* 01)2%;;.;())1{32{4%0111{ © Copyright by INCREST, 1989

IS AN ISOMETRY DETERMINED BY ITS INVARIANT
SUBSPACE LATTICE?

JOHN B. CONWAY and T. A. GILLESPIE

If A and B are bounded operators on a separable Hilbert space ## and their
lattices of invariant subspaces, Lat A and Lat B, are lattice isomorphic, what can
be said about the relation between 4 and B ? In such generality this problem seems
out of reach, though in a number of specific situations it is quite feasible as well
as interesting. If A and B are self-adjoint operators, then the present authors have
been able to give necessary and sufficient conditions such that Lat A is isomorphic
to Lat B [4]. Specifically, it was shown that two self-adjoint operators have isomor-
phic invariant subspace lattices if and only if one operator is unitarily equivalent
to a generator of the von Neumann algebra generated by the other. Using mea-

_sure theory and the spectral representation of self-adjoint operators, this condi-
tion can be given a concrete interpretation.

This paper looks at the above question for isometries (and, hence, also for
unitaries). It will be shown that if U and V are isometries and Lat U is isomorphic
io Lat ¥, then the shift parts in their Wold decompositions are unitarily equivalent
and their unitary parts have isomorphic invariant subspace lattices. Consider now
two unitary operators U and ¥ with isomorphic invariant subspace lattices. Then U
is reductive if and only if V is reductive and, in this case, each operator is uni-
tarily equivalent to a generator of the von Neumann algebra generated by the other.
If U and ¥ are not reductive, then their absolutely continuous parts have isomorphic
lattices and the singular part of each is unitarily equivalent to a generator of the
von Neumann algebra generated by the singular part of the other. This last state-
ment for singular unitary operators as well as the previous statement for reductive
unitary operators is actually a consequence of the results for self-adjoint oper-
ators [4] and can be specified precisely in terms of the multiplicity structures of the
operators concerned. For the absolutely continuous parts of the non-reductive
unitaries, if' these are canonically decomposed as the direct sum of a bilateral
shift of some multiplicity and a reductive unitary, then the multiplicities of the
two bilateral shifts are equal and the absolutely continuous reductive part of
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each is unitarily equivalent to a generator of the von Neumann algebra generated
by the absolutely continuous reductive part of the other.

Unfortunately we have not been able to obtain any structural conditions
which are both necessary and sufficient for two unitaries to have isomorphic inva-
riant subspace lattices. It follows from our results that if U and ¥ are unitary oper-
ators with isomorphic invariant subspace lattices, then V is unitarily equivalent to
¢(U) for a function ¢ in L*(x) such that the polynomials in ¢ and @ are weak®
dense on L*®(u), where y is a scalar-valued spectral measure for U. It is not known
whether the converse of this statement or some appropriately refined version of
it holds.

In particular, let E be the top half of the unit circle and let F = {e¥:n/2
SO<mor3n2<0<2n}). If U=M,® M. on LA0D) @® LYE) and V ==
= M, @ M. on LXCD) @ L*(F), then V is unitarily equivalent to ¢(U) for a func-
tion of the type described above: but it is not known whether LatlU ~ Lat V.
A description of the invariant subspaces of the preceding examples of unitary oper-
ators is included in an appendix to this paper. It may be possible to test the validity
of the above converse against these operators, but we have not succeeded in doing so.

The first section of the paper contains some preliminary material. Section 2
characterizes the central elements of the invariant subspace lattice of an arbitrary
normal operator. In [4], the central elements of an invariant subspace lattice of a
eelf-adjoint operator played a crucial role. In a sense the result in Section 2 shows
tha. the central elements of the invariant subspace lattice of a normal operator cannot
play this crucial role since there are so few of them. To a large extent this is the crux
of the difficulty in extending the results of [4] to the unitary and normal cases. Sec-
tion 3 presents the results for lattice isomorphisms of the lattices of isometries that
were outlined above,

1. PRELIMINARIES

Generally the terminology and notation of [3} will be followed, but some
additions to this source are given in the present section together with several results
that are of particular importance here. Throughout, all Hilbert spaces are assum-
ed to be separable and complex.

If ¥, and .&, are two lattices, then a laitice isomorphism is a bijection @: ¥, —
- &, that preserves the join and meet operations. Equivalently, a bijection @: &, —
- %5 is a lattice isomorphism precisely when O(x) € O(y) if and only if x < y.
If ¥, and &, are isomorphic lattices, this will be denoted by writing ¥, ~ ¥.
The laitice operations on the set of all closed subspaces of a Hilbert space 3#
are defined by # v A4 =cl(.# + A7) and A A A" = # A" With these definitions
it is casy to see that Lat A, the lattice of invariant subspaces of the bounded oper-
ator A, is a complete lattice with a unit (viz., #°) and a 0 (viz., (0)).
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For a lattice ., an element ¢ of & is said to be central if there is an element
e of ¥ such that e A € =0 and f=(f A eVv(f an¢€) for every fin . In
this case the element ¢’ is uniquely determined and is also central with ¢’ =e.
For an operator 7, let P*(T) denote the WOT (weak operator topology)
-closed algebra generated by 7 and the identity operator. For a compactly supported
measure u, let P®(u) denote the weak* closure of the (analytic_) polynomials in
L*(). If N is a normal operator and p is its scalar-valued spectral measure, then
the functional calculus ¢ — @(N) defines an isometric isomorphism between P*(u)
and P*(N) that is a homeomorphism if P®(y) is given its weak* topology and
P>(N) is given the WOT.
~ If A and B are operators, then unitary equivalence between A and Bis denoted
by A = B. In [4] it was shown that if N and M are normal operators and there is
a unitary operator U such that U(LatN) = Lat M, then U*MU is a WOT gener-
ator of P*(N). By identifying P®(N) and P>(u) as above, this gives a complete
description of when such a phenomenon occurs ([8}, [9]). It was also shown in [4)
that Lat N ~ Lat N* for any normal operator. In fact, if N is represented as mul-
tiplication by some bounded function ¢ on L3(X, Q, p) for some measure space
(X, Q, 1), then the map .4 +> 2% = {f: f e} defines an isomorphism of Lat N
onto Lat N* This leads to the following question.

QuesTioN. If N and M are normal operators and Lat N & Lat M, must it be
that either M or M* is unitarily equivalent to a generator of P®(N)?

The answer to this question is yes in the case of self-adjoint operators,
but remains unanswered in the case of a unitary operator. There is a curious dilemma
here. If M and N are normal and either M or M* is unitarily equivalent to a
generator of PP(N), then, as shown above, Lat N ~ Lat M and the question above
asks whether the converse holds. Now if M and N are unitaries and LatN =
~ Lat M, then it will be shown in this paper that M is unitarily equivalent to
a generator of the von Neumann algebra W*(N), but it is unknown whether M, or
M*,is unitarily equivalent to a generator of P®(N). To further complicate this matter,
it is unknown whether this last fact holds for all normal operators. That is,
if Lat M ~ LatN, is M unitarily equivalent to a generator of W*(N)?

The following description of the invariant subspaces of the bilateral shift
of multiplicity 1 will be needed. This can be found in [6].

1.1. PROPOSITION. If m is Lebesgue measure on 8D and U is multiplication
by the independent variable on L¥(m), then 4 € LatU if and only if either there is
a Borel set A contained in 8D such that /M = {f € L*(m): f =0 off 4} or there is
a ¢ in L®(m) such that |p| =1 ae. and M = @H® The spaces of the first type
are reducing for U and the spaces of the second type are not.

1.2. COROLLARY. If S is the unilateral shift of multiplicity 1 and 4 and N are
non-zero elements of LatS, then 4 n A # 0.

3 — 1186
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. There is a way to distinguish the reducing subspaces for a unitary operator
from its non-reducing subspaces. The next result is well known and its proof is an
easy exercise.

1.3. ProposiTION. (a) If U is unitary and .# € Lat U, then .# is reducing for U
if and only if Udl = 4.
(b) If V is an isometry and A" € LatV such that V A" is unitary, then A

=3
reduces V. and A" < (M) ran(V").
1

It is perhaps worthwhile to mention that the preceding proposition genera-
lizes to normal operators in the following form: If N is normal and .# € Lat N,
then .# reduces N if and only if N '.# is normal.

The proof of the next proposition was shown to us by Professor Ciprian
Foias.

1.4. ProrosITION. If U and V are unilateral shifts and X is an operator that is
injective and has dense range such that XU = VX, then U and V have the same multi-
plicity. That is, U and V are unitarily equivalent.

Proof. Let m = the multiplicity of ¥ and let n = the multiplicity of U. Since
XU = VX, U*X* = X*V*, Thus X*%ker¥*) < ker U*. Since X* is injective,
m < n. So if m = oo, the proof is complete. Assume that »m < co and suppose
that m < n < o0.

The operator ¥ (resp., U) can be represented as multiplication by £ on the
Hardy space of C™-valued (resp., C"-valued) analytic functions, Hf:m (resp., f]én),
where C” denotes the sequence space £? if 7 = oo. Since X Hén — Hém and XU =
= VX, X can be represented as multiplication by an m X n matrix with entries
from H*®. We wish to perform elementary row operations on the matrix X, where
instead of only multiplying by non-zero scalars, we will multiply by non-zero mero-
morphic functions that are the quotient of two functions from H*, Note that because
the operator X is injective, a matrix '

Qo Dz - Gy Aty oo - Qi

0 1 dyp... @y ey - Gy,

0 © o ... 1 Copmt1 - o+ Aun |

L

is obtained by performing such operations, where cach entry g;; in this matrix
is a meromorphic function that is the quotient of twe bounded analytic functions
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on D. (The obvious interpretation of A is understood when n = co.) Furthermore,
from linear algebra, it is known that except for 2 belonging to the countable set
consisting of the points in D that are poles of the entries of 4 or poles of the entries
of the matrices used to perform the row operations, a vector ¢ in C” satisfies
A(2)¢ = 0 if and only if X(2)¢ = 0. It will now be shown that there is a non-zero
bounded analytic function f: D — C” such that A(A)f(2) = 0 for all A in’'D. Thus
f € Hgn and Xf = 0, contradicting the fact that X is injective.

Let ¢ € H* such that ¢ # 0 and a;;0 = b;; e H® for 1 <i <j<m + 1. Let
fi=0.for j>m+ land f,.; = ¢". Put

T m _ ni -1
.fm - —‘am,m+1(p - '—bm,m+1(p -

Continue in this fashion, defining f,,_, inductively for 0 < k < m— 1 by
,f;n—-k = - Z {am_k,j_fll"f ] = m—k + 1}

An induction argument shows that each f; € H®. Hence f = (f}) is a non-zero
bounded analytic function from D into C”. It is routine to show that Af = 0,
completing the proof.

The preceding proposition makes possible a generalization of Corollary 1.2
above to shifts of finite multiplicity.

1.5. PROPOSITION. If U is a unilateral shift of finite multiplicity n and 4, , . ..
oo sy, My are invariant subspaces for U such that ;0 (Miyq + ... + Myy1) =
= (0) for all i, then 4, = (0) for at least one k.

Proof. Assume that .#, # (0) for all k. Since U ;,///k is a unilateral shift for
each k, by passing to a subspace of .#, if necessary, it may be assumed that U g /4
is a unilateral shift of multiplicity 1 for each k. Let # = .y v Ay v .. vV i,y
andlet V= U ity QU My @ ... ® U |llysr MK =My @My ® ... Dl yy.
Define X: 4 —-# by Xy Dh @ .. @ hysy) =l + by + ... 4 Byyq. It is
easy to check that XV = (U { H)X. Also X clearly has dense range and the assump-
tion on the spaces .#, implies that X is ipjective. By Proposition 1.4, U ,./f and V
have the same multiplicity. Therefore U |# has multiplicity » + 1, contradicting
the hypothesis that U has multiplicity a. Z

If (X, A, ) and (Y, B, v) are two o-finite measure spaces, say that a function
@: X — Y is an (X, W, p)-(Y, B, v) point isomorphism if there are sets « in A
and § in B such that p(X \ o) = 0 = v(¥Y'\ f); ¢ is a bijection from « onto f; for
4 <o, A€W if and only if ¢(4) € B and p(4) = 0 if and only if v(p(d)) =0,
1f (X, %) and (¥, B) are understood (as is the case when p and v are compactly
sunported regular Borel measures on the complex plane), it will be said that ¢ is
a p-v point isomorphism. If p is a compactly supported measure on C, say that a
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function ¢ in L®(u) is a generator of L®(u) as a von Neumann algebra if L®(u)
is the smallest von Neumann algebra that contains ¢ and the constant functions.
These two concepts are related by the following result.

1.6. ProrosiTioN. If (X, U, p) is a o-finite measure space, ¢ € L°(u), and
v=po@ L then ¢ generates L™(u) as a von Neumann algebra if and only if ¢ is
a u-v point isomorphism.

Proof. Since neither the definition of L®(u) nor its weak® topology change
when u is replaced by an equivalent measure, it may be assumed that (X, o, u) is
a finite measure space. Specifically, it will be assumed that (X, 2, p)is a probability
measure space.

First assume that ¢ is a u-v point isomorphism and let o« and § be measurable
sets as in the definition given above. Define ¢~ on f;so ¢~! is defined v-a.c.
Define T:L®(v) » L®(u) by Tf = fo ¢ and define R:L%(u) - L*(v) by Rg =
= go@ L If f € L®(v), then there is a set 4 in A contained in « such that u(x\4) = 0
and ||fe ¢llo = sup{|f(p(x))| : x € 4}. But ¢@(4) is a Borel set having full v
measure. Hence ||fli > 11f° @llo. Similarly, jigll, > lige @1, for every g in L®(u).
This shows that T is a surjective isometry (with inverse R). Also, if {f;} is a net

in L®(v) such that f; >0 weak* and hely), then S( ficoYhdy =

o g fih»¢ Yy dv — 0. Hence T is weak* continuous. Similarly, R is weak* conti-

nuous and so T is a weak® homeomorphism. Since polynomials in z and Z are
weak® dense in L*®(v), it must be that polynomials in ¢ and ¢ are weak* dense
in L*®(x). That is, ¢ generates L®(u) as a von Neumann algebra.

Now assume that ¢ generates L®(u) as a von Neumann algebra and let Y be
the support of v. Since polynomials in ¢ and ¢ are weak* dense in L*(y), they are
weakly dense in L*(u). Thus (X, 9, p) is a separable measure space and Af, is
a cyclic normal operator on L?(u) with cyclic vector 1. Since v is a scalar-valued
spectral measure for M,,, there is a unitary U: L*(v) —» L*u) such that Ul =1
and UM, = M,U. An easy algebraic argument together with an application of the
Fuglede-Putnam Theorem (see, for example, page 286 of [3]) shows that Up(z, Z)=
= p(p, @) for every polynomial p in z and Z. An approximation argument now
demonstrates that Uf = fo ¢ for every f in L*(v). In particular, Uy, = X ey for
every Borel set E. Since U is unitary, the map E ~ ¢~Y(E) induces a Boolean
algebra isomorphism of the measure algebra for v onto the measure algebra for u.
By a result due essentially to Halmos and von Neumann [5] (see also Theorem 1.3
of [4]), there is a u-v point isomorphism  such that Xk = L1 in L®(u) for
every Borel set E. Note that since ¢ is bounded, Y is a bounded set and hence
¥ € L2(u). It will be shown that ¢ = ¢ in L®(y).
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Let o € U having full 4 measure such that ¥ is bounded and one-to-one on
o and for a subset A of «, 4 € A if and only if Y(4) is Borel and u(d) = 0 if and
only if v()(4)) = 0. Fix ¢ > 0. Since ¥ is bounded on «, there is a measurable
partition @ = o, U ... Ua, and points x; in a; such that, for 1 <j < n, {Y(x) —
—y(x;)] < ¢ for all xino;. Let B; = {z € C: |z—y(x))| < &}. Then 1wy =

= xw_le) in L%®(u). Thus, since a; < —I(Bj), Ao, = X«jxw‘le) = X“,-ch"‘(xj)- Hence

lp(x) —¥(x))l < & p-a.e. on «; for each j. It follows that |p(x)— Y(x)} < 2¢,
p-a.e, on o, and therefore ¢ = | p-a.e. as required. %

Here the terminology introduced prior to the preceding proposition will be
modified -a little. If N and M are normal operators with scalar-valued spectral
measures x and v, respectively, then say that a function ¢ is a N-M point
isomorphism if ¢ is a u-v isomorphism. Since the definition of a point
isomorphism depends only on the measure class and not on the individual measure,
this definition is unambiguous. The main result of [4] can be rephrased by saying
that if 4 and B are self-adjoint operators, then LatA4 ~ LatB if and only if
B = @(A) where ¢ is an A-B point isomorphism,

If # is a subspace of a Hilbert space s, then P, denotes the orthogonal pro-
jection of # onto .. A reductive operator is one such that every invariant sub-
space for it is reducing.

2. THE CENTRAL ELEMENTS OF THE INVARIANT SUBSPACE LATTICE
OF A NORMAL OPERATOR

The purpose of this section is to prove the following result.

- 2.1. THEOREM. If N is a normal operator and 4 € Lat N, then .# is a central
element of LatN if and only if P, € P®(N).

The proof of this theorem will need a few lemmas, the first of which says
that one of the two implications in the theorem is valid. Until the completion of
the proof of the theorem, N is a normal operator, .# € LatN, and P = P,. If #
is central, then .#’ denotes the “complementary’’ subspace appearing in the defi-
nition of a central element; it will be shown that .# is reducing and that .#’ = .4+,

2.2 LemMma, If P € PP(N), then ./ is a central element of LatN.

Proof. Since P € P®(N), there is a net of polynomials {p;} such that p(N) —
> P (WOT). Also (1 —p,)(N) = P+ (WOT). If # €LatN, then p(N)N/ < N
for every i. Thus PA <A, Similarly, P4 < A", So if he N, then h = Ph +.
+ PLlh e PN + PLA. Therefore N = (N A H)V (N A ML) and so M is
central (with .4’ = .#4), ' : . ‘
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23. LemMA. If .# is central and A € LatN such that &4 A N =0, then
< : .

Proof. This is true of any central element of any lattice. 2

2.4. LEMMA. If 4 is a central element of LatN and .4 is reducing for N,
then #' = .#/+ and P € P®(N).

Proof. Since .# is a reducing subspace for N, .4+ € LatN. By the preceding
lemma #* < ' Whed' then h = hy + hy, with k) in .4 and hy in . #*, Thus
hy =h—hy e ddn4' =0. Hence .7/" = M~

Now let 4" eLatN. Since A" = (A" A ) v (A" A4, it follows that

= (N N D (AN L), Therefore PA = A" ol <A for every A in Lat N.
Since normal operators are reflexive [7] (sec also [2], page 97), P € P®(N). Z

2.5. LeMMA, If N is reductive and 4 is a central element of LatN, then P is
a spectral projection of N and H' = 7L,

Proof. If N is reductive, P2(N) = W*(N), the von Neumann aigebra generated
by N. Thus Lemma 2.5 is a special case of Lemma 2.4. Z]

2.6. LeMMA. If pu is a compactly supported measure on C, then ‘rhere' exist
compact sets {F,} such that for every n, int F, = O, F, S F,.,. C\\F, is connected,
and p(F) — n(C) as n — oo.

Proof. This goes back to Bram [1]. In fact, the sets {Fk} in the proof of Theo—
rem 8.14 on page 344 of [2] have these properties. A 4

27. LEMMA. If N = Ssz(z) is the spectral decomposition of N, then there

o] .
are pairwise disjoint Borel sets {A,} such that 1 = y E(4,) and N, = N : E(A)#
' n=-1
is reductive for every integer n.

Proof. Let u be a scalar-valued spectral measure for N and let {F,} be the
sequence of sets obtained in the preceding lemma with Fy=@. Put 4,=F,\ F,_,
for every n > 1. If N, is defined as in the statement of the lemma, then o(N,) < F;.
Since C\F,, is connected and int F, = @, Lavrentiev’s Theorem implies there is a
sequence of analytic polynomials that converges te Z uniformly on o(N,).. It fol-
lows that N, is a reductive operator. 7

Proof Theorem 2.1, Assume that ./# is central in Lat N. LetN = Ssz(:)

te the spectral decomposition of &NV and let y be a scalar-valued spectral measure
for N. Let {A,,} be the sequence of Borel sets obtained in Lemma 2.7. Put .4, =
= NE4)# and 4, ="' 0EU,)H#. If 4 €LatN,, then A4 €LatN and

< E(A)#. Since N = (N AJ) Vv (N A4, it is easy to see that A" =
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= (M AMYY (N A ). That is, &, is central in Lat N, . By Lemma 2.5 there is a
Borel set X, that is contained in 4, and is such that .#, = E(£,) and &, =

= E(4,\Z)H. Let L =|JZ,. Since E(Z,;)Jf =, <M :for evéry n, it follows
1 : ' )
that E(Z)# < 4. Similarly E (U 4, \Z,,)) <.#.Butl = Y E(A,) and hence
’ : 1 1

E ( O (A,,\Z,,)) = E(a(NY\.Z) = E(Z)*. Thus E(E)L < 4'. So if h €. and

h = hy + hy with hy in E(Z)# and hy in' E(E)#, then hy = h— Iy € M 0 M’ = 0;
that is, & € E(Z)s#. Therefore .# = E(X)# and .4 is reducing. By Lemma 2.4,
P € P2(N). | | | 7

3. ISOMORPHIC INVARIANT SUBSPACE LATTICES OF ISOMETRIES

For an isometry U, let U = S @ U, be the Wold decomposition of U, where
S is a unilateral shift of some multiplicity and U, is a unitary, operator. The uni-
tary opcfator can be further decomposed uniquely as U, = U; @ U, where U, is
absolutely continuous (that is, its spectral measure is absolutely continuous with
respect to Lebesgue measure on éD) and U, is singular (again with respect to Lebes-
gue. measure). The operator U, can be still further decomposed as W @ U, , where
W is a bilateral shift of some multiplicity and U, is an absolutely continuous unitary
operator that is reductive. This last decomposition is unique if W has finite multi-
plicity but is not unique if W has infinite multiplicity since, in the latter. case,
W = W @ V for every absolutely continuous unitary operator V. However, it is
unique if it is required that U, = 0 when W has infinite multiplicity. These results-
for U, can be achieved by applying multiplicity theory to U, (see Theorem 10.1,
on page 300 of [3]).
~ To recapitulate the discussion of the preceding paragraph, for any isometry
U, there is a unique decomposition ‘

U=U,eoU,0U, U,

where U, is a unilateral shift, U, is a bilateral shift, U, is a reductive absolutely con-
tinuous unitary operator, U, is a singular unitary operator, and U, = 0 if U, has
infinite multiplicity. This decomposition will be called the standard decomposition
of U.

The purpose of this section is to prove the following theorem.

3.1. THEOREM. Ler U and V be isometries with standard decompositions
U=U,eU,oU,@U,and V=V, OV, @V, ®V, and assume that LatU. =~
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~ LatV. Then:.
(@) U, and V_ have: r/ze same multiplicity;
(b) Uy and V, have the same multiplicity;
) Lat(Up @ U, ® U,)) = Lat(V, ® V, @ V).
Furthermore :
() If U, ® U, =0, then U and V are reductive unitaries and V = o(U) for
some U-V point isomorphism ¢;
@)y if u,@ U, # 0, then
() Lat(U, ® U,) = Lat(V, ® V),
(1) V, = o(U,) for some U,-V, point isomorphism ¢ ;
@) V, = y(U) for some U-V, point isomorphism .

REMARK. Suppose that U and V are unitaries. It is easy to deduce from Theo-
rem 3.1 that, if Lat U =~ LatV, then ¥V = ¢(U) for some U-V point isomorphism
¢. (Alternatively, apply Proposition 3.13 below and the results of [4].) The converse
of this statement is not valid in general. For instance, take ¥ to be the bilateral
shift of multiplicity 1 and U to be multiplication by z on L*(E), where E is the top
half of the unit circle. Then ¥V = ¢(U) for the U-V point isomorphism ¢(z) = z*
but Lat U is not isomorphic to Lat ¥ by Lemma 3.10 below. However Theorem 3.1
suggests a possible more refined converse as follows.

Let U and V be unitaries such that either U, = ¥, = 0 and V = ¢(U) for
some U-V point isomorphism ¢ or U, and V, have the same non-zero multiplicity
and (d") (i), (i) in the statement of Theorem 3.1 hold. Does it follow that Lat U =~
~ Lat V' ? The answer is in the affirmative if Uy, = 0 or if U, = 0, but the situation
is unclear when U, has finite non-zero multiplicity and U, # 0. In the Appendix,
we describe the invariant subspace lattices of the unitaries of the form U, @ U,
where Uy, has multiplicity 1 and U, is non-zero and cyclic, against which the truth
of this converse may possibly be tested.

'_Th_e proof of Theorem 3.1 will be postponed until some preliminary results are
established. Some of these preliminaries have independent interest.

3.2. ProposiTioN. ([10], or Proposition 1.2 of [9]). Let u be a positive measure
on ¢D and let m be normalized arc length measure on éD. Then P™(u) # L@ if
and only if m < p.

'1 3. COROLLARY ]f U is a unitary operator, then the /ollou ing statements are
eqz{nalenl

(a) U is not reductive.

(b) There is a reducing subspace & for U such that UI # is unitarily aqunalenr
to a bilateral shift of multiplicity 1.

(c) There is an invariant subspace .4 for U suc¢h that U |.# is a unilateral
shift  of multiplicity 1. - . ) .
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Proof. Clearly (b) implies (a) and, by Corollary 1.2, (c) implies (a). The fact
that (a) implies (b) follows readily from the preceding proposition. %

The next several lemmas will be used to prove Proposition 3.7 below, which
characterizes the central elements of the invariant subspace lattice of an isometry.
The proof of the first of these lemmas is straightforward from the definitions.

LeMMA 3.4. If A is any operator, # is central in LatA with complementary
subspace M', and N € Lat A, then & NN is central in Lat(4 !JV ) with complemen
tary subspace ' 0N .

LeMMA 3.5. If U is a unilateral shift on #, then the only central elements of
LatU are (0) and .

Proof. Let 4 be a central element in Lat U with complementary space .#"
Since .# A ' = (0), the result in the case that U has multiplicity one is immediate
from Corollary 1.2. Assume that the multiplicity of U is at least two.

Let s, and #, be orthogonal elements of LatU such that both U |,
and U },?‘f’z have multiplicity one. It follows from Lemma 3.4 and the multiplicity
one case that each of #, and ¢, is contained in either .# or ./'. It will be shown
that either #, < .# and o, S ./ or that #, < .#’ and #’, < .#'. If this is not
the case, then it may be assumed that #, < .# and #, < .#'. Now represent
U | #, and U | #, as muitiplication by z on A% and, making the appropriate iden-
tifications, let

N ={f®F feAY S H>@® H* = #, ® H,.

Note that U Mf is a unilateral shift of multiplicity one. Again from Lemma 3.4 and
the multiplicity one case, it must be that A/ < .# or & < .#’. In the former case,
if fe,, then 0 f=fOf—fD0e N —H < #, a contradiction. Simi-
larly, if #” < #’, a contradiction to the fact that #, < .# is obtained. Thus either
Hy S Hand s, S M or A, S A and H, & 4. Since #; and H#, were arbitrary,
the lemma follows. %

LeMMA 3.6. If U is a unilateral shift on # and V is an absolutely continuous
reductive unitary operator on A, then the only central subspaces of Lat(U @ V)
are (0) and # ® A . o

. Proof. Let # be a central element of Lat(U @ V) with complementary sub-
space .#/'. By Lemma 3.4, .#/ n & is central in Lat U. So Lemma 3.5 implies that
cither ' < 4 ot # < .#'. Assume that # < .#. the other case being handled by
reversing the roles of .# and .#' in the argument below. -

Let i be a scalar-valued spectral measure for V. Since V is reductive and abso-
lutely continuous, there is a Borel subset ‘F of ¢D carrying u with & = m on F and
m(@D\ F) > 0. Also, by Lemma 3.4 and Coroliaty 2.3 of [4], #nH = xg(V)X
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for some Borel subset £ of F. Let #, and .¥", € Lat(U @ V) with #, < # and
Ay € A, and such that U - # =M, on H* and V #; = M. on L:(F, m). 1den-
tify %, with H* and 2, with L*(F, m) and consider the subspaces .4". and .$"_
of 3, @ .#, defined by '

Vo=@ uf feH,
Vo ={f@®-—-11:fe .

Both (U@ V) 4, and (U@ V) .A"_ are unilateral shifts of multiplicity one;
hence, by Lemma 3.4 and Lemma 3.5, each of .4", and 4'_ is contained in either
47 or 4. Butif A7, and.#'_ < .4, then this would imply that # n ' #(0), con-
tradicting the fact that # < .#. So it must be that at least one of 4", and .4, <
<. #. Since # < .4, this implies (continuing the above identification of #, and
Ay with H® and L*(F, m), respectively) that y,.f € .# n.#, for fin H? (in particulal
for f'=1). Since ./ 14 = y (V) it follows that m(F > E) = 0 and hence that
A0 A =4 Thatis, # < .4, completmg the proof. 21

3.7. ProrosITION. Let U he an isomelr)v' with standard decomposition U =
=U, QU @U, ®@U, on # =H,DHs®DH, K ®H,.

(a) If U, ® U, # 0, then the central elements of Lat U are the subspaces of
the form # @A, @A, ® yUIAH, or y (U)K, where E is a Borel subset
of ¢D.

() If U, ® Uy, =0, then U is a reductive unitary operator and t/ze cent;al
elements of LatU are {yp/(U)H, @ (U)K : E and F are Borel subsets of ¢

Proof. Part (b) is an immediate consequence of Proposition 3.2 and Corollary
3 of T4]. Thus it suffices to prove (a). So suppose that U, @ U, # 0 and let u be a
sudlar-valued spectral measure for v, o U,® U,. Usmg the fact that

P2(U) = {o(U,) ® ¢(U,) ® o(U,) ® W(U,): ¢ € H™, i € L>(u,)}

where p is the singular part of p and ¢ — @(U,) is the usual A* functional calcu-
lus for a unilateral - shift, it is easy to verify that each subspace described in (a) is
a central element of Lat U.

For the converse, fix a central element..# in Lat U with corresponding comple-
mentary subspace .#'. By Lemma 3.4 and Theorem 2.1, .Zn #, = 3 (U)H,
for some Borel subset £ of ¢D. Since .#', is central in LatU, it readily follows
that

M= M(H, DA DKL) D 7 U)K .

Thus in order to complete the proof it must be shown that J# n (€, @ H#, DH,)
equals either (0) or #, @ #, @ A, .
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If U, =0, then, by the assumption of (a), U, # 0 and m < p, = p —yp,,
a scalar-valued spectral measure for U, @ U,. Thus P®(y,) = H*® and P*(U, @
@ U,) = P*(n,) contains no non-trivial idempotents. This shows, by Theorem 2.1,
that the central element % 0 (#, @ ', ®H,) = .4 0 (K, ©#,) of Lat(U, ®
@ U,) equals #, @ 3¢, or (0), as required. -
For the remainder of the proof, assume that U, # 0. Once again, Lemma 3.4
implics that.# n 5, is central in Lat U, . Thus, by Lemma 3.5, o, < .# orst, = ¥,
Suppose first that #, < .#. Then '

NI, ©H @A) = Hy® ANy D).

It o, # (0), then, as above, P(U, ® U,)= H*. Since .# n (#, @ #,) is centra]
in Lat(U, @ U,), 4 0 (A, @H,) =H, ®H, or (0). But when #, # (0), there
exists #, in Lat U such that 2, < #, and U #, is a unilateral shift. Thus
Ui (#,® H,) is a unilateral shift, and, by Lemma 3.5 and the assumption that
A, S M, it follows that #, @ #, < 4. Thus .4 n (#, @ #,) is non-zero and
so AN(H, ®H,) = (Hy ®A,). This implies that 4 n(H#, ® H\, @ H,) =
= A, DKy ®H, as required (in the case that #, = .4 and #, # (0)).

Still assuming that 2,  .#, consider the case when 5, =(0). Here .4/ n (# @
@ A ,) is central in Lat(U, @ U,) and not (0). By Lemma 3.6, # @ #, < 4
This implies that .Zn(#, DH, ®H)=H ,®H, =K, H,D®H,, com-.
pleting the proof in the case that #, < 4. :

Finally, assume that #°, < .#'. Then, replacing .# by .#’ in the above argu-
ment, one concludes .that #'n(H#, , H, DH,) =H, 6 DK, ®H,. Hence
HAA, A, ®H) = (0). | o 7

It is now time to give a series of lemmas that are special cases of Theorem 3.1,
but will be used in its proof. . '

3.8. LEMMA. If S is the unilateral shift of multiplicity 1, V is an isomerry,'
and Lat S and LatV are isomorphic, then V =~ S. That is, V is the unilateral shift
of multiplicity 1. »

Proof. If @:LatS — Lat} is a lattice isomorphism and ./# is a reducing
subspace for ¥, then ©-(4) A ©~-(#+) = 0. But by Corollary 1.2 this implies
that either @~1(.4) =0 or @ ~(.#+) = 0. Hence ¥ must be an irreducible isometry,
But the only irreducible isometry is the unilateral shift of multiplicity 1. 2

3.9. LemMA. If U is a reductive unitary operator, V is an isometry, and
LatU =~ LatV, then V is a reductive unitary operator and V = @(U) for some U-V
point_isomorphism .

Proof. Let ©: LatU — LatV be a lattice isomorphism. Assume that V. is
not a reductive unitary operator. By the Wold deccmpaosition and Corollary 3.3,
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there is an invariant subspace .# of ¥ such that ¥ | .# is a unilateral shift of multi-
plicity 1. But then Lat(U'@-1(.#)) ~ Lat(V .#). By Lemma 3.8, U @-Y.#)
a4 V;/Z. But this says that U ©~1(.#) is not unitary. By Proposition 1.3, this con-
tradicts the fact that U is reductive. Therefore V is reductive. The remainder of
the proposition follows from Theorem 3.2 of [4]. 2|

3.10. LeMMA. If U is the bilateral shift of multiplicity 1, V is an isometry,
and Lat U and LatV are isomorphic, then V =~ U. That is, V is the bilateral shift
of multipliciry 1

Proof. Let ©: LatU — LatV be a lattice isomorphism and let V = S@® W
on X =% @ ¥ be the Wold decomposition of V, where S is a unilateral shift
and W is unitary. First note that %" s 0. Indeed, if #~ = (0), then ¥V is a unilateral
shift. But there is a reducing subspace .# for U such that U .# is a reductive uni-
tary operator. By Lemma 3.9, V' O(/#) is a reductive unitary operator. But this
is a contradiction since unilateral shifts can have no such invariant subspaces. Thus
W # (0).

Since ©@~Y(#") € Lat U, Proposition 1.1 implies that either there is a Borel
set 4 contained in @D such that @Y #") = .#, = {f € Lm): f = 0 off 4} or there
is a @ in L™(m) such that ¢ =1 a.c. and @~} ¥#") = ¢H> If it were the case that
O-Y ') = @H?, then it would follow that Lat(U ¢H?) ~ LatW. But U @H? is
a unilateral shift of multiplicity 1. By Lemma 3.8, this is impossible since W is
unitary. Therefore it must be that @ -Y#") = .4, for some Borel subset of ¢D-

Claim. A = ¢D.

Let A’ = éD\4 and assume that m(4') > 0. Let P be the orthogonal projec-
tion of # onto & and let & = O(.#4) = O(#3). So L A # =0and & + ¥
is dense in . Define 4: ¥ - S by A = P‘ #.So A is a bounded operator that
is injective and has dense range. If L = V&, then L is an isometry and AL = SA.
Hence L*A% = A*S*. But there is a non-zero vector ¢ in & such that S¥e = 0.
Hence L*A*e = 0 and A%e # 0. Hence L is not unitary. By the Wold decompo-
sition there is an invariant subspace A" for V such that 4" < % and ¥ 4 is a uni-
lateral shift of multiplicity 1. But @ -}(#") < .#.¢ and Lat (U @-1(A")) =~ Lat(V .1
By Lemma 3.8, U ©@~'(47)is a unilateral shift of multiplicity 1. By Corollary 3.3,
it follows that A’ = ¢D and so 4 = . Thus .#; = (0) and so ¥~ = (0), a contra-
diction. Therefore m(4") = 0, or 4 = &D, proving the claim.

Because 4 = ¢D and © 1s injective, A = ¥". That is, V is unitary.

But Lat(U' H*) =~ Lat(V O(H?). So Lemma 3.8 implies that V O(H*) =
~ U H* Hence there is a reducing subspace .4 for ¥ such that . & = O(H?) and
V 4" = U. But, from Proposition 1.1, either there is a @ in L®(m) with ¢! =1
a.e. such that ©® ~1(.4") = @H? or there is a Borel subset 4 of D such that @ -(A4") =

- 1f ©-1(4") = pH* then Lal(U @H*) x Lat(V' ). Since V' A" is unitary,
“hl; is a contradiction by Lemma 3.8. So it must be that @147 = 4 4 for some
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Borel set. But @~ 1(/V ) > H®and so 4 = oD. Therefore A = @(L?) = A". That
is, V=V'W/ = U ,

3.11. LEMMA. If 1 < n < oo, U is a bilateral shift of multiplicity n, V is
an isometry, and LatU ~ Lat V, then V =~ U.

Proof. Let ©: LatU — LatV be the hypothesized lattice isomorphism and
let # and A" be the domains of U and V, respectively.

Case 1. n is finite.

Let # = o, @ H, @ ... ®H, such that each #; reduces U and U | #;
is a bilateral shift of multlphclty 1. Let X; = O(#)). So V [ A ; is an isometry and
Lat(V|#,) = Lat(U|#). By Lemma 3.10, V|X; = Ui.}? In particular,
| 4 l Ay is umtary Therefore ; reduces ¥ and o; < ran V. Therefore ran ¥V > o, v
VoL = @(H#)V ... vO#,) = O(#) =.#. Thus V is unitary. :

’Deﬁne XA ® ... 0N, »H by Xk @ ... Dk} =k, + ... +k,. It
follows that X is injectlve and has dense range. Also

XV A ®...0V|H,)=VX

By one of the standard consequences of the Fuglede-Putnam Theorem (see, for
example, page 286 of (3]), V = V /.4, @ ... @ V| A, = U.

Case 2. n is infinite.

Let {5#,} be an increasing sequence of reducing subspaces for U, whose union
is dense in &, and such that U} #; is a bilateral shift of multiplicity j. Let #; =
= 0O(#,).ByCase 1, V!, 2 U ,
shift of multiplicity j and A; reduces V. Also #; = X ';,,. A routine application of
mult1phc1ty theory (for example, Theorem 101 on page 300 of [3]) shows that
V\ (A ;41 © A}) is a bilateral shift of multiplicity one. Therefore V[ (A ;10 H DES

& U|(#;4, © #) for all j. Since @—1(\/,;{,.) = #, it must be that
1

V A = A. Therefore U = V. | 7]
1

3.12. LeMMA. If U is a unitary operator, V is an isometry, and Lat U ~ LatV,
then V is unitary.

Proof. Let @:LatU — LatV be a lattice isomorphism. The case where U
is reductive is dealt with in Lemma 3.9. So assume that U is not reductive and
decompose U as U=U, @ U, on &# = #, ® #,, where U, is a bilateral
shift of multiplicity #, 1 < n € o0, and Uy is reductive. Put 4", = @(s#;). So
Lat(V| A7) ~ LatU,. By Lemma 3.11, V| #, ~ U,.Hence ¥ | &7 is unitary and
'y reduces ¥ (by Proposition 1.3). Let £y =7 . So Ay LatVand Vo= V|4,
is an isometry.
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Let P be the orthogonal projection of H o= @D K,y onto K, and let ¥ -
= O(H,). Define X: & — # ', by X = P £. Itis easy to see that X is injective,
has dense range, and X(V| L) =V, X. But Lat(V ¥) =~ LatU, and U, is
reductive. By Lemma 3.9, ¥ # is a reductive umtary operator.

If ¥V, is not unitary, then V& has a non-trivial kernel. Since V £y X+ =
= X*V§ and X* is injective, this would imply that (V' #)* has a non-trivial kernel,
contradicting the fact that (V¥ %) is unitary. Hence V, is unitary. This implies
that V = V, @ V, is unitary. 2,

The preceding lemma allows a fact to be deduced which has an interest in
its own right.

3.13. PropostTION. ff U and V are unitary operators and @:LatU - LatV
is a lattice isomorphism, then ©(.#) is a reducing subspace for V whenever .7 is a
reducing subspace for U.

Proof If .# is a reducing subspace for U, then U .# is unitary and
Lat(U ..#%) = Lat(V O(.#)). By Lemma 3.12, v @(.#) is unitary and, there-
fore, @(.//I) reduces V. 3

3.14. LEMMA. If U is a unilateral shift of multiplicity n, 1 < n € oo, and V
is an isometry such that Lat U ~ LatV, then V is a unilateral shift of multiplicity n-

Proof. Let O: Latfl/ — Lat U be a lattice isomorphism. If ¥ is not a unila-
teral shift, then there is a reducing subspace .# for V such that V ' 4 is unitary.
Since Lat(U' O(.#)) ~ Lat(V | .#), Lemma 3.12 implies that U: @(.#) is a uni-
iary, contradicting the hypothesis. Therefore ¥ is a unilateral shift.

If U and ¥V have finite multiplicity n and i, respectively, then there are pair-
wise orthogonal non-zero reducing subspaces for U, 4, ..., #,, whose lincar
span is all of # (the domain of U). Let @ X#,) =.#4,, 1 < k < n. Then .#; 0
N(Mysr + ... + ;) = (0) for each k and no .#, is (0). By Proposition 1.5,
m = . A similar argument shows that m < n. If the multiplicity of either U or
I7 is infinite, then again Proposition 1.5 can be used to conclude that the other shift
raust have infinite multiplicity. ‘4

Proof of Theorem 3.1. Let©@:Lat U — Lat ¥V be a lattice isomorphism and fet
U=U, ®U,® U,® U, be the standard decomposition of U acting on J# = ¥,
OHDH, ®DH,. Similarly, let V=V, @V, ®V, @V, on A =H,O
QA DA, ®A,. The proof splits into iwo cases, the first of which is easy to
take care of. First assume that U, @ U, = 0. In this case U is a reductive unitary
operator. By Lemma 3.9, V is reductive, V, = V;, =0, and V = ¢(U) for scme
L~V point isomorphism ¢, completing the proof in this case,

Thus it may be assumed that U, @ U, 3¢ 0. The result of the previous para-
graph applied to @1 shows that ¥V, @ V,, # C. By Lemma 3.7, 57 is a central cle-
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ment of Lat U; hence ©(3#,) = A is central in Lat V. Using Lemma 3.7 again as
well as Lemma 3.9, it follows that ¥V ]./V is unitary and therefore A" < ;. A similar
argument shows that @ ~1(4) < #',. Therefore O( ) = ', and Lat U, ~ Lat V.
By Lemma 3.9, V, = ¢,(U,) for some U,-V, point isomorphism ¢,. This proves
part (d') (ii).

By Lemma 3.12, V| O(#, ® ', ® #,) is unitary. But then Proposition
1.3 implies that O(#, ® H, ® H) S (1an V" = Ay @ A, ® #,. Similarly,

1

ONH @A, ®N) S Hy®H, ®H,. Thus

(3.15) OHy D HDH) =M DH, DA,

and part (c) follows.

From Proposition 3.7 it is seen that the central element of Lat U complemen-
tary to #, is H, ® H, ® #,. Likewise, X', @ A", ® A, is complementary to
A, in Lat V. Since O(#,) = A, it follows that

(3.16) O, @HyDH) =, DH oy ® A .

Note that #y, @ H, = (H, @ Hp ®H) N (K, @ H, @ H,) and that a similar
result holds in . Since O is a lattice isomorphism, one can deduce from (3.15) and
(3.16) that

(3.]7) 8(‘%5@‘%’3):'”‘)@'%3'

This proves part (d’) (i).

Now consider J, and let m be the multiplicity of U,. Put & = O(# ). By
Lemma 3.14, V { A is a unilateral shift of multipliqity m. Let Q be the projection
of A onto ', and define X: A" — A by X = Q . It is easy to check that X
is injective with dense range and, since QV = VQ, that X(V]JV )= V,X. By
Proposition 1.4, V |./V =~ V,. This proves part (a).

Put Uy = U, ® U, and V, = V, ® V, and note that, in light of (3.17), ©
induces an isomorphism of Lat U, onto Lat ¥,; this induced isomorphism will also
be denoted by @. Let n and k& be the multiplicities of U, and ¥, respectively, and
let . = O(#). Since #y, reduces U, , .4 reduces V. Also ¥, ] J is a bilateral shift
of multiplicity . It follows that n < k. By interchanging U, and ¥, in the preceding
argument, it follows that n = k, giving part (b).

If n==Fk=oc0, then U, =0 = ¥V, and the proof is complete. Assume that
0 €< n=Fk <oco.(The case n = k = 0 corresponds to the absence of the summands
Uyand Vi) But Vy =V, @V, = V, k A DV, ﬁ,jfi and both ¥, ']/Z and V¥, are
bilateral shifts with the same finite multiplicity n. Hence, because n < oo, a repeat-
ed application of Proposition 10.6 on page 302 of [3] implies that VOE./Z LV,
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Now . Z v O@#,) = O ) v OCH,) = A ® A, and 4 A OWF,) = (0).
Moreover @(s#,) reduces ¥,. Thus an application of Proposition 2.4 of [4] yields
that ¥V, O@#,) = V, (,// 1. Hence V, =V, O(#,). Since Lat(V, O@F,) =
=7 Lat(Uo, #,), LatU, ~ LatV,. But U and V, are reductive unitaries and ‘so
Theorem 3.2 of [4] implies part (d) (ii), completmg the proof. Z]

4. APPENDIX: THE INVARIANT SUBSPACES OF A CERTAIN
ABSOLUTELY CONTINUOQUS UNITARY OPERATOR

Fix a Borel subset Z of the unit circle and assume that m(£)>0 and m(@D \ E)>
> 0. (As before m denotes normalized Lebesgue measure on oD.) Let U, be the
operator defined by multiplication by z on L*(E) and let W be the bilateral shift
on I* = L*D). Put U = W@ U,. In this appendix the characterization of LatU
will be given (without proof). :

There is a part of multiplicity theory that is useful in studying this unitary
operator U. In particular, the commutant of U, {U}’, can be represented as the sct
of all 22 matrices (¢;;) such that ¢, € L>=(0D) and ¢;; € L*(E) when i and j are
not both 1. Note that the reducing subspaces of U correspond to the projections in
{UY}". So to characterize Lat U it suffices to characterize the non-reducing subspaces
belonging to Lat U,

Say that a partial isometry on L* @ L*(E) is special if it belongs to {U}' and
its initial space contains L* @ (0). Say that a partial isometry X is analytic if X is
special and X(H* @ LX(£)) = H* @ LYE).

4.1, TuEOREM. A subspace % of L* @ L*E) is invariant for U but not
reducing if and only if there is a special partial isometry X such that 4/ = X(H®>®
@ LAE)). If X and Y are special partial isometries, then X(H* @ LXE)) < Y(H* @
@ LX(E)) if and only if there is an analytic partial isometry Z such that X = YZ.

To complete this circle of ideas, it should be mentioned that, given a non-re-
ducing subspace .# in Lat U, there is a special partial isometry X such that ./ =
= X(H® @ L*E)) with X of the form

X= [ﬁ) —.EOZU —I
& — Jotat e

where 6,71 € Ewith ont=0;1f1*+ g!*=1 on ¢D; g, =0 on 7U{(CD\E);
and g, # 0 pointwise a.e. on o. Also a partial isometry Z is analytic if and only if

it has the form
Z — [‘1’)11 0 ]
Po1 Pz
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where @y € H®, [1)® + [@]* =1 on 0D, @y vanishes off E, and [@,| = , for
some Borel subset p of E.

Using these ideas, it can be shown that if X and Y are special partial isome-
tries, then X(H® @ L*(E)) = Y(H® @ L%(E)) if and only if Y = XZ, where Z has

the form
7 l o O]
0 ¢

withein C, |af =1, and |@| = y,, where p is a Borel subset of E for which
XX =1@ yg,.
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