CONTINUOUS ANALOGUES OF FOCK SPACE. III: SINGULAR STATES

WILLIAM ARVESON

INTRODUCTION

The study of semigroups of endomorphisms of von Neumann algebras was initiated by Powers in [8], [9], and continued by Powers and Robinson [10], Price [11], [12], and the author [1], [2], [3], [4]. In [1], we reduced the problem of classifying E_0 -semigroups up to cocycle conjugacy to the problem of classifying certain simpler structures associated to them, called product systems. With every product system E, there is an associated C^* -algebra $C^*(E)$ [4]. These C^* -algebras are in many respects "continuous" analogues of the Cuntz algebra O_{∞} [5], [7]. In this paper we analyze the state space of $C^*(E)$, and we obtain a rather explicit description of the space of "singular" states. This allows us to show that the regular representation of $C^*(E)$ is faithful, thereby settling one of the main questions left open in [4].

The following remarks may be helpful in providing a context for the problems taken up in this paper. Let $U = \{U_t : t \ge 0\}$ be a strongly continuous semigroup of isometries acting on a Hilbert space H. The Wold decomposition asserts that U has a unique decomposition

$$(0.1) U_t = V_t \oplus W_t, \quad t \ge 0$$

into a direct sum of a semigroup $W = \{W_t : t \ge 0\}$ of unitary operators and a semigroup $V = \{V_t : t \ge 0\}$ of isometries which is *pure* in the sense that

$$\bigcap_{t>0}\operatorname{ran}V_{t}=\{0\}.$$

This decomposition is *central* in that the two projections associated with the decomposition (0.1) belong to the center of the von Neumann algebra generated by $\{U_t: t \ge 0\}$. Furthermore, the pure summand V is unitarily equivalent to a direct sum of copies of the *shift* semigroup $S = \{S_t: t \ge 0\}$, defined on the Hilbert

space $L^2(0, \infty)$ by

$$S_t f(x) = \begin{cases} f(x-t), & x > t \\ 0, & 0 < x \le t. \end{cases}$$

The number of S-summands is an invariant of U to within unitary equivalence.

The purpose of this paper is to discuss a corresponding decomposition for the representations of product systems and the C^{α} -algebras associated with them, and to give certain applications. In more detail, let $E = \{E(t): t > 0\}$ be a product system in the sense of [1]. This means that E is a measurable family of Hilbert spaces over the open interval $(0, \infty)$ on which there is defined an associative multiplication which acts like tensoring in the sense that it is bilinear on fiber spaces, and that for each s, t > 0, E(s + t) is spanned by all products $\{uv: u \in E(s), v \in E(t)\}$ and we have

$$\langle uv, u'v' \rangle = \langle u, u' \rangle \langle v, v' \rangle,$$

for all $u, u' \in E(s)$, $v, v' \in E(t)$. A representation of E is an operator-valued mapping $\varphi: E \to \mathcal{B}(H)$ satisfying

- (i) $\varphi(u)\varphi(v) = \varphi(uv), u, v \in E$,
- (ii) $\varphi(v)^*\varphi(u) = \langle u, v \rangle 1$, if u and v belong to the same fiber E(t), t > 0,

and which is measurable in the sense that $\langle \varphi(v)\xi, \eta \rangle$ is a measurable function of v for fixed ξ , $\eta \in H$. Condition (ii) implies that the restriction of φ to each fiber E(t) is a linear map satisfying $||\varphi(v)|| = ||v||$, $v \in E(t)$.

We remark that it is essential that one confine attention to representations $\varphi \colon E \to \mathcal{B}(H)$ on separable Hilbert spaces H, since there are representations of product systems E on inseparable Hilbert spaces with rather pathological properties. In any case, for every (separable) representation $\varphi \colon E \to \mathcal{B}(H)$, we can define a one-parameter family of subspaces of H by

$$H_t = [\varphi(E(t))H], \quad t > 0.$$

It was shown in [1] that the subspaces H_t are decreasing in t, their union is dense in H, and they are continuous in the sense that the corresponding family of projections $\{P_t: t>0\}$ is strongly continuous in t. φ is called *singular* if $\bigcap_t H_t = \{0\}$, and is called *nonsingular* in case the opposite extreme occurs, in which $H_t = H$ for every t>0. It was also pointed out in ([1], Proposition 1.14) that every separable representation φ has a unique direct sum decomposition

$$\varphi = \varphi_{\bullet} \oplus \varphi_{\mathbf{n}}$$

where φ_s is singular and φ_n is nonsingular, and moreover that this is a central decomposition in the sense that the two projections arising from this decomposition belong to the center of the von Neumann algebra generated by $\varphi(E)$.

In the case where E is the trivial product system Z, (0.2) is a restatement of the Wold decomposition (0.1). In order to see this, recall that Z is defined as the trivial family of one-dimensional Hilbert spaces $p: Z \to (0, \infty)$, where

$$Z = (0, \infty) \times \mathbb{C}$$

$$p(t, z) = t, t > 0, z \in \mathbb{C}$$

having the usual inner product in fiber spaces $Z(t) = p^{-1}(t)$

$$\langle z, w \rangle = z\overline{w}$$

and the multiplication

$$(s, z)(t, w) = (s + t, zw).$$

Every one-parameter semigroup $V = \{V_t : t \ge 0\}$ of isometries in $\mathcal{B}(H)$ gives rise to a representation $\varphi \colon Z \to \mathcal{B}(H)$ by way of

$$\varphi(t, z) = zV_t, \quad t > 0, z \in \mathbb{C}.$$

Conversely, every nonzero separable representation φ of Z has the form (0.3) for a unique strongly continuous semigroup of isometries V. φ is a singular (resp. nonsingular) representation of Z iff V is a pure (resp. unitary) semigroup of isometries. Thus, (0.2) is the Wold decomposition for V.

If $\varphi: E \to \mathcal{B}(H)$ is a representation of a nontrivial product system, then the nonsingular summand φ_n in the decomposition (0.2) corresponds to the "unitary" part of the Wold decomposition, and gives rise to an E_0 -semigroup as in ([1], Proposition 2.7). The classification of these representations, and the E_0 -semigroups associated with them, was taken up in [1]. Here, we want to fix attention on singular representations.

Given a product system E, let $L^2(E)$ denote the Hilbert space of all measurable square-integrable sections $f: t \in (0, \infty) \mapsto f(t) \in E(t)$. The inner product in $L^2(E)$ is given by

$$\langle f, g \rangle = \int_{0}^{\infty} \langle f(t), g(t) \rangle dt,$$

and of course we identify two sections in $L^2(E)$ which agree almost everywhere (dt). $L^2(E)$ admits an obvious direct integral decomposition

$$L^{2}(E) = \int_{(0,\infty)}^{\oplus} E(t) dt,$$

and as we have pointed out in [1], it is a "continuous" counterpart of the full Fock space generated by an infinite-dimensional one-particle space. Every $v \in E$ determines a left creation operator $\ell(v)$, defined as follows; for $v \in E(t)$, t > 0 and $f \in L^2(E)$,

$$\ell(v)f(x) = \begin{cases} v \cdot f(x-t), & x > t \\ 0, & 0 < x \le t. \end{cases}$$

 $\ell: E \to \mathcal{B}(L^2(E))$ is a singular representation of E, and it is irreducible in the sense that $\ell(E)$ generates $\mathcal{B}(L^2(E))$ as a von Neumann algebra ([4], Theorem 5.2).

 ℓ is called the regular representation of E and, relative to other singular representations of E, it occupies a position analogous to that of the semigroup of unilateral shifts $S = \{S_t : t \ge 0\}$ introduced above. Since every pure semigrup of isometries is unitarily equivalent to a direct sum of copies of S, one is led to ask if every singular representation $\varphi : E \to \mathcal{B}(H)$ is unitarily equivalent to a direct sum of copies of ℓ . We will show that while the answer is no in general, it is almost yes. More precisely, we show that every nontrivial product system E has singular representations which are not multiples of ℓ (cf. remarks following Proposition 4.3). On the other hand, if $\varphi : E \to \mathcal{B}(H)$ is any singular representation and t > 0, then the restriction φ_t of φ to the $\varphi(E)$ -invariant subspace $H_t = [\varphi(E(t))H]$ defines a representation of E on H_t which is unitarily equivalent to a direct sum of copies of ℓ (Corollary 4 of Theorem 3.1).

Our proof of these results makes essential use of the spectral C^* -algebra $C^*(E)$ associated to a product system E. In particular, in Section 1 we introduce a contraction semigroup which acts on the *dual* of $C^*(E)$, and which is central to the analysis of singular representations.

THE SEMIGROUP B*

Let E be a product system and let $\varphi: E \to \mathcal{B}(H)$ be a representation of E on a Hilbert space H (cf. Introduction). Let $L^1(E)$ denote the Banach space of all integrable sections

$$f: t \in (0, \infty) \mapsto f(t) \in E(t), \quad t > 0$$

with the natural norm

$$||f|| = \int_0^\infty ||f(t)|| \mathrm{d}t.$$

 φ induces a contractive linear map of $L^1(E)$ into $\mathscr{B}(H)$ by integration, and we

denote this map of $L^1(E)$ with the same letter φ . Thus,

$$\varphi(f) = \int_{0}^{\infty} \varphi(f(t)) dt, \quad f \in L^{1}(E).$$

There is a C^* -algebra $C^*(E)$ associated with E. While the details of the structure of $C^*(E)$ are not important for our purposes here, we do require the following universal property and some of its elementary consequences. There is a map

$$(f,g) \in L^1(E) \times L^1(E) \mapsto f \otimes \overline{g} \in C^*(E)$$

of $L^1(E) \times L^1(E)$ into $C^*(E)$ which is linear in f, antilinear in g, and satisfies

$$||f \otimes \overline{g}|| \leq ||f||_1 ||g||_1$$

$$C^*(E) = \overline{\operatorname{span}} \{ f \otimes \overline{g} : f, g \in L^1(E) \}.$$

Moreover, given any representation $\varphi: E \to \mathcal{B}(H)$ of E, there is a unique *-representation $\pi: C^*(E) \to \mathcal{B}(H)$ such that

(1.2)
$$\pi(f \otimes \overline{g}) = \varphi(f)\varphi(g)^*, \quad f, g \in L^1(E).$$

 π is necessarily nondegenerate. Conversely, given any nondegenerate *-representation $\pi: C^*(E) \to \mathcal{B}(H)$, there is a unique representation $\varphi: E \to \mathcal{B}(H)$ which satisfies (1.2). These properties are established in ([4], §§2--3). $C^*(E)$ is separable, nuclear, and has no unit.

In this section we introduce a contraction semigroup $\beta^* = \{\beta_t^* : t \ge 0\}$ which acts on the dual of $C^*(E)$, and which will play a central role in what follows. Let $E = \{E(t) : t > 0\}$ be a product system and let $v \in E(t)$, for some t > 0. For every section $f \in L^1(E)$ we can define sections vf, $fv \in L^1(E)$ by

$$vf(x) = \begin{cases} v \cdot f(x-t), & x > t \\ 0, & 0 < x \le t, \end{cases}$$

$$fv(x) = \begin{cases} f(x-t) \cdot v, & x > t \\ 0, & 0 < x \le t. \end{cases}$$

PROPOSITION 1.3. Fix t > 0, and let $\{e_1(t), e_2(t), \ldots\}$ be an orthonormal basis for E(t). For every $\rho \in C^*(E)^*$ there is a unique bounded linear functional $\beta_1^*\rho$ on $C^*(E)$ satisfying

$$\beta_i^* \rho(f \otimes \bar{g}) = \sum_{n=1}^{\infty} \rho(fc_n(t) \otimes \overline{ge_n(t)}),$$

for all $f, g \in L^1(E)$, the series on the right converging absolutely for every $f, g, \beta_t^* \rho$ does not depend on the particular choice of basis. For t = 0, put $\beta_t^* \rho = \rho$.

 $\beta^* = \{\beta_t^* : t \ge 0\}$ is a semigroup of contractions on the Banach space $C^{\circ}(E)^*$ satisfying $\beta_t^* \rho \ge 0$ for $\rho \ge 0$, and

$$\lim_{t\to 0}\beta_t^*\rho(x)=\rho(x).$$

for every $\rho \in C^*(E)^*$, $x \in C^*(E)$.

Proof. Fix $\rho \in C^{\phi}(E)^{\phi}$. Let ρ be the positive part of the polar decomposition of ρ . The GNS construction provides us with a representation $\pi \colon C^{\phi}(E) \to \mathcal{B}(H)$ and a cyclic vector ξ for π such that

$$|\rho|(x) = \langle \pi(x)\xi, \xi \rangle,$$

and we have $\|\rho\| = \|\xi\|^2$. Moreover, there is a partial isomtery $U \in \pi(C^*(E))''$ satisfying $U^*U\xi = \xi$ with the property that for $\eta = U\xi$ we have

$$\rho(x) = \langle \pi(x)\xi, \eta \rangle.$$

Note that η is also a cyclic vector for π and $\|\eta\|^2 = \|\xi\|^2 = \|\rho\|$. Because $C^*(E)$ is a separable C^* -algebra H is a separable Hilbert space, and π is clearly a nondegenerate representation. By the preceding remarks there is a unique representation $\varphi \colon E \to \mathscr{B}(H)$ such that

$$\pi(f\otimes g)=\varphi(f)\varphi(g)^*,\quad f,\,g\in L^1(E).$$

For each $n=1,2,\ldots,V_n=\varphi(e_n(t))$ is an isometry, and $\sum_{\mathbf{n}}V_nV_n^*$ is the proection P_t of H onto $[\varphi(E(t))H]$. Because φ is multiplicative we have $\varphi(fe_n(t))=$ $=\varphi(f)V_n$ for every $f\in L^1(E),\ n=1,2,\ldots$, and hence

$$\rho(fe_n(t) \otimes \overline{ge_n(t)}) = \langle \varphi(fe_n(t))\varphi(ge_n(t))^*\xi, \eta \rangle =$$

$$= \langle \varphi(f)V_nV_n^*\varphi(g)^*\xi, \eta \rangle = \langle V_n^*\varphi(g)^*\xi, V_n^*\varphi(f)^*\eta \rangle.$$

It follows that for fixed $f, g \in L^1(E)$,

$$\sum_n \|\rho(fe_n(t) \otimes \overline{ge_n(t)})\| \leqslant \sum_n \|V_n^*\varphi(g)^*\xi\| \cdot \|V_n^*(\varphi(f)^*\eta)\|.$$

The right side is finite because for every $\zeta \in H$ we have

$$\sum_{n} \|V_{n}^{*}\zeta\|^{2} = \sum_{n} \langle V_{n}V_{n}^{*}\zeta, \zeta \rangle = \langle P_{i}\zeta, \zeta \rangle \leqslant \|\zeta\|^{2},$$

and hence

$$\sum_n \|V_{n_i}^*\zeta_1\| \cdot \|V_n^*\zeta_2\| \leqslant \|\zeta_1\| \cdot \|\zeta_2\|.$$

Moreover, we can write

(1.4)
$$\sum_{n} \rho(fe_{n}(t) \otimes \overline{ge_{n}(t)}) = \sum_{n} \langle \varphi(f)V_{n}V_{n}^{*}\varphi(g)^{*}\xi, \eta \rangle = \langle \varphi(f)P_{t}\varphi(g)^{*}\xi, \eta \rangle,$$

for $f, g \in L^1(E)$.

For t > 0, put $H_t = [\varphi(E(t))H]$. Since E(s + t) is spanned by both E(s)E(t) and E(t)E(s), we have for each s > 0,

$$\varphi(E(s))H_t \subseteq [\varphi(E(s+t))H] = [\varphi(E(t))\varphi(E(s))H] \subseteq$$
$$\subseteq [\varphi(E(t))H] = H_t.$$

It follows that H_t is invariant under the set of operators $\varphi(E)$ for each t > 0. Hence

$$\varphi_t(v) = \varphi(v)|H_t, \quad v \in E$$

defines a representation of E on H_t and, since $\varphi(f)P_t\varphi(g)^* = P_t\varphi(f)P_t\varphi(g)^*P_{\bullet}$ for $f, g \in L^1(E)$, formula (1.4) implies that

(1.5)
$$\sum_{n} \rho(fe_n(t) \otimes \overline{ge_n(t)}) = \langle \varphi_t(f)\varphi_t(g)^* P_t \xi, P_t \eta \rangle.$$

By the universal property of $C^*(E)$, there is a unique representation π_t : $C^*(E) \to \mathcal{B}(H_t)$ such that $\pi_t(f \otimes g) = \varphi_t(f)\varphi_t(g)^*$, and thus we can define a bounded linear functional $\beta_t^*\rho$ on $C^*(E)$ by

$$\beta_t^*\rho(x)=\big\langle\pi_t(x)P_t\xi,\ P_t\eta\big\rangle,\quad x\in C^*(E).$$

Clearly $\|\beta_t^*\rho\| \le \|P_t\xi\| \cdot \|P_t\eta\| \le \|\rho\|$, and by (1.5) we have

$$\beta_t^* \rho(f \otimes g) = \sum_{n=1}^{\infty} \rho(fe_n(t) \otimes \overline{ge_n(t)}).$$

It is apparent from its definition that $\beta_t^* \rho$ does not depend on the choice of orthonormal basis $\{e_n(t); n = 1, 2, ...\}$ for E(t), and the preceding formula determines $\beta_t^* \rho$ uniquely because $\{f \otimes \overline{g}: f, g \in L^1(E)\}$ spans $C^*(E)$.

We claim that $\beta_{s+t}^* = \beta_s^* \beta_t^*$ for s, t > 0. Indeed, for every $\rho \in C^*(E)^{\oplus}$ we can write

$$\beta_t^* \rho(f \otimes g) = \sum_n \beta_t^* \rho(fe_n(s) \otimes \overline{ge_n(s)}) =$$

$$= \sum_{m,n} \rho(fe_n(s)e_m(t) \otimes ge_n(s)e_m(t)).$$

By virtue of the isomorphism $E(s+t) \cong E(s) \otimes E(t)$, we see that $\{e_n(s)e_m(t) : m, n = 1, 2, ...\}$ is an orthonormal basis for E(s+t), hence the right side of (1.6) is simply $\beta_{s+t}^* \rho(f \otimes g)$. The conclusion $\beta_s^* \beta_t^* \rho = \beta_{s+t}^* \rho$ follows from the fact that $C^*(E)$ is spanned by $\{f \otimes g : f, g \in L^1(E)\}$.

Thus, $\beta^* = \{\beta_t^* : t \ge 0\}$ is a semigroup of contractions. If $\rho \ge 0$ then we may take $\eta = \xi$ in the representation of ρ , $\rho(x) = \langle \pi(x)\xi, \xi \rangle$, and hence $\beta_t^* \rho$ has the from

$$\beta_t^* \rho(x) = \langle \pi_t(x) P_t \xi, P_t \xi \rangle,$$

which is clearly a positive linear functional for all t > 0.

It remains to show that

$$\lim_{t\to 0+} \beta_t^* \rho(x) = \rho(x)$$

for every $\rho \in C^*(E)^*$, $x \in C^*(E)$. Fixing ρ , we may restrict attention to x's in the spanning set $\{f \otimes g : f, g \in L^1(E)\}$. By (1.4) we have

$$\beta_t^* \rho(f \otimes g) = \langle \varphi(f) P_t \varphi(g)^* \xi, \ \eta \rangle = \langle P_t \varphi(g)^* \xi, \ \varphi(f)^* \eta \rangle.$$

Since $\bigcup_{t>0} H_t$ is dense in H ([1], Corollary of Proposition 2.7), P_t tends strongly to 1 as $t \to 0+$, hence

$$\lim_{t\to 0+} \beta_t^* \rho(f\otimes g) = \langle \varphi(g)^* \xi, \ \varphi(f)^* \eta \rangle = \rho(f\otimes g),$$

as required.

REMARK. The semigroup β^* is not strongly continuous. Indeed, we will see later on that for "singular states" ρ of $C^{\circ}(E)$ one has

$$\lim_{t\to 0} \|\beta_t^* \rho - \rho\| = 0$$

if and only if the representation π_{ρ} of $C^*(E)$ associated with ρ is quasi-equivalent to the regular representation (Corollary 2 of Theorem 3.1).

Let ρ be a positive linear functional on $C^{\circ}(E)$. If $\|\rho\| = 1$, then ρ is called a *state*. In general, the GNS construction gives rise to a representation $\pi: C^{\circ}(E) \to$

 $\rightarrow \mathcal{B}(H)$ and a cyclic vector ξ_{ρ} for π_{ρ} satisfying

$$\rho(x) = \langle \pi_{\rho}(x)\xi_{\rho}, \, \xi_{\rho} \rangle,$$

 $x \in C^*(E)$. By the universal property of $C^*(E)$, there is a unique representation $\varphi_{\rho} : E \to \mathcal{B}(H)$ such that

$$\pi_o(f \otimes \overline{g}) = \varphi_o(f)\varphi_o(g)^*, \quad f, g \in L^1(E).$$

DEFINITION 1.7. Let ρ be a bounded linear functional on $C^*(E)$ and let $|\rho|$ be the positive linear functional obtained from the polar decomposition of ρ . ρ is called *singular* (resp. *nonsingular*) if $\varphi_{|\rho|}$ is a singular (resp. nonsingular) representation of E. ρ is called *regular singular* if $\varphi_{|\rho|}$ is unitarily equivalent to a direct sum of copies of the regular representation $\ell: E \to \mathcal{B}(L^2(E))$.

REMARKS. Let $\lambda: C^*(E) \to \mathcal{B}(L^2(E))$ be the regular representation of $C^*(E)$, i.e.,

$$\lambda(f \otimes \overline{g}) = \ell(f)\ell(g)^*, \quad f, g \in L^1(E).$$

Since λ is irreducible ([4], Corollary of Theorem 5.2), a representation π of $C^*(E)$ is unitarily equivalent to a direct sum of copies of λ iff π is quasi-equivalent to λ . We conclude that a bounded linear functional $\rho \in C^*(E)^*$ is regular singular iff $\pi_{|\rho|}$ is quasi-equivalent to λ .

The following result gives a convenient characterization of these properties in terms of the semigroup β^* .

Proposition 1.8. Let ρ be a bounded linear functional on $C^*(E)$.

- (i) ρ is singular iff $\lim_{t\to\infty} \|\beta_t^* \rho\| = 0$.
- (ii) ρ is nonsingular iff $\beta_t^* \rho = \rho$ for all $t \ge 0$.

Proof. By the GNS construction we have a representation $\pi: C^*(E) \to \mathcal{B}(H)$ and a cyclic vector $\xi \in H$ such that

$$|\rho|(x) = \langle \pi(x)\xi, \xi \rangle, \quad x \in C^*(E).$$

As in the proof of Proposition 1.3, we can find a second cyclic vector η for π satisfying

$$\rho(x) = \langle \pi(x)\xi \mid \eta \rangle, \quad x \in C^*(E),$$

together with $||\xi||^2 = ||\eta||^2 = ||\rho||$.

To prove (i), let $\varphi: E \to \mathcal{B}(H)$ be the representation of E associated with π and let P_t be the projection of H onto $H_t = [\varphi(E(t))H], t > 0$. Assume first that φ is singular, so that $P_t \downarrow 0$ as $t \to \infty$. Letting φ_t be the representation of E on H_t

defined by $\varphi_t(v) = \varphi(v)|H_t$, then as in the proof of Proposition 1.3 we have

$$\beta_t^* \rho(f \otimes g) = \langle \varphi(f) P_t \varphi(g)^* \xi, \, \eta \rangle = \langle \varphi_t(f) \varphi_t(g)^* P_t \xi, \, P_t \eta \rangle.$$

Thus if π_t : $C^*(E) \to \mathcal{B}(H_t)$ is the representation of $C^*(E)$ corresponding to φ_t , we have

$$\beta_t^* \rho(x) = \langle \pi_t(x) P_t \xi, P_t \eta \rangle.$$

It follows that $||\beta_t^* \rho|| \le ||P_t \xi|| \cdot ||P_t \eta||$ must tend to zero as $t \to \infty$.

Conversely, assume $\|\beta_t^* \rho\| \to 0$ as $t \to \infty$. The projections P_t are decreasing with t, and we have to show that the strong limit $P_{\infty} = \lim_{t \to \infty} P_t$ is zero. To that end, fix $f, g \in L^1(E)$. Then we have

$$(1.9) \beta_t^* \rho(f \otimes g) = \langle P_t \varphi(g)^{\circ} \xi, \varphi(f)^{\circ} \eta \rangle = \langle P_t A^* \xi, B^{\circ} \eta \rangle,$$

where $A = \varphi(g)$, $B = \varphi(f)$. The left side of (1.9) tends to zero as $t \to \infty$, hence

$$\langle P_{\infty}A^{*}\ddot{\zeta}, B^{*}\eta \rangle = 0.$$

Since P_{∞} commutes with the von Neumann algebra generated by $\varphi(E)$ ([1], Proposition 1.14) the preceding implies that

$$\langle P_{\infty}\xi, AB^*\eta \rangle = \langle P_{\infty}A^*\xi, B^*\eta \rangle = 0.$$

Hence $\langle P_{\infty}\xi, \pi(x)\eta \rangle = 0$ for all $x \in C^*(E)$. Since η is a cyclic vector for π , we conclude that $P_{\infty}\xi = 0$. Now since $\varphi(E)$ and $\pi(C^*(E))$ generate the same von Neumann algebra ([4], Theorem 3.4), P_{∞} must commute with $\pi(C^*(E))$, and hence

$$P_{\infty}\pi(x)\xi = \pi(x)P_{\infty}\xi = 0$$

for every $x \in C^*(E)$. This implies that $P_{\infty} = 0$ because λ is a cyclic vector for π .

Proof of 1.8 (ii). From the formula

$$\beta_t^* \rho(f \otimes \overline{g}) = \langle \varphi(f) P_t \varphi(g)^* \zeta, \eta \rangle,$$

we see that

$$(1.10) \rho(f \otimes \overline{g}) - \beta_t^* \rho(f \otimes \overline{g}) = \langle \varphi(f) (1 - P_t) \varphi(g)^* \xi, \eta \rangle$$

for all $f, g \in L^1(E)$, t > 0. Assuming that φ is nonsingular, then we have $1 - P_t = 0$ for every t > 0, and hence (1.10) implies that $\beta_t^* \rho(x) = \rho(x)$ for all $x \in C^*(E)$ of the form $f \otimes \overline{g}$, $f, g \in L^1(E)$. Hence $\beta_t^* \rho = \rho$.

Conversely, if $\beta_t^* \rho = \rho$ then (1.10) implies $\langle \varphi(f)(1 - P_t)\varphi(g)^* \xi, \eta \rangle = 0$ for all t > 0. Taking the limit as $t \to \infty$ we obtain

$$\langle (1 - P_{\infty})\varphi(f)\varphi(g)^*\xi, \eta \rangle = \langle \varphi(f)(1 - P_{\infty})\varphi(g)^*\xi, \eta \rangle =$$

$$= \lim_{t \to \infty} [\rho(f \otimes g) - \beta_t^*\rho(f \otimes g)] = 0.$$

Since $C^*(E)$ is spanned by $\{f \otimes \overline{g} : f, g \in L^1(E)\}$ we conclude that $\langle (1 - P_{\infty})\pi(x)\xi, \eta \rangle = 0$ for every $x \in C^*(E)$. As in the proof of 1.8(i), P_{∞} commutes with $\pi(C^*(E))$, and hence

$$\langle (1 - P_{\infty})\pi(x)\xi, \ \pi(y)\eta \rangle = \langle (1 - P_{\infty})\pi(y)^*\pi(x)\xi, \ \eta \rangle =$$
$$= \langle (1 - P_{\infty})\pi(y^*x)\xi, \ \eta \rangle = 0,$$

for all $x, y \in C^*(E)$. The latter implies that $P_{\infty} = 1$ because both ξ and η are cyclic vectors for π . Since $P_t \ge P_{\infty} = 1$ for every t > 0, we conclude that φ is nonsingular.

2. CONSTRUCTION OF SINGULAR STATES

Let E be a product system and let \mathscr{S} (resp. \mathscr{N}) denote the set of singular (resp. nonsingular) elements of $C^*(E)^*$. Proposition 1.8 implies that \mathscr{S} and \mathscr{N} are norm-closed linear subspaces of $C^*(E)^*$.

In fact, we have a direct sum decomposition

$$C^*(E)^* = \mathscr{S} \oplus \mathscr{N}$$

in the sense that every element $\rho \in C^*(E)^*$ decomposes uniquely into a sum $\rho = \sigma + v$, $\sigma \in \mathcal{S}$, $v \in \mathcal{N}$ where $\|\rho\| = \|\sigma\| + \|v\|$. Indeed, it was shown in ([1], Proposition 1.14) that every representation $\varphi \colon E \to \mathcal{B}(H)$ decomposes uniquely into an orthogonal direct sum

$$\varphi = \varphi_s \oplus \varphi_n$$

of a singular representation φ_s and a nonsingular representation φ_n . Moreover, the projections $1 \oplus 0$ and $0 \oplus 1$ associated with this decomposition belong to the center of the von Neumann algebra generated by $\varphi(E)$. In view of the correspondence between representations of E and nondegenerate representations of $C^*(E)$, it follows that every (separable) nondegenerate representation π of $C^*(E)$ decomposes uniquely into a central direct sum

$$\pi = \pi_s \oplus \pi_n$$

of a singular representation π_s and a nonsingular representation π_n . The indicated decomposition of the dual of $C^*(E)$ follows from these remarks together with the correspondence between positive linear functionals on $C^*(E)$ and cyclic representations of $C^*(E)$. In fact, the direct sum decomposition

$$C^*(E)^* = \mathscr{S} \oplus \mathscr{N}$$

is induced by a central projection in the von Neumann algebra $C^*(E)^{**}$. We conclude that both $\mathcal S$ and $\mathcal N$ are order ideals in $C^*(E)^*$.

The purpose of this section and the next is to give a more concrete description of the ordered Banach space \mathcal{S} (Theorem 2.4 and Corollary 1 of Theorem 3.1). This will allow us to characterize the states of $C^*(E)$ whose representations are quasi-equivalent to the regular representation. As a consequence, we show that the regular representation of $C^*(E)$ is faithful (Corollary 3 of Theorem 3.1).

Our methods here provide very little information about the summand \mathcal{N} . In particular, we still do not know if $\mathcal{N} \neq \{0\}$ for every product system E. This question is equivalent to asking if every product system E is associated to some E_0 -semigroup of endomorphisms of $\mathcal{B}(H)$ as in [1], and will be taken up elsewhere.

For $v \in E$, let $\ell(v)$ and $\ell(v)$ be the associated left and right creation operators acting on $L^2(E)$:

$$\ell(v)f = v \cdot f$$

$$i(v)f = f \cdot v, \quad f \in L^2(E).$$

There are two semigroups of *-endomorphisms α , β of $\mathcal{B}(L^2(E))$ associated with ℓ and ℓ as follows. For $\ell > 0$ and $\ell \in \mathcal{B}(L^2(E))$, we define

$$\alpha_i(A) = \sum_n \ell(e_n(t)) A \ell(e_n(t))^*,$$

$$\beta_t(A) = \sum_n i(e_n(t)) A i(e_n(t))^*,$$

 $\{e_1(t), e_2(t), \ldots\}$ being an arbitrary orthonormal basis for E(t). For t = 0 we put $\alpha_0(A) = \beta_0(A) = A$. α and β are continuous semigroups of normal *-endomorphisms of $\mathcal{B}(L^2(E))$, and $\alpha_i(1) = \beta_i(1)$ is the projection of $L^2(E)$ onto the subspace

$$\{f \in L^2(E) : f(x) = 0 \text{ a.e. on } 0 < x \le t\}$$

([1], Proposition 2.7). In this paper we will be concerned primarily with the semi-group β .

Consider the action of β on the predual of $\mathcal{B}(L^2(E))$. More explicitly, since each β_t is a normal *-endomorphism, there is a semigroup of contractions $\beta_* = \{\beta_{t*}: t \ge 0\}$ acting on the Banach space $\mathcal{L}^1(L^2(E))$ of all trace-class operators on $L^2(E)$. The action of β_{t*} is defined by

$$(2.1) tr(\beta_{t*}(A)B) = tr(A\beta_t(B)), A \in \mathcal{L}^1(L^2(E)), B \in \mathcal{B}(L^2(E)),$$

tr denoting the canonical trace on $\mathcal{L}^1(L^2(E))$. β_* is strongly continuous in the sense that

$$\lim_{t\to 0} \operatorname{tr} |\beta_{t*}(A) - A| = 0,$$

for every trace-class operator A ([1], Proposition 2.5(i)). Moreover, letting $P_t = \beta_t(1)$, $t \ge 0$, we have $\beta_{t*}(A) = \beta_{t*}(P_tAP_t)$ for every $t \ge 0$. Since $P_t \downarrow 0$ as $t \to \infty$, we see that $\text{tr}|P_tAP_t| \to 0$, and hence

$$\lim_{t\to\infty} \operatorname{tr} |\beta_{t*}(A)| = 0$$

for every $A \in \mathcal{L}^1(L^2(E))$.

We introduce a Banach space $\mathcal{M}(\beta_*)$ associated with the semigroup β_* which is basic for what follows. $\mathcal{M}(\beta_*)$ is defined as the space of all bounded functions

$$A: t \in (0, \infty) \mapsto A(t) \in \mathcal{L}^1(L^2(E))$$

satisfying

(2.2)
$$A(s+t) = \beta_{t*}(A(s)), \quad s > 0, \ t \ge 0.$$

The norm in $\mathcal{M}(\beta_*)$ is the sup norm

$$||A|| = \sup_{t>0} \operatorname{tr} |A(t)|.$$

Because β_* is strongly continuous, (2.2) implies that $\mathcal{M}(\beta_*)$ consists of bounded continuous functions from the open interval $(0, \infty)$ to the separable Banach space $\mathcal{L}^1(L^2(E))$; moreover, the preceding paragraph implies that each element $A \in \mathcal{M}(\beta_*)$ vanishes at infinity in the sense that

$$\lim_{t\to\infty}\operatorname{tr}[A(t)]=0.$$

The *-operation on trace-class operators induces an isometric involution in $\mathcal{M}(\beta_*)$, and $\mathcal{M}(\beta_*)$ is partially ordered by $A \ge 0$ iff $A(t) \ge 0$ for every t > 0.

 $\mathcal{M}(\beta_*)$ contains $\mathcal{L}^1(L^2(E))$. Indeed, every trace-class operator A determines an element \tilde{A} in $\mathcal{M}(\beta_*)$ by

$$\widetilde{A}(t) = \beta_{t*}(A), \quad t > 0.$$

 $A \mapsto \tilde{A}$ is an isometric order-preserving isomorphism of $\mathcal{L}^1(L^2(E))$ onto the subspace of $\mathcal{M}(\beta_*)$ consisting of all functions $F \in \mathcal{M}(\beta_*)$ for which the limit

$$F(0+) = \lim_{t \to 0} F(t)$$

exists relative to the trace-norm on $\mathcal{L}^1(L^2(E))$. Note finally that, because of the relation (2.2), a function in $\mathcal{M}(\beta_*)$ is completely determined by its restriction to arbitrarily small intervals $0 < t < \delta$, $\delta > 0$: thus $\mathcal{M}(\beta_*)$ is a Banach space which embodies the "limiting behaviour" of the semigroup β_* at time zero.

We begin by giving an explicit formula for the states of $C^*(E)$ which are of the form $\omega \in \lambda$, where λ is the regular representation of $C^*(E)$ on $L^2(E)$ and ω is a normal state of $\mathcal{B}(L^2(E))$.

PROPOSITION 2.3. Let T be a trace-class operator on $L^2(E)$ and let $\lambda \colon C^*(E) \to \mathcal{B}(L^2(E))$ be the regular representation. Then for every pair of functions $f, g \in L^1(E) \cap L^2(E)$ we have

$$\int_{0}^{\infty} |\langle \beta_{t*}(T)f, g \rangle| \mathrm{d}t \leqslant \mathrm{tr}[T] \cdot ||f||_{1} ||g||_{1},$$

and

$$\int_{0}^{\infty} \langle \beta_{t*}(T)f, g \rangle dt = \operatorname{tr}(T\lambda(f \otimes \overline{g})).$$

Proof. We may find sequences of vectors ξ_n , $\eta_n \in L^2(E)$ such that

$$\sum_{n} ||\xi_n|| \cdot ||\eta_n|| = \operatorname{tr}[T],$$

and

$$T=\sum_n \xi_n \otimes \widetilde{\eta_n}.$$

For each $n \ge 1$ and t > 0 we have

$$\langle \beta_{t*}(\xi_n \otimes \overline{\eta_n})f, g \rangle = \operatorname{tr}(\beta_{t*}(\xi_n \otimes \overline{\eta_n})(f \otimes \overline{g})) =$$

$$= \operatorname{tr}((\xi_n \otimes \overline{\eta_n})\beta_t(f \otimes \overline{g})) = \langle \beta_t(f \otimes \overline{g})\xi_n, \eta_n \rangle.$$

Now since g is integrable, the convolution operator $\ell(g)\xi = g * \xi$ is bounded on $L^2(E)$ and has norm at most $||g||_1$. Moreover, since g also belongs to $L^2(E)$ we can

assign a definite value to $\ell(g)^*\xi(t)$ for every positive t and every $\xi \in L^2(E)$, namely

$$\ell(g)^*\xi(t) = \int_0^\infty g(s)^*\xi(s+t)\mathrm{d}s$$

(for more detail, see: he proof of Proposition 6.4 of [4]). Similarly,

$$\ell(f)^*\eta(t) = \int_0^\infty f^*(s)\eta(s+t)\mathrm{d}s,$$

for every t > 0 and every $\eta \in L^2(E)$. Moreover, formula (6.7) of [4] asserts that for t > 0, ξ , $\eta \in L^2(E)$, we have the relation

$$\langle \beta_t(f \otimes g)\xi, \eta \rangle = \langle \ell(g)^*\xi(t), \ell(f)^*\eta(t) \rangle.$$

Thus for every n = 1, 2, ... and t > 0 we have

$$\langle \beta_{t,t}(\xi_n \otimes \eta_n)f, g \rangle = \langle \beta_t(f \otimes \overline{g})\xi_n, \eta_n \rangle = \langle \ell(g)^*\xi_n(t), \ell(f)^*\eta_n(t) \rangle,$$

and hence

$$\int_{0}^{\infty} \left| \left\langle \beta_{n*}(\xi_{n} \otimes \eta_{n})f, g \right\rangle \right| dt \leq \int_{0}^{\infty} \left| \left| \ell(g)^{*} \xi_{n}(t) \right| \right| \cdot \left| \left| \ell(f^{*}) \eta_{n}(t) \right| \right| dt \leq$$

$$\leq \|\ell(g)^*\xi_n\|\cdot\|\ell(f)^*\eta_n\|\leq \|\xi_n\|\cdot\|\eta_n\|\cdot\|f\|_1\|g\|_1.$$

Summing this inequality on n we obtain the required inequality

$$\int_{0}^{\infty} |\langle \beta_{t*}(T)f, g \rangle| dt \leq \int_{0}^{\infty} \sum_{n} |\langle \beta_{t*}(\xi_{n} \otimes \overline{\eta_{n}})f, g \rangle| dt =$$

$$= \sum_{n} \int_{0}^{\infty} |\langle \beta_{t*}(\xi_{n} \otimes \overline{\eta_{n}})f, g \rangle| dt \leq$$

$$\leq \sum_{n} ||\xi_{n}|| \cdot ||\eta_{n}|| \cdot ||f||_{1} ||g||_{1} = \operatorname{tr} |T| ||f||_{1} ||g||_{1}.$$

Let $u_n(t) = \langle \beta_{i*}(\xi_n \otimes \overline{\eta_n})f, g \rangle$, t > 0. The preceding estimate shows that

$$\sum_{n}\int_{0}^{\infty} |u_{n}(t)| dt < \infty,$$

so by the dominated convergence theorem we have

$$\int_{0}^{\infty} \langle \beta_{t*}(T)f, g \rangle dt = \sum_{n} \int_{0}^{\infty} \langle \beta_{t*}(\xi_{n} \otimes \overline{\eta_{n}})f, g \rangle dt.$$

Now as we have seen,

$$\langle \beta_{t*}(\xi_n \otimes \overline{\eta_n})f, g \rangle = \langle \beta_t(f \otimes \overline{g})\xi_n, \eta_n \rangle.$$

By Proposition 6.4 of [4], we have

$$\int_{0}^{\infty} \langle \beta_{i}(f \otimes \overline{g}) \xi_{n}, \eta_{n} \rangle = \langle \lambda(f \otimes \overline{g}) \xi_{n}, \eta_{n} \rangle.$$

Thus we may conclude that

$$\int_{0}^{\infty} \langle \beta_{t*}(T)f, g \rangle dt = \sum_{n} \langle \lambda(f \otimes g)\xi_{n}, \eta_{n} \rangle = \operatorname{tr}(T\lambda(f \otimes g)).$$

The following result shows how elements of $\mathcal{M}(\beta_*)$ determine bounded linear functionals on $C^*(E)$. We will see in Section 3 that this construction gives precisely the singular part of $C^*(E)^*$.

THEOREM 2.4. Let $A \in \mathcal{M}(\beta_*)$. For every $f, g \in L^1(E) \cap L^2(E)$ we have

$$\int_{0}^{\infty} |\langle A(t)f, g \rangle| \mathrm{d}t \leqslant ||A|| \cdot ||f||_{1} ||g||_{1},$$

and there is a unique bounded linear functional ρ_{Λ} on $C^*(E)$ satisfying

$$\rho_{A}(f\otimes \overline{g})=\int_{0}^{\infty}\langle A(t)f,g\rangle dt,$$

for all $f, g \in L^1(E) \cap L^2(E)$. ρ_A is singular, and the map $A \mapsto \rho_A$ is a linear isometry such that $\rho_A \ge 0$ iff $A \ge 0$.

For every t > 0 we have

$$\beta_t^* \rho_A(a) = \operatorname{tr}(A(t)\lambda(a)), \quad a \in C^*(E),$$

 λ being the regular representation of $C^*(E)$; if the trace-norm limit $A(0+) = \lim_{t \to 0} A(t)$ exists, then

$$\rho_A(x) = \operatorname{tr}(A(0+)\lambda(x)), \quad x \in C^*(E).$$

Proof. Fix $f, g \in L^1(E) \cap L^2(E)$ and choose $A \in \mathcal{M}(\beta_*)$. For every $\delta > 0$ and $x > \delta$ we have $A(x) = \beta_{x-\delta*}(A(\delta))$, hence by Proposition 2.3

$$\int_{0}^{\infty} |\langle A(x)f, g \rangle_{1} dx = \int_{0}^{\infty} |\langle \beta_{x-\delta v_{\delta}}(A(\delta))f, g \rangle| dx =$$

$$= \int_{0}^{\infty} |\langle \beta_{y;k}(A(\delta))f, g \rangle| dy \leqslant tr_{|A(\delta)|} ||f||_{1} ||g||_{1} \leqslant ||A|| ||f||_{1} ||g||_{1}.$$

Letting δ tend to zero in the term on the left, we obtain the asserted estimate

$$\int_{0}^{\infty} |\langle A(x)f, g \rangle| \mathrm{d}x \leqslant ||A|| ||f||_{1} ||g||_{1}.$$

We claim next that there is a unique bounded linear functional ρ_A on $C^*(E)$ satisfying

$$\rho_{A}(f\otimes g)=\int_{0}^{\infty}\langle A(x)f,g\rangle\mathrm{d}x,$$

 $f, g \in L^1(E) \cap L^2(E)$. To see this, fix $\delta > 0$ and consider the linear functional $\rho_{\delta} \in C^*(E)^*$ defined by

$$\rho_{\delta}(a) = \operatorname{tr}(A(\delta)\lambda(a)), \quad a \in C^*(E).$$

Clearly $\|\rho_{\delta}\| \le \operatorname{tr}[A(\delta)] \le \|A\|$, and by Proposition 2.3 we have

$$\rho_{\delta}(f \otimes g) = \int_{0}^{\infty} \langle \beta_{t*}(A(\delta))f, g \rangle dt =$$

$$=\int_{0}^{\infty}\langle A(t+\delta)f, g\rangle dt = \int_{\delta}^{\infty}\langle A(x)f, g\rangle dx,$$

for every $f, g \in L^1(E) \cap L^2(E)$. Thus

$$\lim_{\delta\to 0}\rho_{\delta}(f\otimes g)=\int_{0}^{\infty}\langle A(x)f,g\rangle dx,$$

for all such f, g. Since $\{\rho_{\delta}: \delta > 0\}$ is uniformly bounded by $\{A\}$ and since $\lim_{\delta \to 0} \rho_{\delta}(a)$ exists for all $a \in C^{*}(E)$ belonging to the spanning set $\{f \otimes g : f, g \in L^{1}(E) \cap \delta = 0\}$

 $\{ L^2(E) \}$, it follows that ρ_{δ} converges weak* to an element ρ_{A} in $C^*(E)$ * satisfying $\| \rho_{A} \| \leq \| A \|$. Clearly $\rho_{A}(f \otimes g)$ has the asserted form. The uniqueness of ρ_{A} is apparent from the fact that $\{ f \otimes g : f, g \in L^1(E) \cap L^2(E) \}$ spans $C^*(E)$.

If A is a positive element of $\mathcal{M}(\beta_*)$ then $A(\delta)$ is a positive trace-class operator for every $\delta > 0$, hence

$$\rho_{\delta}(a) = \operatorname{tr}(A(\delta)\lambda(a))$$

is a positive linear functional for every $\delta > 0$, hence $\rho_A \ge 0$.

We claim next that for every t > 0 we have

(2.5)
$$\beta_t^* \rho_A(a) = \operatorname{tr}(A(t)\lambda(a)), \quad a \in C^*(E).$$

It suffices to prove this formula for a of the form $f \otimes g$ with $f, g \in L^1(E) \cap L^2(E)$. Fixing t > 0 and letting $\{e_1, e_2, \ldots\}$ be an orthonormal basis for E(t), the left side of (2.5) can be written

$$\beta_t^* \rho_A(f \otimes g) = \sum_n \rho_A(f e_n \otimes \overline{g} e_n) = \sum_n \int_0^\infty \langle A(x) f e_n, g e_n \rangle dx,$$

because fe_n and ge_n belong to $L^1(E) \cap L^2(E)$ for every $n \ge 1$. We want to interchange the order of summation and integration in the latter term. By the dominated convergence theorem, this will be justified if we show that

(2.6)
$$\sum_{n} \int_{0}^{\infty} \left| \langle A(x) f e_{n}, g e_{n} \rangle \right| dx \leqslant ||A|| ||f||_{H} ||g||_{L^{2}}.$$

Fix $\delta > 0$. Then we have

$$\sum_{n} \int_{0}^{\infty} |\langle A(x)fe_{n}, ge_{n} \rangle| dx = \sum_{n} \int_{0}^{\infty} |\langle A(y+\delta)fe_{n}, ge_{n} \rangle| dy =$$

$$= \sum_{n} \int_{0}^{\infty} |\langle \beta_{y\psi}(A(\delta))fe_{n}, ge_{n} \rangle| dy.$$

We claim first that if T is any trace-class operator on $L^2(E)$, then

(2.7)
$$\sum_{n} \int_{0}^{\infty} \left| \langle \beta_{y*}(T) f e_{n}, g e_{n} \rangle \right| \mathrm{d}y \leqslant \operatorname{tr} |T| ||f||_{1} ||g||_{1}.$$

For that, choose sequences ξ_m , η_m , $m \ge 1$, in $L^2(E)$ such that

$$\sum_{m} \|\xi_{m}\| \cdot \|\eta_{m}\| = \operatorname{tr}[T], \quad \text{and} \quad T = \sum_{m} \xi_{m} \otimes \eta_{m}.$$

Noting that fe_n and ge_n belong to $L^1(E) \cap L^2(E)$ for every $n \ge 1$, we see as in the proof of Proposition 2.3 that for each $m \ge 1$ and y > 0,

$$\langle \beta_{y*}(\xi_m \otimes \overline{\eta_m})fe_n, ge_n \rangle = \langle \ell(ge_n)^*\xi_m(y), \ell(fe_n)^*\eta_m(y) \rangle.$$

Thus

$$\int_{0}^{\infty} |\langle \beta_{y*}(T) f e_{n}, g e_{n} \rangle | dy \leq \int_{0}^{\infty} \sum_{m} |\langle \beta_{y*}(\xi_{m} \otimes \overline{\eta_{m}}) f e_{n}, g e_{n} \rangle | dy \leq$$

$$\leq \sum_{m} \int_{0}^{\infty} ||\ell(g e_{n})^{*} \xi_{m}(y)|| \cdot ||\ell(f e_{n})^{*} \eta_{m}(y)|| dy \leq$$

 $\leq \sum \|\ell(ge_n)^*\xi_m\| \cdot \|\ell(fe_n)^*\eta_m\|.$

Summing on n, we obtain

(2.8)
$$\sum_{n=0}^{\infty} \left| \langle \beta_{y*}(T) f e_n, g e_n \rangle \right| \mathrm{d}y \leqslant \sum_{m,n} \left| |\ell(g e_n)^* \xi_m| \right| \cdot \left| |\ell(f e_n)^* \eta_m| \right|.$$

Let $V_n = \ell(e_n)$, $n = 1, 2, \ldots$. This defines a sequence of isometries having mutually orthogonal ranges. Moreover,

$$\ell(ge_n)^*\xi_m = V_n^*\ell(g)^*\xi_m,$$

and

$$\ell(fe_n)^*\eta_m = V_n^*\ell(f)^*\eta_m.$$

So for m fixed, the Schwarz inequality implies

$$\sum_n \|\ell(ge_n)^*\xi_m\|\cdot \|\ell(fe_n)^*\eta_m\| \leq \Big(\sum_n \|V_n^*\ell(g)^*\xi_m\|\Big)^{21/2} \Big(\sum_n \|V_n^*\ell(f)^*\eta_m\|^2\Big)^{1/2}.$$

But since $\sum_{n} V_{n}V_{n}^{*} \leq 1$, we have

$$\begin{split} \sum_{n} \| [V_{n}^{\diamond}\ell(g)^{\diamond}\xi_{m}] \|^{2} &= \sum_{n} \left\langle V_{n}V_{n}^{*}\ell(g)^{\diamond}\xi_{m}, \ \ell(g)^{\diamond}\xi_{m} \right\rangle \leqslant \\ &\leqslant \| [\ell(g)^{\diamond}\xi_{m}] \|^{2} \leqslant \| g\|_{1}^{2} \| \xi_{m} \|^{2}, \end{split}$$

and similarly

$$\sum_{n} \|V_n^*\ell(f)\|\eta_m\|^2 \leqslant \|f\|_1^2 \|\eta_m\|^2.$$

Thus the last term in (2.8) is dominated by

$$\sum_{n} ||\xi_{m}|| ||\eta_{m}|| ||f||_{1} ||g||_{1} = \operatorname{tr} ||T|| ||f||_{1} ||g||_{1},$$

proving the claim.

Returning to the proof of (2.6), we have for each $\delta > 0$

$$\sum_{n} \int_{\delta}^{\infty} |\langle A(x)fe_{n}, ge_{n} \rangle| \mathrm{d}x = \sum_{n} \int_{\delta}^{\infty} |\langle \beta_{y*}(A(\delta))fe_{n}, ge_{n} \rangle| \mathrm{d}y \le$$

$$\leq \operatorname{tr}|A(\delta)| ||f||_{1} ||g||_{1} \le ||A|| \cdot ||f||_{1} ||g||_{1}.$$

Allowing δ to decrease to zero, we obtain (2.6).

It follows that

$$\beta_i^* \rho_A(f \otimes g) = \int_0^\infty \sum_n \langle A(x) f e_n, g e_n \rangle dx.$$

Now for each x > 0, we have

$$\sum_{n} \langle A(x) f e_{n}, g e_{n} \rangle = \sum_{n} \operatorname{tr}(A(x) (f e_{n} \otimes \overline{g} e_{n})) =$$

$$= \operatorname{tr}(A(x) \beta_{1} (f \otimes \overline{g})) = \operatorname{tr}(\beta_{1 *}(A(x)) (f \otimes \overline{g})) =$$

$$= \langle \beta_{1 *}(A(x)) f, g \rangle = \langle A(x+1) f, g \rangle = \langle \beta_{x *}(A(t)) f, g \rangle.$$

Hence

$$\beta_t^* \rho_A(f \otimes g) = \int_0^\infty \langle \beta_{x;k}(A(t))f, g \rangle dx.$$

By Proposition 2.3, the right side is $tr(A(t)\lambda(f\otimes g))$, establishing (2.5).

To see that ρ_A is singular, it suffices to check that $\|\beta_t^* \rho_A\|$ tends to zero as $t \to \infty$ (Proposition 1.8(i)). But by (2.5) we have

$$\beta_t^* \rho_A(x) = \operatorname{tr}(A(t)\lambda(x)), \quad x \in C^*(E)$$

for every t > 0, hence $||\beta_t^* \rho_A|| \le \operatorname{tr} |A(t)|$, and we have already seen that $\lim_{t \to \infty} \operatorname{tr} |A(t)| = 0$ for every $A \in \mathcal{M}(\beta_*)$.

Assuming that the trace-norm limit $A(0+) = \lim_{t\to 0} A(t)$ exists, then for every $a \in C^*(E)$

$$\operatorname{tr}(A(0+)\lambda(a)) = \lim_{t \to 0} \operatorname{tr}(A(t)\lambda(a)) = \lim_{t \to 0} \beta_t^* \rho_A(a) = \rho_A(a)$$

because $\beta_t^* \rho_A$ tends weak* to ρ_A as $t \to 0+$.

It remains to prove that $||A|| \le ||\rho_A||$, and that $\rho_A \ge 0$ implies $A \ge 0$. Now $\omega_t(B) = \operatorname{tr}(A(t)B)$ defines a normal linear functional on $\mathscr{B}(L^2(E))$ for every t > 0. Since $\lambda(C^*(E))'' = \mathscr{B}(L^2(E))$ ([4], Corollary of Theorem 5.2), Kaplansky's density theorem implies that the norm of the restriction of ω_t to $\lambda(C^*(E))$ agrees with $||\omega_t|| = \operatorname{tr}|A(t)|$. Since λ maps the unit ball of $C^*(E)$ onto that of $\lambda(C^*(E))$, we conclude from formula (2.5) that

$$\|\beta_t^* \rho_A\| = \operatorname{tr} |A(t)|, \quad t > 0,$$

and therefore $\|\rho_A\| \ge \|\beta_t^* \rho_A\| \ge \operatorname{tr} |A(t)|$ for every t > 0. Hence

$$\|\rho_A\| \geqslant \sup_{t>0} \operatorname{tr} A(t)^t = \|A\|.$$

Finally, assume $\rho_A \geqslant 0$. Then $\beta_t^* \rho_A \geqslant 0$ for every t > 0. Since

$$\beta_t^* \rho_A(a) = \operatorname{tr}(A(t)\lambda(a)). \quad a \in C^*(E),$$

an argument similar to that of the preceding paragraph shows that $A(t) \ge 0$ for every t > 0, hence $A \ge 0$.

3. CHARACTERIZATION OF SINGULAR STATES

In this section we prove that the map

$$A\in \mathcal{M}(\beta_*)\mapsto \rho_A\in C^*(E)^*$$

defined in Theorem 2.4 is an isomorphism of $\mathcal{M}(\beta_*)$ onto the singular part of the dual of $C^*(E)$, and we deduce some consequences. The key step is the assertion that $A \mapsto \rho_A$ is surjective, and is basically the following result.

Theorem 3.1. For every bounded linear functional ρ on $C^*(E)$ there is a unique function $A \in \mathcal{M}(\beta_{\mathfrak{B}})$ satisfying

$$\rho(f \otimes g) - \beta_t^* \rho(f \otimes g) = \int_0^t \langle A(x)f, g \rangle dx$$

for all $f, g \in L^1(E) \cap L^2(E)$, t > 0. One has $A \leq [\rho]$, and $A \geq 0$ if ρ is positive.

Our proof of Theorem 3.1 is based on the following lemma, which provides a representation for additive cocycles associated with contraction semigroups on certain Banach spaces.

LEMMA 3.2. Let E be a separable Banach space which is the dual of a Banach space E_{sh} .

Let $\gamma = \{\gamma_t : t \ge 0\}$ be a strongly continuous contraction semigroup which acts on E and let $\{b(t) : t \ge 0\}$ be a family of elements of E satisfying

- (i) $b(s + t) = b(s) + \gamma_s(b(t)), s, t \ge 0$
- (ii) $b(t) \leq Mt, t \geq 0$,

M being a positive constant. Then there is a norm-continuous function $a:(0,\infty)\to E$ such that

- (i)' $a(s+t) = \gamma_s(a(t)),$
- $(ii)' |[a(t)]| \leqslant M, \ s \geqslant 0, \ t > 0,$

and for which

$$b(t) = \int_{0}^{t} a(s) \mathrm{d}s, \quad t > 0.$$

REMARKS. Notice first that for a separable Hilbert space H, the Banach space $E := \mathcal{L}^1(H)$ of trace-class operators satisfies the hypotheses of Lemma 3.2.

We also want to point out that any Banach space E satisfying the hypothesis of Lemma 3.2 has the following property: for every bounded linear functional F on E, there is a sequence $\{x_1, x_2, \ldots\} \subseteq E_8$ such that

$$F(a) = \lim_{n} \langle a, x_n \rangle, \quad a \in E,$$

 $\langle \cdot, \cdot \rangle$ denoting the canonical pairing of E and its predual E_* . To see this, fix F and choose a sequence a_1, a_2, \ldots in E which is norm-dense in the unit ball of E. Now for any Banach space X, the natural map of X into X^{**} carries the ball of radius r in X onto a subset of X^{**} which is weak*-dense in the ball of radius r in X^{**} . It follows that for every $n=1,2,\ldots$ we can find an element x_n of E_* satisfying $x_n \leq \|F\|$ and

$$|F(a_j)-\langle a_j, x_n\rangle| \leq 1/n, \quad 1 \leq j \leq n.$$

The sequence x_1, x_2, \ldots has the asserted property.

Proof of Lemma 3.2. We claim first that there is a unique bounded linear map L: $L^1(0,\infty) \to E$ satisfying

$$L(\chi_{(s,t)}) = b(t) - b(s), \quad 0 \leqslant s < t,$$

 χ_A denoting the characteristic function of the set A. To see this, suppose first that f is a step function in $L^1(0, \infty)$, say

$$f = \sum_{i=1}^{n} \lambda_{j} \delta_{(t_{j-1}, t_{j})},$$

 $\lambda_1, \ldots, \lambda_n \in \mathbb{C}, \ 0 \le t_0 < t_1 < \ldots < t_n$. By property (i), we have $b(t_j) - b(t_{j-1}) = \gamma_{t_{j-1}}(b(t_j - t_{j-1}))$, and hence

$$\begin{split} \| \sum_{j} \lambda_{j}(b(t_{j}) - b(t_{j-1})) \| &\leq \sum_{j} |\lambda_{j}| \cdot \|b(t_{j}) - b(t_{j-1}) \| = \\ &= \sum_{j} |\lambda_{j}| \| \gamma_{t_{j-1}}(b(t_{j} - t_{j-1})) \| &\leq \\ &\leq \sum_{j} |\lambda_{j}| \cdot \|b(t_{j} - t_{j-1}) \| &\leq M \sum_{j} |\lambda_{j}| |t_{j} - t_{j-1}|. \end{split}$$

It follows that

$$L(f) = \sum_{j} \lambda_{j}(b(t_{j}) - b(t_{j-1}))$$

defines a linear operator on step functions, having norm at most M. L extends to $L^1(0,\infty)$ because the step functions are dense. The uniqueness of L is apparent.

Now E is the dual of E_* and E_* must be separable because its dual is separable. Therefore we may apply a known Radon-Nikodym theorem ([6], Theorem 2, p. 499) to infer that there is a bounded function $a: (0, \infty) \to E$ such that $\langle a(t), x \rangle$ is measurable in t for each $x \in E_*$ and such that

$$\langle L(f), x \rangle = \int_{0}^{\infty} f(t) \langle a(t), x \rangle dt$$

for every $f \in L^1(0, \infty)$, $x \in E_*$. Moreover, $||a(t)|| \le M$ for every t > 0.

Let F be a bounded linear functional on E. We claim that F(a(s)) is a measurable function of s > 0 and that

(3.3)
$$F(L(f)) = \int_{0}^{\infty} f(s)F(a(s)) ds$$

for every $f \in L^1(0, \infty)$. Indeed, by the preceding remarks there is a sequence $x_1, x_2, \ldots \in E_0$ with

(3.4)
$$F(a) = \lim_{n} \langle a, x_n \rangle, \quad a \in E.$$

The uniform boundedness principle implies that $\{|x_n|: n \ge 1\}$ is bounded, and (3.4) clearly implies that F is measurable relative to the Borel structure on E generated by its weak*-topology. Hence $s \mapsto F(a(s))$ is a bounded measurable function $(0, \infty)$. We have

$$F(a(s)) = \lim_{n} \langle a(s), x_n \rangle$$

for every s > 0 and

$$|\langle a(s), x_n \rangle| \leq \sup_{s} ||a(s)|| + \sup_{n} ||x_n||| < \infty.$$

So the dominated convergence theorem implies that

$$F(L(f)) = \lim_{n \to \infty} \langle L(f), x_n \rangle =$$

$$= \lim_{n \to \infty} \int_{0}^{\infty} f(s) \langle a(s), x_{n} \rangle ds = \int_{0}^{\infty} f(s) F(a(s)) ds,$$

as asserted.

Notice next that for $f \in L^1(0, \infty)$,

$$(3.5) \gamma_t(L(f)) = L(S_{\xi}f)$$

S, denoting the shift on $L^1(0, \infty)$ defined by

$$S_{i}f(x) = \begin{cases} f(x-t), & x > t \\ 0, & 0 < x \le t. \end{cases}$$

Both sides of (3.5) are bounded linear operators on $L^1(0,\infty)$, and so it suffices to check (3.5) when f is a characteristic function $\chi_{(r,s)}$, $0 \le r < s$. Here, we have

$$\gamma_t L(\chi_{(r,s)}) = \gamma_t (b(s) - b(r)),$$

while

$$L(S_{t}\chi_{(r,s)}) = L(\chi_{(r+t,s+t)}) = b(s+t) - b(r+t) =$$

$$= (b(s+t) - b(t)) - (b(r+t) - b(t)) =$$

$$= \gamma_{t}(b(s)) - \gamma_{t}(b(r)) = \gamma_{t}(b(s) - b(r)).$$

(3.5) follows.

Now we claim that for every fixed t > 0, we have

(3.6)
$$\gamma_t(a(s)) = a(s+t) \text{ almost everywhere (ds)}.$$

Since E_* and $L^1(0, \infty)$ are separable, it suffices to show that

$$\int_{0}^{\infty} f(s) \langle \gamma_{t}(a(s)), x \rangle ds = \int_{0}^{\infty} f(s) \langle a(s+t), x \rangle ds$$

for every $f \in L^1(0, \infty)$ and every $x \in E_*$. Fix f and x. The linear functional $F(a) = \langle \gamma_i(a), x \rangle$ is bounded on E, and so by (3.3) we have

$$\int_{0}^{\infty} f(s) \langle \gamma_{t}(a(s)), x \rangle ds = \int_{0}^{\infty} f(s) F(a(s)) ds =$$

$$= F(L(f)) = \langle \gamma_t(L(f)), x \rangle.$$

By (3.5), the right side is

$$\langle L(S_t f), x \rangle = \int_t^\infty f(\lambda - t) \langle a(\lambda), x \rangle d\lambda = \int_0^\infty f(s) \langle a(s + t), x \rangle ds,$$

as required.

By the Fubini theorem, there is a Borel set $N \subseteq (0, \infty)$ of measure zero such that for all $s \notin N$, we have

$$\gamma_s(a(s)) = a(s+t)$$
 a.e. (dt).

Because N has measure zero, we can find a sequence $s_n \in (0, \infty) \setminus N$ which decreases to zero. The preceding formula implies that for every n, the restriction of $a(\cdot)$ to the interval (s_n, ∞) agrees almost everywhere with the norm-continuous function

$$a_n(t) = \gamma_{t-s_n}(a(s_n)), \quad t > s_n.$$

Thus the continuous functions a_1 , a_2 , ... are compatible, and there is a unique continuous function a_{∞} : $(0, \infty) \to E$ such that $a_{\infty,(s_n,\infty)} = a_n$, $n = 1, 2, \ldots, a_{\infty}$ has the properties

$$a_{\infty}(t) = a(t)$$
 almost everywhere (dt),

and

$$\gamma_s(a_{\infty}(t)) = a_{\infty}(s+t)$$
 for all $s \ge 0$, $t > 0$.

Finally, because a_{∞} is bounded and continuous it must be Bochner-integrable, and the formula

$$b(t) = \int_{0}^{t} a_{\infty}(s) ds, \quad t > 0$$

12

follows from (3.3) by taking $f = \chi_{(0,t)}$.

Proof of Theorem 3.1. Choose a bounded linear functional ρ on $C^*(E)$. In view of Lemma 3.2, it suffices to show that there is a family $\{B(t): t\geqslant 0\}$ of trace-class operators on $L^2(E)$ satisfying

$$B(s+t) = B(s) + \beta_{sp}(B(t)), \quad s, t \geqslant 0,$$

$$\text{if } B(t) \leq \beta \rho(t, -t \geqslant 0,$$

and

$$\rho(f \otimes g) - \beta_t^* \rho(f \otimes g) := \langle B(t)f, g \rangle$$

for every $f, g \in L^1(E) \cap L^2(E), t > 0$.

Now by the polar decomposition for linear functionals on C^* -algebras and the GNS construction applied to $[\rho]$, we can find a representation $\pi\colon C^*(E)\to \mathscr{B}(H)$ and a pair of cyclic vectors $\xi_1,\ \xi_2\in H$ for π such that $\|\xi_1\|=\|\xi_2\|=\|\rho\|^{1/2}$ and

$$\rho(x) = \langle \pi(x)\xi_1, \xi_2 \rangle, \quad x \in C^*(E).$$

By ([4], Corollary 2 of Theorem 3.4), there is a representation $\varphi: E \to \mathcal{B}(H)$ such that

$$\pi(f \otimes g) = \varphi(f)\varphi(g)^*, \quad f, g \in L^1(E).$$

Let P_t be the projection onto $[\varphi(E(t))H]$, for every t > 0. For each t > 0, we define a pair of antilinear transformations $B_1(t)$, $B_2(t)$ of $L^1(E) \cap L^2(E)$ into H as follows:

(3.7)
$$B_{i}(t)f = (1 - P_{t})\varphi(f)^{*}\xi_{i}, \quad j = 1, 2.$$

We claim first that $B_1(t)$ and $B_2(t)$ extend uniquely to antilinear Hilbert-Schmidt operators from $L^2(E)$ into H, such that

(3.8)
$$\operatorname{tr}(B_{j}(t)^{*}B_{j}(t)) = \|\rho\|t, \quad j = 1, 2.$$

Granting that for a moment, we can then define a *linear* trace-class operator B(t) on $L^2(E)$ by

(3.9)
$$B(t) = \begin{cases} B_1(t)^* B_2(t), & t > 0, \\ 0, & t = 0, \end{cases}$$

and we will have $tr |B(t)| \leq ||\rho||t$, $t \geq 0$.

We now prove (3.8). Let e_1 , e_2 , ... be a sequence of measurable sections of the map $p: E \to (0, \infty)$ such that $\{e_1(t), e_2(t), \ldots\}$ is an orthonormal basis for E(t) for every t > 0 ([1], Proposition 1.15). Let f_1, f_2, \ldots be a orthonormal basis for $L^2(0, \infty)$ consisting of functions in $L^1(0, \infty) \cap L^2(0, \infty)$. Define $g_{mn}: (0, \infty) \to E$ by

$$g_{mn}(s) = f_m(s)e_n(s).$$

Then $\{g_{mn}: m, n \ge 1\}$ is an orthonormal basis for $L^2(E)$ consisting of functions in $L^1(E) \cap L^2(E)$. (3.8) will follow if we prove

(3.10)
$$\sum_{m,n=1}^{\infty} ||B_j(t)g_{mn}||^2 \leqslant ||\rho||^4 t$$

for j = 1, 2.

In order to establish (3.10), we make use of the semigroup of endomorphisms $\gamma = \{\gamma_s : s \ge 0\}$ of $\mathcal{B}(H)$ defined by

$$\gamma_s(A) = \sum_{n=1}^{\infty} \varphi(e_n(s)) A \varphi(e_n(s))^*. \quad A \in \mathcal{B}(H),$$

 $\gamma_0(A) = A$. We have $\gamma_s(1) = P_s$, s > 0, and hence $\gamma_s(1 - P_t) = P_s - P_{s+t}$. Moreover,

(3.11)
$$\varphi(e_n(s))A = \gamma_s(A)\varphi(e_n(s)),$$

for every s > 0, $A \in \mathcal{B}(H)$, $n = 1, 2, \ldots$

We prove (3.10) for j = 1. For each $m, n \ge 1$, write

$$||B_{1}(t)g_{mn}||^{2} = \langle (1 - P_{t})\varphi(g_{mn})^{*}\xi_{1}, (1 - P_{t})\varphi(g_{mn})^{*}\xi_{1} \rangle =$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \overline{f_{m}(x)} f_{m}(y) \langle (1 - P_{t})\varphi(e_{n}(x))^{*}\xi_{1}, (1 - P_{t})\varphi(e_{n}(y))^{*}\xi_{1} \rangle dxdy =$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \overline{f_{m}(x)} f_{m}(y) k_{n}(x, y) dxdy,$$

where

$$k_n(x, y) = \langle (1 - P_t)\varphi(e_n(x))^*\xi_1, (1 - P_t)\varphi(e_n(y))^*\xi_1 \rangle.$$

Therefore, if we can show that each k_n is the kernel of a positive trace-class operator $K_n \in \mathcal{L}^1(L^2(E))$ for which

$$(3.12) \sum_{n=1}^{\infty} \operatorname{tr} K_n \leqslant \|\rho\|t,$$

then

$$\sum_{m,n} ||B_1(t)g_{mn}||^2 = \sum_n \operatorname{tr} K_n,$$

and (3.10) will follow.

In order to prove (3.12) we will exhibit, for each $n \ge 1$, a sequence of functions u_{n1}, u_{n2}, \ldots in $L^2(0, \infty)$ such that

(i)
$$k_n(x, y) = \sum_{p=1}^{\infty} u_{np}(x) \overline{u_{np}(y)},$$

(3.13) and

(ii)
$$\sum_{n,p} ||u_{np}||^{1/2} \leqslant ||\rho||^{t}.$$

Let $\{\zeta_1, \zeta_2, \ldots\}$ be an orthonormal basis for H, and put

$$u_{np}(x) = \langle (1 - P_t) \varphi(e_n(x))^* \xi_1, \zeta_p \rangle.$$

The formula (3.13)(i) follows from the fact that

$$\langle \eta_1, \eta_2 \rangle = \sum_{p} \langle \eta_1, \zeta_p \rangle \langle \overline{\eta_2, \zeta_p} \rangle$$

for any pair of vectors n_1 , n_2 in H. Moreover, for each x > 0 we have

$$\sum_{n,p} |u_{np}(x)|^2 = \sum_{n} ||(1 - P_t)\phi(e_n(x))^*\xi_1||^2 =$$

$$= \sum_{n} \langle \phi(e_n(x))(1 - P_t)\phi(e_n(x))^*\xi_1, \, \xi_1 \rangle =$$

$$= \langle \gamma_x(1 - P_t)\xi_1, \, \xi_1 \rangle = \langle (P_x - P_{x+t})\xi_1, \, \xi_1 \rangle.$$

Integrating the latter formula over $0 < x < \infty$, we obtain

$$\sum_{n,p} ||u_{np}||^2 = \int_0^\infty \langle (P_x - P_{x+t})\xi_1, \xi_1 \rangle \mathrm{d}x.$$

Now the function

$$w(x) = \langle P_x \zeta_1, \zeta_1 \rangle$$

is non-negative and decreasing on $(0, \infty)$. Hence

$$\int_{0}^{\infty} (w(x) - w(x+t)) dx = \sum_{k=0}^{\infty} \int_{kt}^{(k+1)t} (w(x) - w(x+t)) dx =$$

$$= \sum_{k=0}^{\infty} \int_{0}^{t} (w(kt+s) - w((k+1)t+s)) ds =$$

$$= \int_{0}^{t} \sum_{k=0}^{\infty} (w(kt+s) - w((k+1)t+s)) ds =$$

$$= \int_{0}^{t} (w(s) - w(\infty)) ds \le \int_{0}^{t} w(s) ds \le ||\xi_{1}||^{2}t = ||\rho||t,$$

and hence we obtain the required estimate

$$\sum_{n,p} ||u_{np}||^2 \leqslant ||\rho||t.$$

We claim now that the family of operators $\{B(t): t \ge 0\}$ defined by (3.9) obeys

(3.14)
$$B(s + t) = B(s) + \beta_{ssk}(B(t)).$$

For this, we will show first that for s > 0 and $v \in E(s)$, we have

(3.15)
$$B_i(t)\mathbf{r}(v) = \varphi(v)^{\ddagger}B_i(s+t),$$

r denoting the right regular antirepresentation of E on $L^2(E)$. Indeed, for $f \in L^1(E) \cap L^2(E)$ and $v \in E(s)$, we have

$$B_j(t)\mathbf{r}(v)f = B_j(t)(fv) = (1 - P_t)\varphi(fv)^*\xi_j =$$
$$= (1 - P_t)\varphi(v)^*\varphi(f)^*\xi_j.$$

Taking the semigroup $\gamma = \{\gamma_t : t \ge 0\}$ of endomorphisms of $\mathcal{B}(H)$ defined above, we have

$$\varphi(v)(1 - P_t) = \gamma_s(1 - P_t)\varphi(v) =$$

$$= (P_s - P_{s+t})\varphi(v) = (1 - P_{s+t})P_s\varphi(v) = (1 - P_{s+t})\varphi(v).$$

Hence $(1 - P_t)\varphi(v)^* = \varphi(v)^*(1 - P_{s+t})$, and the last term of the preceding equation becomes

$$\varphi(v)^*(1-P_{s+t})\varphi(f)^*\xi_j=\varphi(v)^*B_j(s+t)f,$$

as required.

In terms of the orthonormal basis $\{e_1(s), e_2(s), \ldots\}$ for E(s), the action of β_s on $\mathcal{B}(L^2(E))$ is given by

$$\beta_s(T) = \sum_n r(e_n(s)) T r(e_n(s))^{\ddagger},$$

and hence the action of β_{s*} on $\mathcal{L}^1(L^2(E))$ is given by

$$\beta_{s*}(B) = \sum_{n} r(e_n(s))^{\circ} Br(e_n(s)).$$

So by (3.15) we have

$$\beta_{s;\sharp}(B(t)) = \sum_{n} r(e_{n}(s))^{\sharp} B_{1}(t)^{\sharp} B_{2}(t) r(e_{n}(s)) =$$

$$= \sum_{n} B_{1}(s+t)^{\sharp} \varphi(e_{n}(s)) \varphi(e_{n}(s))^{\sharp} B_{2}(s+t) = B_{1}(s+t)^{\sharp} P_{s} B_{2}(s+t) =$$

$$= B_{1}(s+t)^{\sharp} B_{2}(s+t) - B_{1}(s+t)^{\sharp} (1-P_{s}) B_{2}(s+t) =$$

$$= B(s+t) - B_{1}(s+t)^{\sharp} (1-P_{s}) B_{2}(s+t).$$

Now since the projections $1 - P_s$ are increasing with s, a glance at Definition 3.7 of $B_j(t)$ shows that $(1 - P_s)B_j(s + t) = B_j(s)$ for all $t \ge 0$, s > 0. Thus the above formula implies

$$\beta_{s:k}(B(t)) = B(s+t) - B(s),$$

as required.

It follows that the function $t \in [0, \infty) \mapsto B(t) \in \mathcal{L}^1(L^2(E))$ is norm continuous. It remains to show that

$$\rho(f \otimes \overline{g}) + \beta_t^* \rho(f \otimes \overline{g}) = \langle B(t)f, g \rangle,$$

for $f, g \in L^1(E) \cap L^2(E)$. But for t > 0 we have

$$\beta_{t}^{*}\rho(f\otimes g) = \sum_{n}\rho(fe_{n}(t)\otimes ge_{n}(t)) = \sum_{n}\langle\varphi(fe_{n}(t))\varphi(ge_{n}(t))^{*}\xi_{1}^{\dagger}, \xi_{2}\rangle =$$

$$= \sum_{n}\langle\varphi(f)\varphi(e_{n}(t))\varphi(e_{n}(t))^{*}\varphi(g)^{*}\xi_{1}, \xi_{2}\rangle = \langle\varphi(f)P_{t}\varphi(g)^{*}\xi_{1}, \xi_{2}\rangle.$$

Hence,

$$\rho(f \otimes g) - \beta_t^* \rho(f \otimes g) = \langle \varphi(f)(1 - P_t)\varphi(g)^* \xi_1, \xi_2 \rangle =$$

$$= \langle (1 - P_t)\varphi(g)^* \xi_1, (1 - P_t)\varphi(f)^* \xi_2 \rangle =$$

$$= \langle B_1(t)g, B_2(t)f \rangle = \langle g, B_1(t)^* B_2(t)f \rangle = \langle B(t)f, g \rangle.$$

Finally, assuming ρ is a positive linear functional, we have to show that $A(s) \ge 0$ for every s > 0. Because $A(\cdot)$ is continuous, it suffices to show that

$$\int_{\mathbf{y}}^{t} \langle A(x)f, f \rangle \mathrm{d}x \ge 0$$

7

for all 0 < s < t and all $f \in L^1(E) \cap L^2(E)$. Because $\rho \ge 0$ we have $\xi_1 = \xi_2 = \xi$ in the GNS representation of ρ , and hence

$$\int_{x}^{t} \langle A(x)f, f \rangle dx = \int_{0}^{t} \langle A(x)f, f \rangle dx - \int_{0}^{s} \langle A(x)f, f \rangle dx =$$

$$=\beta_s^*\rho(f\otimes f)-\beta_t^*\rho(f\otimes \overline{f})=\langle \varphi(f)(P_s-P_t)\varphi(f)^*\xi,\,\xi\rangle=\|(P_s-P_t)\varphi(f)^*\xi\|^2\geqslant 0.$$

COROLLARY 1. The map $A \mapsto \rho_A$ defined in Theorem 2.4 is an isometric order isomorphism of $\mathcal{M}(\beta_*)$ onto the singular part $C^*(E)^*$.

Proof. In view of Theorem 2.4, it remains to show that every singular element ρ of $C^*(E)^*$ has the form $\rho = \rho_A$ for some $A \in \mathcal{M}(\beta_*)$.

Fixing such a ρ , Theorem 3.1 implies that there is an element $A \in \mathcal{M}(\beta_*)$ such that

$$\rho(f \otimes \overline{g}) - \beta_t^* \rho(f \otimes \overline{g}) = \int_0^t \langle A(x)f, g \rangle dx,$$

for every $f, g \in L^1(E) \cap L^2(E)$, t > 0. By (1.8)(i) we have

$$\lim_{t\to\infty}\beta_t^*\rho(f\otimes \overline{g})=0,$$

and by Theorem 3.1,

$$\lim_{t\to\infty}\int_0^t \langle A(x)f,g\rangle \mathrm{d}x = \int_0^\infty \langle A(x)f,g\rangle \mathrm{d}x.$$

Hence $\rho(f \otimes \overline{g}) = \rho_A(f \otimes \overline{g})$, and so $\rho = \rho_A$.

COROLLARY 2. For every singular state ρ of $C^*(E)$ and every t > 0, $\beta_t^* \rho$ is a regular singular state.

ρ is a regular singular state iff

$$\lim_{t\to 0} \|\beta_t^* \rho - \rho\| = 0.$$

Proof. Let ρ be a singular state and choose t > 0. We have to show that $\beta_t^* \rho$ has the form

$$\beta_t^* \rho(x) = \operatorname{tr}(A\lambda(x)), \quad x \in C^*(E)$$

where A is a positive trace-class operator on $L^2(E)$. By Corollary 1 and Theorem 2.4,

there is a positive element A in $\mathcal{M}(\beta_{\circ})$ such that $\rho = \rho_A$. The last assertion of Theorem 2.4 gives the required representation

$$\beta_t^* \rho(x) = \operatorname{tr}(A(t)\lambda(x)).$$

If $\|\rho - \beta_t^* \rho\| \to 0$ as $t \to 0+$, then ρ is the norm limit of a sequence of positive linear functionals of the form

$$\rho_n(x) = \operatorname{tr}(A_n \lambda(x)), \quad x \in C^*(E)$$

where A_n is a positive trace-class operator on $L^2(E)$. Since the space of normal functionals on any von Neumann algebra is a Banach space, it follows that ρ must have the same form.

Conversely, if ρ has the form

$$\rho(x) = \operatorname{tr}(A\lambda(x))$$

where A is a positive trace-class operator on $L^2(E)$, then

$$\beta_t^* \rho(x) = \operatorname{tr}(\beta_{t::}(A)\lambda(x))$$

for every t > 0 and hence

$$\|\rho - \beta_t^* \rho\| \le \operatorname{tr}[A - \beta_{t*}(A)] \to 0$$

as $t \to 0$.

COROLLARY 3. For every non-trivial product system E, the regular representation

$$\lambda \colon C^{\phi}(E) \to \mathscr{B}(L^2(E))$$

is faithful.

Proof. It suffices to show that every state ρ of $C^*(E)$ satisfies

$$|\rho(x)| \leqslant ||\lambda(x)||, \quad x \in C^*(E).$$

Fixing ρ , we can write $\rho = \rho_s + \rho_n$ where ρ_s and ρ_n are positive linear functions which are respectively singular and non-singular, and which satisfy $\|\rho_s\| + \|\rho_n\| = \|\rho\| = 1$. We will show that $\|\rho_s(x)\| \le \|\rho_s\| \|\lambda(x)\|$ and $\|\rho_n(x)\| \le \|\rho_n\| \|\lambda(x)\|$, for all $x \in C^*(E)$.

For each t > 0, Corollary 2 implies that for each $x \in C^*(E)$,

$$|\beta_t^* \rho_s(x)| \leq ||\beta_t^* \rho_s|| \cdot ||\lambda(x)|| \leq ||\rho_s|| \cdot ||\lambda(x)||.$$

Since $\beta_t^* \rho_s$ converges weak* to ρ_s as $t \to 0+$, we conclude that

$$|\rho_{s}(x)| \leq \overline{\lim_{t\to 0+}} |\beta_{t}^{*}\rho_{s}(x)| \leq ||\rho_{s}|| \cdot ||\lambda(x)||.$$

Now consider ρ_n . Applying the GNS construction, we obtain a separable representation $\pi_n\colon C^*(E)\to \mathscr{B}(H)$ and a cyclic vector ξ_n for π_n such that $\|\xi_n\|^2=\|\rho_n\|$ and

$$\rho_{\mathbf{n}}(x) = \langle \pi_{\mathbf{n}}(x)\xi_{\mathbf{n}}, \xi_{\mathbf{n}} \rangle, \quad x \in C^*(E).$$

The representation π_n is non-singular, so by ([4], Theorem 7.1 and succeeding remarks) we have $\|\pi_n(x)\| \le \|\lambda(x)\|$. The inequality $\|\rho_n(x)\| \le \|\xi_n\|^2 \|\lambda(x)\| = \|\rho_n\| \|\lambda(x)\|$ follows.

COROLLARY 4. Let $\varphi: E \to \mathcal{B}(H)$ be a singular representation of a non-trivial product system E. For every t > 0, let φ_t be the representation of E on $H_t = [\varphi(E(t))H]$ defined by

$$\varphi_t(v) = \varphi(v)|H_t, \quad v \in E.$$

Then φ_t is unitarily equivalent to a direct sum of copies of the regular representation $\ell: E \to \mathcal{B}(L^2(E))$.

Proof. Fix t > 0, and let $\pi_t : C^*(E) \to \mathcal{B}(H_t)$ be the corresponding representation of $C^*(E)$. Since λ is an irreducible representation of $C^*(E)$ ([4], Corollary of Theorem 5.2), it suffices to show that for every vector $\xi \in H_t$, there is a positive trace-class operator $T = T_{\xi}$ on $L^2(E)$ such that

$$\langle \pi_{n}(x)\xi, \xi \rangle = \operatorname{tr}(T\lambda(x)), \quad x \in C^{*}(E).$$

Let $\pi: C^*(E) \to \mathcal{B}(H)$ be the representation defined by $\pi(f \otimes \overline{g}) = \varphi(f)\varphi(g)^*$ for $f, g \in L^1(E)$, and consider the positive linear functional ρ on $C^*(E)$ defined by $\rho(x) = \langle \pi(x)\xi, \xi \rangle$. ρ is obviously singular, and we have

$$\beta_t^* \rho(f \otimes \overline{g}) = \langle \varphi(f) P_t \varphi(g)^* \xi, \, \xi \rangle = \langle \pi_t(f \otimes \overline{g}) \xi, \, \xi \rangle$$

for all $f, g \in L^1(E)$, P_t denoting the projection onto H_t . Hence

$$\beta_t^* \rho(x) = \langle \pi_t(x)\xi, \xi \rangle, \quad x \in C^*(E).$$

Formula (3.16) follows after an application of Corollary 2.

4. IRREGULAR SINGULAR STATES

Let E be a nontrivial product system. It is natural to ask at this point if every singular state of $C^*(E)$ is a regular singular state. In view of the isomorphism

$$\mathscr{S} \cong \mathscr{M}(\beta_*)$$

and the properties of $\mathcal{M}(\beta_*)$ discussed in Section 2, this is equivalent to asking if every positive function $A \in \mathcal{M}(\beta_*)$ has a trace-norm limit at t = 0:

$$A(0+) = \lim_{t \to 0} A(t).$$

In this section we exhibit a class of examples which show that this is not the case. The notation of Section 3 remains in force.

LEMMA 4.1. Let t_1, t_2, \ldots be a sequence of positive real numbers. There is a sequence of rank-one projections e_1, e_2, \ldots in $\mathcal{B}(L^2(E))$ which converges to zero in the weak operator topology such that

$$\beta_{t_n} \otimes (e_{n+1}) = e_n, \quad n = 1, 2, \ldots$$

Proof. Choose any faithful normal state ω of $\mathcal{B}(L^2(E))$. Let e_1 be an arbitrary rank-one projection. Inductively, we will construct a sequence e_2 , e_3 , ... of rank-one projections such that

$$\omega(e_{\nu}) \leq 1/k$$

$$\beta_{t_k*}(e_{k+1}) = e_k, \quad k \geqslant 1.$$

Assume that e_1, e_2, \ldots, e_n have been defined and satisfy the above conditions insofar as they make sense. Since E is not the trivial product system, each fiber space E(t) is infinite-dimensional ([3], Corollary of Lemma 7.3). Therefore since each t_n is positive, the von Neumann algebras $\beta_{t_n}(\mathcal{B}(L^2(E)))$ are (degenerate) type I_{∞} factors of infinite multiplicity. Hence $\beta_{t_n}(e_n)$ is an infinite-dimensional projection. Let f_1, f_2, \ldots be mutually orthogonal one-dimensional projections such that

$$\sum_{k} f_{k} = \beta_{t_{n}}(e_{n}).$$

By normality of the state ω we have

$$\sum_{k} \omega(f_{k}) = \omega(\beta_{t_{n}}(e_{n})) < \infty,$$

and hence $\omega(f_k) \to 0$ as $k \to \infty$. Choosing k_0 so that

$$\omega(f_{k_0}) \leqslant 1/(n+1),$$

we put $e_{n+1} = f_{k_0}$.

We claim that $\beta_{t_n*}(e_{n+1}) = e_n$ or, what is the same,

$$(4.2) tr(e_{n+1}\beta_{t_n}(B)) = tr(e_nB)$$

Ø

for every $B \in \mathcal{B}(L^2(E))$. Indeed, we have $e_{n+1} = f_{k_0} \leqslant \beta_{t_n}(e_n)$, hence $e_{n+1} = \beta_{t_n}(e_n)e_{n+1}\beta_{t_n}(e_n)$. So for B fixed, the left side of (4.2) can be written

$$\operatorname{tr}(e_{n+1}\beta_{t_n}(e_n)\beta_{t_n}(B)\beta_{t_n}(e_n)) = \operatorname{tr}(e_{n+1}\beta_{t_n}(e_nBe_n)).$$

Since e_n is one-dimensional we have $e_n B e_n = tr(e_n B) e_n$, and the right side of the preceding formula becomes

$$\operatorname{tr}(e_n B)\operatorname{tr}(e_{n+1}\beta_{t_n}(e_n)) = \operatorname{tr}(e_n B)\operatorname{tr}(e_{n+1}) = \operatorname{tr}(e_n B),$$

as required.

PROPOSITION 4.3. Let $t_1 > t_2 > \dots$ be a sequence of positive reals which decreases to zero. There is a positive element $A \in \mathcal{M}(\beta_*)$ such that $\operatorname{tr}(A(t)) = 1$ for all $0 < t \le 1$, and

$$\lim_{n\to\infty}\langle A(t_n)\xi,\,\eta\rangle=0,\quad \xi,\,\eta\in L^2(E).$$

 ρ_A is a singular state of $C^*(E)$ which is not a regular singular state.

Proof. By adding an initial term to the sequence $\{t_n\}$ if necessary, we can assume that $t_1 \ge 1$. By Lemma 4.1, there are rank-one projections e_1, e_2, \ldots in $\mathcal{B}(L^2(E))$ such that $e_n \to 0$ weakly and

$$\beta_{t_n-t_{n+1}}(e_{n+1})=e_n, \quad n\geqslant 1.$$

For each $n \ge 1$, define $A_n: [t_n, \infty) \to \mathcal{L}^1(L^2(E))$ by

$$A_n(t) = \beta_{t-t_n*}(e_n).$$

 $A_n(t)$ is positive for every $t \ge t_n$ and $\operatorname{tr}(A_n(t)) \le \operatorname{tr}(e_n) \le 1$. Note that the restriction of A_{n+1} to $[t_n, \infty)$ agrees with A_n . Indeed, if $t \ge t_n$ then using the semigroup property of β_* we have

$$A_{n+1}(t) = \beta_{t-t_{n+1}*}(e_{n+1}) =$$

$$= \beta_{t-t_n*}(\beta_{t_n-t_{n+1}*}(e_{n+1})) = \beta_{t-t_n*}(e_n) = A_n(t).$$

We conclude that there is a unique positive element $A \in \mathcal{M}(\beta_*)$ which agrees with each A_* on its domain.

We claim that tr(A(t)) = 1 for every $t \in (0,1]$. Fixing such a t, we have $t \leq t_1$ so that

$$e_1 = A(t_1) = \beta_{t_1-t_*}(A(t)).$$

Hence

$$\operatorname{tr}(A(t)) \geqslant \operatorname{tr}(\beta_{t_1-t_2}(A(t))) = \operatorname{tr}(e_1) = 1.$$

The opposite inequality $tr(A(t)) \le 1$ was pointed out already.

Finally, $A(t_n) = e_n$ converges weakly to zero by the choice of $\{e_n\}$.

Let ρ_A be the singular element of $C^{\pm}(E)^{\pm}$ determined by A. ρ_A is positive because $A(t) \ge 0$ for all t > 0, and $\|\rho_A\| = 1$ because $\operatorname{tr} A(t) = 1$ near t = 0. Hence ρ_A is a singular state.

We claim that ρ_A cannot have the form

$$\rho_{\mathcal{A}}(x) = \operatorname{tr}(T\lambda(x)), \quad x \in C^*(E)$$

for any positive trace-class operator T on $L^2(E)$. Indeed, if (4.4) were to hold then for t > 0 we would have

$$\operatorname{tr}(\beta_{t*}(T)\lambda(x)) = \beta_t^* \rho_A(x), \quad x \in C^*(E),$$

while by Theorem 2.4,

$$\beta_t^* \rho_A(x) = \operatorname{tr}(A(t)\lambda(x)).$$

It follows that $\operatorname{tr}((A(t) - \beta_{t*}(T))B) = 0$ for all B in the irreducible C° -algebra $\lambda(C^{*}(E))$, and hence $A(t) = \beta_{t*}(T)$, t > 0. By strong continuity of the semigroup β_{*} we conclude that $\operatorname{tr}|A(t) - T| \to 0$ as $t \to 0$; while on the other hand, $A(t_{n}) \to 0$ in the weak operator topology. It follows that T = 0 which is obviously absurd.

REMARK. Let E be a non-trivial product system. In view of the correspondence between representations of $C^*(E)$ and representations of E, we conclude that there is a singular representation $\varphi \colon E \to \mathcal{B}(H)$ which is not unitarily equivalent to a direct sum of copies of the regular representation of E on $L^2(E)$.

5. LOCALLY NORMAL STATES

We conclude by giving a description of $\mathcal{M}(\beta_*)$ as the space of all locally normal linear functionals on a certain C^* -algebraic inductive limit of type I_{∞} von Neumann algebras. Taken together with the results of §§ 2—3, this provides a realization of the singular part of $C^*(E)^*$ which is tied rather closely to the regular representation (cf. Corollary 5.2).

Let E be a product system, which will be fixed throughout this section. Let M denote the von Neumann algebra $\mathcal{D}(L^2(E))$ of all bounded operators on $L^2(E)$, and let $\beta = \{\beta_i : t \ge 0\}$ be the semigroup of *-endomorphisms of M determined by the right regular anti-representation $r: E \to \mathcal{D}(H)$ as in Section 2.

For every t > 0, $\beta_t(M)$ is a (degenerate) type I_{∞} subfactor of M whose unit is $\beta_t(1) = P_t \neq 1$, and we have $\beta_t(M) \subseteq \beta_s(M)$ for $s \leq t$. Define

$$\mathscr{A} = \overline{\bigcup_{i>0} \beta_i(M)}^{\{i+1\}}.$$

 \mathcal{A} is an irreducible unitless C^* -algebra which is the C^* -algebraic inductive limit of the increasing sequence of von Neumann algebras $M_n = \beta_{1/n}(M)$, $n = 1, 2, \ldots$. The inclusion of M_n into M_{n+1} is isometric and normal, but not unit-preserving.

A bounded linear functional ρ on \mathscr{A} is called *locally normal* if the restriction of ρ to $\beta_t(M)$ is normal for every t>0. \mathscr{A}_* will denote the Banach space of all locally normal elements of \mathscr{A}^* . \mathscr{A}_* is an order ideal in the sense that if ρ_1 and ρ_2 are positive linear functionals on \mathscr{A} satisfying $\rho_1 \leqslant \rho_2$ and ρ_2 is locally normal, then ρ_1 is locally normal. Finally, we say that an element $\rho \in \mathscr{A}^*$ is normal if there is a trace-class operator A on $\mathscr{B}(H)$ such that $\rho(B) = \operatorname{tr}(AB)$, $B \in \mathscr{A}$. A is necessarily unique, whenever it exists.

The following result shows that the Banach space $\mathcal{M}(\beta_*)$ introduced in Section 2 can be identified with \mathcal{A}_* .

PROPOSITION 5.1. For every element $A \in \mathcal{M}(\beta_*)$ there is a unique bounded linear functional ω_A on \mathcal{A} satisfying

$$\omega_A(\beta_t(B)) = \operatorname{tr}(A(t)B), \quad B \in M, \ t > 0.$$

 ω_A is locally normal and $A \mapsto \omega_A$ is an isometric order isomorphism of $\mathcal{M}(\beta_*)$ onto \mathcal{A}_* . ω_A is normal iff the limit

$$A(0+) = \lim_{t \to 0+} A(t)$$

exists relative to the trace-norm.

Proof. Choose $A \in \mathcal{M}(\beta_*)$ and fix t > 0. Since $B \mapsto \beta_t(B)$ is an isometric *-isomorphism of M onto $\beta_t(M)$, it follows that there is a unique bounded linear functional ω_t on $\beta_t(M)$ satisfying

$$\omega_t(\beta_t(B)) = \operatorname{tr}(A(t)B), \quad B \in M.$$

 ω_t is normal because it is the composition of the normal map $\beta_t^{-1}: \beta_t(M) \to M$ and the normal linear functional $B \in M \mapsto \operatorname{tr}(A(t)B)$.

Clearly $\|\omega_t\| = \operatorname{tr}|A(t)| \le \|A\|$, and we claim that if 0 < s < t then $\omega_s|\beta_t(M) = \omega_t$. Indeed, every element of $\beta_t(M)$ has the form $\beta_t(B)$ for some $B \in M$, hence

$$\omega_s(\beta_t(B)) = \omega_s(\beta_s(\beta_{t-s}(B))) = \operatorname{tr}(A(s)\beta_{t-s}(B)) =$$

$$= \operatorname{tr}(\beta_{t-s*}(A(s))B) = \operatorname{tr}(A(t)B) = \omega_t(\beta_t(B)).$$

Thus, there is a unique element $\omega_A \in \mathscr{A}^*$ satisfying $\omega | \beta_t(M) = \omega_t$ for t > 0, and we have $||\omega_A|| \leq ||A||$.

 ω_A is obviously locally normal, and since $\bigcup_{t>0} \beta_t(M)$ is norm-dense in $\mathscr A$ we have

$$\|\omega_A\| = \sup_{t>0} \|\omega_t\| = \sup_{t>0} \operatorname{tr} |A(t)| = \|A\|.$$

Finally, $\omega_A \ge 0$ iff $\omega_t \ge 0$ for every t > 0 iff $A(t) \ge 0$ for every t > 0 iff $A \ge 0$. Conversely, let $\omega \in \mathscr{A}_*$ and fix t > 0. Since $\omega \mid \beta_t(M)$ is normal,

$$B \mapsto \omega(\beta_t(B))$$

defines a normal linear functional on M. Hence there is a unique trace-class operator $A(t) \in M$ satisfying

$$\omega(\beta_t(B)) = \operatorname{tr}(A(t)B), \quad B \in M.$$

We claim that $\beta_{*s}(A(t)) = A(s+t)$ for all $s \ge 0$, t > 0. To see that, choose $B \in M$ and write

$$\operatorname{tr}(\beta_{*:s}(A(t))B) = \operatorname{tr}(A(t)\beta_{s}(B)) =$$

$$=\omega(\beta_t(\beta_s(B)))=\omega(\dot{\beta}_{s+t}(B))=\operatorname{tr}(A(s+t)B),$$

and the assertion follows. A is a bounded function because

$$\operatorname{tr}[A(t)] = \sup_{\|B\| \le 1} |\operatorname{tr}(A(t)B)| = \sup_{\|B\| \le 1} |\omega(\beta_t(B))| \le \|\omega\|.$$

Hence $A \in \mathcal{M}(\beta_*)$ and $\omega = \omega_A$.

Finally, we show that ω_A is normal iff the trace-norm limit $A(0+) = \lim_{t \to 0} A(t)$ exists. Suppose first that A(0+) exists. Then $A(t) = \beta_{t*}(A(0+))$ for every t > 0, and hence for $B \in M$ we have

$$\omega_A(\beta_t(B)) = \operatorname{tr}(A(t)B) =$$

$$= \operatorname{tr}(\beta_{t*}(A(0+)B)) = \operatorname{tr}(A(0+)\beta_{t}(B)).$$

This implies that for the normal functional on M defined by $\omega_0(T) = \operatorname{tr}(A(0+)T)$, we have

$$\omega_A \beta_t(M) = \omega_0 \beta_t(M),$$

for every t > 0. Hence $\omega_A = \omega_0$ on \mathcal{A} , proving that ω_A is normal.

Conversely, if ω_A is normal then there is a trace-class operator $A_0 \in M$ such that $\omega_A(B) = \operatorname{tr}(A_0B)$, $B \in \mathcal{A}$. For each t > 0 and $B \in M$ we have

$$\operatorname{tr}(A(t)B) = \omega_A(\beta_t(B)) = \operatorname{tr}(A_0\beta_t(B)) = \operatorname{tr}(\beta_{t*}(A_0)B),$$

which implies that $A(t) = \beta_{t*}(A_0)$. Hence

$$\lim_{t\to 0} \operatorname{tr} |A(t) - A_0| = \lim_{t\to 0} \operatorname{tr} |\beta_{t*}(A_0) - A_0| = 0,$$

by strong continuity of the semigroup β_* .

COROLLARY 5.2. $\lambda(C^*(E))$ is contained in \mathcal{A} . Moreover, letting $A \in \mathcal{M}(\beta_*) \mapsto \rho_A \in \mathcal{S}$ and $A \in \mathcal{M}(\beta_*) \mapsto \omega_A \in \mathcal{A}_*$ be the isomorphisms defined by Theorem 2.4 and Proposition 5.1, then we have

$$\rho_A = \omega_A \circ \lambda, \quad A \in \mathcal{M}(\beta_*).$$

In particular, a bounded linear functional ρ on $C^*(E)$ is singular iff it has the form $\rho = \omega \circ \lambda$ for some $\omega \in \mathscr{A}_*$.

Proof. We show first that \mathscr{A} contains $\lambda(C^*(E))$. Since $C^*(E)$ is spanned by elements of the form $f \otimes \overline{g}$ with f, g compactly supported functions in $L^2(E)$ and since \mathscr{A} is norm-closed, it suffices to show that $\lambda(f \otimes \overline{g}) \in \mathscr{A}$ for all $f, g \in L^2(E)$ of compact support. Fix f and g. Then by ([4], Proposition 6.4), for every ξ , $\eta \in L^2(E)$ the integral

$$\int_{0}^{\infty} \langle \beta_{t}(f \otimes \overline{g}) \xi, \eta \rangle \mathrm{d}t$$

is absolutely convergent and agrees with $\langle \lambda(f \otimes \widehat{g})\xi, \eta \rangle$. Moreover, for every t > 0 we have

$$\langle (\lambda(f\otimes \overline{g}) - \beta_t(\lambda(f\otimes \overline{g})))\xi, \eta \rangle = \int_0^t \langle \beta_s(f\otimes \overline{g})\xi, \eta \rangle ds.$$

Fix $\varepsilon > 0$ and choose t small enough so that

$$\int_{0}^{t} \|\beta_{s}(f \otimes \overline{g})\| ds = \int_{0}^{t} \|f \otimes \overline{g}\| ds \leqslant \varepsilon.$$

The preceding expression implies that

$$\|\lambda(f\otimes \overline{g})-\beta_t(\lambda(f\otimes \overline{g}))\| \leq \varepsilon.$$

and since $\beta_t(\lambda(f \otimes \overline{g})) \in \beta_t(M) \subseteq \mathscr{A}$, we see that the distance from $\lambda(f \otimes \overline{g})$ to \mathscr{A} is at most ε . Since ε is arbitrary and \mathscr{A} is norm-closed, we conclude that $\lambda(f \otimes g) \in \mathscr{A}$.

Notice that the preceding argument implies that

$$\lim_{t\to 0} \|\lambda(x) - \beta_t(\lambda(x))\| = 0$$

for every $x \in C^*(E)$. We also point out that, for t > 0, the operators $\beta_t(\lambda(x))$ belong to A but they do not belong to $\lambda(C^*(E))$.

Now fix $A \in \mathcal{M}(\beta_*)$. It remains to show that $\rho_A = \omega_A \circ \lambda$. Again, it is enough to prove that

$$\rho_{A}(f \otimes g) = \omega_{A}(\lambda(f \otimes g)),$$

for $f, g \in L^1(E) \cap L^2(E)$. Fixing f and g, we see from the preceding paragraph that

$$\omega_A(\lambda(f\otimes \overline{g})) = \lim_{t\to 0} \omega_A(\beta_t(\lambda(f\otimes \overline{g}))).$$

Now for t > 0 and $B \in M$ we have

$$\omega_A(\beta_t(B)) = \operatorname{tr}(A(t)B).$$

Hence

$$\omega_{A}(\beta_{t}(\lambda(f\otimes \overline{g}))) = \operatorname{tr}(A(t)\lambda(f\otimes \overline{g})) =$$

$$= \int_{0}^{\infty} \operatorname{tr}(A(t)\beta_{s}(f \otimes \overline{g})) ds.$$

But for s > 0 we have

$$\operatorname{tr}(A(t)\beta_s(f\otimes \overline{g})) = \operatorname{tr}(\beta_{s*}(A(t))(f\otimes \overline{g})) = \langle A(s+t)f, g \rangle.$$

Hence the integral on the right is

$$\int_{0}^{\infty} \langle A(s+t)f, g \rangle ds = \int_{t}^{\infty} \langle A(x)f, g \rangle dx.$$

We conclude that

$$\omega_{A}(\lambda(f\otimes \overline{g})) = \lim_{t\to 0} \int_{t}^{\infty} \langle A(x)f, g \rangle dx = \int_{0}^{\infty} \langle A(x)f, g \rangle dx,$$

and the latter is $\rho_A(f \otimes \overline{g})$.

Research supported in part by NSF Grant DMS - 86 - 00375.

REFERENCES

- 1. ARVESON, W., Continuous analogues of Fock space, Memoirs A.M.S., to appear.
- 2. Arveson, W., An addition formula for the index of semigroups of endomorphisms of $\mathcal{B}(H)$, Pacific J. Math., to appear.
- 3. ARVESON, W., Quantizing the Fredholm index, in *Proceedings of the Great Plains Operator Theory Seminar* (1988), to appear.
- 4. ARVESON, W., Continuous analogues of Fock space. II: the spectral C*-algebra, preprint.
- 5. Cuntz, J., Simple C*-algebras generated by isometries, Comm. Math. Phys., 57(1977), 173-185.
- 6. DUNFORD, N.; SCHWARTZ, J., Linear operators, Vol. I, Interscience, New York, 1958.
- 7. Evans, D., On Q_n, Publ. Res. Inst. Math. Sci., 16(1980), 915 -927.
- POWERS, R. T., An index theory for semigroups of endomorphisms of \$\mathcal{B}(H)\$ and type II₁ factors, Canad. J. Math., XL(1988), 86-114.
- 9. Powers, R. T., A non-spatial continuous semigroup of *-endomorphisms of $\mathcal{B}(H)$, Publ. Res. Inst. Math. Sci., to appear.
- POWERS, R. T.; ROBINSON, D., An index for continuous semigroups of *-endomorphisms of \$\mathscr{B}(H), J. Funct. Anal., to appear.
- 11. PRICE, G., Shifts on type II₁ factors, Canad. J. Math., XXXIX(1987), 492-511.
- PRICE, G., Shifts of integer index on the hyperfinite II₁ factor, Pacific J. Math., 132(1988), 379-390.

WILLIAM ARVESON
Department of Mathematics,
University of California,
Berkeley, CA 94720,
U.S.A.

Received November 28, 1988.