THE MEASURE OF NON-COMPACTNESS OF A DISJOINTNESS PRESERVING OPERATOR

ANTON R. SCHEP

1. INTRODUCTION

Let E be a Banach space and D a norm bounded subset of E. Then the Kuratowksi measure of non-compactness of D is defined as

$$\alpha(D) = \inf \left\{ \lambda : D \subset \bigcup_{j=1}^{m} D_{j}, \operatorname{diam}(D_{j}) \leq \lambda \right\}$$

and the Hausdorff measure of non-compactness of D is defined as

$$\beta(D) = \inf \left\{ r : D \subset \bigcup_{j=1}^m B(x_j, r), x_j \in E \right\},$$

where $B(x_j, r)$ denotes the ball in E with center x_j and radius r. If E and F are Banach spaces and $T: E \to F$ is a bounded linear operator, then one defines for T the corresponding measures of non-compactness

$$\alpha(T) = \inf\{k : \alpha(T(D)) \le k\alpha(D) \text{ for all bounded } D \subset E\}$$

and

$$\beta(T) = \inf\{k : \beta(T(D)) \leqslant k\beta(D) \text{ for all bounded } D \subset E\} = \beta(T(B_E)),$$

where B_E denotes the unit ball in E. We recall some of the basic properties of $\alpha(T)$, respectively $\beta(T)$:

$$(1) \ \frac{1}{2}\alpha(T) \leqslant \beta(T) \leqslant 2\alpha(T),$$

- (2) $\alpha(T^*) \leq \beta(T)$ and $\alpha(T) \leq \beta(T^*)$ (see [5]),
- (3) $\alpha(T(B_E)) = \alpha(T^*(B_{F^*}))$ (see [1]),
- (4) $\max\{\alpha(T), \beta(T)\} \leqslant ||T||_e$, where $||T||_e$ denotes the essential norm of T.

398 ANTON R. SCHEP

In this paper we are interested in $\alpha(T)$ and $\beta(T)$ for a special class of operators on Banach lattices. For general information on Banach lattices we refer to the monographs [4], [7] and [10]. For specific results on measures of non-compactness of operators on Banach lattices we refer to [6], [8] and [9]. From now on E and F will denote Banach lattices. A linear operator T from E into F is called disjointness preserving if $x \wedge y = 0$ implies $|Tx| \wedge |Ty| = 0$. It was shown in [6, Theorem 3.10], that if E^{\oplus} is non-atomic and $T: E \to F$ is a norm bounded disjointness preserving operator, then $\beta(T) \geq (1/2)||T||$. It was indicated in [6] that no example was known for which $\beta(T) < ||T||$. Moreover for special classes of spaces (e.g. $F = L_p$, $1 \leq p < \infty$) it was indicated in [6] that one always has $\beta(T) = ||T||$. It will be shown in this paper that in fact under the above hypotheses one always has $\beta(T) = ||T||$. Our approach follows [6], with one major difference: we employ the Kuratowski measure of non-compactness α , whereas [6] only used the Hausdorff measure of non-compactness β . It is this difference which allows us to obtain the improved result.

2. THE MAIN RESULT

We denote by E^* the dual space of E and by E^*_n the space of order continuous linear functionals on E. For $0 \le \varphi \in E^*$ we denote by p_{φ} the seminorm $p_{\varphi}(f) = \varphi(|f|)$. The following lemma is an easy consequence of the result [3, Theorem 4] that a probability measure μ on a complete Boolean algebra has a continuous spectral resolution. For the benefit of the reader we provide a direct short proof.

LEMMA 2.1. Let E be a Dedekind complete non-atomic Banach lattice and let $0 \le u \in E$ and $0 \le \varphi \in E_n^*$ with $\varphi(u) = 1$. Then for all $t \in [0,1]$ there exists a band projection P_t such that $\varphi(P_t u) = t$ and such that $t \le s$ implies $P_t \le P_s$.

Proof. Let $P_0 = 0$ and P_1 be the band projection on $\{u\}^{\mathrm{dd}}$. By Zorn's lemma we can find a maximal chain $\{P_\tau\}$ of band projections such that $0 \leq P_\tau \leq P_1$. Then we note that for each 0 < t < 1 there exists $\tau_0 \in \{\tau\}$ such that $\varphi(P_{\tau_0}u) = t$, since E is non-atomic and φ is order continuous. Define now $P_t = \sup\{P_\tau : \varphi(P_\tau u) = t\}$. The order continuity of φ implies now $\varphi(P_t u) = t$ and obviously $t \leq s$ implies $P_t \leq P_s$.

In the following lemma we denote by Sⁿ the *n*-sphere in \mathbb{R}^{n+1} , i.e. $\mathbb{S}^n = \{(x_1, \ldots, x_{n+1}) : (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \text{ with } x_1^2 + \ldots + x_{n+1}^2 = 1\}.$

LEMMA 2.2. Let E, u and φ be as in Lemma 2.1. Then for all $n \in \mathbb{N}$ there exists a p_{φ} -continuous map $F_n \colon \mathbb{S}^n \to \{v \in E : |v| = u\}$ such that $F_n(-x_1, \ldots, -x_{n+1}) = -F_n(x_1, \ldots, x_{n+1})$ for all (x_1, \ldots, x_{n+1}) in \mathbb{S}^n .

Proof. Let P_i be a collection of band projections as in Lemma 2.1. We shall construct F_n inductively. To define F_1 we will parametrize S^1 as $\{e^{2\pi it}: 0 \le t \le 1\}$.

Define then

$$F_{1}(e^{2\pi it}) = \begin{cases} 2P_{2t}u - u & \text{for } 0 \leq t \leq \frac{1}{2} \\ -2P_{2t-1}u + u & \text{for } \frac{1}{2} < t < 1. \end{cases}$$

Note that $|2P_{2i}u-u|=|P_{2i}u+P_{2i}u-P_{1}u|=|P_{2i}u+(P_1-P_{2i})u|=u$, since $P_{2i}\perp P_1-P_{2i}$ so that $|F_1(e^{2\pi it})|=u$ for all t. Also observe that if $0\leqslant t<1/2$, then $F_1(-e^{2\pi it})=F_1(e^{2\pi i(t+\frac{1}{2})})=-2P_{2i}u+u=-F_1(e^{2\pi it})$. To show that F_1 is p_{φ} -continuous, we only have to show that P_iu is a p_{φ} -continuous function of t which is obvious from the fact that $p_{\varphi}(P_iu-P_su)=|t-s|$ for all t, $s\in[0,1]$. Hence F_1 satisfies all the requirements. Assume now that $F_{n-1}: \mathbf{S}^{n-1} \to \{v\in E: |v|=u\}$ has been constructed. Then define F_n as follow:

$$F_{n}(x_{1}, \dots, x_{n+1}) = \begin{cases} u & \text{if } x_{n+1} = 1\\ (P_{1} - P_{x_{n+1}}) F_{n-1} \left(\frac{x_{1}}{(1 - x_{n+1}^{2})^{\frac{1}{2}}}, \dots, \frac{x_{n}}{(1 - x_{n+1}^{2})^{\frac{1}{2}}} \right) + P_{x_{n+1}} u & \text{if } 0 \leq x_{n+1} < 1\\ -F_{n}(-x_{1}, \dots, -x_{n+1}) & \text{if } x_{n+1} < 0. \end{cases}$$

It is easy to see that for all $(x_1,\ldots,x_{n+1})\in S^n$ we have $|F_n(x_1,\ldots,x_{n+1})|=u$ and $F_n(-x_1,\ldots,-x_{n+1})=-F_n(x_1,\ldots,x_{n+1})$, since $F_n(x_1,\ldots,x_n,0)==F_{n-1}(x_1,\ldots,x_n)$. To show that F_n is p_{φ} -continuous at all $(x_1,\ldots,x_{n+1})\in S^n$ one has to consider three cases: $x_{n+1}=0$, $0< x_{n+1}<1$ and $x_{n+1}=1$. First we consider the case $x_{n+1}=0$. Then $F_n(x_1,\ldots,x_{n+1})=F_{n-1}(x_1,\ldots,x_n)$. The continuity of F_n at (x_1,\ldots,x_{n+1}) follows now from the continuity of F_{n-1} and the fact that $P_{x_{n+1},k}$ $u\downarrow 0$ as $k\to \infty$ for any sequence $x_{n+1,k}\downarrow^k 0$. In case $0< x_{n+1}<1$, we denote by

$$X = \left(\frac{x_1}{(1 - x_{n+1}^2)^{\frac{1}{2}}}, \dots, \frac{x_n}{(1 - x_{n+1}^2)^{\frac{1}{2}}}\right)$$

the corresponding point in S^{n-1} . Let now (x_1, \ldots, x_{n+1}) and (y_1, \ldots, y_{n+1}) be points in S^n with $0 < x_{n+1}, y_{n+1} < 1$. Then we have

$$\begin{split} p_{\varphi}(F_{n}(x_{1}, \ldots, x_{n+1}) - F_{n}(y_{1}, \ldots, y_{n+1})) \leqslant \\ \leqslant \varphi(|(P_{1} - P_{x_{n+1}})F_{n-1}(X) - (P_{1} - P_{y_{n+1}})F_{n-1}(Y)|) + \varphi(P_{x_{n+1}}u - P_{y_{n+1}}u) \leqslant \\ \leqslant \varphi(|F_{n-1}(X) - F_{n-1}(Y)|) + 2\varphi(|P_{x_{n+1}}u - P_{y_{n+1}}u|), \end{split}$$

400 Anton r. schep-

which implies that F_n is p_{φ} -continuous at (x_1, \ldots, x_{n+1}) . We leave it to the reader to verify that F_n is continuous at $(0, \ldots, 1)$.

We now define a measure of non-compactness associated to p_{φ} . If $D \subset E$ is norm bounded, then define:

$$\alpha_{\varphi}(D) = \inf \left\{ \lambda : D \subset \bigcup_{j=1}^{m} D_{j}, p_{\varphi}\text{-diam}(D_{j}) \leqslant \lambda \right\}.$$

It is easy to see that $\alpha_{\varphi}(D) \leqslant ||\varphi|| \alpha(D)$.

LEMMA 2.3. Let E, u and φ be as above. Then $\alpha_{\varphi}([-u, u]) = 2$.

Proof. Since the p_{φ} -diameter of [-u,u] is 2, we have $\alpha_{\varphi}([-u,u]) \leq 2$. Assume now that $[-u,u] \subset \bigcup_{j=1}^n D_j$. Decompose E as $N_{\varphi} \oplus N_{\varphi}^d$, where N_{φ} denotes $\{x \in E : \varphi(|x|) = 0\}$. We can then assume that the principal ideal E_u generated by u is contained in N_{φ}^d and then replace D_j by $D_j \cap E_u$. Then we denote by \tilde{D}_j the p_{φ} -closure of D_j in the completion of (E_u, p_{φ}) . Let F_{n-1} be the map constructed in the previous lemma. Then $\bigcup_{j=1}^n F_{n-1}^{-1}(\tilde{D}_j)$ is a covering of S^{n-1} with n closed sets. By the Lusternik-Schnirelman-Borsuk theorem ([2]) there exists an index j_0 and $(x_1, \ldots, x_n) \in S^{n-1}$ so that $\pm (x_1, \ldots, x_n) \in F_{n-1}^{-1}(\tilde{D}_{j_0})$, i.e. $\pm F_{n-1}(x_1, \ldots, x_n) \in \tilde{D}_{j_0}$. Hence

$$p_{\varphi}$$
-diam $(D_{j_{\alpha}}) = p_{\varphi}$ -diam $(\tilde{D}_{j_{\alpha}}) \geqslant 2p_{\varphi}(F_{n-1}(x_1, \ldots, x_n)) = 2,$

0

and the proof of the lemma is complete.

REMARK. The above lemma says essentially that $\alpha([-\chi_X, \chi_X]) = 2$ in the space $L_1(X, \mu)$, where μ is a non-atomic probability measure. The next proposition show how to compute $\alpha([-u, u])$ in a large class of Banach lattices, in particular the following proposition holds for $E = L_p(X, \mu)$, where $1 \le p \le \infty$.

PROPOSITION 2.4. Let E be a Dedekind complete non-atomic Banach lattice and assume $||u|| = \sup\{\langle \varphi, u \rangle : 0 \leqslant \varphi \in E_n^*, ||\varphi|| = 1\}$ for all $0 \leqslant u \in E$. Then $\alpha([-u, u]) = 2||u||$.

Proof. Let $\varepsilon > 0$ and $0 \le u \in E$ with $u \ne 0$. Then by assumption there exists $0 \le \varphi \in E_n^*$, $\|\varphi\| = 1$ with $\varphi(u) > (1 - \varepsilon)\|u\|$. It follows now from the above lemma, using a scaling of φ , that $\alpha_{\varphi}([-u, u]) = 2\varphi(u)$. Hence $\alpha([-u, u]) \ge \alpha_{\varphi}([-u, u]) > 2(1 - \varepsilon)\|u\|$ for all $\varepsilon > 0$. Hence $\alpha([-u, u]) = 2\|u\|$.

Recall now that a positive linear operator T from a Banach lattice E into a Banach lattice F is called a *Maharam operator* (or *interval preserving*) if T[0, u] = [0, Tu] for all $0 \le u \in E$.

PROPOSITION 2.5. Let E and F be Banach lattices with F Dedekind complete, non-atomic and such that $||f|| = \sup\{\langle |f|, \varphi \rangle : 0 \le \varphi \in F_n^*, ||\varphi|| \le 1\}$ for all $f \in F$. If $0 \le T : E \to F$ is a Maharam operator, then $\alpha(T(B_F)) = 2||T||$.

Proof. Let $\varepsilon > 0$. Then there exists $0 \le u \in E$ such that ||u|| = 1 and $||Tu|| \ge \|T\| - \varepsilon$. Then $[-Tu, Tu] = T[-u, u] \subseteq T(B_E)$ implies that $\alpha(T(B_E)) \ge \alpha([-Tu, Tu]) = 2\|Tu\| \ge 2(\|T\| - \varepsilon)$, and hence $\alpha(T(B_E)) = 2\|T\|$.

We now derive, along the same lines as in [6], the main result of this paper.

THEOREM 2.6. Let E and F be Banach lattices such that E^* is non-atomic. If $T: E \to F$ is a norm bounded disjointness preserving operator, then $\alpha(T) = \beta(T) = \|T\|_{\mathbf{e}} = \|T\|_{\mathbf{e}}$.

Proof. As noted in [6], $|T^*|$ is an order continuous Maharam operator and there exists $\pi \in Z(F^*)$, the center of F^* , such that $T^* = |T^*| \circ \pi$ and $|\pi| = I$. Now E^* satisfies the hypotheses of the previous proposition, so $\alpha(|T^*|(B_{F^*})) = 2 ||T^*||$. Since π is an isometry, we conclude that $\alpha(T^*(B_{F^*})) = 2 ||T^*||$. From [1] we know that $\alpha(T^*(B_{F^*})) = \alpha(T(B_E))$, so that we conclude that $\alpha(T(B_E)) = 2 ||T||$. Now the inequalities $\alpha(T(B_E)) \leq 2\alpha(T)$ and $\alpha(T(B_E)) \leq 2\beta(T(B_E)) = 2\beta(T)$ imply that $\beta(T) = \alpha(T) = ||T||$. The theorem follows now, since we always have $\beta(T) \leq ||T||_{\mathbf{E}} \leq ||T||_{\mathbf{E}}$.

Acknowledgements. This paper was written while the author held a fellowship from the Alexander von Humboldt Foundation at the University of Tübingen. The author acknowledges also some support from a South Carolina Research and Productive Scholarship grant.

REFERENCES

- ASTALA, K., On measures of non-compactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes, 29(1980), 1-42.
- 2. Kuratowski, K., Topology. II, Acad. Press, New York-London, 1968.
- 3. Luxemburg, W. A. J., On the existence of σ -complete ideals in Boolean algebras, Colloq. Math., XIX(1968), 51-58.
- 4. Luxemburg, W. A. J.; Zaanen, A. C., Riesz spaces. I, North-Holland, Amsterdam, 1971.
- 5. Nussbaum, R. D., The radius of the essential spectrum, Duke Math. J., 38(1970), 473-478.
- DE PAGTER, B.; SCHEP, A. R., Measures of non-compactness of operators in Banach lattices, J. Funct. Anal., 78(1988), 31-55.
- SCHAEFER, H. H., Banach lattices and positive operators, Springer-Verlag, New York—Heidelberg—Berlin, 1974.
- Weis, L. W., On the computation of some quantities in the theory of Fredholm operators, in *Proc. 12th Winter School on Abstract Analysis (Srni)*, Supplemented in Rendiconting de Circolo Matematico di Palermo II, 5(1984).

402 ANTON R. SCHEP

9: Weis, L.; Wolff, M., On the essential spectrum of operators on L¹, in Semesterber. Funkt. Tübingen, Sommersemester 1984.

10. ZAANEN, A. C., Riesz spaces. II, North-Holland, Amsterdam, 1983.

ANTON R. SCHEP
Department of Mathematics,
University of South Carolina,
Columbia, South Carolina 29208,
U.S.A.

Received May 31, 1988; revised August 25, 1988.