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APPROACHING INFINITY IN C*-ALGEBRAS

CHARLES A. AKEMANN, JOEL ANDERSON and GERT K. PEDERSEN

1. INTRODUCTION

If X is a locally compact but non-compact Hausdorff space, there is a
well-defined and useful notion of *"approaching infinity”’. Thus a sequence (x,) in X
approaches infinity if lim@(x,) = 0 for every ¢ in Cy(X), i.e., if (x,) is eventually
outside each compact subset of X. More generally we say that a sequence (X,) of
subsets of X approaches infinity if lim|/g|X,|| =0 for every ¢ in C,(X), ie.,
if X,nK =6, eventually, for each compact subset K of X.

Regarding a non-commutative, non-unital C*-algebra 4 as a generalization
of Cy(X), we ask here how the notions of approaching infinity translate best and
what consequences the notions have. As applications we prove an infinite version
of Kadison’s transitivity theorem (Theorem 4.7), and a result (Corollary 4.4) that
shows when, given a sequence {f,} of pure states of 4, a maximal abelian C*-
-subalgebra C of A can be found, such that each f,|C is a pure state on C with
unique state extension to A.

The first difficulty one encounters in the non-commutative case is the break-
-down of the easy relation between points and sets. Baldly put, a set is no longer
a collection of points. The reason for this is that, following Gelfand, we like to
think of the pure states of 4 as the analogues of points; whereas, following von
Neumann, we like to think of projections as the analogues of sets. To clarify
this last point in a C#*-algebraic context, we first identify 4 with its image in
the enveloping von Neumann algebra A**. Then, in order to maintain both gene-
rality and a close analogy with the commutative case, we consider the class %(4)
of universally measurable elements in A**. Recall from [12, 4.5.15 and 4.3.15]
that #(A4) is a strong* sequentially closed subspace of A** containing 4, and
that %(4) is faithfully represented in the atomic representation of 4. Thus every
projection from %(A) may be regarded as the non-commutative analogue of a
universally measurable subset of X.
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Following the notation from [12] we let S(A) denote the states of A, Q(4)
the quasi-states of 4 [12, p. 44], and P(4) the pure states of A [12, p. 69). Unless
otherwise specified we endow Q(4) and its subsets S(4) and P(4) with the weak*
topology. Thus Q(4) is a compact, convex space which is metrizable if and only
if A is separable. Other notation is from [12]. The symbol A denotes the end
of a proof.

With these concepts we can formulate our main definitions. We say that a
net (f,) of pure states approaches:infinity if limf,(a) = O for every a in 4, ie. if
lim f, = 0. We say that a net (p,) of projections in %(A) approaches infinity if
lim ||ap,|| = O for every a in A.

2. APPROACHING INFINITY, THE BASICS

In the commutative case all possible notions of approaching infinity coincide.
However, if A is a non-commutative, non-unital C*-algebra, there are several
distinct ways of approaching infinity, apart from the one we have chosen. In this
section we look at some of them and prove the easier implications. It will be
increasingly clear along the way that approaching infinity almost inevitably requires
us to choose a direction in A4 in the form of an (maximal) abelian subalgebra
(MASA). Presumably the complications arising from the structure of the MASA’s
in A are the really hard part of the theory of approaching infinity.

We have defined the universally measurable elements %(4) as the complexi-
fication of what is called #(A4) in [12, 4.3.11]. Since %(A4) has not been shown
to be a C*-algebra, and since products do occur in our results, we include (somewhat
out of context) a lemma that saves the situation.

2.1. LeMMA. If %(A) denotes the complex vector space of universally measur-
able elements in A**, then the set

¢ ={acuA) | au(4) + U(A)a < UA)}

is a strong™ sequentially closed C*-subalgebra of A** contammg the multzplzer
algebra M(A).

Froof. If a € M(4), |ail < 1, and x € %(A)sa, we claim that axa* € %(4),,
Indeed, if f € Q(4) then f(a-a*) € Q(4), so by definition there exist, for each ¢ > G
elcments y and z in (AM)m such that

—y<x<z and’ f(a(z + y)a*) <e.
Since aya'* and aza* both belong to (4s)™, and

—aya* £ axa* < aza®, f(a:za*, + aya*) < g,
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it follow that axa* € %(d4),,. The case of an ordinary product follows by polari-
zation: if a € M(4) and x € %(4) then : -

3 L o
dax* = ¥, i1 + ia)x(l + ia)* € U(4).
k=0 , o
Finally, if {a,} is a strong* convergent sequence in %, then the limit ‘point belongs
to ¥ because %(A) is strong* sequentially closed by [12, 4.5.15]. It is easy to cheCk
that % is a C*-algebra. : ‘ :

If f € Q(4) and a € A** we say that f1s deﬁmte on a if |f(a)l? = ||f]| fla*a).
Using the Cauchy-Schwarz inequality, this is seen to imply that f(ba)|[f]| = f(6)f(a)
forevery b in A**. We note that if f € S(4),a € A** with0 < a < 1,and f(a) =1,
then f is definite on a. :

2.2. PROPOSITION. If (p,) is a net of projections in U(A) the Sollowing
conditions are equivalent.

(1) (p,) approaches z'nﬁnity.. ,
" (2) im f, = O for every net (f,) in S(A) such that f,(p,) = 1 for each «.
(3) lim £, = O for every net (f,)- in P(A) such that f(p,) = 1 for each «.

Proof. The estimate
If@)) = | fulap)] < llap,|l,

which is valid for every a in A** and (f;) = S(A) such that f,(p,) = 1 for each «,
shows that (1) implies (2), and evidently (2) implies (3).

To show that (3) implies (1), fix a in 4 and choose. (by [12 4.3. 15] and
Lemma 2.1) for each « some g, in P(4) such that

1 .
ga(Paa*apa) = —Z_HPaa*apa“' %

Set 1, € g,(P.) 2.(Ps ' P.), and note that f, € P(4) since it is equivalent to g, [12,
3.13.2]. Since f(p,) = 1 for every o we have by assumption (3) that

lapal* < 2gP)f(a*a) — O.

If A4 is-separable, Q(4) has a metric d. Thus the closed subsets of o(4)
«can be given the Hausdorff metric 4y, viz.

d(E, F) = inf{¢ > 0| E'< F,, F c E},

‘where F, denotes the set of elements f in Q(4) for which there exists a g in F
with d(f; g) < ¢ (and similarly for E,). . . S
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We wish to apply this to the facial supports F(p) of certain projections p in
%(A). Here

F(p) = {f € Q) | fp) = II1};

and F(p) is closed in Q(A) if and only if p is a closed projection in A**. This by
definition means that 1 — p is open, i.e. supports a hereditary C*-subalgebra B
of A. Thus

B=(1—pAd*™*(1 —p)n A and 1-p e B**,

[12, 3.11.9-10]. Note that since 1 —p € (4,)™, both p and 1 — p belong to %(4).

2.3. PROPOSITION. If A is separable and (p,) is a sequence of closed projec-
tions in A**, then (p,) approaches infinity if and only if the corresponding sequence
(F(p,) of facial supports converges to {0} in the Hausdorff metric on Q.

Proof. If (F(p,)) converges to {0} and (f,)is a sequence in S(4) with f,(p,) = 1
for each n, then f, € F(p,), so that f, — 0. Hence (p,) approaches infinity by Propo-
sition 2.2.

Conversely, assume that (p,) approaches infinity. If dy(F(p,), {0}) > ¢ for
some ¢ > 0 and infinitely many n, there are f, in F(p,) with d(J,, 0) > &. However,
J1+(p.)"Y. = 0 by Proposition 2.2, whence f, —+ 0, a contradiction. Thus lim d,(F(p,),
{0} =0, as desired.

2.4. LemMA. For a projection p in A** the following conditions are equivalent .

(1) F(p) 0 S(4) is closed Q(A).

{2) p is a closed prajection in (ff)**, where A = 4 + Cl.

(3) p is a closed projection in A**, and p = ep for some positive, norm one
element e in A.

Proof. Bach f inEQ(E) has the uniquely determined form f = g + «f,,, where
g2 0(4), g =14, IIfli = llgll + 2, and f, is the unique state of A annihilating A.
Since p € A¥*, fo(p) = 0, so that f(p) = g(p). With

K={feo@d|fp =1}

it follows that f € K if and only if g(p) = 1, whence « = 0 and g € S(4). Conse-
quently

K =F(p) n S(4).

On the other hand it is easy to see that the facial support F(p) of p, regarding p
as an clement in A%, via the inclusion 4 S 4, is the convex hull of {0} and K.
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If (1) is satisfied, then K is compact, whence also f:(p) is compact in Q(.Ai).

Thus p is closed in (4)**. Conversely, if (2) holds we know that F(p) is compact,.
and thus

K =F(p) n S(4)

is compact; which means that (1) is satisfied.

Given (1) and (2) we first note that p is closed in A**, because F(p) = F(p) n
N Q(A) is closed. To find the element e we apply the generalized Urysohn Lemma.
{4, Theorem 1.1] to the orthogonal projections p and p,,, where p,, is the support
projection of f, in (i)**, ie. the minimal projection p. for which f,(p) = 1.
Since f,, is a pure state, p, is a closed and minimal projection. Thus we obtain e
in A, of norm one with ep = 0 and ep = p. Since fo(e) = Joo(ePs) = 0, we see
that e € 4, so that (3) follows.

Assuming that (3) holds, let (g,) be a net in F(p) n S(A) converging to some
g in Q(A4). Since

g(e) = limg,(e) = limgy(ep) = limg,(p) = 1,

we see that g € S(4); and since p is closed in A**, F(p) is closed, so g € F(p). Thus
(1) holds. %)

A (closed) projection in A** satisfying the conditions of the previous lemma
is called a compact projection. It follows from [3, I1.8] that projections of finite
rank in A** are compact, and we shall use this fact.

The following easy lemma (2.5) is the non-commutative analogue of the tri-
vial fact that a compact set contained in an open subset of a topological space is.
compact in the subset. The next result (2.6), however, corresponds to Urysohn’s
Lemma,.as it applies to a pair of closed, disjoint subsets of a locally compact
(not necessarily normal) space, one of which is compact.

2.5. LEMMA. If p is a compact projection in A** and r is an open projection
in A** supporting the hereditary C*-subalgebra B (i.e. B = rA**r \ A), such that
p < r, then p € B¥* and p is compact in B¥*,

Proof. As usual we identify B** with the weak* closure of B in 4**, so that
B** = rA**r, cf. {12, 3.11.9]. Since

F(p) n S(B) = F(p) n S(4)

by the unique state extension property [12, 3.1.6], the compactness of p relative to B
follows immediately from Lemma 2.4 and the fact that the o(B*, B)-topology coin~
cides with the o(4*, A)-topology on compact subsets of B*.
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2.6. PROPOSITION. Suppose that.p-and q are closed, orthogonal projections
in A**, with p compact, and that.|lap|| <.& for some a in A. T here are then orthogonal,
.open projections r and s in A¥* withp < r,q < s and |ar]| < e.

Proof. Since pg = 0, the open projection 1 — g dominates p. If B denotes
the hereditary C*-subalgebra of A.supporting 1 — ¢, then Lemma 2.5 shows that
p is compact in B**, By Lemma 2.4 we can find a positive, norm one element e in

B such that ep = p (and, of course, eq = 0). .

. Let (u;),¢ 4 be a positive, increasing approximate unit for the hereditary C¥-sub-
algebra of A4 supported by the open projection 1 —p — g. Then (u;) converges
weakly to 1 —p—gq in A**, so that (e(l — u,)e) converges weakly down to
e(p + g)e = epe = p. Since |ap| < &, the closed sets

F; = {f€ Q) | flae(l —u,)ea®) > &7}

decrease to @. By compactness we can find 1 such that F, = @, which means that
flae(l — u,)ea*|| < €% Let r and s be the spectral projections of e(1 — u;)e corres-
ponding to the relatively open intervals 162, 1] and [0, 62, respectively, where J is
chosen so near to 1 that |lae(l —u;)ea*|| < 0%2. It follows from spectral theory
that r and s are open, orthogonal 'projections in A** Since ‘e(l —u;)ep = p, we
have rp = p, i.e. p < r. And since e(1 — u;)eq = 0 we have g < s. Finally,

llarl® = llara*|| < 6-2[lae(l — u;)ea™|| < &,

.completing the proof. . %]

We now specialize the hypotheses of Proposition 2.2 by assuming that A is
separable and that the projections {p,} are minimal and pairwise orthogonal. There
is then a uniquely determined sequence (f,) in P(4) such that f,(p,) = 1 for each .

Regarding A4 as an essential ideal in its multiplier algebra M(4) [12, 3.12],
each f, has a unique extension 7, in P(M(A)). Since 1 € M(A), S(M(4)) is compact,
and one may ask whether the limit points of ( f,~,) in S(M(4)) are pure, assuming
that (f,) approaches infinity. Our failure in establishing this result prompted the
extra condition (I) in the next theorem, with which we could prove that all limit
points in S(M(4)) werc pure [5, Proposition 4.10].

2.7. THEOREM. Suppose that A is separable and (p,) is a sequence of pairwise
orthogonal, minimal projections in A** supporting the pure-states (f,). Then for the
following five conditions we have the implications

(1) = Q) = (3) = @) = ).

(1) There is a strictly positive elenient b in A such that each f,, is deﬁnzte on
b and ¥ f,(0) <co. . .o L T
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(2) (f,) approaches infinity and Y, p, is a closed projection for every . "
n==nt.
(3) (f,) approaches infinity and there exist pairwise orthongonal, positive, norm
one elements (b,) in A such that f,(b,) = 1 for every n. d
4) (f,) approaches infinity.
(5) (p,) approaches infinity.

Proof. Assume that (1) holds and that ||b]] = 1. Since each 7‘:, is definite on
b we have for every a in 4 and every continuous function ¢ on [0,1] that

{*) Sulae(®)) = f@)f(o®) = f,,(a)q)(f,.(b))-
Mofeover,
{*%) @)y = f(@®NPn = (fo(B))Py-

Let (¢,) be an increasing sequence of positive continuous functions on [0,1], such
that ¢,(0) = 0 for all k, but lim¢,(¢) = 1 for every ¢ > 0. The strict positivity of b
implies (as in the proof of [12, 3.10.5]) that (¢,(b)) is an approximate unit for 4.
Since Y, £,(b) < oo it follows that lim £,(¢,(b)) = O for each k. These observations
together with (*) imply that lim £, = 0, i.e. (f,) approaches infinity.

For the second assertion in (2), fix m and put p = Y P As noted before,

n=m

P is closed if its facial support F(p) is closed in Q(A4), [12, 3.11.9]. Assume there-
fore that (g,) is a net in F(p) with a limit g. Since ¥} f,(6) < oo, there are, for each
£ > 0, only finitely many n for which f,(b) > ¢. We can therefore arrange the se-
quence (¢,) above, such that ¢,(f,()) is either 0 or 1, and such that for each & there
is only a finite set N(k) of n’s for which ¢, (f,(6)) = 1. By (*#) this implies that

o = 3 0 i = % Pur

n=m neN(k)
which is a projection of finite rank in 4**, and therefore closed. Thus if we define
8@ = £@)ap @), a e A,
then
& = limg,(@4(b) - ¢(b)) € F(pu(b)p) = E(p).

However, since (@,(b)) i$ an approximate unit for 4, it converges strongly to 1 in
A**_ Therefore g = limg, in the o(4*, A*¥)-topology. As F(p) is norm closed . and
convex, it is also o(4*, 4*¥)-closed. Consequently g € F(p), as desired. -
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Assume now that (2) holds. Put g = Y p. and note that g is closed and or-

n=2
thogonal to p; . Since p, is compact in A** it is also compact in B}* by Lemma 2.5,
where

By =(1—q4™(1—q) n 4.

Thus p, = e,p, for some positive, norm one element ¢, in B, by (3) in Lemma 2.4.
Let ¢ be the monotone, piecewise linear function on [0,1] such that ¢(¢) = 0 if
t < 1/2and ¢(t) = 1if 1 > 3/4. Take s; to be the spectral projection of e, corres-
ponding to the relatively open interval [0,1/2], and let b, = @(e,). Clearly fi(b,) =1,
b, =0, and s,p, = p, for all n > 2. By spectral theory s is an open projection
in A** and we let

Al = s1A=3*S1 n A.

Then p, € A** forn > 2 and f, | 4, is a pure state of 4,, again for n > 2. Thus a
similar construction will allow us to choose a positive, norm one element b, in A4,
such that f,(b,) = 1, and a routine induction produces the sequence (b,) required
by condition (3). Thus (2) implies (3).

To show that (2) implies (1), let us first choose the elements (b,) as above.
Then put

Ay = {a € A|f(a%a) = f,(aa*) = 0 for all n}.

Let b, be a strictly positive element of norm one in the separable algebra 4, and set

b= g: 2-7-1p . Clearly each f, is definite on b and ¥ fu.(b) = 1/2. To show
n==0

that b is strictly positive in 4 we merely note that its range projection [b] is 1}
in A**, because

[6] = vI5] > [bol v ( S;p)

and [by] > 1 — Y, p,. Thus (2) implies (1).
That (3) implies (4) is trivial, and the equivalence of (4) and (5) follows from
Proposition 2.2 and the fact that for each n, f, is the unique state that satisfies

f;z(pn) =1L

3. COUNTEREXAMPLES

In this section we show that the missing implications in Theorem 2.7 are false
in general. We shall see in Section 4 that there are reasonable conditions under
which they do hold.
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First we need a result inspired by a theorem of Glimm {7, Theorem 2]. Recall
that a C*-algebra is g-unital if it possesses a strictly positive element or, equiva-
Iently, if it has a countable approximate unit [12, 3.10.5]. All separable C*-algebras
are o-unital, and commutative algebras of the form Cy(X) are c-unital precisely
when X is o-compact.

3.1. ProrosSITION. If A is a non-unital, o-unital C*-algebra acting on a
separable Hilbert space #, there is an orthonormal basis (€,) for # such that
lim(aé, | £,) = O for every a in A.

Proof. We may evidently assume that 4 is acting non-degenerately on ;. If
b is a strictly positive element in 4 of norm one, this implies that b¢ # 0 for every
unit vector { in s#. Since A is non-unital, 0 € sp(d), but we see from above that 0
cannot be an isolated point in the spectrum. We can therefore find a sequence of
pairwise orthogonal, non-zero spectral projections for b corresponding to dis-
joint intervals approaching 0. This in turn produces an orthonormal sequence ({,)
in # such that lim|jb{,]] = 0. Passing to a subsequence we may assume that
162,01 < 2771 for all n.

If span{(,} has finite co-dimension in s we are done. Otherwise choose an
orthonormal sequence ({;) such that {{,} n {{;} forms an orthonormal basis for 5#.
We now decompose 3¢ as an orthogonal sum of subspaces 27, , such that dims#, =2",
and such that each s, is spanned by one vector {' from {{;} and 2" —1 vectors
{i from {{,}, each with k& > 2"-2. A new basis {£,,} for #, is obtained by transfor-
ming the original basis with a Hadamard matrix » of order 2”. This u is a unitary
each of whose entries is plus or minus (Vf)—". One construction, see [9], goes as
follows: let

u=<Vz‘>—1(: 1),

—1

and define u as the n-fold tensor product of v with itself. We estimate

1BE.ll < YD (HbC'll +y nba(m)u) <

m==1
< (Vf)—n(l + (2n . 1)2—17) < (l/'2'_)-n+2.

Thus (dictionary) ordering all the &,,’s into a single sequence (£,), we have an or-
thonormal basis for 5 with lim||b¢,|| = 0. Since 4b is dense in A, it follows from
the Cauchy-Schwarz inequality that lim(aé, | £,) = 0 for every a in A. %

REMARK. Although it is not needed here, with a bit more work we can com-
bine a slight strengthening of Glimm’s idea [7, Theorem 2] with the Hadamard
matrix technique used in Proposition 3.1 to prove the following result.
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Given a separable C*-algebra A acting on a separable Hilbert space H and
a state f of 4 which annihilates each compact operator in 4, there exists an ortho-
normal basis {¢,} in H such that

fl@) = lim(ag, | ¢,)

for every a in A.

3.2. EXAMPLE. Let % denote the C*-algebra of compact operators on the
separable, infinite-dimensional Hilbert space 5, and take A to be the C*-algebra
generated by " and g, where ¢ is a projection on # such that both g and 1 — ¢
have infinite rank. By Proposition 3.1 we can find an orthonormal basis (£,) for 2,
such that the corresponding sequence (f,) of pure vector states on A4 approaches.
infirity. If p, denotes the projection along &,, then (p,) is a sequence of pairwise
orthogonal, minimal projections in A** contained in A4 and supporting the pure
states (f,). Thus condition (3) in Theorem 2.7 is satisfied.

We claim that p ='Y] p, computed in A** (which is isomorphic to B(:#)®C)
is not a closed projection. If it were, then p, which is obviously an open projection
in A**, being a sum of elements from A, , would be a multiplier of 4 by [12, 3.12.9].
Now p =1 on #, but p s 1 in A**, since otherwise the partial sums of the p,’s
would be an approximate unit for A. Therefore pq ¢ A, a contradiction. Thus p is.
not closed and condition (2) in Theorem 2.7 fails.

3.3. EXAMPLE. With 2 and & as in 3.2, let A be any separable, non-unital
C*-algebra with a faithful irreducible representation on # such that 4 N A" = { f0}.
Again by Proposition 3.1 we can find an orthonormal basis (£,) for # such that the
corresponding sequence (f,) of pure vector states on A approaches infinity. Thus.
(f,) and the corresponding sequence (p,) of :mutually orthogonal, minimal projec-
tion in A** satisfy conditions {(4) and (5) of Theorem 2.7. However, condition (3)
is not satisfied. For if (b,) were a sequence of pairwise orthogonal, norm one
clements in A with Ja(b,) = 1 for every n, then

f;*(bm) =fn(b 'bm) = 0

for n # m. Thus each b, would be a rank one pro_yect;on on #, in contradiction with
AN A = {0}

3.4. ExaMPLE. Let I be the (restricted) direct sum of matrix algebras M,s,
n € N, regarded as a C*-algebra of operators on # = @ C?"; and let A be the
C*-algebra on J¥ geénerated by I and g, where is the projection on @ C, and each Cis

identified with the subspace of C?" obtained by projecting on the first coordinate.
Thus we. are repeating the construction from Example 3.2 with ¢ replaced by 1.
Using the Hadamard matrices as in the proof of Proposition 3.1 we can find an
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orthonormal basis {{,|1 < k < 2"} for C?” such that [jgl,]| = 2-" for every k.
Arrangmg all these in a sequence we obtain an orthonormal basis (&,) for o such
that lim(ef,| &,) = 0 for every a in A. Thus the corresponding sequences (f,) and
(p.) of pure states and rank one projections both approach infinity. However,
exactly, as in Example 3.2 we see that p = Y p, is not a closed projection in A*¥,
because it is not a muitiplier of 4. This is an example of an algebra in which condi-
tion (3) from Theorem 2.7 is satisfied while conditions (1) and (2) are not. It differs
from the previous one in that the pure states are not all unitarily equivalent; i
fact each equivalence class has 2" elements.

4. THE NEARLY INEQUIVALENT CASE AND INFINITE TRANSITIVITY

In Exemples 3.2 and 3.3 all of the pure states f, are umtarlly equivalent, and.
in Example 3.4 the equivalence classes are finite but unbounded. This suggests that
we consider the case in which the sequence (f,) consists of nearly inequivalent pure
states, which by definition means that there is a uniform bound on the size of the
equivalence classes. In this case all five conditions of Theorem 2.7 are equivalent.
The same idea will yield both a generalization of Kadison’s transitivity theorem [8,
Corollary 7] and a method, applicable to a C*-algebra 4 with an orthogonal sequence
(/) of pure states satisfying certain condltlons, Wthh produces a maximal abelian
C*-subalgebra C of 4 such that each f, | C is pure on C and has a unique state
extension to A. The latter generalizes [, Theorem 1].

STANDING ASSUMPTIONS. From now "thfoughf Theorem 4.3 we shall assume that
4 is a non-unital C*-algebra, (f,) an orthogonal sequence of pure states of 4 which
are approaching infinity, and (p,) the corresponding sequence of mipimal support
projections in A**. We shall further assume that the unitary equivalence classes
{;} of {f.} each have cardinality less than or equal to some number N.

4.1. LEMMA. Under our standing assumptions, if q; = Y, p,, then the sequence
e . ner,
: ' J

(q,) approaches mﬁmty
: Proof If a €A then

lag;l* = llagia*ll < 3, llapsa*|l =
= Y lp.a*ap,|l = Y, fi(a*a) < Nf,(a*a)
nel; nely. .

for some n(j)-inI';. Since the subsequence (f,¢;)) approaches infinity, it follows that
lim|lag;|| = 0, as desired. o : %
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4.2. ProOPOSITION. Let (q,) be a sequence of closed projections in A** with

pairwise orthogonal central covers. If (g,) approaches infinity, then q = Y. 9. is a closed
projection in A%*.

Proof. Let ¢, denote the central cover of ¢,. By [12, 3.11.9] we must show
that the facial support F(g) of g is closed in Q(4), so we consider a net (g,) in F(q)
converging to some g in Q(A). For each n and « set g,, = g.(¢,"), and write K,
= F(g,). By assumption each K, is closed (= compact), and g,, € K, for each o
because

gna(l - qn) = ga(crg(l - qn)) = ga(cn(l - ‘In)Q) =
= ga(z cn(l —_ qn)qm) = ga((l - qn)qn) =0,
as ¢,q,, = 0 for # # m. Thus for each fixed n, (g,,) converges to some /1, in K.

-If (e,) denotes an increasing approximate unit for 4, then for each m we have

ﬁ il = sup z I(e) = suplim ¥ gue) <

2 p=1

< sgplimga(e;) = sgpg(e;) = |lgll.

It follows that ¥, A, is norm convergent to an element 4 in Q(4). Since {{4,}| 74, € K,
whenever 4, # 0, and K, = F(g) for all n, we see that

i = % ]kl € F(@),

because F(g) is convex and norm closed.
If aeA, then

a) = Y, h(a) = ¥ limg,(a) < lim Y, g,.(a) =
= limg.(a) = g(a),

30 that & < g. On the other hand, since (g,) approaches infinity we may for each a
in A, and ¢ > 0 choose m such that |jag,| < &for n > m. This means that

g(@) = limg(a) = lim Y £,,(a) = lim Y] g.(aq,) =

=um(§ 2@ + ¥ enguu) < ¥ @+

n=1 n>m n=1

Consequently g(a) < h(a) + ¢, whence g < /1. Taken all together we have
g = h € F(g), as desired. 2



APPROACHING INFINITY IN C*-ALGEBRAS . 267

4.3, THEOREM. Under our standing assumptions, Z P, is closed in A** for
n::k '

every k. Thus all five conditions in Theorem 2.7 are equivalent when A is separable.
Proof. By Lemma 4.1 the sequence (g;) approaches infinity, and.si.nce the

: (=]
g;’s have orthogonal central covers it follows from Proposition 4.2 that Y g,
j=m
is closed in 4** for every m.
Since each I'; is finite there is for every k only a finite number m of I';’s that
contam elements p,, with m < k. This means that the projection

(o] [+
g9=Yp— Y 4

n=k J=m+1

has finite rank in A**, By [3, I1.9] the orthogonal sum of a closed projection and a

projection with finite rank (namely E g; and q) is closed in A*¥*. Z)
J=m-1

Given a sequence (f,) of pure states of a (separable) C*-algebra A, consider
the question of finding a maximal abelian C*-subalgebra C' of A4, such that each
f. ! C is pure, i.e. multiplicative, on C and has a unique state extension to 4. Clearly
a necessary condition will be that the f,’s are pairwise orthogonal (even when res-
tricted to C), i.e. the support projections (p,) are pairwise orthogonal (and minimal)
in A**. Thus the question has the equivalent formulation: can we find a MASA C
such that { p,,} < C**? As noted in [4, Theorem I1.9] the answer is “yes’” whenever
there is an orthogonal sequence (r,) of open projections such that p, < r, for every
- #n. This can be seen from the fact that the separability of 4 allows us to find, for
each n, a positive, norm one element e, in 4 such that p, < ¢, < r, and such that
D, 1s the spectral projection of e, corresponding to the eigenvalue 1, <f. [1, Theorem
1.1). Any MASA C of A containing {e,} will have the desired properties. These
observations suggest the following corollary to Theorem 4.3.

4.4. CorROLLARY. Let (f,) be a sequence of pairwise orthogonal, nearly inequi-
valent pure states of a separable C*-algebra A. Denote by K the set of all accumula-
tion points of {f,} in Q(A), and let B denote the hereditary C*-subalgebra of elements
a in A such that f(a*a + aa*) = 0 for every f in K. If each f,| B is pure state of B,
there exists a maximal abelian C*-subalgebra C of A such that each f, | C is pure
and has a unique state extension to A.

Proof. As noted above, it suffices to find pairwise orthogonal, open projec-
tions (r,) such that f,(r,) = 1 for each n. Since

B = {a € A |limf,(a*a +aa*) = 0}, | )

5 - 0. 2729
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we see that Theorem 4.3 and Theorem 2.7 (3) applies to B and the sequence (f,| B)
to give a sequence (b,) of pairwise orthogonal, positive norm one elements in B
such that f,(b,) = 1 for every n. Taking r, to be the range projection of b, we get
the desired sequence of open projections. %

4.5. EXAMPLE. With o and & as in Example 3.2, let (g,) be a sequence of
pairwise orthogonal projections in B(3#) with infinite rank, and let' A be the C*-al-
gebra generated by o and (g,). By Proposition 3.1 we can find an orthonormal
basis (£,) for s# such that lim(a€, | £,) = O for every a in A. Since 5 is an ideal in
A with A/ isomorphic to ¢,, there is a sequence (g,) of pairwise orthogonal pure
states of A, each of which satisfies g, | # = 0 and g,(g,) = 1. Now define £, to be
g if n =2k and f,(a) = (aé, ) &), a € A4, if n = 2k — 1. Clearly (f,) is a sequence
of pairwise orthogonal pure states of A approaching infinity; but the conclusions of
Corollary 4.4 do not hold. Indeed, if we could find a maximal abelian C*-algebra
C as specified, then C#* would contain each of the projections p, along &;. Hence
{p} = C** N A = C, which means that C must be the diagonal operators in 4,
i.e. the C*-algebra generated by {p,}. But then C < 5", which means that f,|C = 0
for all even n, a contradiction. This shows that the condition of near inequivalence
cannot be omitted from Corollary 4.4.

We have used an example with a sequence (f,), where one of the equivalence
classes, {fx}, is infinite. An elaborated version of Example 3.4 could be constructed
(replacing the projection ¢ with an orthogonal sequence (g,) as in the present exam-
ple), in which each equivalence class would be finite — but unbounded.

4.6. REMARK. In the proof of Theorem 4.3 the assumption of near inequiva-
lence was only used to show that the sequence (g;) of support projections for the
equivalence classes approaches infinity (by Lemma 4.1). Thus we could establish
the equivalence of the five conditions in Theorem 2.7 under the slightly weaker hypo
theses that the equivalence classes are finite (but maybe unbounded), and the se-
querce (g;) of sums of equivalent p,’s approaches infinity. We shall use this observa-
tion in our next result, which generalizes Kadison’s transitivity theorem (in the form
given by Glimm and Xadison in [8, Corollary 7J).

4.7. THEOREM. Let (n,) be a sequence of pairwise inequivalent, irreducible
representations of a separable non-unital C*-algebra A, and suppose that for each n
we are given a projection g, (on the representation space #,) of finite rank, such that
limljr;(a)g,|| = O for each a in A. For every bounded sequence (a,) of operators
( = matrices) on (9,#,) (ie. a, = q,a,4,), there is an element b in M(A) such that
7. (D)g, = a, for every n.

We can take||b|| = suplla,||; and if all the a,’s are self-adjoint (resp. positive,
resp. unitary) on q,5, we can take b to be self-adjoint (resp. positive, resp.
unitary) in M(A). Finally, if lim||a,|| = O we can take b in A.
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Proof. Using once more that the (reduced) atomic representation of A is
faithful on %(A4), which contains all closed projections, we may identify (g,) with
a sequence of pairwise centrally orthogonal projections of finite rank (hence closed)
in A** approaching infinity. Thus by Proposition 4.2 we know that p, = Y} g, is

n=ik

closed in A** for every k.
Let e, be a strictly positive element in the separable, hereditary C*-subalgebra

By = (1 —py4**(1—p) 0 4

{12, 3.11.10]. (Incidentally, this is the only place in the proof where the separability
of A is used.) Now proceed by induction. Assume that for all j < n we have chosen
pairwise orthogonal, open projections r;, open projections s;, positive, norm one
elements ¢; in 4 and elements b, in A satisfying the conditions:

M) bg; = a;, |16l = layll.
Q) oy; = r-bj = b;.

@ g <es<r.

G Ileoer <27

(5) s-1 = 5; (taking s, = 1).

(6) pj+1\sj, I'j Si-1> ij—O
Let A, = s,_14%*s,_, n A, and apply Proposition 2.6 with 4, p, ¢ and 2
replaced by A4,, q,, Pn+1s € and 277, Note that this is legitimate since ¢, is com-
pact in A** by Lemma 2.5, and since e,q, = 0. We obtain orthogonal, open pro-
jections r, and s, in A**, ie. r, + 5, < §,_,, such that ¢, < 7., Pu+1 < S, and
lleorsll < 277, Thus (4), (5) and (6) are satisfied for n. By Lemma 2.4, applied to
r.A**r, N A, courtesy of Lemma 2.5, we find a positive, norm one element e, in 4,
such that e,g, = g, and e,r, = ¢,. Thus ¢, < ¢, < r,, so that (3) is satisfied for n.
We now apply Kadison’s theorem (in the Lusin type form [12, 2.7.5]) to the finite
rank projection g, in r,A**r, to obtain an element b, in r,4**r, n A such that
b9, = a, and ||b,|| = ||a,[|. For future use we note that if @, = a} (resp. a, > 0)
we may assume that b, = b} (resp. b, > 0), which in particular means that b, com-
mutes with g,. Thus also (1) and (2) are satisfied for n, and we have completed the
induction.

Put e = Y, 27", . Clearly the range projection of e in A** is 1, because

n=0
e, > q, for all n > 1, and the range projection of e, is 1 — p, by definition. Thus e
is strictly positive in A. Set b = 3.5, , where strong convergence in A** is assured by
the orthogonality of the bounded sequence (b,), cf. (2). Note that ||b]| = sup||b,|| =
= suplla,|| by (1). From (2) and (4) we see that ||b,e,l| < 27" and [legh,|| < 2-" for
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all n, from which we conclude that be, € A and e,b € A. Since be, = b,e, and e,b =
= e,b, by (2) and (3) it follows that

be =Y b27"e, = bey + Y, 27"b,e, € 4;

and similarly eb € A. Since ¢4 and Ae are dense in A this implies that b € M(A).
Furthermore, by (1), (2) and (3)

bqn = (Z bk)rnqn = bnqﬂ = a,
for every n.

If all the a,’s are self-adjoint (resp. positive) we can choose the b,’s similarly:
whence b = b* (resp. b >0) in M(A). If each a, is a unitary matrix, it has the form
expic, for some self-adjoint matrix ¢, with ||c,|l € n. Choose b, = b¥ in A with
b,4, = ¢, and form b = Z b, in M(A) as above. Then the element u = expib is
unitary in M(A), and since b commutes with each g, we have

ug, = (expic,)q, = (€Xpic,g,)q, = @,
as desired. Finally, if lim|ja,|| = O it is immediate that the orthogonal sum Y b,
is norm convergent by (1), so that b € 4. Z]

4.8. COROLLARY. Let A be a separable C*-algebra with Hausdorff primitive

idecl space A. Let (P,) be a convergent sequence in A with limit P, where P # P, for
all n, and let m, (resp. n) be an irreducible representation of A on ¥, with kernel
P, (resp. P). For every sequence (a,) of finite rank operators on (#,) with correspon-
ding range projections (q,) and with limlla,|| = O, there is an element b in P such
that n,(b)g, = a, for every n.

Proof. If a € P, then
lim|lm,(@)g,|l < lim|jn,(a@)|| = lin(@)]| =0,

because the norm varies continuously over A by Kaplansky’s theorem [12, 4.4.5]
Thus the projections (g,) approaches infinity in P**, so that Theorem 4.7 applies
to P. %

The authors wish to thank the referee for a critical reading of an earlier version
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