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INTRODUCTION

The problem of defining self-adjoint Schrddinger operator /= —A +|V
in L3(R") for potentials ¥ with severe local singularities has been thoroughly inves-
tigated (see for instance [12]). Among the approaches developed we may mention
the study of essential self-adjointness of I (or of closability of appropriate form) on
CP(R") or on smaller domains, see [5, 6, 11, 19] and the references quoted there. This
study has to be distinguished from earlier and not less natural perturbation methods,
which deal with perturbations of self-adjoint operators and closed symmetric qua-
dratic forms.

Perturbation methods are based on two abstract theorems, the Kato-Rellich
theorem for operators and the KLMN theorem for forms [12]. It is easily checked
that as applied to locally integrable potentials ¥ both theorems cover for higher di-
mensions (# > 5) the same class of potentials, essentially ¥ € L"2(R"™) (this is the
case s = 0 of Theorem 1 below). In lower dimensions, however, the KLMN theorem
is much stronger, for instance it covers the case V € L**(R®) and ¥V € LY(R) while
the Kato-Rellich theorem requires (essentially) ¥ € L3(R™), »n > 1. In current mono-
graphs [10, 12, 14] the strength of the KLMN theorem is illustrated with the example
of the Dirac delta function & for n = 1 (as the quadratic form in L%(R) associated
with & is not closable, the Kato-Rellich theorem cannot be applied). Such “poten-
tials’’ are said to describe point interactions, that is interactions of zero range, and
have been extensively studied because they provide an exactly solvable 'physical
model (see [2, 3, 8] and the references quoted there). In particular Albeverio et
al. [2] have proven some results on norm resolvent approximation of Schrddinger
operators with point interactions by operators with locally integrable potentials.
Relying on a simple bound derived here we are able to strengthen and simplify
these results below.

On the other hand, for # > 2, 6 does not satisfy the KLMN Theorem, Never-
theless by some limiting procedure (or by closing appropriate forms) a self-adjoint
Schrddinger opetator with point interactions in L%(R?) (and also in higher dimensions)
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can be defined and Albeverio et al. [3] give a proof, a more subtle one, of norm resol-
vent approximation by operators with integrable potentials in this case also. We
cannot treat this case with our methods.

Quite general results for operators defined as perturbations of H, = —A (and
of slightly more general H,) by relatlvely bounded forms were obtained by Herbst
and Sloan [9). They assume that the perturbatlon (““the distributional part of the
perturbation’” in their terminology) satisfies the condition of the KLMN Theorem
and make no attempt to establish when this is the case. In a recent paper Tip [18]
developed a theory of one dimensional Schrodmger operators perturbed by regular
Borel, not necessarily real measures, obtaining among others a unique continua-
tion theorem in this case.

While the example of point interactions is quite striking, the more general
problem of which distributions can serve as ‘“potentials’ for a self-adjoint Schré-
dinger operator was left open. The aim of this note is to explore this problem in
a systematic way. Given any distribution 7T € 9'(R") we define a quadratic form
grie] = T, |p|?>, where { -, -> denotes the action of distributions on test functions,
with Q(g;) = CP(R" (notation is explained in Section 1). We assume that ¢, is

symmetric. We treat g, as a perturbation of the quadratic form qHO[(p] = S Voltdx=

= (Hyp, @), associated with the self-adjoint operator H, = —A in L*R"). The
Schrédinger operator with distributional potential T, denoted H, 4 T, is then defi-
ned as the unique self-adjoint operator associated with the closure of the quadratic
form g, + 9r, provided the latter is closable. Closability of 9g, + gr may be esta-

blished with the use of the KLMN theorem. We say that T € 2'(R") satisfies the
KLMN condition if g7 is relatively form bounded with respect to H, with the relative
bound less than one (see Section 1 for the definition). A space of distributions satis-
fies the KLMN condition if all its elements satisfy it.

The theorem below establishes the limits of applicability of the KLMN Theo-
rem to Schrodinger operators with distributional potentials in terms of the scale of
Sobolev spaces H*?(R).

THEOREM 1. Let s € R, 1 < p < oo. The Sobolev space H*P(R") satisfies the
KLMN condition if and only if s » —1 and, moreover:

(a) sz—n——-Z for n > 3;
p
) s>-%-—2 forn=2;
p
1 3 . 1
(c) sz ———ifp>1, ad s>—— ifp=1, forn=1,
P 2 2
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Moreover the space H**(R") satisfies the KLMN condition if and only if s > —1.

It is not claimed that distributions not belonging to the Sobolev spaces specified
in Theorem 1 do not satisfy the KLMN condition; some examples are given in Sec~
tion 3. The proof of this theorem for the basic spaces, H**”(R") with p in the open
nterval (1, co) is quite simple, and the same is true of the bound (6), useful for appli-
cations (see Section 3). However the limiting cases of p = 1 and p = co are more
subtle and require more elaborate examples.

The main conclusion of Theorem 1 is that in arbitrary dimension n the KLMN
condition is satisfied by many singular distributions, with s < 0, including a. supply
of distributions which are not measures. Thus the one—dxmensxonal ~example of &

is put into a wider setting (note that § € H 2 (R)).

It does not seem likely that distributional potentials other than quite specific
measures will be directly used in physical models. The gain lies more in the mathe-
matical simplicity and in the systematic approach, as wittnessed in Section 3.

In Section 1 we recall definitions and basic facts used here. Theorem 1 is
‘proved in Section 2. In Section 3 we illustrate this theorem with some examples and
applications. In particular we give some preliminary results toward the spectral and
scattering theory of Schrddinger operators with distributional potentials and we
give a strengthened version of the theorem of ‘Albeverio et al. mentioned above.

The author thanks the referee for many helpful comments.

_._.—-g.

1. PRELIMINARIES

We shall use the following notation. A quadratic form g acting in the Hilbert
space S with the domain Q(q) is a sesquilinear map ¢q : Q(q) X Q(q)!— C, denoted
o, ¥ = glo, ¥].. We write q[qo] = g[e, ¢] (consult [12] for basic propertles of qua-
dratic forms).

Suppose ¢, is a positive closed quadrauc form with some domain Q(qo) and
with essential domain Q, (meaning that g, restricted to Q, is closable with ¢, as
its closure). Suppose moreover that g, is another quadratic form which is relatively
form bounded with respect to g,, that is Q(¢q)) » Q,, and -

@ lalell < agyle] + bllo|?

for some constants a, b and for all ¢ € @,. Lower bound of such a’s is called the
go-bound of ¢q;. If g4,-bound of ¢ is 0, we write ¢, < ¢q,. This paper is based
on the following simple but "useful theorem [12]. ' ‘

KLMN THEOREM. If go-bound of g, is less than one, than g, + q, is clésablé'

on Q, and the domain of its closure is Q(qo) In particular, if Q(qo) < Q(qy), then
qo + qu is closed on Q(g,).
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We shall apply this theorem in the following situation. Let'qu be as defined
in the Introduction, Q(q,,o) = HV3R") (H***(R") denotes the Sobolev space defined
below). Both CP(R") and S (R”) are essential domains of 9, For T € 2'(R") let ¢+

be defined as in the Introduction. Theorem 1 establishes conditions on T which
guarantee that g, < 9g - We assume that g, is a symmetric form on CP(R"). This

means that the imaginary part of 7, that is the distribution Im7 defined by
{ImT, ¢y = é-(T, o) ——;— T, ), vanishes.

We shall restrict ourselves to tempered distributions 7" € &'(R"). We consider

the operator J, s € R, defined by (FT)" = (1 + |-[2)~*2T, where ~ denotes the
Fourier transform and (1 4 |-}2)* denotes multiplication by the (smooth) function
k— (1 + k%2 Formally J* = (1 — A)~*/2, J* is called the Bessel potential. Put
H?(R" = J'L(R") = {T € ¥'(R"), J=*T e L"(R")} with the norm [T}, =
= [l7=*T||,, II*{l, being the norm of L?(R"), 1 < p < co. For p = 2 we have ||T{} ,=

= S (1 + kY| TR)l2dk. We have H*"(R")  H'#"(R") for s, < sy, With ||- [, »<

< |- Ilsl,p. Moreover the following embedding theorem holds [4]

@ H*P(R") — H'**(R")
fl<p<g<p <o, s5,5€R, s— 2 sl——n—. In particular H*?(R") —+ LY(R")
p D
for q = i ,0€s58< 2 The norm of this embedding we shall denote
n-—ps D

by C(n, s, p), thus
(Iflly € Cm, s, DYiifllsp5

n, s, p, q related as above. For 1 < p < 0o, #(R") is dense in H*?(R") for any

s €R[4]
For s > 0, J* is a convolution operator, J*T = G, * T, where G,, the inverse
Fourier transform of (1 + |k{2)~*/2, is a positive function vanishing exponentially

at infinity, SG,(x)dx = 1, having for s < n the only singularity at x = 0, G(x) ~

~ |x=" [16].
The following lemma will be useful for the analysis of the Sobolev spaces
H’-"(R"), especially for the case p = oo.
LeMMA 1. Let s > 0, A €R", R > 1. There exist finite measures p,, Vg 1, Ps.r
such that their Fourier transforms are given by
ke (At [k — Ay

L R * _ p-s A RARLYE
a+ ke’ (A + kB2

pk) = Par(k .
hgk) , pf.n( ) £
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Moreover ||p, rll is bounded in R > 1 (here ull = Sldyl) .

Proof. The existence of u, is established in [16], we shall use analogous

methods to treat the other two cases. We use the equality (1 — ¢£)*/2 =1 + Z A, 2"

m=1

where Z |4, sl < co. Thus
me:1
o (U + R Z A ( 1 )m 1
QA + k2 20 R+ k]

whicli‘ implies that

oo 1 m
Pm=5r*21%%1_§# Gam(¥)dx,

m=1

where the series is convergent in L2(R")-norm, uniformly in R > 1, which establishes
also the boundedness of the norms ||p,r|l. The case of the measure v, , may be
treated analogously, although here we have to estimate the derivatives of the
functions G,, . We omit the details. The proof is complete.

We shall also require two simple facts concerning the spaces H**?(R"). Firstly,
if we prove that for some constant C depending on », s, p we havce

KT Il < CliTls,pllolh,e

for all T € H*?(R"), ¢ € CX(R"), then it follows that H*?(R") satisfies the KLMN
condition because of the density of #(R") in H*-?(R") (note that g, is a bounded
form if T € #(R")). The second fact will be stated as the following

LEMMA 2. Let 1 <p <co,s€R, T € H*?(R"). Then T = G, + Z—‘G/’
j=10%

where G, e H**»P(R"), G; e H*+V»(R"), j=1,...,n, and é—(?— is meant in the
X

sense of distributions. Moreover G;,j = 0, ..., n may be chosen so that |[|Gylls4s,, =
= |Tls.p0 G llss1,p < CopllTlls,p» where C, , depends only on n, p.

Proof. We put G, = J?T € H***?(R") and G, = —a—a— Gy, then clearly
X

T=Gy+ Z ;;—3— G;. We have to check that G; € H**+1:?(R"). Observe that
j=10%;
A ik k E YN
G =2 a4 w6y,

W 4wy
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hence

V-16) %) = 5K a6 k),

LR

thus J=*-1G; is obtained from J—*-2G, by successively applying to it commuting
operators J?, a convolution with a finite measure y,, given, by Lemma 1, and a
Riesz transformation R;. All of these operators are bounded in L?(R"), 1 < p <oo
(see [16]), so G; € H**2?(R) and the lemma is proved.

Of course the distributions G, in the above lemma may be chosen in a variety
of ways. Note that if s > —1 (as in Theorem 1), then all the distributions G;’s
appearingin T = G, + Y 56— G, are regular distributions (that is locally integrable
j=10%;
functions). It is worth noting that the quadratic form g is symmetric if G,, G,, ...
..., G, are real valued.

2. PROOF OF THE MAIN RESULT

We begin with a result illustrating the method of proof in a simple case.
Let L-1°(R") denote the space of distributions

LR ={TedR"):T =G, + 2 (—a——G G; € L>(R") for j=0,...,n}.
j=10X

The following lemma holds.

LeMMA 3. L-12(R") satisfies the KLMN condition. Moreover q; < 9a, for
any T € L~1=2(R").

n a
Proof. Let ¢ & CE(R?) . Then grlp] = <Goslot + 35 (G5, ol . The
j

j=1
first term is a bounded form. We have

o

for any ¢ > 0, so

2,
0x;

2[|Gjll

2

0 ] loll < uG,um(e
2 R

L 1 .
+ - ||<ou§),
&

' 9

Xj

47 9l < & UGt o] + (uGonw +Lyug, nw) el

€ j=1

and the result of the lemma follows since ¢ was arbitréry.
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Note that the above lemma does not contradict Theorem 1 for the case
p = oo since the spaces L~1*°(R") and H-*°(R") do not coincide.

The proof of Theorem 1 will be first given for1 < p < coand thenfor p =1,
P = oo. Finally we will exhibit examples showing that the spaces H*”(R") not
covered by Theorem 1 do not indeed satisfy the KLMN condition.

A. THE CASE 1 < p < oo. Suppose first that » > 3. If 1 <p < n, then

H* *"(R" < H-2"(R") by the embedding theorem (2). If 7 < p < oo, then
LA(R") <« L"(R") + L®(R"), so using Lemma 2 we see that A-1"*(R") < H-1"(R")+
+ L-1°(R"). Thus by Lemma 3 we need only show that the space H-1"(R")
satisfies the KLMN condition. Let T € H-1"(R"), then by Lemma 2 again T = G, +

n

+ Y —6-—Gj, where G; € L"(R") for j=0,...,n so
jmlaxj

%) 4xlo) = SGO(x)tcp(x)de _¥ S G,-(x)éj7 ().
Jj

j=1

The Hoélder inequality and the embedding theorem (2) yield

@ iSG(x):p(x)q»(x)dx

< IIGIInIIWIIzIkPIIgz_ < Cn, 1, )Gl W el -
Applying the above inequality 1 + 22 times to (3) we obtain

lgzlell < €, 1, DIGollllelillelh . + 20, 1,2) 3, nG,-nnua—"’; ¢
j=1 y

lelh,e <
'a

< (1 +2n)C@, 1, 2) C, Tl -1mllelf.2 5

where the constant C, , comes from Lemma 2. By the remark preceding Lemma 2
the space H-1"(R") satisfies the KLMN condition.

Suppose now n = 2. Arguing as above we see that it is enough to consider
the space H~-1*%%(R?), and arguing further as above we need only an estimate

< [IGlla-olWilbllellz <

] S GeW ()p(x)dx

2
8

g C(2, 8,.2)C(2, 1—s¢, Z)HG“z,zn‘aI’”zH‘P”l—a,2 < CHG”e,zn‘/’”z”@Hl.z .

Suppose n = 1. Arguing as above we see that we need only to consider the space
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H-%2(R), and the estimate

’Sc(xw(x)«p(x)dx < 161l lallollo

is sufficient since ||‘{lo < C||[ly,3 for n = 1.

B. THE CASE p = 1. For p = 1 we can no longer use the embedding theo-
rem (2), nor related inequalities for weak LP spaces, so we have to approach this
problem directly. For n > 2 we will use the following lemma.

LeMMA 4. Let n > 2, G, be as in Section 1. If n—2 < a, 0 <o, then
|Ge * 191?]l < Cll@lif 2

Jfor all ¢ € CP(R™), where C depends only on «, n.

Proof. Assume without loss of generality that « < n. All the constants appear-
ing in this proof depend only on a and #» and will not be distinguished. Let K,
be the unit ball in R, K; = {x € R", |x] < 1}, and let X, denote the indicator
function of the set 4. Put G,; = Xk, Gas Go = Gy + G- G is bounded, so

Ga,2 * 100 < IGaelleo ol = G2l i3

We consider now G, ;. Taking into account the behaviour of G, at its singularity
(see Introduction) we see that the lemma will follow if we establish that the

function I(x),

I6) = S Y=o — )lidy,
lyj<1
satisfies |I(x)| < C|lg||?,. Since both ||‘|» and ||-||;;; are translation-invariant
norms, we can suppress the dependence on x. We find
1
I= S re-Yo(rw)i2dr do,
S"_l .OJ
where dow is the appropriately normalized Lebesgue measure on S"-* = 0K . Clearly,

I is finite. Since « > 0 we can integrate by parts to obtain
1

1=\ [+ |q>(w)x*——l~sra{ai 0+ 9o B)r]do.
& o or or
0

st
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Now observe that S°-! is a manifold of codimension 1 regularly embedded in R

[12], so for s > —;— we have

”tl’sn—l(p“La(Sn—l) § C”‘P“s,g»

where C depends on s, 7, and trgn-1 is the trace operator (restricting the function ¢
to S"-1), We choose s = 1. We have

1

I< Clolfis + % S (Srza-wlm(@)wdr)z (Sr”'l

st o

0 2 \T
———(p(rco)’ dr) do.
or

o 2

We have 2a—n + 1 > a—1, so using the inequality 24B < —2—A2 + — B%
o

we find

1 2 0 2

ISClos +—1I+ =\ |—o@)] dx,
2 of or
Kl
which completes the [proof since -éa— @(x)] < |V o(x)], so the integral above is
r

dominated by ||@|}},. The lemma is proved.

Suppose thats =n—2 for n > 3 and s > 0 for n = 2. Then T € H*}(R")
is a regular distribution and T = J°g, g € L}R"), ||T|l;1 = ligll,- We have

gl = Sg(x)(G, . 1o ()dx

so applying Lemma 4 we obtain

lgrlell < CilTllsllolf.e »

which ends the proof of the theorem for p =1, n > 2.

Suppose now that n =1, p =1, and s>—7§-. We write s=——-—;—+ 2z,

€ > 0. In order to show that

' lgdoll < CIITH_% Py
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it is enough to establish an analogue of Lemma 4, namely

1 ioe

W ol < Cllelits.

Since (1 + k1?) < 2(1 + lk + K'1B)(1 + |k'|?) for every k, k' € R, we have

1 -2 s -
I "ol < I |09 |y <

-

$TU 4 P

< c“(l + |k + k') g "otk + k) 1ok dk'dk =

1 —a
=Cla + 1-19% "3,

1 e, 2. C
so we only need an inequality [|(1 + [-19% &l < CllA1 + |-192p|ly, which is
1

L

obvious since (1 + |-12)”¢ ~° e LX(R).

C. THE CASE p = co. We have to show that the space H-1*+a*(R"), ¢ > 0,
satisfies the KLMN condition. Let T = J-**+%, fe L=(R"). Since {7, |p|*) =
= {f, J-1+¢|p|%), we only need to prove that for any n > 0 there exists a constant C
depending only on ¢, 4 and n, such that the following inequality holds

&) =+l < ngg [0] + Cllol

for all ¢ € CP(R"). Observe that

nog 3
J 292 = Gy x TP = Gryo = o2 + ), ™ Gi+e *'a—' lpf?,

j=10%; Xy
. i . . . . 0 '
where the functions G,,,, — Gy, . are in LA(R"). Using the inequality || — [@;2| <
ox; 0x; "
J ? 1 P .
€7 P ¢l + — ||l for any y > 0 we deduce (5) immediately.
x_,' a

We have thus established that all H*?(R") spaces claimed by Theorem 1 d
satisfy the KLMN condition.

D. cOUNTEREXAMPLES. We will now exhibit a series of examples showing
that tke Sobolev spaces not covered by Theorem 1 contain distributions T giving
rise to quadratic forms gy which are not relatively form bounded with respect
to gy, (this is more than saying that they do not satisfy the KLMN condition).
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n

—_—2

EXAMPLE 1. s < —~—2, p'> 1, n » 3. Observe that G, e H® (R")
P

ifa:n——'—2—-—lé—e, 1>¢>0. Moreover G, € HW¥R") if § = —;’—+ 1 +-;~e.

The intégral
S GG

diverges at x = 0 for «, 8 as above. If we approximate G, in HV%R") by ¢, €
€ CP(R") with, for instance, ¢, — G; monotonically, we find that {G,, |¢,|2) = oo
as k — oo despite boundedness of |lg]l; .. This shows that G, is not relatively
form bounded with respect to 9u,-

EXAMPLE 2. 5= 2 _ 2,p 2 1, ni= 2. It is well known that the space L}(R?*)
» . :

does not satisfy the KLMN condition, so we need to discuss only the case p > 1.

d > -op :
As above, note that a—— G, € H” . (R®.If ¢ is smooth outside x = 0, has compact
\ xl : :

support, and in some neighbourhood of x = 0 behaves like (—log |x|)¥/3, then
¢ € H12(R?), The divergence of the integral.

0
S i) 22 dx
0x;
R3

- 2 g, .
implies, as above, that H» p(Rz) does not satisfy the KLMN condition.

: 1 e ' 1.3,
ExAMPLE 3. s < — — %—,p >1,n = 1. Observe that—(-i— G, eH? £ p(]R),
: ' p : y LAxX 3
If ¢ has compact support, is smooth outside x = 0, ¢(x) > 1 for x| < 1 and

1 2
in the vicinity of x = 0 behaves as 1 + |x|2(—log |x|) 3, then ¢ € H“3(R). The
integral ,

Sng)ikp(x)de

is divergent, which shows that %Gl is not relatively form bounded with respect
1 ,

10 g -

6 —~ ¢c. 2720
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~ EXAMPLE 4. § = ——':12—, p=1,n=1 Let fe LY R) be such that in the

vicinity of x = 0, f(x) = |x|~X(— log |x[)~*~° and,” moreover, supp f < [0, 00)

Then _ipi f=f, where (If)"(k) = [k|-+(k). Moreover, by Lemma 1, Ji/~1
1 ' -

is the operator of convolution with the finite measure y,, so is a bounded operator
1 1 1
in LYR), and J? ad~ f=geI{R). We thus have J?Ed— f=J g GH—'E‘I(R).
x x

Observe now that
-1 d
T g, ol = <f G, *—|<p|2> -
5 dx
d 2
= \f()| G, *—lo* | (¥)dx.
3 dx
Choosing ¢ as in Example 3 we find that G, * a(—i— lo|? has at x = 0 a singularity
7 dx

1
of the form (—log|x)'?® so the above integral is divergent. Hence J 2g is not
relatively form bounded with respect to 9, -

EXAMPLE 5. s = — 1, p = oo. In this example we exploit a bounded func-
tion f such that J-1f = é%g, where g has some singularities. A careful exami-
nation of the sequence f(xj/k), k=1,2,...yields the example needed. As f we
take —i—— G,.1, which is a bounded function. We have J-Yf = % G,, where G,

j 7]

has a weak, logarithmic singularity at x = 0. For any k € N let S, be defined

5 -
by S,e(x) = o(x/k), and let f, = S,f = S, — G,;; € L°(R"), sup||fille < o0.
ox; keN

‘Observe now that the operator -}; JS,J-18,,, is exactly the convolution with the

finite measure p, , established in Lemma 1, so it is 2 bounded operator in L*(R"),

uniformly in keN. Put g, = —I—JISkJ‘lSl,kf,“ then g, = L JiS, 9 G, =
k ~ k ox;

‘ 7 - . . '
= J1-— §,G,, sup||g,llo < co. Fix 1 € R", to be determined later, and let g, =
dx; keN
= Vy, % * &x» Where vy 5, is also a finite measure established in Lemma 1. Thus
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ligello is also bounded in k and, moreover,
. 9 e 9 o
g, = Jlexp(ix - Ak) — S,G, = — —LJ'S,exp(ix - )G, + J* — S,exp(ix - )G,
0x; k 0x,
where the first term is bounded uniformly in k£ and x-y =Y x;5. Thus

;— S,exp(ix - )G, is bounded in k, and using the fact that G, decreases

X;

—-1,c0

exponentially fast at infinity we find that T = Y] —ai Spexp(i(x + kix,)- )G (x +
keN 0X;

¥+ k2x,), where x, € R" is an arbitrary fixed vector, is in H~1(R"). We shall show

that T is not relatively form bounded with respect to g - Choose any ¢ € C°(R")

and put @.(x) = ¢(x + k?x;). Then <T,|p,1*> — <—a-q~ S.exp(ix - 1)G,, l<p|2>
Xy

tends to zero as k — co, while

5 1 IR
ix - — ol ) = _ — A2 Z lopl2
<Skexp(:x PG 5 |<p1> cS( Lo |) ( aleqol) O,

so we need only to choose 4 € R" such that (5— |<p|2) (A) > 0 to obtain that
X
{T, [¢4|*> = 00 as k — co. ‘
EXAMPLE 6. s < — 1. In view of the examples given above we need only
consider the cases 2 < p < oo, n > 1. Observe that HS?(R") = (H~*?(R")’ (here

X’ denotes the Banach space conjugate of X), 1 + 1. 1. In order to prove
p

q
the existence of a distribution 7€ H-1-*?(R"), p > 2, which is not relatively

form bounded with respect to gg,, it is enough to find a sequence ¢, € CP(R")
with [|@llie = 1, || [@c/?ll1+eq = 00, g as above, 1 < g < 2. Indeed, one can then
define T € (H*+*(R") by putting <T, |@|*> = || |0s?|l14e,4> £ =1,2, ..., and
by extending T to a functional on the whole of H*+%%(R") by linearity (this pro-
cedure is allowed because |@;|2 constructed below, as elements of H+*4(R"), are
linearly independent). Observe that | 1,lhse,e = I7-*~*I04l2ll, > CIT-2 00l " |-
Now let ¥ € CP(R") be such that (j¢[?)" = Xk, where Yk, is the indicator function

of the set K, = {x eR", [x] < 1}. Put ¢,(x) = (x) [1 + %exp(ikxl)] . Clearly,

ll@.lh.z is bounded in & and, moreover

o) = WP ( 1+ ;1,- + -Ilc—exp(ikxl) + -,‘; exp(-—-ikx,)),
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thus (Jo > = (1 + -lzl; + —Il— T, + ]lc T_,‘) (¥»~, where T, is a translation
3 e

operator along the first coordinate axis. Since (J|%)” vanishes exponentially at
infinity we have, for sufficiently large k,

A 1
(e "1 > 'Z‘l;TkXKl-

Thus [(J"2%l@,1H "] = Ck‘T Xk, so we obtain IT-1%l@, /)" ||, >CKk°, as required.

The proof of Theorem 1 is completed. Note that a slight extension of the

above proof establishes the existence of constants C, , , such that
1
(6) qu[q’]l < Cn,s,p“T“s,p”(Ho + 1)2(p”g

for all T € H*?(R"), ¢ € CT(R") whenever the space H*P(R") satisfies the conditions
of Theorem 1. Indeed, for p < » this has in fact been proved, while for p > n
we need only use

i S GO Xp(x)dx

< Gl lsliol < € (n 2, 2)iGILIWlallol .

p—2

in place of (4).

3. EXTENSIONS, EXAMPLES AND APPLICATIONS

In this section we give some simple examples showing how the theory of
Schrodinger operators with distributional potentials may be developed, and relate
it to some known results. These examples are applications of the inequality (6)
and of a related inequality established below. We begin, however, with useful
extensions of Theorem 1.

A minor modification of the proof given in the preceding section yields the
following result.

THEOREM 2. Suppose 1 < p <oco, § = — | and, moreover

(a) §>--—2 Jor n> 2,
(b) - s> L3 forn=1.
: p 2
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Then for any & > 0 there exists a constant A, > 0 such that

g rlell < T lls.po(eqm [0] + 4.loll2)

for all T e H**(R"), ¢ € CP(R".

Observe that Strichartz’s argument [17] may be used to treat the case of
distributional potentials not necessarily vanishing at infinity, for instance of periodic
potentials, with singularities much more severe that those allowed by H-1+%(R"),
Indeed, let H{f,.(R™) be the space of uniformly locally A*#(R") distributions, that
is of distributions T € 2'(R") for which

sup . Tlls,, < 00
reR

for any ¢ € C(R"), ¥.(x) = Y(x — ). The following result holds.
THEOREM 3. Let s, p be as in Theorem 2, T € Hy{o(R"). Then qr < 9n, -

Proof. Let ¥ € CX(R") be a non-negative function such that {y2} .= is

a partition of unity on R", y,.(x) = ¥(x — m). Moreover, let lz € CP(R"™) be such
that Y(x) = 1 for x esuppy. Put M = sup_ ||1//,,,T||” and fix ¢ > 0. Then by

me z"
Theorem 2

K¥nT, l0I2D] < M(ega o] + 4.[l0])

for all ¢ € CP(R") (4, depends on n, 5, p and &). We have

(T,lol> = 3, A

meZ®
s0 by the above
U, KT, loID] < M Y, ga,[¥n@] + Aell¥n0lf).
mez”

Observe now that 2 WmelB = llell2, while

mez®
4 [Vn9] = S |V @ ap)itdx < 28 {2V 02 + 17 Yool dx.
DI

meZ®

Using the inequality

l < oo and summing over m € Z" in (7) we

obtain
KT, 1ol < 2M(equ [0] + Bloll})

where B, depends on 4, and on the choice -of .- The proof is complete.
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Note that Theorem 3 cannot be proved by using Theorem 1 only because
some uniformity with respect to |||l , is needed. Indeed, it is not the case that
for s, p as in Theorem 1 the space H3Z,(R") satisfies the KLMN condition (this
is the case only if some additional “uniformity’’ condition is imposed, for instance

if T is periodic). Counterexamples may be easily given for s =0, p = —;— , n>3.

Recall now that the first monograph [15] which emphasized the use of Hamil-
tonians defined as quadratic forms (and thus the use of the KLMN theorem) deals
with the class # of Rollnick potentials, that is of measurable functions on R*
for which the Rollnick norm

Wi = SS YRVO) 4,
4n {x —y?

1s finite. The following example shows that R is covered by Theorem 1.

Vv ()
lx —yI?

1
ExaMPiE 1. R < H 2%(R?). Indeed, observe that SS dxd

= CSIk 1V (k)\2dk, see [16], so

L SN
Vlig > CS(I + |kI®) 2 |V(E)Pdk = C|V|? ,
Similar results hold in lower dimension (but not in higher dimension).

Another class of locally integrable potentials satisfying the KLMN con-
dition, introduced in Aizenman, Simon [1], Cycon et al. [7], is defined as

K, = {V:]lim sup S _ [V)ldy = 0}
(0 xeR"l \ |x — y|" 2
x-yl<s

for n >3 (for n=1,2 and for related Stummel classes S, see [1,7]). There
exist weird potentials in K,, of the form W(x) = lxl‘“kz X[ak,bk](lxl), where
€N

is the indicator function, « > 0, g, , b, — 0, a, — b, very small for k large, which are
not in H-1"(R"). On the other hand, it is easy to check that V;(x) = |x|-%|ln |x]| -®

is in H-1"(R") for 6 > —l-and is in K, for 6 > 1. Since V; satisfies the KLMN
n

condition for 8 > 0, this provides another example, besides W as above, of relatively
form bounded perturbations of H, not covered by Theore m 1.
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One of the reasons to introduce the Rollnick class % was that if ¥ is a Roll-

. 1 1
pick potential, then |V|2(H, + 1)7}|V|2 is a Hilbert-Schmidt operator, and in
particular (H + i)~* — (H, + i)~! is Hilbert-Schmidt. A similar weaker result
holds for general classes of distributional potentials also.

THEOREM 4. Suppose s, p as in Theorem 1, p<oo, T €H"P(R"). Let
H=H, + T. Then (H+1)"*—(Hy + )~ is compact. In particular e (H) =
= [0, c0). : :

Proof. Putting R = (H, + )~ —(H + )1 we find
R, ¥) = g7{(H + i)Yo, (Hy— 1),
where (-, -) denotes the scalar product in LA(R"). Thus for f € #(R") we have
R, ¥) = gr_{(H + )72, (Hy— 1)~ Y] + ¢{(H + )", (H,—i)Y] =
= (R0, ¥) + (R0, ¥)

where R, = (H, + I)~Y(H + i)~! is compact. Using (6) we obtain

IRy W) < oo T — o o + DECH + D=l CEHo + D™ ¢/

which shows that |[R,|| — 0 as ([T —f{[;,, = 0. Thus R is a norm limit of compact
operators, so is compact. The theorem is proved.

It may be observed that the simplicity of the above proof depends on the
assumed symmetry of gr. For more general potentials, giving rise to closed, m-secto-

1
rial operators, the boundedness of (H, + z)2(H + z)~! [is not guaranteed. In an
interesting paper Tip [18] obtaiped, in one dimension, the above theorem for a
class of perturbations of H, by regular Borel, not necessarily real measures on R
(this class is contained in H-1:2(R)).
As a consequence of the proof. of Theorem 4 we obtain that distributional
potentials vanish at infinity in the following sense.

COROLLARY 1. Suppose T and H as in Theorem 4. For a € R" let Tr, denote
the transiation by a. Then

T (Hy + ) — (H + i)-YTr_, — 0

strongly as |a| — co.

We note that in one dimension Tip [18] obtained this result for his class of
potentials. . o
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It is well known that the wave operators

Q¢ = s- lim eitHe™ "o
1= Foo

exist and are complete if ¥ is the Dirac delta function é or a finite combinatiomn:
of &’s (n = 1), see [8). The following theorem generalizes this result.

1
THEOREM 5. Let T € 9'(R) be such that for some a > e (a+|-Pre

€ H-Y¥R), and put H = H, - T. Then the wave operators Q% exist and are
complete.

Proof. We shall show that R = (H, + k)~ — (H + k)~? is a trace class
operator, k > — info(H). The result of the theorem follows then upon applying
the Birman-Rozenblyum theory [13]. Asin the proof of the preceding theorem we

d
bave (Ro, ) = q((H + k)2, (Hy + k)~2]. Obviously T = G + o G, Ge
' x

€ L(R) and, moreover, (1 + |-12)*G € L*(R). Thus we have
(Ro, ) = (G(H + k)0, (Hy + k)~1Y) +

+ (G(H + k)¢, D(H, + k)=) + (GD(H + k) o, (Hy + k)~1),

1
“

1
and (H, + k)2(H + k) % are

1
where D = ad— Since D(H + k)™, D(H, + k)
. x ‘ ‘

1
bounded operators we need only to show that (H, + k)~G and (H, + k) *G(H, +

1
+ k)™ are trace class operators, which follows directly from [13], Theorem XI.20
and Theorem XI.21. The theorem is proved.

Note that in the above theorem the condition on « is optimal, as for the
Coulomb potential the wave operators Q% do not exist. It seems likely that analo-
gous results are true in higher dimensions, but since Birman-Rozenblyum theory
gives poor results for n > 1, they dre probably more difficult to prove.

As mentioned in the Introduction, Albeverio et al. [2] proved a result on
approximation of one-dimensional Schrédinger operators with point interactions
by operators with locally integrable potentials. Their result, appearing as Corollary 2
below, is an immediate consequence of the following theorem.

THEOREM 6. Suppose H*?(R") satisfies the KLMN condition, p < oo. Le-
T;, TeH"R"), Hi=Hy+ T;, H=H,-- T. If T; > T in ||-||,, norm, then
H; — H in uniform resolvent convergence.
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vProof. Let f<c %(R") be such that «C,,s,plleflls.p_.<»i—, \yhe_re Crsp 18
the constant appearing in (6). Choose N so'that C, ; [|T; —fll,., < é forj> N.
We have then l

® v foll < - (Hop, @) + Cilloli,

where C;, = ||fllo + ~;~. Put k = C, + 1, then H+ k >0, H; + k > 0. We will
show that
) - ICH; + )~ — (H + k)| < 2C, T, — T,

for j > N. This inequality implies the result of the theorem immediately. To show (9)
obscrve that S

(H; + )70, ¥) — (H + k)0, ¥) = gr—7 [(H; + k), (H + k)]
so using the inequality (6) we find

i{(H; + B —(H + )70, W)l < CpupllT; — T, lI(Ho + 1)%’(1{,- + k) ollp X

X [y + DEH + 6.

(8%

1
z

2 = Ry -
The operators (H, + 1)2(H; + k) t and (H, + 1)2(H + k) 2 are bounded; we

have to show that their norms are bounded in j. We have, using (8) and the defi-
nition of k,

ICH; + k)2l = (Ho + K)o, 9) + 47 (0] >

: 1 1 Lo,
= ((HO + 1)(P, (p)—_ZA(H()(p, (p) = E'II(HO + 1)2(0 :Ea
$0O

L _L -
I(Hy + DE(H; + 0) %ol < V2 lo],.

1 1 -
Analogously, [|(H, + 1)2(H + k)" %|| € [/2. The formula (9), and consequently
the theorem, is proved. '
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. The above theorem may be extended to potentials which do not vanish at
infinity. Using Theorem 2 in place of (6) we can prove

THEOREM 7. Suppose s, p are as in Theorem 2, T;, T € Hyfoo(R"), H; =
~H 4T, B=H, + T. If

lim sup [lp(T; — D), =0

Jroo T€E R”

Jor all ¢ € CP(R"), then H; — H in norm resolvent convergence.

The above two theorems allow us to restate the main result of Albeverio
et al. [2] in a somewhat generalized form.

COROLLARY 2. Suppose that a; € R, V; e IMR), V; real—valued,S Vix)dx = 1

J=1,..., N. Moreover let 7,(¢) be real-valued on [0, ¢,) for some & > 0, conti-
nuous at ¢ = 0. Put

Ve(x) = ¢? }E A&V (—é—(x —-aj))

=1

and let H® = Hy - V* in the sense of forms. Then H* — H in norm resolvent con-
vergence, where H = Hy - % lj(O)éaj (here 6.,j denotes the Dirac delta function
supported by {a;}). . .

Proof. Without loss of generality we consider the case N = 1, a, = 0. Put
Te = s‘lV( —:—) , T = 2,(0)6. In view of Theorem 6 we need> only to check that

T°-> T in H¥R), s> —1. We have T<k) = L)V (k), Tk) = 1(O)V(0),
Te—Tis uniformly bounded and converges pointwise to zero as ¢ — 0. Hence

\T* — T, = Sa + KPYIT) — TRk — 0

1 .
for any s < 5 The corollary now follows upon applying Theorem 6.

Albeverio et al. [2] treat also the case of infinitely many &’s. The following
result generalizes [2] considerably since it allows the supports of 8’s to have accu-
mulation points (we omit the proof since it is analogous to the proof of Corollary 2
except that we use Theorem 7 in place of Theorem 6).
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COROLLARY 3. Suppose a;, a; € R, i € Nare such thatsup Y, ol < oo.

t€R (j:aje(t.r+1))
Let V; e L’(R) be real-valued,s Vi(x)dx = 1, and such that there exists W € L*(R)

with |V (x)| < W(x) a.e. Moreover let A(c) be real-valued functions on [ 0, g)
for some &, > 0, equicontinuous at ¢ =0, A,0) = 1. Then the function

Vi(x) =¢et Y, Aj(e)a,V,(—z—(x—aj))

JEN
is uniformly LNR) for any 0 <& < &, and the distribution T = Y, oz,é,,j is in
. JEN
H33c(R) for —1 <5 < ——;—. Put H* = Hy+V*, H=Hy + T. Then H* -+ H

in norm resolvent convergence as ¢ — 0.

Our final example concerns singular measures in R", n > 2. Let M < R" be
a regularly embedded submanifold of codimension 1 and let u be the Lebesgue

measure on M (see IX.9 of [12]). For f € L?(M, du) let f du denote the distribution
defined as

S 0> = ottt
M
for ¢ € C°(R"). Theorem IX.39 of {12] may be strengthened to the following.
LemMA 5. If p > 2, sp < — 1, then fdu € H**?(R") for any f e L"(M,dyu),
EXAMPLE 2. The space L?(M, du), treated as the space of distributions of
the form fdu satisfies the KLMN' condition if p > 2, p > ’1—;2*-——1 Indeed, the
second condition on p implies that %—2 < ———;-', so we need only set s =

= max (—n——Z, —_ 1) and apply the above lemma and Theorem 1.
b
Observe that if M is a hyperplane, then for p > »n we need not use Lemma 5.
Assume for simplicity that M = {x : x; = 0}, and let f € L?(M, dp). Put G(x) =
= f(x,, . - ., X)9¢(x1), where ¢ satisfies

0 ifx1<01
o(x) =131 f0<x, <1,
0 if2<x,
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and is smooth on (0, c0), then G € LP(R"), so Ea— G € H-»(R"). We need only
X1
observe that -ai G—fdp € LP(R") and apply Theorem 1. The same trick
X1

works if, M still being a hyperplane, f is bounded (or essentially bounded,
e L™(M, du)),and we use Lemma 3 in place of Theorem 1. This covers the often
discussed case of f being the indicator function of an arbitrary measurable subset
of M.

Finally note that if M has codimension 2j (or more), fdu will generally
violate the KLMN condition.

ExAMPLE 3. Let >3, M={xeR", x; =x, =0}, feCPR""?), f#0
T = fdyu, that is

D) =S(p(0,0,x3, v X f(xs5 oo, x,)dx, ... dx,.

Let ¥, € C2(R?) be a sequence of functions converging in ||-||; ,-norm to ¥ which

~ .1.
in the vicinity of x = 0 satisfies ¥/(x) = (—In |x)¢ and is smooth and of compact
support outside x =0, nz € H¥¥R?. Fix any ¢ € CP(R""?) such that

g @o(X)f(x)dx > 0. Then putting @,(x) = Y,.(x;, x)0(x5, ..., x,) we have

Rn—z
supllg,llie < 0o and (T, |p.[%) — oo, which shows that T does not satisfy the
k

KILMN condition.
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