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KASPAROV PRODUCTS, KK-EQUIVALENCE, AND PROPER
ACTIONS OF CONNECTED REDUCTIVE LIE GROUPS

JEFF FOX, PETER HASKELL and JAIN RAEBURN

INTRODUCTION

The K-theory of C*-algebras has played an increasingly important role in
index theory and its applications. For instance certain important statements, whose
original formulations make no mention of C*-algebras, are known to be implied
by statements about the injectivity of maps between the K-theory groups of certain
C*-algebras. KK-theory and Kasparov products have played a significant role in
the analysis of the latter statements. Suppose a map 7': K, (4) — K, (B) between
the K-groups of C#-algebras 4 and B is realized by taking a Kasparov product
(on the right) with an element ¢ of KK(4, B), and suppose one expects that T has
a (one-sided) inverse S realized by taking a Kasparov product with an element
s of KK(B, A). Because So T is realized by taking a Kasparov product with the ele-
ment 1® z s of KK(4, A), to show that S T is the identity on K,(4), it suffices
to establish certain properties for 1 ® 5 s. Often t® , s is fairly tractable. The method
described above has contributed already to significant new theorems, and it plays
a central role in a far-reaching program initiated by Baum, Connes, and Kasparov.

The main result of our paper, Theorem 4.1, is the calculation of a Kasparov
product that plays a key role in the program described in the first paragraph. Let G
be a noncompact connected reductive Lie group, and let K be the subgroup asso-
ciated to the fixed point set of a Cartan involution. We show, that a well-known
differential operator on G/K represents the Kasparov product of the KK-element
realizing de Rham induction and its “Miscenko dual’’. These KK-elements are
defined at the beginning of Section 4, the rest of which is devoted to a proof of
Theorem 4.1. This proof relies heavily on a technique we describe briefly in Sec-
tion 2 and on facts about analysis on G/K that we collect in Section 3. The frame-
work in which we do our proof is summarized by the observation, made in Section 1,
that the connection approach to Kasparov products developed by Connes and
Skandalis [10], [38] extends to the equivariant KK,-theory, where the group G
is not necessarily compact. (This observation has now also appeared in [20).) Although
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this observation and its proof are straightforward generalizations of [38], the
observation is a useful one. Taken as a whole the methods in our paper form
the foundation for the calculation in (equivariant) KK-theory of Kasparov pro-
ducts involving the most commonly occurring pseudodifferential operators on
(noncompact) manifolds.

To enhance the reader’s appreciation of Theorem 4.1, we include a discus-
sion placing our work in context (Section 5) and a sketch of an application of our
result to a problem in transformation group C*-algebras (Section 6). This problem
is as follows. Let G be a noncompact connected reductive Lie group acting pro-
perly on a second countable locally compact Hausdorff space X. Let g be the Lie
algebra of G. Let p be the —1 eigenspace of a Cartan involution of g and let K’
be the maximal compact subgroup of G associated with the Cartan involution.
Assume that the adjoint action of K’ on p factors through spinS(p). The
problem is to show that there is a canonical isomorphism of K-theory groups
K.dim@:xy(CHK', Co(X))) = K(C*(G, Cy(X))). Such an isomorphism would reduce
questions about the K-theory of the C#%-algebra arising from the transformation
group G to questions about the better understood compact transformation group
K'. The program of Baum, Connes, and Kasparov involves the reduction of ques-
tions about transformation group C*-algebras to questions about transformation
group C¥-algebras arising from proper actions. A canonical realization of the iso-
morphism mentioned above supports the assertion that proper actions can be used
to understand more general actions.

In Section 6 we show that de Rham induction realizes a slightly more general
canonical isomorphism of K-theory groups, at least when the action of G on X has
finitely many orbit types. In the situation of the preceding paragraph, drop the
assumption that the action of K’ on p factors through spin®(p). Let K be the
subgroup of G associated with the fixed point set of the Cartan involution. Let C,
be the algebra of continuous sections vanishing at infinity of the Clifford algebra
bundle associated with the complexified cotangent bundle of G/K. G acts on C,
‘n a natural manner. We show that de Rham induction (Kasparov product with
an element represented by a de Rham operator) gives an isomorphism X, (C*(G,
Co(X) ® C,)) = K (CHG, Cy(X))). The relationship of this result to the isomor-
phism mentioned in the preceding paragraph is described in Section 5, where we
zlso outline an argument pointed out to us by Chris Phillips that uses results
of {1}, [2}, and [28] to establish the existence of a (noncanonical) isomorphism
Ki -aimcir(C*(K', Co(X))) = K(C*(G, C(X))) when the adjoint action is spin®.
Our proof has the advantage of allowing general adjoint actions (note also that
Kasparov [20] shows that the semisimple case is fundamental in his program) and
of providing a canonical isomorphism. Moreover it is an additional consequence
of our techniques and of results of [11] and [36] that de Rham induction realizes

a KK-equivalence between C*(G, C(X)®C,) and C*(G, Cy(X)).
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1. IMPLICIT CHARACTERIZATION OF KASPAROV PRODUCTS

In {10] and [38] an implicit characterization of Kasparov products in KK-
-theory is given using the concept of connection. This approach allows one to avoid
explicit stabilization in the calculation of specific examples. We extend this charac-
terization of Kasparov products to equivariant KK-theory, KK, where G is a
separable locally compact group. When this paper was first submitted for publi-
cation, it contained a complete account of the connection approach to products in
KK, . With the appearance of [20], such an account is no longer necessary, and we
restrict ourselves to an outline of the ideas involved.

Our C*-algebras are assumed to have gradings, continuous G actions, and
countable approximate units. For C*-algebras 4 and B, KK (4, B) is defined in
[20]. Cycles for KK (A4, B) are called Kasparov (4, B)-bimodules, the set of which
is denoted ¢ (4, B). One usually denotes an element of &;(4, B) by (E, T) where E
is the Hilbert C*-module over B and T e #(E). Elements of &4(4, B) have addi-
tional structure, including a grading, which is mentioned once and then omitted
from the notation. Tensor products, denoted ®, and commutators, denoted [, }, are
graded unless otherwise indicated. It is convenient to use the terminology Hilbert
B-module for a countably generated graded Hilbert C*-mcdule over B and (4, B)-bi-
module for a Hilbert B-module E with a homomorphism 4 — #(F). Such a module
or bimodule js said to have a continuous G-action if the module and algebra(s)
have compatible continuous G-actions. [20], {21} and [22] are good sources of defi-
nitions and information.

We now define the fundamental object in the implicit characterization of
products.

DerFINITION 1.1. ([10], [38]). Let D and B be C#-algebras. Let E, be a Hilbert
D-module and £, a (D, B)-bimodule with F, € #(E,). Set £ = E,@p F,. Fore € £,
define T, € L(E,, E) by Tf) = e®f. Let T, € #(E, ® E) be the operator given by

0 T*
(Te o)'
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An element Fe #(E) is said to be an Fy-connection for E, if and only if for
all ee EJ, [T, F, @ F) e #(E, ® E).

The stabilization theorem [20] always permits the construction of a G-con-
tinuous Grassmann connection, for which Proposition 9 of [38] holds.

Dermrrion 1.2. Let 4, B, and D be C*-algebras with (E,, Fy) € &4(A4, D) and
(E,. F)) € £4(D, B). Denote by E the (4, B)-bimodule E; ® p E,. For F e #(E)
the pair (E, F) is called a Kasparov product of (E,,"F,) by (E,, F,) if and only if:

a) (E. F)e 64(4. B);

b) F is an Fy-connection for E, ;

c) VaeA, aF, ® 1, Fla* > 0 modulo J#(E).

We generalize Theorem 12 of [38].

THEOREM 1.3. Let A, B, and D be C*-algebras with A separable and with B
and D having strictly positive elements. Let (E, , F)) € §4(4, D) and (E,, F,) € § (D, B)-

a) There exists a Kasparov product (E, F) of (E,, Fy) by (E,', F,) unique up to
an  operator homotopy.

b) This product determines a well-defined map XK;(A, D) ® KK (D, B) —
— KK(4, B) denoted by ®,.

Proof. [20] provides the “M, N lemma" in this setting. The arguments of [38]
are C*-algebraic arguments. Because we imposc only the additional condition of
G-continuity, which is a norm-closed condition, the arguments extend to our case.

ReEMARrk 1.4. The general Kasparov product is defined as in Definition 15
of [38].

2. FUNCTIONAL CALCULUS

We discuss, in the generality needed for Section 4, a technique for analyz-
ing commutators involving the —I1/2 power of certain differential operators.
This technique, which has fairly widespread application, was used for construct-
ing KK-elements in [3]. The observations behind the technique are that the Rie-

0
rann integral (1 /n)S AV x + A)~d2 equals x~1/2 and that convergence is uni-
0
form in x > 1. By uniform convergence we mean that for any 6 > 0 there exist
¢, N, and m such that for any x > 1 any Riemann sum R of mesh length < m
N
tor (l/rc)S A=Y3(x + 7)-1d} satisfies [R— x—V3| < 4.

&
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Let L? be the space of L? differential forms on a manifold M. Let D be a self-
-adjoint operator on L? that arises as the closure of an essentially self-adjoint diffe-
rential operator. Assume that (1 + D?) -1, and thus (1 + D*-* for any k > 0,

is compact. Let S be an element of #(L?) that takes smooth compactly supported
forms to smooth compactly supported forms and whose restrictions to domain(D)

and domain(l + D% are bounded operators domain(D) — domain(D) and do-
main(l + D?% — domain(l + D?) respectively.

(2.1) (1 + Dy-12 = (1/7:)8 A=13(L 4+ DF 4 2)-1d),

in the sense of norm limit of functional calculus expressions arising from Riemann
o]

sums for approximating proper integrals for (1/n)S A712(x + A)-1dA. Because

0
composing with a bounded operator commutes with taking norm limits,

(2.2) [(1 + D¥)-12 S] = (1/7[)8 AR + D + A)-1, S1dA.
0

Because [S, 1 + D* + A] =[S, D?),

o

2.3) [(L + D3-12 8] = (l/n)S A4 4+ D® + 2)-YS, D*(1 + D* + A)-idA.

Under the further assumptions that [D, S] extends to a bounded operator on
L* and that [D?, S] extends to a bounded operator from domain(D) to L?, one can
show that [D(1 + D?)-%/2, S| is a compact operator on L2

(24)  [D(L + D¥)-12, §] = D[(1 + DH~2, S] + [D, S](1 + D112,

If follows from our assﬁmptions that [D, SJ(1 + D?®-V2 is compact. One can
check directly that the right-hand side of

D[(1 4 D?)~172, §] = (l/n)S A712D(1 4 D2 4 A)7YS, D1 + D® + 4)~1dd

(2.5)
is the norm limit of compact operators. Because D is closed, (2.5) holds and
establishes that its left-hand side is compact. :
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REMARK 2.6. When one understands [D, S] better than one understands
[D?, S]it can be can be convenient to replace [D2, S]by D[D, S]+(—-1)?P9S[D, S1D.

The following lemma can help establish the conditions needed to apply
this technique.

LEMMA 2.7. Let D be as above. Let S’, defined as a map from smooth compactly
supported forms to smooth compactly supported forms, extend to an element, called
S, of ¥(L?).

a) If [D, S’] extends to a bounded operator from domain(D) to L2, the restric-
tion of S is a bounded operator from domain(D) to domain(D).

b) If [D?, S'] extends to a bounded operator from domain(l+D?) to L2, the
restriction of S is a bounded operator from domain(l + D?) to domain(l + D?).

Proof. a) Use DS’ = [D, S'] + (—1)9P95'S’D to show that there exists a
constant ¢ such that for every w in domain(D), j}DSwfj c(”w' + ’DML_ .
The proof of b) is analogous using D2S’ = [D?, §'] + S'D=.

3. NONCOMPACT CONNECTED REDUCTIVE LIE GROUPS

We define a class of groups for which the results of this paper hold, and we
discuss some properties of these groups and of certain of their homogeneous spaces:

DEFINITION 3.1. A noncompact, connected Lie group G, with involutive auto-
morphism 0 of its-Lie algebra g, is called reductive if and only if:

1 g = [g, a] + 3 is reductive. (For Lie algebra elements [-, -] denotes the
usual bracket. 3 is the center of g.)

2) 0 extends a Cartan involution of the semisimple Lie algebra [g, g]. Let
g = ¥ @ p be the decomposition of g into + 1 and —1 eigenspaces of 0.

3) The connected subgroup K associated to f is closed and is a covering
group of a compact Lie group.

4) (X, k) -» (expX)- k is a difftomorphism pXxX K — G.

LemMA 3.2, Such a (G, K) is a Riemannian symmetric pair.

Proof By [17, p. 213], (E;, l~('_) is a Riemannian symmetric pair. (é is the uni-
versal covering group of (.) Because the kernel of the covering map is central

[37] it is in K [17, p. 252 ff.], and the involution on G descends to G.

All such groups are unimodular. Examples of such groups inciude nosn-
compact, connected semisimple Lie groups, whether or not they are linear, and the
identity component of GL(n, R). For the groups of Definition 3.1, G/K is diffeo-
morphic to Euclidean space. Moreover, the following is true. o
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LEMMA 3.3. Let H be a subgroup of K. Denote by Ng(H) and N (H) the nor-
malizers of H in G and K respectively. Let cy(p) denote the vector space {X €p : Yhe
€ H, Ad(W)X = X}. Then N (H)|N(H) is diffeomorphic to cg(p).

Proof. That N (H) = exp(cy(p)) - N (H) follows from the uniqueness inherent
in the G = (expp)+ K decomposition.

Henceforth G and K denote groups described in Definition 3.1.

REMARK 3.4. A decomposition like that of [4], p. 44] and results of [17,
pp. 129, 252 f.] show that our G/K can be isometrically identified with the product
of a G/K arising from a linear semisimple group and a flat vector space. Whencver
we use without comment results on semisimple G, it is implicit that this remark
shows how to extend them to the reductive case. Our G/K has sectional curvatures
cverywherc nonpositive, [17, p. 241]. It is convenient to say G/K has negative cur-
vature. '

DEFINITION OF THE OPERATOR D. Let CP(A*T*(G/K)) denote the smooth com-
pactly supported differential forms with C coefficients on G/K. Let r denote the
function on G/K whose value at a point is the distance of that point from the point
representing the identity coset. Let d* be the formal adjoint of exterior differentia-
tion d. Let X denote the standard Clifferd action, dfx = (df A) + (df A)*. We
have an operator

d + d* + d(r22) X : C2(A*THG/K)) -» CR(A*T*(G[K)).

By Stokes’ theorem and [27, vol. I, p. 253] this operator has a well-defined closure,
which we call D, on L¥(A*T*(G/K)).

ProrerTIES OF D. D is self-adjoint, [8].

(1 + D¥)-22: L2(A*T*(G/K))— domain(D), where domain(D) has the graph
norm. Do (1l + D?)~2 is a bounded self-adjoint operator on L(A*T*(G/K)).

The techniques of [19] and [24] extend to give the following results, analo-
gous to those of [24].

REMARK 3.5. Domain(D) = {i€ LX{A*T*(G]K)): dw, d*w, rwe L} (A*T*(G]K)).

REMARK 3.6. Domain(D) imbeds compactly in LHA*T*(G/K)).

REMARK 3.7. The restriction of D to L? forms of even degree is a surjective
map from forms of even degree to forms of odd degree with a one-dimensional
kernel generated by the function e=""/2,

In order to identify a Kasparov product in Section 4, we¢ must show that

various expressions involving commutators and powers of D are compact. (See,
¢.g., the considerations in Section 2.) To analyze these expressions, we must do
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explicit calculations on G/K, which we often accomplish by lifting the calculations
to G. In what follows we outline the methods we use but leave the calculations them-
selves to the interested reader. Some of the calculations appear in detail in [24].

ANALYSIS ON G. Viewing g as the tangent space to G at the identity, let X ... .,
X, be an orthonormal basis for p and X,,,...., X,, be an orthonormal basis
for I. Denote by X,, ..., X, the corresponding left-invariant vector fields on ¢
and by w,....,w, the dual Maurer-Cartan forms. For f € C®(G),{Xf)g) =

= {(d/dN)(f(g - exp(zX))} 4. [17, p. 104]. The exterior derivative of f, df, equals

Y, (X;f ;. The exterior derivative of an arbitrary differential form on G is cal-
i1

m
culated by using the above equation, the equation dw; = —(1/2) ¥y Chaw AWy,
ik 1
m
where ¢}, is defined by (X, X,] = Y ki 17, p. 137], and the rules for exterior
il
differentiation.

ANALYSIS ON G/K. The above techniques are used to study analysis on 'K
by applying them to functions and forms that are the pullbacks of such from G/K
under the natural map n: G — G/K. For g € G the map = intertwines left transla-
tion by g on G with left translation by g on G K. The metric on G/K is defined by
pulling back under left translation to the identity coset, pulling back under = to
p. and using the natural metric on p, [17, pp. 2€9—210].

General considerations imply that for x and f differential forms on G/K,
n¥(do) = d(n*a) and n¥(x A B) = (n¥a) A(n*fB). It is a consequence of the obser-
vations in the preceding paragraph that wm*z lies in the span over functions of
{wl, s w,,}, that n*(d*a) = d*(n*x), and that =%(a _JfB) = (n¥2) _(n*B). Here
_I denotes the operation adjoint to A. Because ¢, the -+1 eigenspace of which is t
and the -—-1 eigenspace of which is p, is a Lie algebra automorphism, [p, p] < 1.
[t. 1] = 1, and [p, f]  p. These observations determine some of the ¢}, and thus
allow us to discard many terms that occur in calculations with pullbacks of
forms from G/K.

For f3 a k-form on G/K, n*f} can be written ¥, fiu, where each / = iy, i,,...,

i

...+ d is a multi-index with i; € {1, ..., n}, w, = wi A...Aw; , and f;is a func-

tion on G. The observations of the preceding paragraphs allow us to write

n

(3.8) nH(dp) = Yy X (fiyw; Awy

1y
aad

(2.9 THd#f) = — Y i Xi(fw; Jw;.
7 -1
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THt FUNCTIONS Xx;. The 1-form d(r%/2) = rdr has special significance for
us. We define functions on G, x;, 1 < i< n, by

(3.10) rE(rdr) = 7 X,
i
(3.11) 4 (r?) = n*(rdr xrdr) = i x4,
i1

PROPERTIES OF THE FUNCTIONS x;. For certain calculations (see, e.g., the proof
of Lemma 3.22) we need to understand the growth of derivatives of the x;. For Xep
it is possible to evaluate X(x;) on exp (any line through the origin in p) if one defines
~; with respect to a basis of p determined by the line. For nonzero P € p choose an
orthonormal basis {X;, ..., X,} for p by setting X, = P/||P|| and letting X;, ..., X,
be cigenvectors of the self-adjoint transformation (ad P): p —» p. Define 4,(tP) by
(ad(tP))*X; = 2,(tP)X; for t € R. Define x; with respect to this basis as described
previously. 2, > 0 and
(3.12) (X;x)(tP) = 6;;,(A(tP)y2[tanh((4;(tP))/*).

Interpret this expression to be d;; when 4; = 0. The function X;x; is left K-invariant.
As$ 1 — oo the expression in (3.12) grows like ¢. Justification for the claims in this
paragraph appears in [24, p. 105—106]. :

SAMPLE caLcuLaTIONS. To establish properties of commutators of D or D?
with the action of an element of C, on L¥A*T*(G/K)), it is usually convenient to
establish the properties by direct calculations for functions and sections of T#(G/K).
The properties for general elements of C, often follow from a formula such as

[D, )’;fivil X oo X v X]= Z[D,f,.]«» i X ... X o X+

{

(3.13)
ke S
-+ X Z (-—-—])1_1f,~l7,'1>< XU,‘j—IX‘J[D, U"A,'X]"U"ﬁ X ... X l),'kX.

1

i j <1
We now give examples of the results of calculations done with the methods
we have described. In our notation /i, refers to the multi-index 7 with k removed and

I put in its place. The Laplace operator dd* + d*d is denoted A.
[D, Zfiwix](; Jiwp) =

ivdy

= ZIX,-('_/})/}“{; ~w AWy — le\?(ﬁ)fjwj Jw; 2wy +
H
(3.14) + X XUfwi+ XY X(fiwi. +
ligl;j¢i ] Ijel;i¢l Ji

+ Zlf\’i(f})ﬁ"‘: —_I;;’Xi(.f;’)f;wl +2 2/; Xififiwr -

Iie
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(D% 1Y fiwy = (AFY Y, fowor +
(3.15) ! !
+ X XX S -2 3 X(OX (v
LjETk ¢l Ik ij

Tie LAPLACE OPERATOR APPLIED TC ROTATIONALLY INVARIANT FUNC-
TIONS AND FORMS. To use calculations like (3.15) we will need to analyze the growth
of Af'and A(hdr) for certain functions f'and forms /idr that are smooth and rota-
tionally invariant on G/K. There is a set of “polar coordinates’™ in which we can
express the effect of the Hodge =-operator everywhere it occurs in the calculation
of such A(f(r)) and A(h(r)dr). Let Exp = n - exp. For r > 0 and X/ 'X, in the
unit sphere of p, map (v, X/} X]) to ExprX; Xj). If {d0,, ..., d0,_,} is an or-
thonormal basis, expressed in local coordinates. for the cotangent space to the
sphere at a point on the sphere, {dr,d0,,...,df,_,} is identified with a basis
(dr 1 span{df,, .... d0,-,}) of the fiber of T%(G/K) at a corresponding point on
G/X. The form dr has pointwise norm one. In these coordinates

dvol; x(Exp X) = det(sinh(ad X),;'ad}()pdr A dvolgphere =

= (det('sinh(adX),’adX)p)r"-’dr ACOA L AdE, .,

[16, p. 30].
Let 4 = ln((det(sinh(adX)fadX)p) s P,

(3.16) (A YExpX) = ——(f"(1X]) + ["C.XT) - (CAfCr)).

(A(hdHNEXp X) = —-h("X}) ”i‘: (/0 CA]rydo; —
i

(3.17)
—B"CXTY + BOX) - (CAErY + h(IXT) - (C2AEr?))dr.

Because the f and Adr that concern us in Section 4 are smooth, we are inte-
rested in the behavior of Af and A(Adr) only as r —s co. Two lemmas give us the
information we need to use (3.16) and (3.17).

LeMMA 3.18. As r — oo, CA[Cr and GCA[CrE are bounded.

Proof. Because we are working with determinants, it is tempting to diagona-
lizc the operators that appear. We can make encugh sense of this to get the esti-
mates we need. For X € p let {4,(X)} denote the sct of cigenvalues of the self-adjoint
transformation (ad X)*jp. Each 4; >0, [24, p. 106]. Let ¢,(X) = (/,(X))/2. (Because
all expressions involving ¢; involve cnly even powers of ¢;. there is no problem of
choice here.) Because different (ad X)’s are not in general simultaneously diagonaii-
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zable and because multiple eigenvalues can arise, it is not possible to consider each 4,
or each e; as a smooth function on p. However, it is possible to make consistent
choices on each line through the origin, and for X # 0, e,(X) = || X]le,(X/||X|D.
Thus on each one-dimensional subspace we can write 4 as a function of r and
e, (X]||X])), and we can use this expression to calculate d4/dr and 2?4/dr:. From
this calculation we can observe directly that on each one-dimensional subspace
0A|jor and 3°A4/dr* are bounded as r — co. Because the collection of eigenvalues
of (ad X)%p depends continuously on X, {e,(X): || X|| = 1} is bounded, and inspec-
tion of the result of the above-mentioned calculation shows that the bounds of the
preceding sentence can be chosen independent of X/!| X|l.

LemMA 3.19. A4s r — oo, (3/00,)(0A4/dr) is bounded.

Proof. We use another set of “polar coordinates.”” Any X € p lies in some
maximal abelian subspace a of p, and Expa is a flat submanifold of G/K, [17,
p. 215 and arguments of p. 247]. Thus any point of G/K lies in some flat sub-
manifold. Moreover, one can choose the 0/d0; at a point so that some lie in direc-
tions tangent to this flat submanifold and others, at least if the point is taken
from an open dense subset of the flat submanifold, lic in directions tangent to the
orbit of the point under left translation by X, [17, p. 401 f.], [18, p. 267].

When 0/d0; corresponds to a direction orthogonal to Expa, (8/06,)(04/dr)
equals zero. This follows by continuity once we establish it for directions tangent
to left translation by K. Observe that because the left K action fixes the identity
coset and acts as isometries on G/K, it commutes with ¢/dr. To finish the argument
of this paragraph, it suffices to show that A4 is invariant under the left X action. For
keKand X e€p, k- Exp(X) = Exp((Ad k)X). Because (Adk) is an automorphism
of g, ad((Adk)X) = (Adk)-(ad X)o(Adk~1). Properties of the determinant finish
the argument.

We now have only to consider 8/00; representing directions in Expa. Because
a is abelian, the (ad X)’s we must consider in calculating derivatives in directions
in Expa can be diagonalized simultaneously. Thus the eigenvalue functions 1,(X)
are smooth functions on a. As before we can calculate explicitly, Jand it suffices to
get a bound for one direction at a time. The calculation reveals that a bound as
r — oo depends on a bound for r = 1, which is obtained by observing that the

coefficients we are studying arise also in A(dr), which is smoothl on Exp(p\{B}).
This completes for now our general discussion of differential operators on G/K
When we apply the methods of Section 2 in Section 4, the bounded operator
of interest is often L¥, the unitary isomorphism of LX(A*T*(G/K)) arising from the
natural left action of g € G on G/K; (L) = L:-l. Recall that D = d + d* +
+ d(r?/2)x. For x, y€ G/K let p(x, y) denote the geodesic distance between x
and y. For g € G let (g) denote the point gK in G/K. Let ¢ be the identity in G.
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LemmA 3.20. For each g e G [LE, D] extends to a bounded operator on
LYA*T*(G[K)). There is a constant ¢, independent of g, such that the norm of
[L%, D) is no greater than cp((¢),(g)).

Proof. Each [L¥, d} = 0. Thus each [L}, d¥] = 0. An analogous argument
with adjoints completes the proof of the lemma once it has been established that
each [L}, d(+*/2) A] has the desired properties. 1t suffices to show that d(+*.2)
— .L:—l(d("2/2)) is bounded in pointwise norm by ¢p((e), (g)). For fixed g €, we
consider p((g), x) to be a function of the variable x alone. (d(r2/2)»—-L:f-1(d(vr“/2)))(x) =
= (1/2)d(p*((e), x) — p*((g), x)). Assuming x # (¢) and x # (g) and extending
our result to all of G/K by continuity, we estimate d(p*((e). x) — p*((g). x)), which
equals

[d(p(le), x) + p((g). ¥)] - [plle), x) — pl(g), x)] +
(3.21)
+ [pl(e), x) + pi(g), x)1- [d(p((e), x) — p((g), ¥))].

Because the pointwise norm of dp(y, x) is onc for fixed y and variable x # », and
by the triangle inequality, the first term in (3.21) is bounded in norm by 2p((¢},
(2))- If x lies on the geodesic through (¢) and (g) and is between (e) and (g), the
second term in (3.21) has norm 2p((e), (g)). If x is on this geodesic but is not bet-
ween (e) and (g), this second term is zero.

When x is not on the geodesic through (g) and (e), we must consider two
cases. One case, when the smaller of p((e), x) and p((g), x) is at least one-half the
larger is studied by applying {17, p. 50—54, 74, p. 73, Corollary 13.2}. Let 0 denote
the angle at x in the geodesic triangle with vertices (¢), (g), and x. Comparing this
geodesic triangle to a flat triangle with the same side lengths, we see that a flat
isosceles triangle with angle 0 formed by two sides of length minimum(p((e), x).
p((g), x)) has its side opposite ¢ of length no greater than p((g), (€)). Thus the side
opposite 0 in the flat triangle formed by dp((¢), x) and dp((g), x) has length less
than or equal to p((g), (€))/minimum(p((e), x), p((g), x)). In this case the second
term in (3.21) is bounded in norm by 3p((g), (¢)).

In the remaining case, in which the smaller of p((e), x) and p((g),x) is less
than one-half the larger of these distances, p((g). (¢)) is at least one-half of the
larger of these distances. We depart from the framework suggested by (3.21) and
analyze d(p*((e), x} — p*((g), ¥)) as 2p((e), x)dp{(e), x) — 2p((g), ¥)dp((g), ¥). In norm
this is less than or equal to 6p((g), (¢)).

Lemma 3.22. For each g € G [LE, D?) extends to a bounded operator fiom
domain(D) to L¥A*T*(G/K)).

Proof. Let H(x) = p*((e),x) — p*((g),x). Our commutator equals

(3.23) [Ly, A} + L-multiplication by H(x) -- (1/2)L}-{[d*, dH A] + [d, dH ]}
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[LE, A] = 0. Because {H(x)| < p*((e), (g)) + 2p((e), (g)) - p((e), x), the second term
of (3.23) behaves as required by Remark 3.5. To apply Remark 3.5 to the last term
of (3.23) we do explicit calculations on G. Observe that H = r* + L;"_lr‘* and that
the left action of group elements commutes with the (right) action of vector fields.
The analysis surrounding (3.12) gives the estimate we need.

4, IDENTIFICATION OF f ®¢ «
T

In the rest of this paper G and K denote the groups of Definition 3.1. C, is
the algebra of continuous sections vanishing at infinity of the Clifford algebra
bundle associated with the complexified cotangent bundle of G/K.

In [20] Kasparov introduces, in greater generality than we will discuss, the
elements o € KK (C,, C) and 8 e KK(C, C,). (In [20] « is called dg;; and f is
called #;x.) The module defining « is L*A*T*(G/K)) and the operator is
(d + d*)(I + A)-¥% The module is graded by the parity of the degree of a homo-
geneous form, and the action of C, is pointwise the standard Clifford action. The
module defining g is C,, also graded by the parity of the degree of a homogeneous
section, and the Hilbert C_-module structure of C, is the usual one. The operator is
left Clifford multiplication by (1 + #*)~Y2d(r?/2). The action of g € G on each of
these modules is szq.

In this section we use the characterization of Kasparov products described
in Section 1 and the analysis of Sections 2 and 3 to prove the following theorem.

+ D¥-112), where D is the differential operator discussed in Section 3. The grading
and G-action are the same as those of «.

Proof. The map defined on elementary tensors in C, ®CTL2(A*T*(G/K)) by
S ® w— fxw extends to a Hilbert space isomorphism C, ®c LAA*T*(G/K)) =
~ LX(A*T*(G/K)). Thus by Section 1 to prove Theorem 4.1 it suffices to prove
the following three propositions.

ProrosiTioN 4.2. (LEA*T#(G/K)), D - (1 + D*)-V?) e £,(C, C).

ProrosITION 4.3. Do(1 + D¥)~Y2isa(d + d*)(1 +A)-Y? comnection for C,.

Prorposition 4.4. [r(l + #)-12drx, Do (1 + DH-Y2} > 0 modulo
H(LAHA*T*(GIK))).

Proof of Proposition 4.2. By the discussion in Section 3, De(1 + D?)-%2 is a
degree one self-adjoint bounded linear operator on the Hilbert space LZH(A*T*(G/K)).
Our knowledge of the kernel and cokernel of D and the general spectral theory of
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the compact self-adjoint operator (I + D?)~! [30] show that (Do(1 + D¥)-1*)1
is compact. Thus to prove Proposition 4.2 it suffices to prove the following two
lemmas.

Lemma 4.5, For each g € G g(Ds(i + D?)~12) — Do(1 + D¥) -1 js compact.
Lemma 4.6. Do (1 + D?)-V2 is G-continuous.

Proof of Lemma 4.5. Lemma 4.5 is equivalent to [L¥-1, Ds(1 + D)1 e
€ H (LY A*T#(G/K))). The argument of Section 2, with S = L*-., applies in this
situation because all properties required of L; 1 are implied by Lemmas 3.20 and
3.22 alone or in combination with Lemma 2.6.

Proof of Lemma 4.6. 1t suffices to show that the norm of [D=(1 + D?)~1= L%]
is bounded by a fixed constant multiple of p((g), (¢)). As above we can use Section
2 to analyze the commutator. By (2.4) the bound on the norm of [D, L}] provided
by Lemma 3.20 completes the proof. This claim is obvious for the second term
on the right cf (2.4). For the first term it follows from (2.5) and Remark 2.6.

Proaf of Proposition 4.3. We use: the compact operators form a norm-closed,
z-closed ideal; (d + d¥)o(1 + A)~¥? and D-=(1 + D¥)-12 are self-adjoint [8]: the
standard Clifford action is pointwise linear; and standard smoothing techniques
to reduce this proposition to the statement that for each ¢, a smooth compactly
supported element of C_ that is homogeneous in degree,

Exo{d +d¥) (1 + A2 —(—1)%Ds (1 + D)2 Ex is in
(4.7)
H(LHA*T*(G[K))).

ExXo(d + d¥) o (1 4+ A)~Y2— (1) D (1 + DY-Welx =
(4.8)
=Ex a(d 4+ d¥) {1 + A)12 —(1 + D)4} + [Ex,d + d¥] = (1 + DY)~12 -

—(=1)%d(r32)< - Ex= (1 + DB 2 —(—=1D)% D [(1 + DH)~L2, £X]

We proceed by showing that each of the four terms after the equals sign in (4.8)
is compact. In the process we show that (4.8) makes sense.

LemMa 4.9, D-[(1 + D*-V=, ¢ .1 is compact.

Proof. The methods of Section 2 prove the lemma once we show that &3
satisfies the appropriate conditions. Apply Lemma 2.7. It suffices to show that ¢
and [D, ¢x] are bounded on L*(A*T¥(G/K)) and that [D* ¢x]is bounded from
domain(D) to L¥A*T*G}K)). ¢x is clearly bounded. Direct calculations with
the methods of Section 3 show that {D, ¢ X} is bounded.
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The methods of Section 3 show that [D? & x]is a first order differential oper-
ator with bounded coefficients. Remark 3.5 shows that domain(D) imbeds con-
tinuously in domain(d + d*). '

To show that a first order differential operator with bounded coefficients is
continuous from domain(d +d*) to LX(A*T*(G/K)), we use [5] to construct a uni-
form collection of coordinate neighborhoods and a uniform partition of unity sub-

ordinate to the neighborhoods on G/K. The result then follows from the (local)
basic elliptic estimate.

Lemma 4.10. d(r3/2) X o Exo (1 + D¥)-YV2 js compact.

Proof. (1 + D¥-/% is compact. Because ¢ is smooth with compact support
d(r#/2)x = £ is bounded.

LemMa 4.11. [Ex, d 4+ d¥]o (1 + D¥)-12 js compact.

Proof. Use the methods of Section 3 to calculate that [¢ %, d + d¥]is bounded,
and argue as above.

LemMa 412, EXeo(d + d¥)o {(1 + A)~**—(1 + D*)-'*} is compact.

Proof. The intuition behind this proof is that because A and D? have equal
principal symbols, (d + d*){(1 +A)~¥% —(1+.D*~*/2} should behave like a pseu-
do-differential operator of negative order. Because the support of ¢ is compact,
Rellich’s lemma should make the operator we are considering compact. To make
this reasoning rigorous we use the finite propagation speed of solutions of hyper-
bolic equations to reduce the situation to one involving pseudodifferential oper-
ators on a compact manifold without boundary.

Solutions of the equations (a—‘z; + 1+ A) b =0 and (861; + 1+ D‘&)b =0
propagate at finite speed. The observations supporting this claim are that the pro-
pagation speed depends on the principal symbols of the elliptic operators 1 + A,
resp. 1 + D?, that the geometry of G/K is uniform, and that the domains of A
and D? are locally defined. (See {8}, [26, Introduction], or {40, p. 70 ff.].)

It follows that the techniques of {7], as used in [15, §4], apply. (Observe that
in the present paper A is a non-negative operator, while [15] follows the opposite
sign convention.) Choose & > 0 and a large positive integer N. We can write
(A4+A) = X+ Y and (1 + D~ = Z + W, where X and Z increase the sup-
port of any form to which they are applied by no more than ¢/2 and Y acts like
(1 4+ )N, W like i + DYH-N,

Remarks 3.5 and 3.6 show that ¢ x o (d + d*) o W is compact. Because £ has
compact support, Rellich’s lemma implies that ¢ Xo (d + d*) » Y is compact.

Only ¢xe(d + d*)o (X — Z) remains to be considered.

2 — 1186
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Choose a two-element partition of unity {u,, u,} on G/K satisfying the con-
ditions: support(y,) is compact; and there exists a bounded ball B in G/K, cen-
tered at the identity coset and containing support(f) such that distance(B, sup-
port(y;)) > ¢. For any v € L*(A*T*(G/K)) finite propagation speed |implies that
EXo(d + d*) e (X — Z)(po¥) = 0. Thus ¢x o(d + d¥)e (X — Z)(v) = €x o (d +
+ d¥) e (X — Z) (u,v), and every step of this last composition is supported in a com-
pact neighborhood of support(¢).

We now form a compact manifold without boundary on which we apply the
calculus of pseudodifferential operators. Take a bounded ball B’ centered at the
identity coset and containing support(u,) as well as all points whose distance from
support(y,) is no greater than &. Put a collar on this ball, i.e., make a slightly larger
ball called B”". Form the double of B”. This is a compact manifold M without
boundary. A, on B" extends to A, on M. D*—Ais a smooth self-adjoint vector
bundle map. By shrinking rdr to zero as we move from the inside to the outside of
the collar, we can deform D? to equal A on the outside of the collar and beyond.
Using A on the second copy of B, we can extend D? to an operator 2 on M
whose principal symbol equals that of A,,. @, restricted to smooth forms on Af,
is the square of a formally self-adjoint operator. By {8] both 1 + A, and 1 + 2
are (essentially) self-adjoint.

Because (1 + A,) Y2 and (1 +2) /2 are pseudodifferential operators of order
—1 with equal principal symbols [40, p. 293 ff.}, Rellich’s lemma implies that & X o(d +
+d¥) 2 {(1+Ap) 12— (1 + 9)~*2} is a compact map L¥(A*T%(M))— LHA*T*(M)).
We now compare the effect of this map with the effect of é x<(d + d¥)=(X- - Z)
on differential forms u,v. Use exactly the same constructions as were used to form
the operators X, Y, Z, and W to write (1 + Ay)"V2 = Xy + Yy and (1 -+ @)% =
=Ly + Wy.

Exs(d + d¥) < {(1 + )42 — (1 + 2)712} = Exo(d + d¥)e

4.13 . )
( )  (Xy —Zy) + Exe(d + d¥) o (Y, — Why).

The first sentence of this paragraph shows that the left side of (4.13) is compact.
Because Yy, and W, act like (I + Ay)~Y and (I + 2)-¥ respectively, the second
term on the right of (4.13) is compact. Thus ¢ Xo(d + d¥) < (X, — Z,,;) is compact.

(Exe(d + d¥) e X)) (1yv) = (EXo(d + d¥) o X)(uyv) because they can be
written in terms of identical expressions involving the unique solutions to the difie-

rential equations (;;E + 1+ _\M) b =0 and (:0—1— + 1+ Ac/x) b = 0. which are

t ot*
identical in the region B’ with which we are concerned. Similarly (¢xs(d -~
4+ d¥) o Zy)guv) = (Ex< (d + d¥) o Z) (). Thus the map LAA*T*GJK)) —
= LHA*T*(GJK)) given by v — EXe(d + d¥)« (X — Z)(iyv) factors through =
compact map and is itself compact.
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Proof of Proposition 4.4,
[r(t + r»)~¥2drx, (1 + D¥)~Y20D] =
(4.14) =[r(t + 3~ Vadrx, (1 + D¥)~12.(d + d*)] +
+[r(1 + r2Y2drx, (1 + D)7 ¥2e rdr x].
We show first that the first term on the right of (4.14) is compact,
| [r(d + r®)~22drx, (1 + DH~V2o(d + d*)] =
(4.15) = [r(l + r®)-2drx, (1 + D2)—1/é]o(d + d*) +
+ (1 + D)~ [r(1 + r?)~¥2drx, d + d*].

Lemma 416, (1 + DH~12:[r(1 + r¥)-Y2drx, d + d*} is compact.

Proof. A direct calculation using methods of Section 3 and an application
of the discussion surrounding (3.12) shows that the commutator is a2 bounded vector
bundle map.

Lemma 4.17. [r(1 + r?)-Y2drx, (1 + D?)~V2](d + d*) is compact.

Proof. Use the integral for (1 + D?) -2 and the arguments introduced in Sec-
tion 2. Introduce (1 + D#¥?o(1+ D?)~1/2 on the end of the integrand and pull the
(1 + D?~-12 outside the integral. Because (2.4) and Remark 2.6 are unnecessary
for this argument, we do not need [D, r(1 + r?)~2drx] bounded, To show that
[D%, r(} + r®)~22drx] is bounded from domain(D) to L}A*T*(G/K)) we must
calculate directly as in Section 3 and use the discussion of the effect of A.

We return to the second term on the right of (4.14).

(1 + r3)-22drx, (1 + D?)-V2ordrx] =
(4.18) =[r(l + r)=¥2drx, (1 + D)2 c (1 + r22 - (1 + rB)=22dr 3 —
__2(] + D2)—1/2 o (] + r2)—-],2 + 2(] + DZ)—];E - (1 + ’.2)1/2'

Because r(l + r¥)~12drx is bounded, the rcasoning used to prove Lemma 4.17
shows that the first term on the right of (4.18) is compact. The second term is
compact. The third term equals

201 + PHY4 (1 4 D)~ 12 (1 + r?)M4 4
4.19)
+ 2(] + ,.2)1/4 o [(l + 72)-1/4, (1 + D‘Z)—l/‘.Z] ° (l + r2)1/2’

which is the sum of a positive operator and an operator we now show to be compact.
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Once we establish a few facts, the reasoning of Section 2 shows that the second
term of (4.19) is equal to the compact operator

1 [o]
_S;.—ma + D%+ D)7H(L + i (D2 (1 + Y+ DR+ 31
T

0o

(4.20)
(DY, (1 + )1 + D + 2)~Y1 + DHYEdi~ (1 + D) ~V2e (1 + e,

These facts, that [D?, (1 + r2)~4], [D% (143, and (1 + r2[D2, (14 #?) 2%
are bounded from domain(D) to L*A*T#(G/K)), follow from calculation with
the methods of Section 3.

5. CONTEXT

This section places our work in the context of a program initiated by Baum,
Connes, and Kasparov. (See also the papers by Rosenberg listed in the references
for an example of the success of this program.) A full discussion of the construc-
tions and claims used in this section can be found in {20]. (Except for minor changes,
¢.g. subscript G in place of superscript G, we follow the notation of [20].)

Let G be a separable locally compact group that acts on C*-algebras A, B,
C, and D. Kasparov defines maps

op: KKg(4, B) » KK;(4A ® D, B® D)
and

Jjo: KK4(4, B) - KK(C*(G, A), C*(G, B)).

KK4(D, D) is given a ring structure by the Kasparov product ® ,. This ring has
a unit 1,.

(5.1) op(lc) = 1p.

REMARK 5.2. The map taking x € KK (C, D) to x®p 1, is the identity map
on KK, (C, D).

For x e KK;(4, C) and y € KK (C, B),
(5.3) op(x ®c¥) = 05(x) @cenop(y)
(5'4) JG(lA) = lC*(G,A)

(55) jG(x ®D y) =j(,(x) ®CtiG,D\ jG(y)'
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LemmA 5.6, For o« and B as in Section 4, the map taking x € KKy (C, C,)
to (x ®c ) @c B is the identity map on KK4(C, C,).

Proof. « @c f = I, [20]. Observe that the Kasparov product is associative
and use Remark 5.2,

LemMMA 5.7. For o and f as in Section 4, the map taking x € KK(C, C*(G,
C.®A4) to (x® C*G.c. o Jglo () Ot Ja(04(B)) is the identity map on
KK(C, C*(G, C, ® A)).

Proof. Add 5.1—5.5 to the lire of reasoning used in the proof of Lemma 5.6.

Lemma 5.8, Let G be a group for which B ®c, @ = Ic. Then:

(a) the map taking y € KK4(C, C) to (y ®c p) Qc, « is the identity on
KK (C, O);

(b) the map raking z € KK(C, C*(G, 4)) to

(.'.' ®C*(G,A) jG(O-A(ﬁ))) ®C*(G.Cr®A) jG(aA(a))

is the identity on KK (C, C*(G, A)).

Proof. The proof is analogous to the proofs of Lemmas 5.6 and 5.7.

REMARK 5.9. Note that for a group & as in Lemma 5.8, we have established
that C*(G, A) and C*(G, C, ® A) are KK-equivalent (definition in {36]). The iso-
morphism from KK(C, C*(G, C.®A)) to KK(C, C*G, A)) is realized by Kas-
parov product with a KK-element created from d + d*, i.e. by “de Rham induc-
tion.”

LeMMma 5.10. For many groups, including “most” connected reductive Lie
groups, f ®c o # lc.

Proof. There is an operator j& taking KK (4, B) to KK(CXG, 4), C¥G, B))
defined as j; is defined but using reduced crossed preduct C*-algebras. The map j§
has properties analogous to those of jgi. Let f: C*G — C¥G and g: C*(G, C, —)
— C¥G, C,) be the natural maps, and let f,:KK(C, C*G) —» KK(C, C}G) and
g.: KK(C, C*(G, C)) = KK(C, CHG, C,)) [te the asscciated maps on K-theory,
Assume that the subgroup K < G used to define C, is compact. For.
x e KK(C, C*G)

) ®pxo 5B = 84 ® g JalB) € KK(C, CX(G, €), 20, [22]

If f®c @ = 1, Lemmas 5.7 and] 5.8, for 4 = C, show that __ ® .+, js(f)

and __® .« j§(B) are isomorphisms, The map g, is an isomorphism. Because

c¥e
f. is not an isomorphism in general [35, p. 70, B ®c o cannot equal I¢in general.
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REMARK 5.11. The above reasoning provides the foundation for showing that
if G is a group for which B Qc,x =Ic and if G acts on a C*-algebra A, then

C*G, A) and C¥G, A) are KK-equivalent.

OUTLINE OF SECTION 6. In Section 6 we use the description of B®c « given

in Section 4 to show that for X a locally compact second countable Hausdorff space
on which the reductive group G acts properly with finitely many orbit types, the
map taking KK(C, C*(G, Cy(X))) to itself defined by

(5.12) 2= Z Oy, iy JalTc,m(B ®c, )

is an isomorphism. Because of the general fact that jG(oco(x,(oc ®RcPh) =1 CHG.C.0C i
it follows that as maps between KK(C, C#G, C,®CyX))) and
KK(C, C*(G, Cy(X)))

y___® C*(G’Cr®co(x)) jG(o-Co(X)(a)) and L. ® C*(G,CO{X)) jG(UCO(X)(ﬂ))

are inverses of each other.

In Section 6 we show directly that when a proper action of G on X has a
single orbit type, fa(Uco(X)(ﬁ ®c ®) = 156 c X+ For more general proper ac-
T e 7
tions of G on X, exact sequences arising from the decomposition of X into orbit
types show that (5.12) is an isomorphism. Because jG(aco,X)(oz ®cp)) acts as the
identity on KK(C, C*(G, C,®Cy(X))), the idempotent [20] fa(aco(X)(ﬂC@ctﬁ)) actg
as the identity on XK(C, C*(G, Co(X))). (Use 5.1—5.5.) By [11] the results of [36]
apply to show that jG(o'com(ﬂ ®C:°L)) =1 C6.C. %) i.e. that de Rham induction

o

realizes a KK-equivalence between C*{(G, C, ® Cy(X)) and C¥(G, Co(X)).

REMARK 5.13. The algebra C, and, in certain cases, all mention of Clifford
algebras can be removed from the statement of the theorems in Section 6. Let C,
denote the Clifford algebra of the complexified cotangent space ¥ to G/K at the
point representing the identity coset. Note that ¥V =~ p* @grC. In what foliows we
switch to the older K-theory notation, KK(C, 4) = Kq(4).

LemMMma 5.14. K(C*(K, Cy ® Cy(X))) = KACH(G, Co(X))).

Proof. Combine the isomorphism of Section 6 with the strong Morita equi-
valence between C*(G, C, ® 4) and C*(X, C;, ® A), [14]. (See [20].)

LemmA 515, K = K' X W where K' is a maximal compact subgroup of G
and W is a vector group.

Proof. We defer the proof to the end of this section.
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LeEmMa 5.16. Ki+dim(K/K')(C*(K’; Cy ® CD(X))) = Ki(C*(G, CO(X)))

Proof. Use Lemma 5.15 and apply Connes’ analogue of the Thom isomor-
phism [9] to the left side of Lemma 5.14.

LeMMA 5.17. If the action of K’ on p factors through spin®(p), then
Kiraimix(CHK', Cy ® Cy(X))) =
=~ K pdimrx ) (CHEK', Co(X)) ® Cy) = Kivdimaxy(CHK', CX))).

Proof. See [20] and [22]. Only the first isomorphism uses the assumption on
the K'-action.

LemMa 5.18. Under the above assumptions :

@) Ki paimoi(CHK', CoX)) 2 KA{CHG, Co(X)));
and
b) K Ldim@x)(CH(K, Cy(X))) = K{(CHG, Co(X)))-

Proof. To prove (a) use Lemmas 516 and 5.17. Part (b) follows from (a)
by another application of [9].

REMARK 5.19. There is another proof of Lemma 5.18 (a). In [1] Abels shows
that X has a global K'-slice S, that X is G-homeomorphic to G X S, and that X is
K'-homeomorphic to S x R4mG/KY Here the action of K’ on RUMGK") arises from the
diffeomorphism of R4™G/K) with G/K'. Using [12] to make the equivariant Thom
isomorphism of {2] a statement about the K-theory of transformation group C*-al-
gebras, we see that the K'-homeomorphism between X and $x RImMGIK) and the
main result of [2] show that Kidimcx(C*(K', Co(X))) = K{(C*(K', Ci(S))). Then
the strong Morita equivalence between C*(K', Co(S)) and CHG, Cy(G X S)) esta-
blished in [28] and the G-homeomorphism between G X, S and X show that
K(CH*K',C(S9)) = K(C*(G, Cy(X))). Although this proof uses techniques that are
simpler, or at least older, than those of our proof, its failure to use de Rham in-
duction at the level where G acts means that it does not fit naturally into the Con-
nes-Kasparov program. It is within this program that one expects proper actions to
achieve their greatest significance, as a tool in understanding actions that are not
proper, [4].

Proof of Lemma 5.15. If G is semisimple, then [17, p. 129, 252—253] shows
that K satisfies the hypotheses of [6, p. 22—05, Corollary 2} and thus K is the direct
product of a compact group and a vector group. For general connected reductive
G, K has a universal cover which is the direct product of a K associated with a
simply-connected semisimple G' and a vector group. It follows that the proof of
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the same corollary in [6] shows that the K of a reductive G has a universal cover
which is the direct product of a compact group with semisimple Lie algebra and a
vector group. The proof in [6] shows that such a K is the direct product of a compact
group and a vector group. The proof of {17, p. 256, Theorem 2.1] extends to show
that the compact factor of K is a maximal compact subgroup of G.

6. PROPER ACTIONS

Throughout this section G is a noncompact connected reductive Lie group
acting properly and with finitely many orbit types on a second countable locally
compact Hausdorff space X. In this situation the definition of proper given in [25]
is equivalent to the following.

DEFINITION 6.1. An action of G on X is said to be proper if under the map
GxX — XxX given by (g, x) — (x, g(x)) the inverse images of compact sets are

compact.
In this section we use the characterization of f§ ®c_ o given in Section 4 to
prove that jG(aCO(X,(B ®c,®) =lzgem- We let (E, T) denote the representative
T ] 0 H
of B ®c, o described in Theorem 4.1. The properties of 7 that are essential in

Section 6 are that it commutes with the action of K and that lits restriction as a
map from forms of even degree to forms of odd degree is surjective with a one-di-
mensional K-invariant kernel.

In working with crossed products, ac,ix)s and jg;, it is often convenient to
work with explicit expressions that make sense at least on dense subalgebras and
submodules (e.g., C.(GX X) « C*(G, Cy(X))). With such an approach one ean show
that j(oc x(E, T)) = (C*(G, Co(X) @ E,1 @ 7).

Henceforth for g € G we denote L;‘—l by v(g).

THEOREM 6.2. Assume X = G]H with H a compact subgroup of G. (We may
assume H < K.)

Then jG(aC“(G,H;(ﬁ ®c @) = I 6. Gt -
Proof. The proof consists of the proofs of two propositions.
ProposiTiON 6.3. Define T’ on C (G (G/H), E) by

(T'0) (g1 [82]) = 7(82) o T = v(gz)(9(81, Lga]).

(Because T cominutes with K, T' is well-defined.) T’ extends, and (C*(G, C(G'H)) ®
® E, T') represents an element of KK(C*(G, C(G/H)), C*(G, C(G/H))) equal to
the element represented by (CH(G, C(G/H)) ® E, 1 ® T).
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PROPOSITION 6.4. (C*(G, C(G/H)) ® E, T') represents Yere.c cm) -
.,
Proof of Proposition 6.3. To understand T we realize C*(G, C,(G/H)) as a sub-
algebra of 4 (L*%G)) and C*(G, C,(G/H) ® E as a submodule of A (L¥()) ® E.
The subalgebra realization arises from

CAGX(GJH)) 5 CAGXGY! < CAGxG) K 4 LXG)).

For ¢ € L¥G) and f € C(GXG) (K(ENL) = S 12, )E(s)ds.

G
CGXG)H = {f e C(GXG): f(th, vh) = f(t, r) for all h € Hand ¢, v € G}.

For z € C(GX(G/H)) (p(2)(¢t, v) = z(tv™*, 7). To see that this realization is
faithful on C*(G, C(G/H)) compare it to mXx A;, the integrated form of the cova-
riant representation arising from pointwise multiplication and the left regular
representation. One shows that mXx A, is faithful by observing that mx i, is equi-
valent to ind%(e; X 1) (Where eg(f) = f((H)) and 7, is again left regular) and by
applying [28] and [29]. We realize C*(G, C,(G/H)) ® E by similar steps involving
C(GX(G/H), E) - C(GXG, EYf - C(GxG, E).

Define V:C(GXG, E)— C(GXG, E) by (VEWt, v) = y(t~ V)&, v). V
extends to an endomorphism of S (LA%G)) @ E with (V*E(, v) = y()(&(t, v)).
In fact the restriction of ¥*o (I ® T') o ¥ maps the closure of C (G X G, E)? to itself
and is identified with T’. The claims of Proposition 6.3 follow from calculations
that show that T and T’ satisfy the conditions of the following lemma.

LEMMA 6.5. Suppose (F, S)) € (4, B), S, = SY, and the degree one operator
Sy € L(F) satisfies S, = S§ and ao(Sy-— S;) € #'(F) for every a in A. Then
(F, S,) € (4, B), and (F, S,) represents the same class in KK(4, B) that (F, S,)
does.

Proof. tS; + (1 —1)S, is an operator homotopy.

Proof of Proposition 6.4. Let EX = {e e E: y(k)e = e Vk € K}. LetP: E — EX
be orthogonal projection. The restriction of ¥* - (1 & P)o ¥ to our module is a pro-
jection onto the submodule M which is the closure of M, = {¢ e C(GXG, E)*:
st~ v)) € EX Vt, v € G}. The range of the complementary projection is
the closure N of N, = {{ € C(GX G, E)? : y(t~)(&(1, v)) € (EX)L V1, ve Gl T’
restricts to M and N to give rise to cycles (M, Tys) and (N, Ty) for KK(C#(G, Co(G/H)),
CHG, C(G/H))), and (CX(G, Cy(G/H)) @ E, T') = (M, Ta) ® (N, Ty). T} is in-
vertible and self-adjoint, and it commutes with the left action of C*(G, Cy(G/E)).

An operator homotopy shows that (N, Ty) represents zero in KK(C*(G, C%G/IT)),
C*(G, Cy(G/H))).
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LEMMA 6.6, (M, Tyy) =1 C¥i6.C1GIH) -

Proof. We continue to identify implicitly C*(G, Co(G/H)) with its image under
the map involving p. One can calculate that V'is a unitary isomorphism from (M, T3y)
to TG, (Gl (EX, T). Remark 3.7 and [21] complete the proof.

THEOREM 6.7. Assume the action of G on X has a single orbit type (H). Then
jG('UCO(X?((E‘ T))) = IC";(G,CO\XJ) .

Proof. The slice theorem [25] and the reduction of structure group [39] per-
mitted by Lemma 3.3 show that X is a fiber bundle over G\X with fiber G/H and
structure group N (H)/H,, where H, is the kernel of the left translation map from
G to homeomorphisms of G/H. It is then possible to realize {C*(G, Cy(X)), resp.
C*(G, Cy(X)) ® E, as sections of bundles with fiber C*(G, Ci(G/H)), resp.
C*(G,C4(G/H)) ® E, and base space G\X. The proof for X = G/H can be patched
together to give a proof for the X of Theorem 6.7.

THEOREM 6.8. Assume the action of G on X has finitely many orbit types. Then

B ere.c iy Jol0c,x(B ®c,2) is an isomorphism from KK(C, C*(G, Co(X))) to
o T

itself.

Proof. For any subgroup H of G and any proper G-space Y, Y, = {y €Y :
the isotropy group of y is conjugate to a subgroup of H} is open in Y, [25, p. 313].
Define an order on subgroups of G by saying H, < H, if H, is conjugate to a
subgroup of H,. Let /,, ..., H, be representatives of the conjugacy classes of the
isotropy groups of the action of G on X that are minimal with respect to this order.
Then X(Hl” R ¢ (1) are disjoint open subsets of X, each of a single orbit type,
and there is an exact sequence 0 — @ C*(G, Co(Xm ) = CHG, Cy(X)) —

i1 !

/ n
- C¥ G, Cy (X"UX(Hi')) — 0. We can apply the five lemma to the maps
i=l

given by —-®c*(c,c“(xn J};(Gco(x,(ﬁ ®c, %)) and its restrictions to G-invariant sub-
n”

spaces of X if we establish that its restriction to KK(C, C*(G, C, (X——- U X‘”i’)))
i1

is an isomorphism. An inductive argument does this.

THEOREM 6.9. Assume G and X satisfy the conditions stated at the beginning of
Section 6. T/ze/sz(acn(X,(ﬁ®C€ o)) = lc*‘(G.C”u\’)l' CHG, Co(X)) and CH(G, Ce{X)RC))
are XK-equivalent,

Proof. Because &« ®c fp =ic,, because j; and g, preserve the unit, and by (5.1)
and (5.3), _® e X, j(;(‘a(;()(m(ﬁ@(; 2)} is not only an isomorphism but is
Lt} t K3
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the identity on KK(C, C*(G, Cy(X))). (It is easy to extend the argument to
K(C*(G, Co(X)).) By [11], C*(G, C,(X)) is an algebra to which [36] applies. Let
D =C*G,Co(X)). In the ring structure [36] puts on XK(D, D), an idempotent whose
Homz(K (D), K..(D)) part is the identity must have its Ext;(K.(D), K.(D)) part
equal to zero.
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