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THE MEASURE OF NON-COMPACTNESS OF A
DISJOINTNESS PRESERVING OPERATOR

ANTON R. SCHEP

1. INTRODUCTION
Let E be a Banach space and D a norm bounded subset of E. Then the Kurg-
towksi measure of non-compactness of D is defined as
m
o(D) = inf {A :D <\ Dy, diam(D)) < A}
j=1
and the Hausdorff measure of non-compactness of D is defined as
B(D) = inf{r: D <\ B(x;, 1), x; GE} ,
j=1

where B(x;,r) denotes the ball in E with center x; and radius r. If E and F are Banach
spaces and T: E — F is a bounded linear operator, then one defines for T the cor-
responding measures of non-compactness
o(T) = inf{k : «(T(D)) < ka(D) for all bounded D = E}
and
B(T) = inf{k : B(T(D)) < kB(D) for all bounded D < E} = B(T(Bp)),

where B, denotes the unit ball in E. We recall some of the basic properties of a(T),
respectively S(T):

) ; o(T) < B(T) < 2(T),
@) «T*) < K(T)and «(T) < BT*) (see [5]),

(3) «(T(Bp) = oAT*(B#)) (see [1]),
(4) max{o(T), B(T)} < ||Tlle, where ||T||. denotes the essential norm of T.
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In this paper we are interested in o(7") and §(T') for a special class of operators
on Banach lattices. For general information on Banach lattices we refer to the mono-
graphs [4], [7] and [10]). For specific results on measures of non-compactness of
operators on Banach lattices we refer to [6], [8] and [9]. From now on E and F
will denote Banach lattices. A linear operator T from E into F is called disjointness
preserving if x A y = 0 implies {Tx| A [7Ty| = 0. It was shown in [6, Theorem 3.10],
that if £ is non-atomic and T: E — F is a norm bounded disjointness preserving
operator, then B(T) > (1/2)||T]]. It was indicated in [6] that no example was known
for which B(T) < {|T||. Morcover for special classes of spaces (e.g. F=L,, 1 €
< p <oo)it was indicated in [6] that one always has f(T)=|T]. It will be shown in
this paper that in fact under the above hypotheses one always has f(T) = IT|.
QOur approach follows [6], with one major difference: we employ the Kuratowski
measure of non-compactness @, whereas [6] only used the Hausdorff measure of
non-compactness fB. It is this difference which allows us to obtain the improved
result.

2. THE MAIN RESULT

We denote by E*the dual space of E and by E} the space of order continuous
linear functionals on E. For 0 < ¢ € E* we denote by p, the seminorm p,(f) =
= ¢(|f1). The following lemma is an easy consequence of the result [3, Theorem
4] that a probability measure p on a complete Boolean algebra has a continuous
spectral resolution. For the benefit of the reader we provide a direct short proof.

LeMMma 2.1. Let E be a Dedekind complete non-atomic Banach lattice and
let 0K ucEand 0 < ¢ €EF with ou) = 1. Then for all t €[0,1] there exists a
band projection P, such that ¢(Pu) = t and such that t < s implies P, < P,.

Proof. Let P, = 0 and P, be the band projection on {1}¢. By Zorn’s lemma
we can find a maximal chain {P.} of band projections such that 0 < P, < Py,
Then we note that for each 0 < ¢ < 1 there exists 7, € {r} such that (p(P,ou) ={,
since E is non-atomic and ¢ is order continuous. Define now P, = sup{P,: ¢(P,u) =
= t}. The order continuity of ¢ implies now @(P,u) =t and obviously ¢ < s
implies P, < P,. %

In the following lemma we denote by S” the n-sphere in R"+1, i.e. S"={(x1, .-
cons XpgD) S (X1, oo, Xee) ERPFL with X2 4+ ...+ X2, =11

LemMA 2.2. Let E, u and ¢ be as in Lemma 2.1. Then for all n € N there exists
a py-continuous map F,:S" - {veE:|v| = u} such that F(—Xy, ..., —Xp41) =
= —F (X1, ..., %) forall (x,,...,x,,1) in S"

Progf. Let P, be a collection of band projections as in Lemma 2.1. We shall
construct K, inductively. To define F; we will parametrize S* as {e*:0 < ¢ < 1}.
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Define then
2Pqu—u for 0<tg ]
Fy(enity =

—2P,, u+u for —;— <t< ).

Note that [2Pyu—u|l = |Pyu + Pou— Pyl = |Pou + (P, — Py )u| = u, since
Py L P, — P,, so that |Fy(e*)] = u for all ¢. Also observe that if 0t <1/2,

then Fj(—e%it) = Fl(ea"i('+ ;)) =—2P,u + u = —Fy(e*). To show that F, is p,-
-continuous, we only have to show that Pu is a p,-continuous function: of ¢
which is obvious from the fact that p,(Pu— Pu) = |t—s| for all ¢, s €0, 1].
Hence F; satisfics all the requirements. Assume now that F, ,:S" ' o {ve E:
ol = u} has been constructed. Then define F, as follow:

Fn(xla .. -5~xn+1) =
u if xn+1 = 1
x X, .
= (Pl——Px"H)Fn_l(-. 1_..‘7 5 e ey .1:) + Pxnﬂu if 0 < x,,,<1
(A —x, )2 1 —x5,)2 .
—F, (—Xy, ..., —Xp41) if x,,, <O.

1t is easy to see that for all (x,, ..., %,41) €S" we have |F,(xy, ..., X4 )l = 4
and  F(—x;, ..., —x,41) = —F,(x1, ..., X,41), since F,(x;, ...,x,,0) =
=F,_i(x;, ..., x,). To show that F, is p,-continuous at all (x,, ...,x,+,) € S" one
has to consider three cases: x,,;, = 0,0 < x,4, < 1 and x,,; = 1. First we con-
sider the case x,,; = 0. Then F(xy, ..., x,+;) = F,_y(x,, ..., x,). The continuity
of F, at (x,,...,%x,41) follows now from the continuity of F,_, and the fact
that P,"H'ku } 0 as k — oo for any sequence X,; « 1¥0. In case 0 < x,,, < 1, we

’ X1 X
Ho (et
(1 —xjq)2 (I —x3,1)2

denote by

the corresponding point in S"-1. Let now (x;, ..., x,+1) and (7, ..., Vus1) be
points in S* with 0 < x,,5, Vo+1 < 1. Then we have

pqa(Fn(xl, MRS ] xu+1) - Fn(yly .. ~,yn+1)) S

< (P, — Px"ﬂ)Fn—l(X) — (P, _PyM_I)Fn-l(Y)D + §0(Pxnﬂ“ —P, <

I

< OUF, 10 — Fues(D)) + 2002, u~ P, _ul),
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which implies that F, is p-continuous at (x,, ..., X,4,). We leave it to the reader to
verify that F, is continuous at (0, ..., 1).

We now define a measure of non-compactness associated to p,. If D < E
is norm bounded, then define:

a,(D) = inf {). :D LmJ D;, p,-diam(D;) < A }

j=t
It is easy to see that a,(D) < |lo|lx(D).
LEMMA 2.3. Let E, u and ¢ be as above. Then a,([— u, u]) = 2.

Proof. Since the p,-diameter of [—u, u] is 2, we have a,([—u,u]) < 2.

Assume now that [—uw,u] = \J D;. Decompose E as N, ® Ny, where N,

Je=1
denotes {x € E : ¢(Jx]) = 0}. We can then assume that the principal ideal E, gener-
ated by u is contained in N and then replace D; by D; n E,. Then we denote

by ]5j the p,-closure of D; in the completion of (E,, p,). Let F,_, be the map

n -~ ‘

constructed in the previous lemma. Then | J F,;2,(D;) is a covering of Se-t
jesl

with » closed sets. By the Lusternik-Schnirelman-Borsuk theorem ([2]) there exists

an index j, and (xy,...,x,)€S" ! so that =+ (x;,...,x,)€ F;_‘l(ﬁjo), ie.

+ F_ O,y Xy) eD,-O. Hence

po-diam(D jo) = pw-diam(b ,0) 2 2p,(F, 1(xy, -, X)) = 2,

and the proof of the lemma is complete. Z3

REMARK. The above lemma says essentially that a({— yx, xx]) = 2 in the
space L,(X, u), where u is a2 non-atomic probability measure. The next propo-
sition show how to compute o([-—u, u]) in a large class of Banach lattices, in
particular the following proposition holds for £ = L, (X, i), where 1 < p < oo.

PROPOSITION 2.4. Let E be a Dedekind complete non-atomic Banach lattice
and assume |jull = sup{<o, ) :0 < ¢ € E¥, |lp|! =1} for all O <u<cE. Ther
a([— u, u]) = 2{jull.

Proof. Lete > 0and 0 < u € E with u # 0. Then by assumption there exists
0 < ¢ eE%, ol =1 with @) > (1 —¢)|jul]l. 1t follows now from the above
lemma, using a scaling of ¢, that «,((—u,u]) = 2¢(x). Hence o[—u,u]) >
> a,(f—u, u]) > 2(1 —e)jju|| for all & > 0. Hence a([— u, u]) = 2|jull. %
Recall now that a positive linear opérator T from a Banach lattice E into

a Banach lattice F is called a Maharam operator (or interval preserving) if T[0, u] =
==[0,7Tu] for al 0 c u € E.
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PRrROPOSITION 2.5. Let E and F be Banach lattices with F Dedekind com-

plete, non-atomic and such that ||f|| = sup{<If1, ®> : 0 < ¢ € F¥, |lo|| < 1} for all’
f€F. If0 < T:E— Fis a Maharam operator, then a(T(Bg)) = 2||T||.

Proof. Let ¢ > 0. Then there exists 0 € u € E such that |juf| = 1 and ||Tu)} >
> ||T)|—e. Then [— Tu, Tu] = T[—u,u) = T(Bg) implies that o(T(By) >
2 a([— Tu, Tul]) = 2||Tul| = 2(||T}| —¢), and hence «(T(Bg)) = 2||T. %

We now derive, along the same lines as in [6], the main result of this paper.

THEOREM 2.6. Let E and F be Banach lattices such that E* is non-atomic..
If T . E - Fis a norm bounded disjointness preserving operator, then a(T) = p(T) =
= ||\Tlle = Tl

Proof. As noted in [6], |T*| is an order continuous Maharam operator and
there exists © € Z(F¥*), the center of F*, such that T* = |T*|cr and || = I. Now E¥
satisfies the hypotheses of the previous proposition, so a(|T*|(B+)) = 2| |T#|||.
Since © is an isometry, we conclude that a(7*(Bs)) = 2||T*|. From [1] we know
that a(T*(B+)) = a(T(Bg)), so that we conclude that «(7(Bg)) = 2||T||. Now the:
inequalities a(T(Bg)) < 2¢(T) and o(T(Bp) < 2B(T(Bp) = 2B(T) imply that B(T) =
= @(T) = ||T||. The theorem follows now, since we always have S(T) < ||Tle < |\TI|.

7

Acknowledgements. This paper was written while the author held a fellowship

from the Alexander von Humboldt Foundation at the University of Tibingen.

The author acknowledges also some support from a South Carolina Research
and Productive Scholarship grant.

REFERENCES

1. AsTALA, K., On measures of non-compactness and ideal variations in Banach spaces, Awrm,
Acad. Sci. Fenn. Ser. AI Math. Dissertationes, 29(1980), 1—42.

2. Kuratowskl1, K., Topology. Il, Acad. Press, New York--London, 1968.

3. LUXEMBURG, W. A.J.,, On the existence of g-complete ideals in Boolean algebras, Collog.
Math., XIX(1968), 51—58.

4. LUXEMBURG, W. A.J.; ZAANEN, A.C., Riesz spaces. I, North-Holland, Amsterdam, 1971.

5. NussBauM, R. D., The radius of the essential spectrum, Duke Math. J., 38(1970), 473 —478.

6. DE PAGTER, B.; SCHEP, A.R., Measures of non-compactness of operators in Banach lattices,.
J. Funct. Anal., 78(1988), 31—55.

7. ScHAEFER, H. H., Banach lattices and positive operators, Springer-Verlag, New York —Heidel-
berg—Berlin, 1974.

8. Weis, L. W.,, On the computation of some quantities in the theory of Fredholm operators,
in Proc. 12th Winter School on Abstract Analysis (Srni), Supplemento di Rendiconti
de Circolo Matematico di Palermo 11, 5(1984).



402 ANTON R. SCHEP

9. Wers, L.; WoLFr, M., On the essential spectrim of operators on L%, in Semesterber. Funkt.
Tiibingen, Sommersemester 1984.
10. ZAaNEN, A. C., Riesz spaces. II, North-Holland, Amsterdam, 1983.

ANTON R. SCHEP
Department of Mathematics,
University of South Carolina,
Columbia, South Carolina 29208,
U.S.A.

Received May 31, 1988; revised August 25, 1988.



