
of Ext(T") as T.

As another application of the results of Section 1 we shall give a simple proof
of the index theorem of Boutet de Monvel for Toeplitz operators. The original
proof of Boutet de Monvel in [4] was based on the Atiyah-Singer index theorem
(and is in some sense equivalent to this theorem). It should be noted that recently
Boutet de Monvel and Malgrange gave an independent proof of the index
theorem for a more general class of operators. Now, let N be a complex-
-analytic submanifold of C", M be a precompact strongly pseudoconvex domain in
N, and E be a complex-analytic vector bundle on N. Denote by L*(E), H%(E) the space
of all square-integrable, resp. holomorphic and square-integrable, sections of E
on M, and by P - the ortogonal projection of L%(E) onto H*(E). The Toeplitz
operator with symbol f € C(M) is the operator Ty=Po M. It is proved in [4] that the
Toeplitz operators form an essentially commuting algebra, and the spectrum of
its factor-algebra by the ideal of compact operators coincide with bM. Denote by
T;, i=1,...,n, the operator of multiplication by the coordinate function z,,
and let T = (T3, ..., T,). Then the algebra of Toeplitz operators is generated by
the operators T, T, i =1, ...,n; therefore, o (T) = bM and Ext(T) coincides
with the element of Ext(bAM), determined by the algebra of Toeplitz operators.
Lemma 4.11 asserts that (7)) = i, E, where [ is the embedding of M in C*"\bM.
Using Propositions 1.4 and 1.9, one can see that Ext(T) = (ch(E) u Td(TM)) n
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n [bAf]. Therefore, for any continuous invertible matrix-valued function G on bM
‘we obtain the Boutet de Monvel index formula:

ind(Tg) = (G, ExtT) = {ch(G)y ch(E) u TA(TM), bM>.

3. FUNCTORIALITY OF K(T) AND X(T)

In this section we prove the functoriality of K(T') and .2#°(T) under a suitable
functional calculus, and some related results concerning the structure of #°(T) for
commutative #-tuples.

Lei T = (T4, ...,T,) be an essentially commuting n-tuple of operators acting
on the Banach space X, and T = (T}, ..., T,) be the corresponding n-tuple of
<lements of the Calkin algebra 2(X). Suppose that we are in the conditions of 1.5,
i.e. we have a commutative Banach algebra A < C(6(T)), and an A-functional
caleulus f(z) — AT) for T. If f(z) = (fi(2), . . .,[(2)) is a k-tuple of functions from
A, then we shall denote by f(T') an arbitrary k-tuple of operators representing f(T).

If f: 64T) — C* is a continuous mapping, then there exists a natural morphism
Ji 1 KO(C™N\ 0 (T)) = KAC\f(a (T))). If 6.(T) is a CW-complex, then this morphism
coincides with the Alexander dual of the morphism f, : K,(6 (T)) = Ki(f(o(T)));
in the general case the construction of f; is described in the proof below.

ProrosITION 3.1. If f(2) is a k-tuple of functions from A, then o (f(T)) = f(c (T))
and K(f(T)) = fK(T).

Proof. The mapping f can be represented in a standard way as a composi-
tion of an embedding and a projection, and it is sufficient to prove the assertion
in these two particular cases.

a) Let f(z) = (fi(2), . . ., fu(2)) be a k-tuple of functions from A4, and define
the map F(z) :0(T) - C*** by the formula F(z) = (zy, . .., 2,, f1(2), ..., (D).
Denote by M « C” the spectrum of A. Then F(z) can be extended canonicaly on
M. Using Lemma 4.8, one can see that ¢, (F(T)) = o(F(T)) < a(F(T)) and
therefore ¢ (F(T)) is contained in the set F(M). On the the other hand, applying
for the projection g: C"+% _ C" the projection property of the Taylor spectrum, we
obtain g (F(T))) = o(T) = o(T). Therefore, we have o (F(T)) = F(c(T)).
By applying the projection of C*+¥ onto C?, we obtain ¢, (F(T)) = f(c(T)).

We shall prove the second equality. Let f;(z), ceey f:(z) be an arbitrary con-
tinuous extensions of fi(2), . .., fi(2) on the whole C". Denote by K%z, w) the Koszul
complex of the operators Ty, — 2z, ..., T, —z,1, (fi(z) —w)I, ..., (fi(z) — wl.
It is easy to sec that KX(z, w) is Fredholm on C*"+*¥\ F(6(T)). We shall show that
K%z, w) represeats the element F,K(T). Indeed, if H. is a continuous complex of
vector bundles on C*\¢,(7), quasi-isomorphic to a compact perturbation of X.(7, z),
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then some compact perturbation of K%z, w) is quasi-isomorphic on C*"+¥N\o (F(T))
to the image of the class of H under the Thom-Gysin homomorphism. On the
other hand, the clement K(F(T)) is represented by the Koszul complex of the oper-
ators Ih —zl, ..., T,—z I f(T)y—wld, ... [(T)—wJd Denote it by K}(z, w).
We shall show that K%(z, w) and K1(z, w) are homotopic in the space of continuous
essential Fredholm complexes on C***N\o (F(T)). For u €0 (T), zeC", 0<1g]1,
1 <igk, denote fi(u, z, t) = (1 —1t) fi(z) + tfi(u), and let K!(z, w) be the Koszul
complex of the operators I1—z,f, ..., T, —z I, (T, z, ) —wl, ..., fi(T, z, £) —
— w,I. We shall show that the essential complex K!(z, w) is Fredholm off ¢ (F(T)).
Indeed, if z ¢ 0(T), then K/(z, w) is Fredholm for any w. Fix z° € 6(T). Then,
using the assertion proved above, one can see that the joint essential spectrum of
the operators Ty, ..., T,, (T, 2% 1), ..., fuT, 2° t) coincides with the set{(z, w) :
12 €0 (T), w=(1—1)f(z° + tf(z)} and does not contain the points (z°, w)
with w 3 f(z%). Hence, K/(z, w) defines a homotopy between Kz, w) and KX(z, w)
and the functoriality of K(T') with respect to the map F(z) is proved.

b) Let p: C"+* - C* denote the projection on the last k coordinates, and let
T=((Ty,...,T,), S=(Sy, ..., 8), T' = (T, S) be essentially commuting tuples
of operators. Then S = p(T’). We shall prove that K(S) = p,K(T). Denote by S
the n + k-tuple (0, S). Then the complex K (S’, z, w) is equal to the image of the
complex K (S, w) under the Thom-Gysin homomorphism, corresponding to the
embedding w — (0, w) of C* in C***. Therefore the morphism p, maps the
class of K.(S’, z, w) into the class of K.(S, w). Let B be a ball in C*, centered in the
origin and containing o, (7), and let B’ = BX o (7). Then K (T, z, w) and
K.(S’, z, w) determine the same element of the group Ko(C"+*, C"+k\ B'). Indeed,
denote by K (tT, S, z, w) the Koszul complex cf the n +k-tuple (tT, S), where
tT = (tTy, ...,1T,), 0 < t < 1. Since 6,(tT, S) = B, then K. (tT, S, z, w) defines
a Fredholm homotopy between K (T, z, w) and K (S’,z, w) on C***\(B'. This
shows that the images of K (T", z, w) and K (S’, z, w) under p,, coincide in the group
KYC"\o (T)).

Since f = p o F, then a) and b) prove the general case.

In tbe case of a commuting n-tuple 7 we shall show that a similiar property
is valid for *he element #°(T).

ProrosiTION 3.2. Let f(z) = (fy(2), ..., fi(2)) be a k-tuple of holomorphic
functions defined in some neighborhood of the spectrum o(T) of the commuting
a-tuple T. Then:

a) 6 (f(T)) = floT));
b) for each i we have 3 (f(T)) = fy #1+n-i(T), therefore A (f(T)) = fL A (T).

REMARK 1. Since the joint essential spectra of a commuting and an essentially
commuting n-tuple are defined in different ways, the functoriality of ¢.(T) in this

3 - 2729
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case does not follow from 3.1. This functoriality was announced in [16] and inde-
pendently proved in [9].

REMARK 2. It follows from the functoriality of 6(T) and ¢ (T) that f(z) deter-
mines a holomorphic map from og(T) to 6x(f{(T)). Then any point of ag(f(T)) has
a finite preimage, and the functor of direct image f,, is well-defined on the category
of coherent sheaves. This functor is exact, and all its derived functors are equal
to zero.

REMARK 3. Suppose that we choose a new coordinate system in C* and take
the corresponding system of generators in the linear span of T3, ..., T,. It follows
immediately from the proposition that the homology sheaves #(T) and the homo-
logy spaces H,(T, z) remain invariant under such a change.

Proof. One follows the same argument as in the proof of 3.1. Denote F(z) =
= (z, f(2)), and ¢(z, w) = z. Then o(F(T)) = F(o(T)), and g defines an isomorphism
between ¢(F(T)) and ¢(T). Taking into account the functoriality under the projec-
tion g, which will be proved below, one can see that o (F(T)) = F(o(T)) and
H(F(T)) = F - (T).

The main point of the proof is to show the functoriality under the projec-
tions. Let T=(Ty,...,T,), S=(Sy, ..., S, T' = (T, S) be commuting tuples.
of operators, and p(z, w) = w be the projection from C*** to C*. Denote by
K(T,z) = {X,, d(2)} and K(T', z, w) = {X{, dj(2)} the parametrized Koszul com-
plexes of T and T”. Recall that the complex K(T”, z, w) is equal to the total complex
of the bicomplex, whose i-th column coincides with the Koszul complex of the oper-

ators S; — wyl, ..., Sy — w, ] in the space X; ( which is equal to the direct sum of

(n) copies of the space X ), and the j-th row coincides with the Koszul complex
i

of the operators Ty —=z,1,..., T, — z,I in the space X;. The lower and the upper row
of this bicomplex are equal to X (7, z), which determines an embedding of comple-
xes I : K (T, z) » K(T', z, w) of dergree k and a projection of complexes
P :K(T, z, w) » K (T, z) of degree 0. The morphisms of complexes I, and P,
are natural; if 7"’ is a tuple of operators, T < T"' = T', and I, I’’ are the embed-
dings of K (T, -) in K(T",-) and of K(T",) in K(T',-), then I =1Io1I].
The same property holds for the projection P, .

Fix a point 20 € C"™\p(c(T)), a Stein neighborhood V of z° not intersecting
p(e(T)), and a polydisk D with polyradius R = (R, ..., R) in C* containing
o(S). Let 2(2) be a section of 5#,(T") over the open subset V' of V, represented by the
X;-valued holomorphic function x(2), d;(z)X(z) = 0. Then I [X(z)]is a holomorphic
X+ i-valued function on ¥ x D whose image under d},,(z, w) is equal to zero, and
we obtain a morphism of sheaves I;(z, D) : 5 (T) — p,o#+:(T") on V. Denote by
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0,,X] the sheaf of germs of X;-valued holomorphic functions on D, and by 0,,.K/(z) =
={0,X], di(z, w)},] the complex of holomorphic sections of K (1", z, w) on
{z} x D. Denote the i-th sheaf of homology of this complex by #%(7”). Put I X] =
= I'p(0,,X7). Then the Fréchet spaces; I' ,.X; form a complex I' K (z) = I'n(0,,K!(z))
with differentials holomorphically depending on z € V. Then the complex of
sheaves of its holomorphic sections 0,I',K!(z) coincides with p (0K (T", z, w)).
Since ¥'x D is Stein, then it is easy to see that the sheaves of homology of the com-
plex 0.I' K.(z) coincide with p,s#(T’) and therefore are coherent (see Remark
2 above). Then a standard construction shows (see [24], 1.4.15) that the complex
of sheaves 0.I' K is perfect, i.e. it is quasi-isomorphic to a bounded complex of
finite dimensional free @.-modules. This means that the complex of Fréchet spaces.
I',K(z) is 0,-Fredholm in the sense of [18], and Propositions 1.3 and 1.4 from [18]
imply that all its homology spaces I'p#5(T") are finite-dimensional for any z € V,
In the same way as above the embedding 7, defines a map of linear spaces 1,(z°, D):
: H(T, 2 — I'p#’%, (T"). We shall show that the maps Iz, D) and I(z°, D)
are isomorphisms.

We show that these maps are monomorphic by constructing their left inverse
maps. Fix a sufficiently small positive ¢, and denote W, = {w: w € D, |w,|>R;—é},

k k
i=1,...,k, W=\ W, Z=()D\W,. Thenthe Fréchet spaces H(D, I, X]) =
i=1 i=1

k
= I'y(0,X]) / @ I‘Wj((DwX 1) form a complex of Fréchet spaces Hi(D, I, K)) with
j=1

differentials, holomorphically depending on z e V. It is well known that any
n + k-tuple of operator-functions gy(z, w), ..., g,+i(z, w) satisfying (T, —z;) X
X gz, w) + ... + (Sy — w)gu+i(z, wy=1dy determines a homotopy or the com-
plex K (T, z, w), i.e. a family G (z, w) = {G\(z, w)} of operators Gy(z, w): X| —
— X/, satisfying for any i the equality G;,,(z, w) di(z, w) + d]_,(z, w)G,(z, w) = Id.
On the domain V X W, one can take g,.(z, w) = (S;—w;)~* and g,(z, w) = 0
for m # n + j. Denote the corresponding homotopy of K (T’, z, w) by GI. Let
y(w) be a X]-valued holomorphic function on D, i.e. an element of I' X,. For any
(z, w) € V X W define [r;y](z, w) = GF_iia(zj W) o ... o Gz, w)y(w). Then r;y,d; —

k
—d;_,r; belongs to @FWJ,((DWX,-'_,‘H) and therefore r (z, w) defines a morphism
J=1

of degree —k from the complex I' K (z) to the complex H4(D, I' K (2)). Let
R;=R;—¢f2,i=1,...,k. We define a morphism of complexes R (z): I' K (z)-
- K (T, 2) by the formula

R,(2)y(w) = P;_,(2ni)~* S S [ryl(z, w) dw; ... dw,.

\wﬂ:R; ‘wk‘=RI:
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It is easy to see that R (z) commutes with the differentials and therefore induces the
maps R;'o : I"DC,"/{"?O(T’) — H,_ (T, 2% and R(2) : ps€(T") » # ;-\ (T). We shall show
that R;’_UHC o I(z° D) is the identity in the space Hy(T, z° and that R, .(z) = Ii(z, D)
is the identical morphism of the sheaf #,(T) on V. Indeed, denote by J. the right
inverse to the morphism of complexes P_, i.e. the embedding of the complex K (T, z)
in the upper row of the bicomplex, defining K (7", z, w) (J, is not a morphism of
complexes). Let x ekerd,(z%) and yp(w) = I(z°, D)x e, X/,,. Then as direct
computation shows that [r;,,y](z, w) = (S, —w) 1 ... (Sy — w;)~2x. Applying
the Weil integral formula, we obtain the first equality, and the second can be proved
in the same way. Therefore the spaces H (T, z°) are finite dimensional, and the
functoriality of ¢(T') is proved.

We have to show that the map I (z, D) is an epimorphism. Since I, is func-
torial in the sense, specified above, then it is sufficient to consider the case k£ = 1.
We have 7' = (Ty, ..., T,, S), where the operator S commutes with Ty, ...,T,.
Then § induces an endomorphism of the sheaf p*3#(T) which will be denoted by S'.
There is an exact sequence of sheaves on ¥V'xD:

0 — coker(§' - —wI) - #(T") — ker(S' —wl) -0

where the first non-trivial arrow is induced by the embedding I , and the second
one -— by the projection P, . In order to prove the epimorphicity of I.(z, D) it is
sufficient to show that p,, ker(§" — wI) = 0. Let ¥’ be on open subset of V, x(z, w)
be a section of ker(S' — wl) represented by the holomorphic X,-valued function
X(z, w). Then there exists a holomorphic X;_;-valued function y(z, w) such that
S —wDx(z, w) = d;,_,(2)y(z, w). Put

u(z, w) = (2ri)~1 S (s —w) Y S—sD)~Yy(z, 5)ds

Isl=r’

where |w| < R’ < R. It is easy to check that d;_,(2)u(z, w) = X(z, w), which shows
that x(z, w) = 0. This proves the epimorphicity of 7 (z, w), and the proof of 3.2 is
complete.

Note that the proof of the fact that I (z, D) and 1 (2% D) are isomorphisms
is still valid if we do not assume that p~%(z°%) n o¢.(7') = @; in this case the space
FDJ/&’;T"(T’) must be replaced by its subspace, generated by the globally defined sec-
tions of kerdj(z°, w), w € D (in the case considered above they coincide), and ana-
logously, the sheaf p,.s#,(T"), by the i-th sheaf of homology of the complex of shea-
ves p, 0K (T', z, w). Note also that for any j, 1 < j < k, the isomorphism 7 (z°,D)
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transfers the action of the operator S; on H(T, z°) to the operator of multipli-
cation by the coordinate w; in the space FD.#fO(T’). Now, we shall prove a local
version of Proposition 3.2, Fix a point (2% w®) € o(T’), a sufficiently
small Stein neighborhood ¥V of z° and a polydisk D, centered at w®,
such that ¥ x bDno(T") = @ and {z°} x Dno(T) = {w}. Then the maps
Iz D), 1(z, D) can be defined as above, and we shall give a construction for the
maps I~Qf°, R (), corresponding to the polydisk D. Let L (z,w) = {L;, az, w)} be a
holomor~phic complex of finite-dimensional spaces, quasi-isomorphic to K (77, z, w)
on ¥VxD, and ¢ (z, w): L (z, w) = K (T', z, w) be the corresponding quasi-iso-
morphism. Then the complex I' ,L (2) is a Fredholm complex of Fréchet spaces on

V, quasi-isomorphic to the complex I' ,K(z). Denote by Wi, I7V, Z the subspaces of
D, defined in the same way as W, W,Z above, and let Hg(f), r,L) =

k
= I'5(0,L;) j:®-1 r '7’,-(0‘”['")' For any j, 1 < j< k, one can find a set of linear

maps yi(z, w) : L; - L;_;, holomorphically depending on (z, w) € ¥ V~Vj, such
that for any i we have

Viaa(z W) o ai(z, W) + a,_y(z, W) o ¥z, W) = Tdg,.

Let y(w) be an L;-valued holomorphic function on D. For any (z, w) € ¥'x 174 put
[F:y)(z, w) = yF_ 141z, W) o ... o ¥}z, w)y(w). Then r(z, w) is a morphism of
degree —k from the complex I' ,L (z) to the complex H;(f), r,L(z)). Now define

the morphism ]i(z): I',L(z) » K(T, z) as follows:

Ri2) y(w) = @ni)~*P,_, S S iz, W) o 7z, w)y(w) dw.

lwll —:Ri \wk\ ::R,’(

This morphism induces the maps R :I‘;%"fo(T’) — H,_(T, 2% and R(z):
1 0 (T | Vx f)) — ;. (T). It is easy to see that the definition of r (z, w) does
not depend up to a homotopy from the choice of yf z, w), and therefore the definitions
of Rfu, R () are correct. Now the maps Gfo = R} :k > I,(2°, D) and Gy(2) = R,y (z) 0
o I(29, f)) may differ from the identity; we shall show that they are projections in
the space H(T, z% and in the sheaf #°,(T) respectively. Denote by HY(T, z°) the
image of G,f"o, and by #/(T") — the image of G(z). Then H(T, z% is a finite dimensio-
nal space, and #{(T) is a coherent sheaf. As we remarked above, the map Iii(z)
transfers the multiplication by the coordinate w; to the action of the operator §;:
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therefore, H;(T, z°) is an invariant subspace of the operators S, . . ., S,, and the joint

spectrum of the k-tuple S is contained in the polydisk D. Shrinking D and ¥, we can
see that this joint spectrum coincide with {w°}. Now let x € H/(T, 2°). Then a direct

computation shows that the element @ (z, w) o F (2, W) = I(z, l~))x is homological
to the elements J(S;—w)t ... (S, —w)'x in the complex H"E(f), I K (2)).
Using again the Weil integral formula, we see that Gfo(x) = x. The same arguments
show that G,(z) is a projection also. Denote by H;'(T, z°% and s;'(T) the kernels
of Gfo and G(z) respectively. Take a polydisk D containing ¢(S); then the image of

H{(T, z% under the isomorphism I,(z°, D) consists of sections of .;i’f:k(T') supported
in {w°}, and the image of H;'(T, z° consists of sections with support in p~1(z% n
n a(T')\{w"}. In other words, the decomposition of H (7, z°), constructed above,
is a spectral decomposition corresponding to the isolated point {w®} of the joint
spectrum of § (since H (T, z°) is not a Banach space, this decomposition can not
be used directly). Summarizing, we obtain

PROPOSITION 3.3. Suppose that T=(Ty,...,T,), S=(S,...,S) and
T’ = (T, S) are commuting tuples of operators, the point (2°, w°) € C*+* belongs to
oe(T"), and the projection p of ox(T") to the coordinate subspace of the first n coordi-
nates is proper on some neighborhood of (2° w®). Then there exists a neighborhood V

of 2% such that for each i we have the decompositions
H(T, z°) = H{(T, z° ® H;'(T, 2, H(T)|V =#(T)® #;(T)

such that

a) H{(T, 2% is finite-dimensional and # (T) is coherent. There exist on V a
holomorphic complex M (z) of finite-dimensional spaces, and a homomorphism of
complexes ©(z) : M (2) - K (T, z) such that ©(z) induces an isomorphism between
H,(M (%) and H{(T, z°) and between 2 (M (2)) and #(T). -

b) The joint spectrum of S in H (T, z°) coincides with {w°}, and the joint spec-
trum of S in H, (T, z°) does not contain wP.

c) If D is a sufficienty small neighborhood of w°, then # }(T) =p*3f,-+k(T’)lV xD

k
and #,,(T') = pP*#IT) | © (S;—wilp*#(T) on VxD.
J=

Indeed, under the conditions of the proposition one can perform the construc-
tion above. If Y (2) : M (2) - I',L(z) is a quasi-isomorphism of the finite-
-dimensional complex M (z) in the complex I',L(z), then we put t(z) =

= ﬁ.(z, w) o i (2).
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REMARK. It follows from b) that H)(T, z°) is the root space of §; —w?l, ...
ooy Sy —wil in H(T, z°), whence we obtain the formulae:

k
H;(T: ZO) = U M ker(S] _'w;)l)pj IHL(T> zO)

Py, b 20 j=1
k
H'(T,2%= (N @ (S;—w)"|H(T, 2%.
1,...'Pk>0 J=1

Now we shall show that the element 2 (T") determines the index of any holo-
morphic function of the n-tuple T. If F (2) is a finite complex of finite-dimensional
free O-modules, and z° is an isolated point of supp F (z), then all the sheaves of
homologies #;(F,) of F, are finite-dimensional at z° and we denote x o(F,) =
= Z(—l)’dimzoé’f,-(F.). Suppose that F (z) and G (2) are finite complexes of finite-
-dimensional free @-modules, such that the set B = supp F (z) n supp G (z) is finite,
and let 2% € B. Then the intersection number (F, G >0 of F(z) and G (2) at
2% is defined by the formula (F,, G)>. = X otot(F, ®,G,)), where tot(F ®,G,)
is the total complex of the bicomplex F,®,G, . The global intersection number
<F,, G) is defined as the sum of the integers {F,, G, o over all the points z° € B.
It is easy to see that (F, G,) depends only on the classes of £, and G, in the corres-

ponding Grothendieck groups. If U is a Stein domain containing B, then {F,, G )
is equal to the Euler characteristic of the complex of Fréchet space I'y(tot(F, ® ¢G.)).

PROPOSITION 3.4. Suppose that L (z) = {Li, a,(z)} is a holomorphic complex
of finite-dimensional spaces, defined on a polydisk D containing the joint spectrum
a(T) of the commutative n-typle T, which is exact on 6 ,(T). Then the complex of Banach
spaces L(T) = {L,® X, afT)} is Fredholm, and its Euler characteristic is equal
to the intersection number (A (T), L (z)}.

Proof. We shall use a particular case of the quasi-isomorphism R, (z) used in
the proof of 3.2. In this case the map R: I'p(@X) ~ X will be defined by the formula

R[x(2)] = (2ni) 2 S S (T, —z)™ . . (T, —z,) x(z)dz

4 ’
l5,1=R]  |z,|=R;,

where Ry, ..., R, is the polyradius of D, and R} = R, —¢. Then it is easy to see

that the complex I'p(OK (T, z))—RrX —0is exact. Indeed, this can be obtained from the
proof of 3.2 with n replaced by 0, k replaced by #n, k-tuple S replaced by the n-tuple
T. Note that if f(2) is a scalar holomorphic function on D, then we have R[f(z)x(z)} =
= f(T)R[x(z)]. Therefore, if we take the operator of multiplication by f(z) on the
members of the complex I'p(0K (T, z)), and the operator f(T) on X, we obtain an
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endomorphism of the complex I'n(0K (T, z)) » X — 0. This show that the complex
L(T) is quasi-isomorphic to the complex I'n(tot(OL (z) ® o OK (T, z))). Let U < D
be a Stein neighborhood of the finite set suppL (z) nog(7), not intersecting
a(T). Since the complex tot(L (z) ® K (T, z)) is exact on D\U, then the complex
r U]tot(@L_(z) ®¢ 0K (T, 2))) is quasi-isomorphic to L (T) again. On the other
hand, if M _(z) is a holomorphic complex of finite-dimensional spaces on U, quasi-iso-
morphic to K (7,z), then I'y(tot(OL (z) ® 0K (T, z))) is quasi-isomorphic to
the complex I U(tot(@L.(z) ®oO0M (2))). Then the Euler characteristic of this
complex, i.e. the intersection number (L, M ), coincides with the Euler characte-
ristic of L (7). The proof is complete. Using standard techniques, one can prove
this assertion for holomorphic complexes, defined in an arbitrary neighborhood
of o(T).

REMARK. The Marcus-Feldman theorem [19] states that if we have a square
operator matrix, whose entries commute up to a trace class operator, then the index
of the matrix is equal to the index of its determinant. In the commutative case this
fact can be derived from 3.4. Indeed, any holomorphic NX N matrix 4(z) can be
represented locally in an upper triangular form {a; (z)}. Then it is easy to see that
the sheaf OV/A(z)@V is equivalent in the Grothendieck group to the direct sum

N
@ Cla, (2)0, which is in turn equivalent to @/a, (z) ... ay ,(2)0, and therefore
F==1 ' ’ ,

the intersection numbers of these sheaves with 2#(T) coincide.
lt T =(T,....T), T"=("T,...,T,, Sy, ..., S;) be commutative n-tuples
of operators, z° € og(T), and let p be the projection of C*** onto the coordinate sub-
space of the first »n coordinates. Suppose that the Jordan-Hélder decomposition
of #(T") near p~2z% is #(T") = ¥, miM;} + ..., where m; are integers, M; are
J

irreducible components of ¢(T") of dimension », and the dots represent the summands
of dimension < n.

PROPOSITION 3.5. Under the above conditions we have
AWK (T, 2%) = 5\ mymult  (M)).
. .z

Proof. Recall that the multiplicity mu]tp zQ(M'j) is equal to the intersection

number of M; with the ser p~(z°). Fix a holomorphic complex M, (z) of finite-
-dimensional spaces, quasi-iscimorphic to X (7, =) in a neighborhocd of z° Then,
by 3.2, (M (2)) = poi#+:(T"). We have:

21K (T, 29) = J (1) dim H(M, %) = (D<M, {2°}) =
= Y (DX# 0 T, pH20) = A (T), P~

which proves the assertion.
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By using 3.3, onc can obtain a local version of 3.5. Let (2%, w") € ap(T").
Suppose that the restriction of the projection p to o(T") is proper in some neigh-
borhood of (2% w?), and that near (z% wv) the element #(T') has the same Jor-
dan-Holder decomposition as in 3.5. Take the decomposition H(T, z%) =
= H{(T, z°) @ H]'(T, 29 corresponding to the point w®, and denote x'(K (7, z%9) =
= Y (—1)'dim H{(T, 29).

PROPOSITION 3.5’. Under the above conditions we have

(M3).

2z% w0

7 (K (T, z%) = ): m, mult
7

Proof. In this case the multiplicity mult, (7)) is equal to the local intersec-

L 2% w0
tion number of M, with p ~2(z°) at the point (2%, w9). Take the holomorphic complex
M (2) as in 3.3 a), and let ¥ = C*, D « C* be the same as in the proot of 3.3.
Then we have s#,(M)) = p, (o (T ’)] V' x D). Replacing in the proof of 3.5 the
global intersection numbers with the local intersection numbers at (2%, w?), we
obtain a proof of 3.5.

In the case n = 1 this assertion is proved under the more restrictive assumption
that z0 € g(T) in [5], Theorem 5.11.
Proposition 3.3 implies that if the maximal dimension of ¢x(T) near the point

z% € C" is equal to m, then in some neighborhood of z° we have s#(7T) =0 for
i < n—m. Indeed, one can change the coordinates in C” in such a manner that

Zy, ..., 2, form a normal coordinate system for the m-dimensional part of ¢g(7T)
near 2% and then apply 3.3 ¢) with n = m, k = n-— g1 This allows us to obtain an
explicit formula for #°(T) in the case when ox(7) is one-dimensional. Suppose that
T is a commuting n-tuple of operators, 2% € 6x(T"), and og(T) is one-dimensional
near z°. Changing the coordinates, we may suppose that the first coordinate z, is
a normal coordinate system for og(7T") near z% Let ¥ be a sufficiently small neigh-
borhood of 2} in C, and V' x D be a sufficiently small necighborhood of z° For any
two sheaves #, ¥ on V (respectively, on V< D) we shall write % ~ @ iff # and ¢
are isomorphic modulo sheaves supported in {z‘{} (respectively, in {zo}). Denote
by k and r the dimension of Hy(T)) and H;(7,) respectively on V\{z‘l’}. Then
YT ~ OF, #(T)) ~ 0. Denote by T* the r-tuple T7%, ..., T*, acting on X*.
Then og(T*) = o¢(T). It is easy to see that the decompositions of H(TF) and s (T}),
corresponding to the point z° € 6(T*), agree with the decompositions of H(T)),
H(Ty), i = 0,1. Therefore we have s#y(TF) ~ #(T,), #(TF) ~ #(T). Then on
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V > D we obtain

HonT) = H YT / ¥ (T, — ZDAYT) ~

j=2

~ HYTY) / Y (T — D UTE) =
J

= 0X* / Y (T} — z1)0X*.
j=1

We have proved

ProrosITION 3.6. Suppose that the Fredholm spectrum of the commuting
n-tuple T of operators acting on the Banach space X is one-dimensional near the
point z® € C". Then in some neighborhood of z? we have

A(T) = [(DX ¥ T _zjl)cox] — [mx* / ¥ (TF — zjl)(DX*} .

j=1 j=1

A similar formula, using the ring of formal power series instead of the ring
of germs of holmorphic functions, was obtained under more restrictive assumptions
in [5], Theorem 5.13.

4. TECHNICAL LEMMAS

In this section all the complexes will be assumed to be bounded.

LemMA 4.1. (Taylor, [26], Theorems 2.2 and 2.3). Suppose that in the

. a(z) b(z) .
diagram X — Y —Z, X, Y, Z are Banach spaces and a(z), b(z) are continuous

(holomorphic) operator-valued functions defined on the domain U < C" such that
b(z)-a(z) = 0, and suppose that for z° € U we have im a(z%) = ker b(z°). Then there
exists a neighborhood V of z° such that

a) for any z €V we have ima(z) = kerd(z),

b) for any continuous (holomorphic) Y-valued function y(z) on V, satisfying
b(@2y(z) = 0, and for any element x, € X, satisfying a(z%)x, = y(z°), there exists
a continuous (holomorphic) X-valued function x(z) with x(z° = x, and a(z)x(z) =
= y(2).

LemMMA 4.2. Let X (z) = {X,, d(2)} be a continuous (holomorphic) complex
of Banach spaces on the domain U. Then X (z) is exact on U if and only if the complex
CX, (0X,) of sheaves of germs of its continuous (holomorphic) sections is exact.
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Proof. The “‘only if”’ part follows directly from 4.1. In order to prove the “if”’
part, fix z° € U, and suppose that we have proved the exactness of X (z° in the
stages > i + 1. Let x, € kerd;(z°) and let x(z) be a continuous (holomorphic)
X-valued function such that x(z%) = x,, d,(z)x(z) = 0. Then there exists a X,_;-va-
lued function y(z) such that d,_,(2)y(z) = x(z), and therefore d;_(z")(z% = x,.

LEMMA 4.3. Let X (z) = {X;, d(2)} be a continuous (holomorphic) complex
of Banach spaces, defined in the domain U, and Fredholm in the point z° € U. Then
in a sufficiently small neighborhood of z° there exists a continuous (holomorphic)
complex L (z) = {L;, af(z)} of finite-dimensional spaces, and a continuous (holo-
morphic) quasi-isomorphism of complexes ¢ (z): L (z) - X (z).

Proof. Since the complex X (z) is bounded, then we can assume that the spaces
Z; and the homomorphisms az): L, — L;,{, ¢{2): L, - X; are constructed for
i > k. We shall construct L, a(z), ¢,(z). Denote by X (z) = {)?,-, ci,.(z)}, i>k,
the cone of the morphism ¢ (z). The space ker d(2%)/im d_,(z°) is finite-dimen-
sional and one can choose elements x,, ..., x, generating it. By 4.1 one can find
continuous (holomorphic) X,-valued functions x;(z), j =1, ..., s, defined in some
neighborhood of 2% such that x;(z°) = x; and Zik(z)xj(z) =0. Put L, = C°. Then
the vector-functions x,(z), ..., x(z) define a continuous (holomorphic)’ map
x(z): Ly — X,.. Recall that X, = X, @ L,.,, and denote by ¢,(z) and a,(z) the pro-
Jections of x(z) on the space X, and L,,, respectively. By using the equality

vak(z)x(z) = 0, it is easy to check that all the necessary conditions are satisfied.

LeMMA 44. Let X (z) be a holomorphic complex defined on the domain U.
Then X (z) is Fredholm for all z € U iff all the sheaves of homologies of the complex
©X (2) of its holomorphic sections are coherent.

Proof. It is easy to see that the quasi-isomorphism ¢ (z) constructed above
defines an isomorphism between the complexes of sheaves OL (z) and 0X (z) and
therefore the homologies of 0X (z) are coherent. Conversely, suppose that all
the sheaves J#; = #,(0X (z)) are coherent. Then it is easy to compute

Y (=1 dima# (X (2)) = ¥, (—1)' Y, Tor (14, €,)
i i

k>0

where e is the sheaf with stalk equal to C in the point z and zero elsewhere.

LeMMA 4.5. Let F be a compact (compact and holomorphically convex)
subset of C", and let X (z) be a continuous (holomorphic) complex of Banach spaces,
defined in a neighborhood of F and Fredholm on F. Then there exists a continuous
{holomorphic) complex of (holomorphic) vector bundles L (z) on F, and a continuous
{holomorphic) quasi-isomorphism ¢ (2): L (2) — X_(2).
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Proof. Consider the holomorphic case. Since the complex X (z) is bounded,
then one may suppose that X; =0 for i < 0. It is well known that if & is a
coherent sheaf or a sheaf of the form 0X, X — a Banach space, then H'(F, &) = 0
for all i > 0. Since all the homology sheaves of the complex 0X (z) are coherent,
then, decomposing it in short exact sequences, we obtain H'(F, #) =0 for all
i > 0 whenever ¢ is one of the sheaves of the form kerd,(z) or imd(z), k& > 0.
Suppose that the finite-dimensional vector spaces L; and the homomorphisms a,(z).
@(z) are constructed for all i > k, k > 0. Denote by x,, ..., x, a generating system
of global sections of the coherent sheaf kerd,(z)/imd,_,(z) on F. Since
H(F, imd,_,(z)) = 0, then this system can be lifted up to a system x,(2), ..., x,(z)
of sections of kerc?k(z) on F. Now the space L, and the operators a,(z), ¢,(z) can
be constructed as in the proof of 4.3. In this way one obtains L;, a,(z), ¢;(z) for
all 7 > 0. It is casy to see that the kernel of the operator a70(z) has constant finite
dimension on F and therefore is a2 holomorphic vector bundle. Put L, = keraZ,(z)

and denote by ay(z), @4(z) the components of the natural embedding L, — X%,.
Thus the construction is complete.

In the continuous case all sheaves are soft, and the same proof holds without
change.

LemMA 4.6. If L(2), L.(z) are complexes of finite-dimensional vector bundles.,
quasi-isomorphic to X (z) on U, then L (z) and L.(z) determine the same class ir
the group K°(F).

Proof. Let ¢ (z): L(2) - X (2), ¢.(2): L(z) > X (z) be continuous (holo-
morphic) quasi-isomorphisms. Then ¢ (z)@ @, (2):L(z)® L’ (2) - X (z) is a
morphism of complexes. Denote its cone by X (z). Let P, P/ be the natural
projections of X (z) onto L (z), L.(z) respectively. The kernel of P, coincides
with the cone of ¢ (z) and therefore is an exact complex. This implies that P_is
a quasi-isomorphism, and the same is true for P/ . Choose a complex M (z) of
vector bundies on F, quasi-isomorphic to X (z), and let ¥ (2): M (z) = X (=)
be the corresponding quasi-isomorphism. Then /,(z) can be represented in the form
W), ¥i(2), Si(2)), where W (z): M; - L;, y{z): M; - L], S{z): M; -~ X,_, are
linezr maps. It is easy to see that ¥/, (z) = P;~,(2), ¥i(2) = P}o(z), and therefore
¥ (z) and Yi(z) are quasi-isomorphisms. We have see that both L (z) and L/(z) are
quasi-isomorphic to M (z), which proves the lemma.

Let &% and ¥ be subsheaves of the sheaf 32, defined on the domain U. Denote
by $7A% the formal difference /% 0 % — 9/5 n % considered as an element of
K3s(U).

LEMMA 4.7. Let A(z): X - Y be a holomorphic operator-valued function
on the domain U, and let A(Z) = A(z) + K, where K is a finite-dimensional operator,
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not depending on z. Then in the group K3%(U) we have
ker A(z) A ker A(z) + im A(z) A im A(z) = 0.

Proof. In the case when X is finite-dimensional the assertion is obvious.
In the general case, let H = ker K, and denote by % the sheaf % = im A(z)!H =
= im A(z)|H. Denote by B(z), B(z) the morphism from the sheaf OX/OH = O(X/H)
to 0Y/].%, induced by A(z), A(2) respectively. Then

ker A(z) A ker A(z) = ker A(z)/ker A(z) n OH —
— ker A(z)/ker A(z) n OH = ker B(z) —ker B(z) =
= ker B(z) A ker B(z),

and in the same way im 4(z) A im 4(z) = im B(z) A imﬁ(z). Since X/H is finite-
-dimensional, the assertion follows.

DeriNITION. The system X (z) = {X;,d/(z)}, where X; are Banach spaces
and d,(z): X, - X,,, are continuous operator-valued functions, will be cailed an
essential complex, if for all i and z the operators d;,,(z)-d(z) are compact. The
-essential complex X (z) will be called Fredholn, if for all i and z there exist oper-
ators S; ;1 X; — X;, such that Sj4y,0d(2) + d;_1(2)° S, is equal in X; to the
identity plus a compact operator (see [22]). Two essential complexes X (z) =
= {X;, di(2)} and X(z) = {X],d(z)} will be called equivalent, if X, =X, and
di(z) —d{(z) are compact for all i and z.

In Section 1 we defined the essential joint spectrum ¢.(7") of the essentially
commuting n-tuple T as the complement in C” of the set of all z such that the
essential complex K (T, z) is an essential Fredholm complex.

Lemma 4.8, Let T =(Ty,...,T,) be an essentially commuting n-tuple of
operators acting on the Banach space X, and let T = (T, ..., T,) be the corres-
ponding n-tuple of elements of the Calkin algebra W(X). Then o (T) = o(T), where
o(T) denotes the Taylor spectrum of T considered as an n-tuple of operators of
left multiplication on N(X).

Proof. Proposition 2.3 of [22] shows that the essential complex X, = {X,,d;}
is Fredholm iff for any k the complex L(X,, X ))/K(X;,X,) is exact. Since the
components of the Koszul complex K (T, z) are direct sum of finitely many copies
of the space X, then one can see that the essential complex K (T, z) is Fredholm
iff the complex L(X, K (T, 2))/K(X, K (T, z)) is exact. On the other hand, it is
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easy to show that the latter complex is equal to the Koszul complex of 7 in 2A(X),
which proves the lemma.

LEMMA 4.9. For any continuous essential Fredholm complex X (z) = {X,, d(2)},
defined on the domain U, there exists on U a continuous Fredholm complex X'(2),
equivalent to X (2).

Proof. For given subspaces L and M of a Banach space we shall write
L ~ M iff both L/L n M and M/L n M are finite-dimensional. Similarly, for oper-
ators A and B we shall write 4 ~ B iff 4— B has a finite-dimensional image.
We are going to construct on U continuous operator-valued functions d/(z): X, —
— X1, Si(2): X; — X;_;, such that for all i the operators d,(z) — d;(z) are com-
pact, d 1(z)odi(z) = 0, and S;,,(2)od/(2) + d;_,(z) > Si(z) ~ L. Suppose that d;(z),
S;.+1(z) are already constructed for i > k, and let us construct 4;(z), S,.,(z). Denote
P(z2) = Si45(2) 0dis1(2) and Q(2) = I— P(z). Then P¥(z) = Sjo(2) o (I — Sy44(2)°
o dy 4 o{2)) 0 dy 11(2) ~ P(2) and therefore 0%*(z) ~ Q(2), P(z)° O(z) ~ 0. Then it is easy
to see that im P(z2) is closed, im P(z) ~ ker Q(z), and im P(z) n kerdy.,,(z) is finite-
-dimensional. Since d; ,(2) o P(z) ~d, +(2), then we obtain that im P(z) @ kerd;, ,,(z) ~
~ X, .1 and ker P(z) ~ kerd;,,(z). Denote ah(z) = Q(2) 2 di(z). Then d,(2) —ai(z) =
= P(z) > d,(z) is compact. Since imQ(z) ~ ker P(z) ~ kerdy.,(z), then dj,(z) < di(z)
is finite-dimensional. One can choose a continuously depending on z finite-dimen-
sional operator F(z): X, —» X,,, such that dj,,(z) F(z) = dj,,(z)od,(z). Then
di(z) = di(z) — F(z) is the desired compact perturbation of d(2).

I't remains to construct S.,(2). Fix the point w € U and the operators S;.q w
and S, , such that the operator S5 . o di4+1(W) + d,(W) o Sy, ,, — I is compact.
Put §,..(2) = Sk+1.w © @(2). Then, since im Q(z) ~ kerd,,(z), the operator

diW) © 811 (W) + SpasW) o dfys(w) —1I =

= (dy+1(W) ° Sk+1, w —1I)o Q(w)

is compact. For all z sufficiently close to w the operator-function H(z) = dj(z)
o Sp41(2) + Siyo(2) 0 di i 1(2) can be represented in the form H(z) = G(2) + K(2)
where G(z) and K{(z) continuously depend on z, |[I— G(2)|| < 1/2 and K(z) is
compzct. Then there exists a continuous operator-function L (2) : X3 = Xyt
such that L(z) o H(z) ~ H(z) o L(z) ~ I Since P(z) o di(z) is finite-dimensional, then
P(z)o H(z) ~ P(z), and therefore P(z) ~ P(z) o L(z). Put S;,1(z) = S;,1(2) o L(2).
Then di(2) o Si+1(2) + Si+2(2) © disa(2) = H(2) o L(z) — P(2) L(z) + P(z) ~ I. Now
Si+1(2) is constructed in a neighborhood of w. ;Since w is arbitrary, then, using
a suitable partition of unity, one can construct S,,,(z) on the whole U, which
completes the proof.
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DEFINITION A. Let X (z) be a continuous Fredholm complex of Banach
spaces, defined on the domain U. Then for any compact F < U there exists a conti-
nuous complex L (z) of vector bundles, quasi-isomorphic to X (z) in a neighborhood
of F and determining an element of the group K°%F). By 4.6 one can see that the
elements, corresponding to the different F coincide, and therefore define a uniquely
determined element of K%(U), which will be denoted by [X (2)]. If X (z) is a conti-
nuous essential Fredholm complex on U, we shall denote by [X (z)] the element
[X!(2)], where [X(z)] is an arbitrary Fredholm complex on U, equivalent to X (z).

DEFINITION B. Let X (2) = {X, i,di(z)} be a continuous essential Fredholm
complex on the domain U, and S;(z) : X; — X;_, be continuous operator-functions
such that all the operators 4;(2) = .5;,1(2) di(z) + d;_1(z) o S;(z) are equal to identity
modulo compact operators. Denote X, = @ Xp;, Xy = @ Xp;41- Let D(2): X, = X,

be the operator matrix, whose entries corresponding to the maps X,; — X4, are
equal to dy(z), those corresponding to X, — X,;_; are equal to S,,(z), and all
the others are zero (this construction is used, for instance, in [8]). Then D(2) is
Fredholm on U and determines an element of the group K%U), which will be
denoted by [X (2)].

LEMMA 4.10. The definitions A and B are correct and equivalent. The class
[X.(2)] is invariant under compact or small perturbations of the complex X (z).

Proof. Let us show that D(z) is Fredholm. Denote by C.(z) : X, — X, the:
operator matrix, determined by the operators dy;,,(2), Sp;41(2), i € Z. Then all
the entries of the matrices C(z) - D(z) and D(z)o C(z), lying above the diagonal,
are of the type d;,(z) - d(z), i.e. compact operators, and the diagonal entries are
4,(2). This means that C(2)oD(z) and D(z) C(z) are Fredholm, and therefore simi-
larly is D(z). Further, note that Definition B does not depends on the choice of
the homotopies S,(z). If S/(z) is another family of homotopies of X (z), and D'(z)
is the corresponding operator matrix, then the linear homotopy, between S(z)
and S;(z) determines a homotopy between D(z) and D'(z) by Fredholm operators.
Moreover, suppose that S;(z) is a family of maps such that for all i we have

18741(2) o di(2) + d;-1(2) ° Si(2) — I||c < 1/2,

where ||T||, denotes the norm of the class of the operator T in the Calkin algebra.
Then the same arguments show that D(z) is homotopic to D’'(z) in the class of Fred-
holm operators. This implies the invariance of Definition B under small perturbation
(the invariance under compact perturbations is obvious). Let F be a compact subset
of U. Fix the operators of homotopy S;(z) for the complex X, (z), and let X.(2) =
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= {X], d/(z)} be anotker essential complex on U with X; = X,, i € Z. Suppose
that the norms of the differences d;(z) —d}(z) are sufficiently small on F, so that

1S:41(2) 0 di(2) + di_4(z) o Si(2) —1||, < 1/2

for any i € Z, z € F. Then X(z) is Fredholm. Denote by D’'(z) the operator matrix,
constructed starting from the operators dg;(z), Sy(2), i € Z. Then the last argument
shows that D'(z) represents [X(z)]. On the other hand, it is easy to see that the
linear homotopy between D(z) and D'(z) preserves the Fredholm property, and
thercfore [X (2)] = [X.'(2)].

Now we shall prove the equivalence between Definitions A and B. Note
that if the essential Fredholm complex X!(z) is (geometrically) homotopic to X (z)
in the space of essential Fredhoim complexes, then both Definitions A and B give
us [X/(2)] = [X,(2)]. Further, if X/(z) is a direct sum of the complex X (z)
and an exact complex, then {X!(z)] = [X (z)] again. We shall use an induction
on the length of the complex X (z). If X (2) has only two non-zero terms, then
Definitions A and B obviously agree. Suppose that these definitions agres on
the complexes of the length n. Let X (2) = {X,-, di(z)} be an essential complex
of length n+ 1, X; =0 for i <0 or i > n, and let S;(z) be homotopy operators

for X (z). Denote X, = X, d(z} = d(@)fori<n—2,%,_,=X,_, ®X,, Xo_y =
=X,_;, X;=0fori>n-—1, and let d;+2(z) be defined as a sum of d,_,(z)

and S,(z). Then it is easy to see that X (z) = {£,, di(z)} is an essential Fredholm
complex in U of length n. Denote by U(z) the complex in which U; =0

for i # n—2, n—1, and the (n—2) —» (# — 1) morphism is X, 54 X,, and by
V (z) —the complex in which ¥; =0 for i # n—1,n and the (n—1) - (i)

morphism is X, —_—I> X,. Then one can prove that the linear homotopy between
X (z)® U(z)and )?.(z) @ V. (2) lies in the space of essential Fredholm complexes,
and therefore [X (z)] = [X(z)] in Definitions A and B. Since by the inductive
assumption Definitions A and B coincide on )T(_(z), then they coincide on X (2).

Let N be a Stein complex submanifold of C”, let A/ be a precompact strongly
pscudoconvex domain in &, and let £ be a holomorphic vector bundle on N.
Denote by E the locaily free sheaf of O,,-modules, corresponding to E, and by
H(M, E), respectively by H2(M, £) —the space of all, respectively all square-
-integrable, holomorphic sections of E on M. Let T = (T, ..., T,) be the a-tuple
of the operators of multiplication by the coordinate functions z, ..., z, of C,,
acting on the space H*M, E), and let K (7, z) be the corresponding parametrized
Koszul complex.

LemMA 4.11. On the domain T™~bM the complex of spaces K(T,z) is

Fredholm, and the complex of sheaves OK (T, z) is quasi-isomorphic to the sheaf i*E',
where i denotes the embedding of M in C".
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Proof. Choose a precompact strongly pseudoconvex domain M, such that
M, 53 M, and fix the point z° ¢ M,\ M. We shall prove that the morphism of
restriction r : H3(M,, E) — H*(M, E) induces a quasi-isomorphism between the
parametrized Koszul complexes of T in the spaces H*(M,, E) and H*(M, E) res-
pectively at the point z° Let % = {U}f., be a finite covering of M; by strongly
pseudoconvex domains such that U, = M, and 2°¢ U, for i > 0. For a given
subset o« = (o, ...,a) of {0,1,...,k} put U, = U N ... NUs. Denote by
CYM,, %, E) the alternated cochain complex of the spaces of square-integrable
sections of E over the domains U, and let C§(M;, %, E) = H¥(M,, E). Our first
aim is to prove that the complex of Hilbert spaces C'(M,, %, E) is exact. Denote
by 523' 4(U, E) the space of all forms of bidegree (0, g) on U with coefficients square-
-integrable E-valued functions. Then Hormander’s L2-estimates for the operator 9

show that for any pseudoconvex domain U the d-complex 0 — H2(U, E)-{>

2 Qb (U, E) is exact. Here J denotes the embedding of H¥U, E) in LU, E) =
= QB o(U, E), and the other differentials are densely defined operators, determined
by §. Consider the bicomplex of Hilbert spaces CP(M,, %, Q% (-, E)), consisting
of the spaces of cochains with coefficients in Qf (U,, E). Denote by D*(U) the
space of all smooth functions f on U such that for any multiindex «, |¢| > O,
the function §°f is square-integrable on U. Note that if g is a smooth function
on U, then gD®(U) <, D™(U). If we denote by C.(M,, %, E) the complex of
cochains with coefficients in D®(U), then, using a partition of unity, one can prove
that this complex is exact. Similarly, if we denote by Q§(U, E) the space of (0, g)-
-forms with coefficients in D°(U), then the complex C (My, %, Q3,( -, E)) is exact-
Fix an element ¢ € C}(M,, %, E) such that 6¢ = 0. Applying the well-known proce.
dure of diagram chasing, we obtain elements w, € C,(My, %, Q x-1), i =0, ...
...,k —1, such that dw; = Gw,,, for i =0, ...,k —2, dw,_, = J(&), Bwy = 0.
Solving the corresponding d-equations, we obtain elements «, € C}(My, %, 8 ,_;_1),
i=0,...,k—2, such that 0¢y = wy and Jo; = w;— o,y for i =1, ..., k—2.
Then the element n = w,_, — da,_, satisfies On = 0 and therefore belongs to
Cb_(M,, %, E). On the other hand, it is easy to see that on = £. The exactness
of the complex CY(M,, %, E) is proved.

Denote by K (CP(M,, %, E)) the bicomplex, whose first differential is induced
by the cochain map é and whose second differential is equal to the Koszul complex
of the n-tuple of operators T — z°I, acting on the spaces CR(M,, %, E). Let
KC&M,, %, E) be its total complex. Since all the rows of K (CY(af,, %, E)) are exact
complexes, then the total complex is also exact. Denote by K2, K. the Koszul com-
plex of T'— 2°] in the space H*(M,, E), respectively H*(M, E), and by K —the cone
of the morphism of complexes r, : K} — K|, induced by the restriction r. Let P, be

the natural projection from the complex CP(M,, %, E) to the complex 0— H2(M;, E)—r+

4 — 2720
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5 H*(M,E) - 0. Then P, induces a morphism of complexes KP, : KC¥(M,, %, E)—

> K, . The kernel ot KP, can be represented as a total complex of the
bicomplex, whose columns are direct sums of the Koszul complexes of the n-tuple
Ir—z1 fin the spaces H¥U,, E) for all the sets o, not containing 0. Since
z"é U; for all i > 0, then all these complexes are exact, and therefore KP is a
quasi-isomorphism. This implies that K, is exact and 7, is a quasi-isomorphism
of complexes.

Now let M, be a strongly pseudoconvex domain such that z° € M, €S M.
Denote by r, : H(M,, E) » H(M, E), r,: HM, E) - H(M, E), r,: H¥M, E) —
— H(M,, E) the restriction morphisms, and by r!, r?, r? — the corresponding
morphisms of Koszul complexes of the n-tuple T-—z°/. We have proved that
r’r! is a quasi-isomorphism; on the other hand, it is easy to see that r3Z2 is
a quasi-isomorphism also. This implies that r? is a quasi-isomorphism. The same
arguments show that r? induces a quasi-isomorphism of the corresponding complexes
of sheaves of holomorphic sections near z° Since on the Fréchet space H(M, E)
the statements of the lemma are obviously satisfied, then they are also satisfied
on the space H*M, E).

This work was partially supported by contract no. 054 of the Bulgarian Commitce of Sciences,
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