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CONTINUOUS ANALOGUES OF FOCK SPACE. III:
SINGULAR STATES

WILLIAM ARVESON

INTRODUCTION

The study of semigroups of endomorphisms of von Neumann algebras was
initiated by Powers in [8], [9], and continued by Powers and Robinson [10], Price
[11], [12], and the author [1], [2], [3], [4]. In [1], we reduced the problem of classi-
fying E,-semigroups up to cocycle conjugacy to the problem of classifying certain
simpler structures associated to them, called product systems. With every product
system E, there is an associated C*-algebra C*(E) [4]. These C*-algebras are in
many respects “‘continuous’’ analogues of the Cuntz algebra O, [5], [7]. In this
paper we analyze the state space of C*(E), and we obtain a rather explicit descrip-
tion of the space of “singular’’ states. This allows us to show that the regular repre-
sentation of C*(E) is faithful, thereby settling one of the main questions left open
in [4]).

The following remarks may be helpful in providing a context for the problems
taken up in this paper. Let U = {U,: 1 > 0} be a strongly continuous semigroup
of isometries acting on a Hilbert space H. The Wold decomposition asserts that U
has a unique decomposition

0.1) U=V,eWw, t>0

into a direct sum of a semigroup W = {W, : r > 0} of unitary operators and a semi-
group V ={V,:t > 0} of isometries which is pure in the sense that

(MranV, = {0}.

>0
This decomposition is central in that the two projections associated with the decom-
position (0.1) belong to the center of the von Neumann algebra generated by
{U, : t > 0}. Furthermore, the pure summand V is unitarily equivalent to a direct
sum of copies of the shift semigroup S = {S,:¢ > 0}, defined on the Hilbert
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space L0, co) by
flx—1), x>t
0, 0<x<gt

S,f(X) = {

The number of S-summands is an invariant of U to within unitary equivalence.
The purpose of this paper is to discuss a corresponding decomposition for the
representations of product systems’ahd the C*-algebras associated with them, and
to give certain applications. In more detail, let E = {E(1): ¢t > 0} be a product sys-
tem in the sense of [1]. This means that E is a measurable family of Hilbert spaces
over the open interval (0, co) on which there is defined an associative multiplication
which acts like tensoring in the sense that it is bilinear on fiber spaces, and that for
each s, ¢ > 0, E(s + ¢) is spanned by all products {uv:u € E(s), v € E(1)} and we
have i . : i

{uv, w'v'y = <{u, u') (4), v,

for all u, ' € E(s), v, v' € E(t). A representation of E is an operator-valued mapping
@: E - #(H) satisfying

@ PW)e(v) = p(uv), u, v € E,

(i) o(@)*e) = <{u, t)1, if uand v belong to the same fiber E(z), t > 0,
and which is measurable in the sense that {@()£,n) is a measurable function of v
for fixed £, n € H. Condition (ii) implies that the restriction of ¢ to each fiber E(f)
is a linear map satisfying |lp(v)i| = ||vll, v € E(?).

We remark that it is essential that one confine attention to representations
©: E — B(H) on separable Hilbert spaces H, since there are representations of pro-
duct systems E on inseparable Hilbert spaces with rather pathological propertics.
In any case, for every (separable) representation ¢: E — #(H), we can definc a
one-parameter family of subspaces of H by

H, = [p(E®)H], t>0.

It was shown in [1] that the subspaces H, are decreasing in ¢, their union is dense in

H, and they are continuous in the sense that the corresponding family of projections

{P,:t > 0} is strongly continuous in 1. ¢ is called singular if () H, = {0}, and is
t

called nonsingular in case the opposite extreme occurs, in which H, = H for every
t > 0. It was also pointed out in ([1], Proposition 1.14) that every separable repre=
sentation ¢ has a unique direct sum decomposition

0.2) =90, ¢,

where o, is singular and ¢, is nonsingular, and moreover that this is a central decom-
position in the sense that the two projections arising from this decomposition belong
to the center of the von Neumann algebra generated by ¢(E).
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In the case where E is the trivial product system Z, (0.2) is a restatement of the
Wold decomposition (0.1). In order to see this, recall that Z is defined as the trlvnal
family of one-dimensional Hilbert spaces p: Z — (0, co), where ' ;

= (0, co)xC
pit, 2y =1t t>0, ze(,
having the usual inner product in fiber spaces Z(t) = p~1(t)

{z, w) = zw
and the lnultiplication

(s, 2)(t, w) = (5 + 1, zw).

Every one-parameter semigroup V = {V,:t > 0} of isometries in Z(H) gives rise
to a representation ¢: Z — #(H) by way of

(0.3) ' o, z)=zV,, t>0,zeC.

Conversely, every nonzero separable representation ¢ of Z has the form (0.3) for a
unique strongly continuous semigroup of isometries V. ¢ is a singular (resp. non-
singular) representation of Z iff ¥V is a pure (resp. unitary) semigroup of isometries.
Thus, (0.2) is the Wold decomposition for V.

If ¢: E — #(H) is a representation of a nontrivial product system, then the
nonsingular summand ¢, in the decomposition (0.2) corresponds to the “unitary’
part of the Wold decomposition, and gives rise to an Ej-semigroup as in ([1],
Proposition 2.7). The classification of these representations, and the Ej-semigroups
associated with them, was taken up in {1]. Here, we want to fix attention on singular
representations. : !

Given a product system E, let L E) denote the Hilbert space of all measurable
square-integrable sections f: ¢ € (0, oo) — f(¢) € E(t). The inner product in L*(E)
is given by

> = \ <y g,

and of course we identify two sections in L*(E) which agree almost everywhere (d¢).
L3(£) admits an obvious direct integral decomposition

:-]
L¥E) = S E(t)dt,

(0,00)
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and as we have pointed out in [1], it is a *“continuous’ counterpart of the full Fock
$pace generated by an infinite-dimensional one-particle space. Every v € E deter-
mines a left creation operator £(v), defined as follows; for v € E(f), t > 0 and
J € LXE),

() (x) = {v~f(x——t), x>t

0, O<xgnt
¢: E — B(L*(F)) is a singular representation of E, and it is irreducible in the sense
that £(E) generates #(L*(E)) as a von Neumann algebra ([4], Theorem 5.2).

¢ is called the regular representation of E and, relative to other singular repre-
sentations of E, it occupies a position analogous to that of the semigroup of unila-
teral shifts § = {S,:¢ > 0} introduced above. Since every pure semigrup of iso-
metries is unitarily equivalent to a direct sum of copies of S, one is led to ask if
every singular representation ¢: £ — %(H) is unitarily equivalent to a direct sum
of copies of /. We will show that while the answer is no in general, it is almost
yes. More precisely, we show that every nontrivial product system £ has singular
representations which are not multiples of ¢ (cf. remarks following Proposition
4.3). On the other hand, if ¢: E — #(H) is any singular representation and ¢ > 0,
then the restriction ¢, of ¢ to the @(E)-invariant subspace H, = [@(E(t))H] defines
a representation of E on H, which is unitarily equivalent to a direct sum of copies
of ¢ (Corollary 4 of Theorem 3.1).

Our proof of these results makes essential use of the spectral C*-algebra C*(E)
essociated to a product system E. In particular, in Section 1 we introduce a contrac-
tion semigroup which acts on the dual of C*(E), and which is central to the analysis
of singular representations.

1. THE SEMIGROUP g*
Let E be a product system and let ¢: £ — #(H) be a representation of Eona

Hilbert space H (cf. Introduction). Let LY E) denote the Banach space of all inte-
grable sections

f:te(©,00)ft)€EW), t>0

with the natural norm

T =S I ldr.

¢ induces a contractive linear map of L!(E) into #(H) by integration, and we
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denote this map of L(E) with the same letter ¢. Thus,
o(f) =S PN, [ INE).
0

There is a C*-algebra C*(E) associated with E. While the details of the struc-
ture of C*(E) are not important for our purposes here, we do require the following
universal property and some of its elementary consequences. There is a map

(/,8) € L{E)XLYE) = f@F € C*E)
of L}ME) x LME) into C*(E) which is linear in f, antilinear in g, and satisfies

I ® gl < lifllliglh
(1.1

C*(E) = span{f ® % : f, g € LAE)}.

Moreover, given any representation ¢: E — B(H) of E, there is a unique *-represen-
tation n: C*(E) — #(H) such that

(1.2) n(f ® g) = e(Ne(g)*, 1, & € L'E).

7 is necessarily nondegenerate. Conversely, given any nondegenerate #-representa-
tion n: C*(E) — #(H), there is a unique representation ¢: E — #(H) which satis-
fies (1.2). These properties are established in ([4], §2-—3). C*(E) is separable, nuclear,
and has no unit.

In this section we introduce a contraction semigroup f* = {f¥: ¢ > 0} which
acts on the¢ dual of C*(E), and which will play a central role in what follows. Let
E = {E(t) : 1 > 0} be a product system and let v & E(t), for some ¢ > 0. For every
section f € LY(E) we can define sections of, fv € LNE) by

of (x) = {v-f(xft), x>t

0, 0<xxt

i f(x—1t).v, x>t
v(x) =
Folx) { 0, O0<x<ut
PROPOSITION 1.3. Fix t > 0, and let {e,(1), ex(t),. ..} be an orthonormal basis
Jor E(t). For every p € C*(E)* there is a unique bounded linear functional B¥p on
C*(E) satisfying

Bo(f ® &) = 3, plfeut) ® EeD),

n
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Jor all f, g € LME), the series on the right comverging absolutely for every f, g. Bip
does not depend on the particular choice of basis. For t = 0, put Bip = p.

B* = {B¥ :t > O} is a semigroup of contractions on the Banach space C*(E)*
satisfying Bip = 0 for p > 0, and

l'mg Bfp(x) = p(x).

for every p € CHE)*, x € CHE).

Proof. Fix p € C*(E)*. Let ;p, be the positive part of the polar decomposition
of p. The GNS construction provides us with a representation n: C*(E) - A(H)
and a cyclic vector € for = such that

i) = (a(x)¢, &),

and we have ,p| = ;i{j®>. Moreover, there is a partial isomtery U € n(C*(E))"
satisfying U*U¢ = £ with the property that for n = U we have

plx) = mlx)S. 1.
Note that 5 is also a cyclic vector for = and jy!% = "¢||*> = !p|. Because C*(E) is a
separable C*-algebra H is a separabie Hilbert space, and = is clearly a nondegenerate

representation. By the preceding remarks there is a umque representatlon ¢ E—
— #4(H) such that

f ® g) = e(NHeg). 1. g elXE).
Foreachn =1,2, ... , V., = @(e () is an isometry, and Z V¥ s the pro-

ection P, of H onto [p(E(t))H]. Because ¢ is multiplicative we have o( fe, (1)) =
= o(f)V, for every feLME), 7« =1;2, ..., and hence

p(fe,t) ® ge1) = Lplfe()olge ) S, 1y =
= Lp(HHVVie@)S. 1y = KVip(g) ¢, Vio(fyn.
It follows that for fixed £, g € LYE),
Y lo(felt) ® geO) < X V0L WV o(fnii
The right side is finite because for every { € H we have

YV = BV V6 O =<PE O < R,
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and hence

Y IVEG] - HV*CoH ;- il
Moreover, we can write

¥ p(fe) ® 26 = X <o)V, ViEa(g)*E, ny =

(1.4)
= {p(f)Pp(*¢,n),

for 1. ge INFE).
. For + > 0, .put H, = [p(E())H]. Since E(s + t) is spanned by both E(s)E(t)
and E(OE (s) we have for each 5 > 0,

Q(B()H, < [p(B(s + 0)H] = [p(E1)p(E)H] <
€ [p(E)H] = H
It follows that H, is invariant under the set of operators @(E) for each f > 0. Hence
?(v) = o()f,, vEE

defines a representation of £ on H, and, since o(f)P,p(g)* = Po(f)Pp(g)*P,
for f. g € LME), formula (1.4) implies that

(1.5 Y, p(fe,(t) ® gen(t)) = Lol flodg)*Ps, Pm).

By the universal property of C*#(E), there is a unique representation n,: C*(E) —
— A(H,) such that 7(f ® g) = ¢(f)e(g)*, and thus we can define a bounded
linear functional Sfp on C%(E) by

BEp(x) = (R(¥)PL, Py, x € C¥(E).

¢

Clearly [[ffpll < 1PE]- IPmll < llpil, and by (1.5) we have

Bolf® g) = 3, plfedt) ® ged).

n. 1

It is apparent from its definition that §fp does not depend on the choice of ortho-
normal basis {e,(t); n = 1, 2, .. .} for E(t), and the preceding formula determines
Bp uniquely because {f ® 2 f, g € L\(E)} spans C*(E).
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We claim that ¥, = g¥gf for 5, 1 > 0. Indeed, for every p € C*(E)* we
can write

Bio(f® g) = g} Brp(fe.(s) ® ge,(s)) =

= Y p(feu(s)enlt) ® geu(s)en(t))-

By virtue of the isomorphism E(s + )= E(s) ® E(t), we see that {e,(s)e,(1) :m, n =
=1,2, ...} is an orthonormal basis for E(s+7), hence the right side of (1.6) is simply
*.p(f ® ). The conclusion B*pFp = f*,,p follows from the fact that C*(E) is
spanned by {f ® £ :f.g € LNE)}.
Thus, p* = {f*:t > 0} is a semigroup of contractions. If p > 0 then we
may take # = £ in the representation of p, p(x) = (n(x)&, &>, and hence BFp has
the from

ﬂ;kp(x) = (ﬂ,(;Y)P,f, P.f%

which is clearly a positive linear functional for all ¢+ > 0.
It remains to show that

lim f7p(x) = p(x)

10 |-

for every p € C*(E)*, x € C*(E). Fixing p, we may restrict attention to x’s in the
spanning set {/ ® g : f, g € L\(E)}. By (1.4) we have

Bio(f ® g) = Lo(NP(2)*¢, n) = (Po(g)*E, o(f)*nd.
Since {_J H, is dense in H ([1], Corollary of Proposition 2.7), P, tends strongly to 1

>0
as t— 0+, hence

’lir&ﬂ.*p(f ® g) = Lp(@)*¢, o(f)*n) = p(f ® &),

as required.
REMARK. The semigroup B* is not strongly continuous. Indeed, we will see
later on that for “singular states™ p of C*(£) one has

lim |fFp —pil = 0
-0

if and only if the representation n, of C*(E) associated with p is quasi-equivalent to
the regular representation (Corollary 2 of Theorem 3.1).

Let p be a positive linear functional on C*(E). If |jp|| = 1, then p is called a
state. In general, the GNS construction gives rise to a representation n : C*(E) —
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— #(H) and a cyclic vector £, for =, satisfying

p(x) = <n'.p(x)€p’ ép}’

x € C*(E). By the universal property of C*(E), there is a unique representation
¢, E — %(H) such that

©(f ® &) = ¢,(No,(&)*, [ gL E).

DEFINITION 1.7. Let p be a bounded linear functional on C*(E) and let (p| be
the positive linear functional obtained from the polar decomposition of p. p is
called singular (resp. nonsingular) if ? is a singular (resp. nonsingular) represen-
tation of E. p is called regular singular if @01 is unitarily equivalent to a direct sum
of copies of the regular representation £: E — #(L*(E)).

REMARKS. Let A : C*(E) — B(L3(E)) be the regular representation of C*(E),
ie.,

Nf® &) =£(f)(g), f, gelNE).
Since A is irreducible ([4], Corollary of Theorem 5.2), a representation n of C*(E) is

unitarily equivalent to a direct sum of copies of A iff = is quasi-equivalent to A. We
conclude that a bounded linear functional p € C*(E)* is regular singular iff T is

quasi-equivalent to A.

The following result gives a convenient characterization of these properties
in terms of the semigroup f*.

PRrRoPOSITION 1.8. Let p be a bounded linear functional on C*(E).
() p is singular iff lim ||B¥p|| = O.
=00
(ii) p is nonsingular iff Bfp = p for all t > 0.
Proof. By the GNS construction we have a representation n : C*(E) — #(H)

and a cyclic vector ¢ € H such that

lpl(x) = (n(x)¢, &), x € C*(E).

As in the proof of Proposition 1.3, we can find a second cyclic vector 5 for n satisfying

p(x) = {n(x)E|n), x € CHE),

together with [|£[* = {in]f® = [lp]l.

To prove (i), let ¢: E — %(H) be the representation of E associated with n
and let P, be the projection of H onto H, = [@(E(®))H], t > 0. Assume first that ¢
is singular, so that P, | 0 as f — co. Letting ¢, be the representation of E on H,



174 WILLIAM ARVESON

defined by ¢(v) = @(v)IH,, then as in the proof of Proposition 1.3 we have
Bio(f ® 8) = o(P(@)*¢, 1) = <o f)e(g)*PL, Pi).

Thus if n,: C*(E) — #(F,) is the representation of C*(E) corresponding to ¢,, we
have

Bip(x) = <mix)PE, Pin).

It follows that i|fFp" < |PE1- IPm| must tend to zero as t — oo.
Conversely, assume ff¥pll — 0 as t — co. The projections P, are decreasing

with ¢, and we have to show that the strong limit P, = lim P, is zero. To that end,
t—00

fix f, g € LM(E). Then we have

(1.9) Bio(f ® g) = CPp(g)*E, o(f)'n) = (PA*E, B*n),

where A = ¢(g), B = ¢{f). The left side of (1.9) tends to zcro as ¢t — co. hence
{PoA*¢, B¥n) = 0.

Since P, commutes with the von Neumann algsbra generated by @(E) ([11, Propo-
sition 1.14) the preceding implies that

(Pof, AB* ) = {PeoA™E, By == 0.

Hence (Pé, n(x)n) = 0 for all x € C*(E). Since 5 is a cyclic vector for n, we con-
clude that P¢ = 0. Now since ¢(E) and n(C*(E)) generate the same von Neumann
algebra ([4], Theorem 3.4), P, must commute with n(C*(E)), and hence

Peoi(x)¢ = n(x)Pesl = 0,

for every x € C#(E). This implies that P, = 0 because A is a cyclic vector for 7.
Proof of 1.8(ii). From the formula
Bio(f ® 8) = <o(f)Po(g)*¢, m,
we see that

(1.10) p(f ® 2)— Bip(f ® 8) = <o(f) 1 — PYo(2)*¢, n>

for allf, g € LXE), t > C. Assuming that ¢ is nonsingular, then we have 1 — P, = 0
for cvery t > 0, and hence (1.10) implies that §fo(x) = p(x) for all x € C*(E) of
the form f ® g, f, g € L\(E). Hence f¥p = p.
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Conversely, if B*p = p then (1.10) implies <o(f)1 — P)e(g)*¢, ) =0
for all-t > 0. Taking the limit as # - co we obtain

{1 = Pa)p(f)p(g)*¢, ) = <p(f)(1 — Peo)p(g)*E, 1) =
= lim [p(f ® &) — BIo(/ @ 8)) = 0.

Since C*(E) is spanned by {/® g : f, g€ LX(E)} we conclude that {(1 — Pe)n(x)¢,n) =0
for every x € C*(E). As in the proof of 1.8(i)), P, commutes with n(C*(E)), and
hence

(I — Po)n(x)E, n(y)n)y = (1 — Po)n(p)*n(x)¢, nd =

for all x, y € C*(E). The latter implies that P, = 1 because both £ and # are cyclic
vectors for n. Since P, > P, = 1 for every # > 0, we conclude that ¢ is nonsingular.

2. CONSTRUCTION OF SINGULAR STATES

Let E be a product system and let & (resp. .#°) denote the set of singular (resp.
nonsingular) elements of C*(£)*. Proposition 1.8 implies that & and A" are norm-
~closed linear subspaces of C*(E)*.

In fact, we have a direct sum decomposition

CHEY =S N

in the sense that every element p€ C*(E)* decomposes uniquely into a sum p =6+ v,
c €Y, veN where |pll = |lo]| + ||v]. Indeed, it was shown in ([1], Propo-
sition 1.14) that every representation ¢: E — #(H) decomposes uniquely into an
orthogonal direct sum

¢ =@, Do,

of a singular representation ¢, and a nonsingular representation ¢, . Moreover, the
projections 1 @ 0 and 0 @ 1 associated with this decomposition belong to the
center of the von Neumann algebra generated by ¢(E). In view of the correspon-
dence between representations of E andinondegenerate representations of C*(E),
it follows that every (separable) nondegenerate representation = of C*(E) decom-
poses uniquely into a central direct sum

T =rn DN,
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of a singular representation n, and a nonsingular representation 7, . The indicated
decomposition of the dual of C*(E) follows from these remarks together with the
correspondence between positive linear functionals on C*(E) and cyclic represen-
tations of C*(E). In fact, the direct sum decomposition

CHE): =S QN

is induced by a central projection in the von Neumann algebra C*(E)**. We con-
clude that both & and 4" are order ideals in C¥(E)*.

The purpose of this section and the next is to give a more concrete description
of the ordered Banach space ¥ (Theorem 2.4 and Corollary 1 of Theorem 3.1).
This will allow us to characterize the states of C*(E) whose representations are quasi-
-equivalent to the regular representation. As a consequence, we show that the regular
representation of C*(E) is faithful (Corollary 3 of Theorem 3.1).

Our methods here provide very little information about the summand 4.
In particular, we still do not know if A" # {0} for every product system E. This
question is equivalent to asking if every product system E is associated to some Ey-
-semigroup of endomorphisms of Z(H) as in {1}, and will be taken up elsewhere.

For v € E, let £(v) and 2(v) be the associated left and right creation operators
acting on L*E):

f)f =v-f
W) = f-v, fel¥E).

There are two semigroups of *-endomorphisms «, § of Z(L3*(E)) associated with 7
and 2 as follows. For ¢ > 0 and A € Z(L3(E)), we define

x(d) = ;f(e.,(t))Af(en(t))*,

BA) = Y, w(e(t))Ane, (1)),

n

{ex(n), ex(t), . .} being an arbitrary orthonormal basis for E(r). For ¢ = 0 we put
ep(A) = By(4) = A. « and f are continuous semigroups of normal #-endomorphisms
of B(L(E)), and «,(1) = B,(1) is the projection of L% FE) onto the subspace

{felXE):f(x) =0 ae. on 0 < x <t}

({11, Proposition 2.7). In this paper we will be concerned primarily with the semi-
group f.
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Consider the action of  on the predual of A(L*(£)). More explicitly, since
each f, is a normal *-endomorphism, there is a semigroup of contractions fi, =

= {B: 1 >0} acting on the Banach space ¥*(L*(E)) of all trace-class operators on
L¥E). The action of B, is defined by

@1) tr(B4(A)B) = tr(AB(B)), A € LNL*E)), B € ALXE)).

tr denoting the canonical trace on ¥Y(L%(E)). f,. is strongly continuous in the sense
that

limtr| B,.(4) — Al =0,
t—-0

for every trace-class operator A ([1], Proposition 2.5(i)). Moreover, letting P, =
= B,1), t > 0, we have f,(4) = B, (PAP,) for every t > 0. Since P,}0 as
t - oo, we see that trj PAP,| — 0, and hence

lim tr{ B, (4)| = 0
o0
for every A € LY LAE)).
We introduce a Banach space .#(f,) associated with the semigroup f,

which is basic for what follows. .#(f,) is defined as the space of all bounded func-
tions

A : 1 €(0,00) »> A(t) € PHILXE))
satisfying

(2.2) A@s + 1) = B, (A(s)), s>0, t >0.
The norm in .#(f,) is the sup norm

lA]] = sup tr' A(z) .
>0

Because B, is strongly continuous, (2.2) implies that (f,) consists of bounded
continuous functions from the open interval (0, co) to the separable Banach space
FYL*(E)); moreover, the preceding paragraph implies that each element A€ #(B..)
vanishes at infinity in the sense that

lim tr{A(?)' = 0.

t-00

The *-operation on trace-class operators induces an isometric involution in J#(f,.),
and ./#(f,) is partially ordered by 4 > 0 iff A(z) > O for every ¢ > 0.

H(B,) contains LULAE). Indeed, every trace-class operator A determines
an element A in A (fy) by

AW = Pul), >0,

12 — 1188
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A A is an isometric order-preserving isomorphism of #YL*E)) onto the sub-
space of .#(f,) consisting of all functions F € .#(f,) for which the limit

F(0+4) = lim F(¢)
1-0

exists relative to the trace-norm on .LYL(E)). Note finally that, because of the
relation (2.2), a function in #(f,) is completely determined by its restriction to
arbitrarily small intervals 0 < 1 < §, § > 0: thus (f,) is a Banach space which
embodices the “limiting behaviour ™" of the semigroup fi, at time zere.

We begin by giving an cxplicit formula for the states of C*(F) which are of
the form o . 4, where 4 is the regular rcpresentation of C*(E) on L*E) and « is
a normal state of #(LX(E)).

PROPOSITION 2.3. Let T be a trace-class operator on L*(E) and let /.. C*(E) —
—» B(LEE)) be the regular representation. Then for every pair of fiunctions f. ¢ €
e IME) n LXE) we huve

S KBV, gy dt <t T fifihligth
]

and
S BT, 41 = HTAS @ ).
3
Proof. We may find sequences of vectors &,, #,, € L(E) such that
Z “én” ) ;i”u“ = tl';T‘f’
and

7= ; &n @ Hy-
For cach # > 1 and ¢t > 0 we have
Bl @ M) 80 = 1Bl R ) (f ® B)) =
=t ® 1) B ® 2)) == {BLS ® &), -

Now since g is integrable, the convolution operator £(g)¢ = g * ¢ is bounded on
L*(E) and has norm at most {gl; . Moreover, since g also belongs to L%(E) we can
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assign a definite value to /(g)*é(r) for every positive ¢ and every ¢ € L2(E), nainely
o
HEEw) = S £()°&(s + ds
0
(for more detail, sce: he proof of Proposition 6.4 of [4]). Similarly,
o
() = Sf*(S)n(S + 1)ds,
d

for every t > 0 and every 5 € L*(E). Moreover, formula (6.7) of [4] asscrts that
for r > 0, &, 5 € LYE), we have the relation

BT ® g)C, my = KU)*E), ((f Y1)
Thus for every n=1,2,...and ¢t >0 wc have

Bialn @ n). 8D = (B ® 8)lns May = L{V*E(), L(f)sn0)),
and hence

[ae) co

S KBmlEs ® n,)f, 80} dt < S 1£(@)* &, - T (f*Im(Dhdr <

0 4]
<NIe@*Eall MO Vomal < L&l Imal - Iiflialiglh -
Summing this inequality on » we obtain the required inequality

o0

S KB4V, £idt ss T K Boalln ® T85! dt =
0

n
0

=¥ SKﬁ,*cfn ® T gdldr <

< ; Nl limall - 1 1sliglh = ! T IfMhliglh -

Let u,(2) = {f.(&, ® W), ). t > 0. The preceding estimate shows that

¥y S | u, (1) | dt < oo,

#n
0
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so by the dominated convergence theorem we have

n

Bl gy dt = ¥ S sl ® Tf .

L,AS

Now as we have seen,
B ® ) 8 =LBf ® 8)E,s ).

By Proposition 6.4 of [4], we have
S CBF @ BNens M) = <AL @ D)ens -
V]
Thus we may conclude that
S B g3 dt = X (S @ B)Ex s md = tHTHS ® £))
3 n

The following result shows how elements of .#(f,) determine bounded linear
functionals on C*(E). We will see in Section 3 that this construction gives precisely

the singular part of C*(E)*.
THEOREM 2.4. Let 4 € .4(B,). For every f, g € IME) n L*(E) we have

S KAQY, 821t < TAL - iflaligl
0
and there is a unique bounded linear functional p, on C*(E) satisfying
PAf®F) = S AW, >,
0

Jor all f, g € LME) 0 LXE)- p4 is singular, and the map A~ p 4 is a linear isometry

such that py > 0 iff A > 0.
For every t > 0 we have

fpa(@) = tr(4()i(a)), a € CHE),
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4 being the regular representation of CHE); if the trace-norm limit AQ+) =
= hm A(t) exists, then
-0

p (%) = r(A0+)i(x)). x € CHE).

Proof. Fix f.g € LME) n L¥E) and choose A4 € .#(,). For every 6 > 0 and
x > 0 we have A(x) = fi.. 54(A4(5)), hence by Proposition 2.3

S KA, £ dx = S Ba sl AGYS, g>idx =

oo

= S KBy (AN, gd1dy < tr AQ); i fihilglh < {141 flhliglh -
¢
Letting o tend to zero in the tcrm on the left, we obtain the asserted estimate
(o]
S KAGYS gldx < 4] Ffh g
0

We claim next that there is a unique bounded linear functional p, on C*(E) satisfying

0

pf® ) = S LAY, gy,

Q

[, g €IMEYnLAE). To sec this, fix >0 and censider the linear functional
ps € C*EY* defined by

ps(a) = tr(A()i(a)), a e C*E).

Clearly |ip,|! < tr'ld4(3), < 'A!l, and by Proposition 2.3 we have

/’a(f@ g) =\ (ﬂ,*('A(ﬁ))j; g}dt ==

4]

(=)

= S CAW + 8)f, gddt =

Y]

(A, gydx,

L g
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for every f. g € LYE) n L¥(E). Thus
limp,(f ® &) = \ {A(x)f, gHdx,

0

for all such f, g. Since {p,:d > 0} is uniformly bounded by 4. and since
lim py(a) exists for all a € C*(E) belonging to the spanningset { /R ¢ : £ e LYF) n
g0

0 LAE)}, it follows that p,; converges weak® to an element p  in C%(E)* satisfying
WPail < AN Clearly p(f ® &) has the asserted form. The uniqueness of p, is
apparent from the fact that {f ® g:f, g € L\(E) n LAE)} spans C*(E).

If A is a positive element of .#(B..) then A(J) is a positive trace-class operator
for every ¢ > 0, hence

ps(a) = tr(A(d)(a))

is a positive linear functional for every d > 0, hence p, > 0.
We claim next that for every + > 0 we have

(2.5) % (@) = tr(A(Da)).  a e CHE).

It suffices to prove this formula for a of the form f® g with f, g € L{E) n L3E).
Fixing ¢ > 0 and letting {¢,. ¢,, .. .} be an orthonormal basis for E(t), the left
side of (2.5) can be written

20
~

Ep(f @ &) =Y palfe, ® Zep) = Y] S CAfe, . ge,Hdx,
n hid
]
pecause fe, and ge, belong to IME) n L3E) for cvery n > 1. We want to interchange
the order of summation and integration in the latter term. By the dominated
convergence theorem, this will be justified it we show that

20

2.6) E\ oo, o> ax & i e
g ¥
Fix ¢ > 0. Then we have
h) S iKA(xfe, , ge,» dx = 3 \ KA + d)fe, , gey dy
n s n o

-y S (B (AN, » 50,54y

G
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We claim first that if 7 is any trace-class operator on L3(E), then

[~

@7 ¥y S KB(T)fey» genddy < 5T [iflh figlh -

For that, choose sequences ¢,,, 7,,, m > 1, in L¥E) such that

Yl Il = &7, and T= Y &, ® i,

m

Noting that fe, and ge, belong to LYE) n L*(E) for every n > 1, we see as in the
proof of Proposition 2.3 that for each m > 1 and y > 0,

</3y*(ém ® Vil;;x)fen > gen) = <[(gei|)$'ém(y)a [(fen)*r,m(y)>-

Thus
S </$y*(T)fen > gé’">ldy < S Z I(By*(:m ® n;;)fen » gen>{dy <
( 0 "

<y S E(ge) Eu)l - el fe P iidy <
" 0

< Y (ge ) é i i feny i

m

Summing on n, we obtain

0

(2.8) Y S Byl TVfen g0y Ay < %) W(geny sl HCfe) Ml
n P mn
Let V, =/¢(e,), n = 1,2. ... . This defines a sequence of isometries having mutually

orthogonal ranges. Moreover,

/(gell) * é: m = V}T{'(},’)*Em 1]
and
f(ﬂ)n) * ;I n = Vl:l";[(f‘) :::’7 mne

So for m fixed, the Schwarz inequality implies

Y ge) Enli I fe) nall < (% IVI@* L)X IVae ) a2y ™
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But since YV V¥ < 1 we have
N

\’ [V /(2’ g"lv = 2 I/‘I/;i‘[(g)*i‘;""’ ‘{(g)*é:ﬂl> <

fl

and simiarly

W F < 1] it

=3

ﬂ

Thus the last term in (2.8) is dominated by
Z "*m! »’7."’; ‘:f ‘gl = ir :T‘ Hf‘l g'lﬂ
il
nroving the claim.
Returning to the proof of (2.6), we have foreach § > 0

2 S (A)fe, . ge,didx = ¥

i’

{Besl AN ey, ge,d'dy <

C\,‘Ag

L
< triAQ) iflalely < LAl ifihlgh.

Allowing & to decrease to zcro, we obtain (2.6).
It follows that

I

o/ ® g) = S Y, CAGfe, , gey d.

Now for each x > 0, we have

Y (Afe,s gey = Y trlA(X(fe, ® ge,)) =

= (AL ® g) = tr(B (AN ® 8)) =
= {Be(AWX)); & = AKX + 1)f, &) = (Ber(AWD), 2.

I{ence

@

Bl ® &) = S CBesADY, gy,

0

By Proposition 2.3, the right side is tr(A(1)A(f &® £)), establishing (2.5).
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To see that p, is singular, it suffices to check that (iffp )| tends to zero as
¢t -» oo (Proposition 1.8(i)). But by (2.5) we have

fip (x) = W(ADA)),  x € CHE)

forevery t > 0. henee [|fFp4il<tr A(7)', and we have already seen that imtr'A(¢)' = 0
-2 0

for every A € ().

Assuming that the trace-norm limit A(Q+} = lim A(¢) exists, then for every

-2}
a e C*(E)
tr(A0 +)Aa)) = limtr(A()(a)) = lim B¥p (a) = p(a)
t->0 109

because fip, tends weak* to p, as ¢ — O+.

It remains to prove that {j4|| < |lp,]l. and that 5, > 0 implies 4 = 0. Now
n(B) = tr(A(t)B) defines a normal linear functional on %(L2(E)) for every ¢t > 0.
Since A(CH(E))” = A(LYE)) ([4), Corollary of Theorem 5.2), Kaplansky’s density

theorem implics that the norm of the restriction of m, to A(C*(E)) agrees with |lw,]]| =

= trlA(t)|. Since 2 maps the unit ball of C*(K) onto that of J(C*(E)), we conclude
from formula (2.5) that

BEpall = trld(z)i, >0,
and therefore [|p il > [If¥p.ll > trlA(r)! for every 7 > 0. Hence

lpall = supir A(D” = jj4]).
>0

Finally, assume p, > 0. Then f¥p, > 0 for every 7 > 0. Since
Bipala) = tr(A(Dia)). a € C*E),
an argument similar to that of the preceding paragraph shows that 4(¢) = 0 for
every t > 0, hence 4 > 0. Z)
3. CHARACTERIZATION OF SINGULAR STATES
In this section we prove that the map
A€ H(Py) > py e CHEN

defined in Theorem 2.4 is an isomorphism of .#(fi,) onto the singular part of the
dual of C¥(E), and we deduce some consequences. The key step is the assertion that
A+ p, is surjective, and is basically the following result.
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THEOREM 3.1, For every bounded lincar functional p on C#(£) there is a unigqtic
firetion A ¢ H\L) satistving

)~

U@ &) - fip(f ® &) = \ KA g

4

&

for all fLg S IMEYNLEE), t > 0. One has .4 < p L and A = 00i p iy positive.

Our proof of Theorem 3.1 is based on the following lemma, which provides
a representation for additive cocycles associated with contraction semigroups on
certain Banach spaces.

LEMMA 3.2, Let E be a separable Banach space which is the dual of a Banach
space f,

Let 3 = [*,', - 0} be a strongly continuous contraction semigroup which acts
oin Eandlet {b(t): t > 0} be a family of elements of I satisfying

(1) bls + 1) = bls) + yp(b(1), 5.t > G

(i) by < Mt =0,
M being a positive constant. Then there is a iiorm-continuous function a: (0, oo} — I
sueh that

@A) als 4 1) = p(a(t)),

(i) att) < M, s =0, t >0,
aird jor which

b(t) :\ a(syds, > 0.
5

REMARKS. Notice first that for a separable Hilbert space A, the Banach space
I = Y H) of trace-class operators satisfies the hypotheses of Lemma 3.2

We also want to point out that any Banach space £ satisfying the hypothesis
of Lemma 3.2 has the following property: for every bounded linear functional F
on E, therc is a sequence {x,, x,, ...} € E, such that

Fla) == lim{a, x,5>. a€E,

{-.-» denoting the canonical pairing of £ and its predual £, . To sce this, fix F
and choose a sequence ¢; . a,, ... in E which is norm-dense in the unit ball of k.
Now for any Banach space X, the natural map of X into X** carrics the ball of
radius 7 in X onto a subset of X** which is weak“-dense in the ball of radius r in
A7 1t follows that for every n == 1., 2, ... we can find an element x, of £, satisfying
N, € iF, and
Fla)—a; . x ) < Un, 1 5j<n

1O sequence Xy, A.. ... has the asserted property.
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Proof of Lenuna 3.2. We claim first that there is a unique bounded linear map L:
1 1Y0,00) — E satisfying

LQpen) = b(t) - bls), 0< s <t

74 denoting the characteristic function of the set 4. To se: this, suppose first that
[ is @ step function in LY0, co), say

n

f = Z Ajo(‘iul' 'j)’
i1 '

Jae o2y €C, 0K 1y < 1 <...<t,. By property (i), we have b(r;) —b(t;..,) =
= ’,‘tjwl(b(fj ~1;_)), and hence

X A - b M < X 1AL BB = bl ) =

J
= Z Ayl HVIL l(b(’j’ o)k <

2l

< YA b — )i < MY A o
It follows that

I(f) = Z /;"j(b([j) "‘“/)(’jml))

i

defines a linear operator on step functions, having norm at most M. L extends to
L0, o0) because the step functions are dense. The uniqueness of L is apparent.

Now Eis the dual of £, and E, must be separable because its dual is separable.
Therefore we may apply a known Radon-Nikodym theorem ([6], Theorem 2,
p. 499) to infer that there is a bounded function a: (0, co) — £ such that {a(t),x)
is measurable in ¢ for each x € E, and such that

(Bl

<L), x> =\ uuxcatoy, xyar

i

D]

for every f & LY(0, cc), x € E,. Moreover, [a(t)l| < M for every t > 0.
Let F be a bounded linear functional on E. We claim that F(a(s)) is a measur-
able function of s > 0 and that

o

33 FIL(f )= g Jis)i(ats)ds

~

)
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for every f e IX0, oo). Indeed. by the preceding remarks there i8S o sequence
X1y Npoonr € E.-:; with

‘3.4) ey =Tm<a x,). aelk.

The uniform bouncedress principic implies that {8, 15 & 1) is bounded. und
(3.4) clearly implies that I is measurable 1eietive 1o the Borel structure on E gener-
ated by its weak*-topoelogy. Hence s — f(a(5)) 18 2 bounded measurable function
(0. 00). We have

Flals)y = limdeals). xp»
for every s > 0 and

Kals), x,y! < suplalsd - sup'x,t < oc.
hs N

So the dominated convergence theorem implies that
B = im0, xy =
n

"

"
= hm ( ) ais) x,ydy == & J(s)Feais))ds,
J J

it e

as usserted.

Notice rext that for 1" ¢ LY0, o),
(3.5) P L)) = L(S.f)
S, denoting the shift en LY0. oc) defined by

fix- -1 x>1
0, O<x<r

S = {

Both sides of (3.5) arc bounded linear operators on LY0.oc), and so it suffices 1o
check (3.5) when f'is a churucteristic function Yoy 0 < 7 < s Here. we have
Ay

Az, ) = plbls) - b)),
while
L(S,;{(ry_\.)‘) = L(y,, r’S“)) = bls -+ 1) b(r + 1) =

= (b8 -+ 1) — b)) ~ (Blr - 1) — b(1)) =
= 7,(b(s}) — ',‘,([3{")) = '/'r(b(s) - b(r)).

(3.5) joliows.
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Now we claim that for every fixed ¢ > 0, we have
(3.6 y{a(s)) = a(s + 1) almost everywhere (ds).

Since E, and LY0, co) are scparable, it suffices to show that

<O

Sf(sxv.(a(S)). xyds = Sf(s)(a(s + 1), x)ds
0 0

for every fe LX0, oo) and every x € E,,. Fix f and x. The linear functional F(g) =
= {y[a), x) is bounded on E, and so by (3.3) we have

[¢

S A ra(s)), xyds = Sf(s)F(a(S))ds -

= F(L(f)) = <y{L(f)). x>
By (3.5). the right side is

(L(S.f), %) = S F— 1)a(d), x>d2 = S Fs)als + 1), xpds,

as required.

By the Fubini theorem, there is a Borel set N < (0, oo) of measure zero such
that for all s¢ N, we have

y(a(s) = a(s +.t) a.e. (dr).

Because N has measure zero, we can find a sequence s, €(0,00)\ N which decreases
to zero. The preceding formula implies that for every », the restriction of a(-) to
the interval (s, ,o0) agrees almost everywhere with the norm-continuous function

a(t) = v,_. (@s)), 1> 5.

Thus the continuous functions ay, a,, ... are compatible, and there is a unique
continuous function a..: (0, co) — E such that awf(sn,m) =a,,n=12,....40

has the properties
ax(t) = a(t) almost everywhere (df),
and
7a(t)) = aoo(s + £) foralls = 0,1> 0.
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Finally. because a,, is bounded and continuous it must be Bochner-integrable. and

the formula
!

bty == Saw(‘s)d.\: t>0
a
follows from (3.3) by taking f =y ;- 4
Proof of Theorem 3.1. Choose a bounded linear functional p on C*(E). In
view of Lemma 3.2, it suffices to show that there is a family {B(z): 7= 0} of truce-
-class operators on LK) satisfying

A%

B(s - 1) =: B(s) + (B, .10,

B < gpite 120,

and
P ® @) - BEolf ® g) = KB, &

for every /. g e LIME)NLAE), 1 > 0.

Now by the polar decomposition for linear functionals on C#-algebras and
the GNS construction applied to 'p/, we canfind a representation n: C*E) - .#(H)
and a pair of cyclic vectors &,. &€ H for = such that (&, = &l = lpil* and

px) = RN & v € CHE),

By (4], Corollary 2 of Theorem 3.4). therc is a representation ¢: F — #(H) such
that
M ® g) = o(Ne()*, f. ge LYE).

Let P, be the projection onto [p(E(1))H], for every ¢ > 0. For each ¢ > 0, we define
a pair of antilinear transformations B,(2), By(?) of LYE) n L¥E) into I1 as follows:

3.7) B = (= PYo(f)¢, j=1,2

We claim first that By(t) and By(tf) extend uniquely to antilinear Hilberi-
-Schmidt operators from L*(E) into H, such that

(3.8) t(B()*BA) = lipht. J=1,2
Granting that for a moment, we can then define a linear trace-class operator B(1)
on LA(E) by

(3.9) Bt = {Bx(t)""Ba(t), t>0,

0, t =0,

and we will have trl B(r); < {lpiit, ¢ > 0.
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We now prove (3.8). Let ¢, ¢,, ... be a sequence of measurable sections of
the map p: E — (0, oo) such that {e,(r), e)(?), . . .} is an orthonormal basis for £(r)
for every ¢ > 0 ([1], Proposition 1.15). Let f;, f», ... be a orthonormal basis for
L0, co) consisting of functions in LY0, co) N 12(0, o). Define g,,,: (0, c0) — E by

g mn(s) = f ;,,(S)(?,,(S).

Then {g,, :m, n > 1} is an orthonormal basis for /3(E) consisting of functions in
IME)n L¥E). (3.8) will follow if we prove

(3.10) Y IBi(t)guw [ < lipllt

m,ne-1

for j =1, 2.
In order to cstablish (3.10), we make use of the semigroup of endomorphisms
y={y,:5 >0} of #(H) defined by

W) = Y pleHAples) . A €B(H),

n-=1

Yol4) = 4. We have y (1)) = P, s > 0, and hence y(1 — P,) = P,— P,,,. More-
over,

(.11 plesNA = y(Dples)),

for every s >0, Ae#(H), n=1,2,....
We prove (3.10) for j = 1. For each m, n > 1, write

”Bl(t)gnm”2 = <(1 - Pt)(p(gmn)*'c:l s (l - Pt)(to(gmn)*é]) =

. S \ Tl — PYpes()*Er (1 — PYp(en(3))*&:>dxdy =

S Fol@ o enx, 3)dxdy,

Sy

where
ka(x, 3) = (1 — Pho(e,(x))*y , (1 — Pole,(y))*ED .

Therefore, if we can show that each &, is the kernel of a positive trace-class operator
K, € XY ILAE)) for which

(3.12) 3, trK, < lpl,

ne=1
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E 'Bl(t);gmnl;N = 2 tl'Kn,

m,n
and (3.10) will follow.,
In order to prove (3.12) we will cxhibit, for each n > 1, a sequence of functions
Uy s Uy .. in LX0, cc) such that

X

(i) ku(x, y) = Z Z»l,,p(.\”)llnp(y),
p 1
{3.13) and
(i) Y it < ot

np

Let {{, ¢, ...} be an orthonormal basis for i7, and put
"np(x) = <(1 - Pl‘)(p(.en(x))*‘;:l ’ Cp>'
The formula (3.13)(i) follows from the fact that

(i s Nop = Z s C,;) s, C,;)
p .

for any pair of vectors ny, 7, in H. Moreover, for each x > 0 we have

Z iunp(x):2 = En “(1 — Pt)(p(en(x))*ﬁllig =
= Y PN — PYolex))*Ey . &) =

= <ya(1 T Pl)fls él) = <(Px - x+t)€l H él)

Integrating the latter formula over 0 < ¥ < oo, we obtain

p

Z “"119“2 = S <(Pw - Py )q s Edx.
V]

Now the function
1(x) =<KP5s, o
is non-negative and decreasing on (0, oc). Hence

iy

S w(x) -~ wix + Ojdx = i S (r(x) —w(x + tHdx =
k-0
0 13
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t
o0

= E S (wlkt + 5) — w((k + Dt + $)ds =
P ‘

-

S % (wikt + 5) — w((k + 1)t + 5))ds =
k-0 .

0

t t

- S(w(s) — wloo))ds < Sw(s)ds < J&l® = ol
0 0 .

and hence we obtain the required estimate
Y lluapl® < llplle.
np

We claim now that the family of operators {B(r): t > 0} defined by (3.9 obg_ys
3.14 B(s + t) = B(s) + B..(B®).
qu this, we will show first that for s > 0 and v € E(s), we have
(3.15) Bi()r(v) = (v)*Bi(s + ),

r denoting the right regular antirepresentation of £ on L3(E). Indeed, for f € LY(E) n
N L¥E) and v € E(s), we have

B(0r()f = B(fv) = (1 — Po(fo)*¢; =
= (1 — P)p@)*p(f)*E;.

Taking the semigroup y = {y,: ¢ > 0} of‘endomorphisms of #B(H) defined above,
we have

p(v)(1 — P) =yl — P)p(v) =
= (P, _Ps+t)¢(v) = —Ps+t)Ps(p(v) = (1 — Py, )o(v).

Hence (1 — P)o()* = o(v)*(1 — P,.,), and the last term of the preceding equa-
tion becomes
P(0)* (L — P )o()*E; = o(0)Bi(s + 1),
as required.
In terms of the orthonormal basis {e,(s), ex(s), . . .} for E(s), the action of B, on
#(L¥E)) is given by
BAT) = Y, (e (sHNTr(e, ()%,

n

13 — 1186 .
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and hence the action of f,, on L (L*E)) is given by

By (B) = Y, 1(e,(5))" Br(e,(s)).

n

So by (3.15) we have

ﬁs:k(B(t)) = E r(e,,(s))*B](t)‘:‘Bz(t)r(e,,(s)) =

= Y Bi(s + 1)*0(e,(s))p(e,())* Bo(s + 1) = Buls + 1)*PBy(s + 1) =
= By(s + 1)*By(s + £) — Bi(s + )*(1 — P)By(s + 1) =
= B(s + 1) — By(s + )*(1 — P)By(s + 1).

Now since the projections 1 -— P, are increasing with s, a glance at Definition 3.7

of Bi(t) shows that (1 — P)B;(s + 1) = B(s) for all 1> 0, s > 0. Thus the above
formula implies

Bsx(B(1)) = B(s + 1) — B(s),
as required.

1t follows that the function ¢ € [0, c0) — B(t) € L} L*(E)) is norm continuous.
It remains to show that

p(f ® ) + Bip(f ® &) = (B(). &)

for f, g € LME) n L*(E). But for 1 > 0 we have
Bro(f ® ) = ¥ plfet) ® ge(1) = 3 CofeDolgen ) el &> =

= Y Co()ple()ole ) p(g) ey, &) = p(fIPp(g)*Er. Eo)-
Hence,

p(f ® 2)— Brp(f ® &) = (o(N1 — P)o(g)*&: . &) =
= (( = P)o(@)*¢,, (1 = PYo(f)*,) =
= {B,(Ng, B> = <& B(D*B1)f> = (B(1)f; &>

Finally, assuming p is a positive linear functional, we have to show that
A(s) = 0 for every s > 0. Because A(-) is continuous, it suffices to show that

A fodx > 0

BT B



CONTINUOUS ANALOGUES OF FOCK SPACE 195

for all 0 < v <t and all fe LY E) n L*E). Because p > 0 we have {, =& = ¢
in the GNS representation of p, and hence

1 t

S<A(x>f,f>dx - S CAGO, fydx — S CAQ, f>dx =

¥ ]

= BEp(f ® f)— Bro(f ® ) = Ko(f )Py — PYo(f)*E, &= (P, — Pp(f)*E[R > O.
%

CORCLLARY 1. The map A v p, defined in Theorem 2.4 is an isometric order
isomorphism of #(B) onto the singular part C*(E)*.

Proof. In view of Theorem 2.4, it remains to show that evefy singular element
p of C*(E)* has the form p = p, for some A € . #(f,).
Fixing such a p, Theorem 3.1 implies that there is an element A € .#(8.)

such that
4

oI ®2)— o/ ® F) = S(A(x)f, g>dx,

o
for every f, g € LN(F) n L*(F), t > 0. By (1.8)(i)) we have

lim B¥p(f ® g) =0,

{00
and by Theorem 3.1,
lim S(A(x)f, dx =S (A, g>dx.
1] [
Hence p(f ® B) = p(f ® E), and 50 p = p,. Z

COROLLARY 2. For every singular state p of C*(E) and every t > 0, B¥p is a
regular singular state.
p is a regular singular state iff

lim [|fFp —pll = 0.
-0

Proof. Let p be a singular state and choose t > 0. We have to show that §i'p
has the form

PiEp(x) = tr(A4i(x)), x € C*E)

where A is a positive trace-class operator on L%(E). By Coroliary 1 and Theorem -2.4,
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there is a positive element 4 in #(B,) such that p = p,. The last assertion of
Theorem 2.4 gives the required representation

Bip(x) = tr(A()A(x)).

If{lp--PB¥pl — 0ast — 0+ , then p is the norm limit of a sequence of posi-
tive linear functionals of the form

pu(x) = tr(4,4(x)),  x € CHE)

where A, is a positive trace-class operator on L2*(E). Since the space of normal
functionals on any von Neumann algebra is a Banach space, it follows that p must
have the same form.

Conversely, if p has the form

p(x) = tr(44(x))

where A 1s a positive trace-class operator on L*(E), then

ﬁt{cp(x) = tr(Br:I:(A)';'(x))
for every ¢t > 0 and hence
o —Bipll < tr A —f.,.(4) »0
as t—=0. 7]
COROLLARY 3. For every non-trivial product system E, the regular representation
A1 CHE) = B(LYE))
is faithflll.
Proof. It suffices to show that every state p of C#(E) satisfies

P(), < WG x € CHE).

Fixing p, we can write p = p_ + p, where p, and p, are positive linear functions
which are respectively singular and non-singular, and which satisfy {p,]i + lp,. =
= ||pli = 1. We will show that p,(x). < {lp,lllIA(x)] and p,(x)" < {ip,lHiA()1i, for
all x € C*(E).

For each t > 0, Corollary 2 implies that for each x € C*(E),

Bip(x). < 1IBEpIL- 1AM < Bpsll - 1A
Since Bfp, converges weak™ to p, as t — 0+, we conclude that

lp(x); < Eﬁlﬂfps(x){ < o 1AL
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Now consider p,. Applying the GNS construction, we obtain a separable
representation n,: C*(E) — #(H) and a cyclic vector £, for =, such that }|¢ ||* =
= |lp,l| and

Pa(x) = (m (X}, &), x € CHE).
The representation w, is non-singular, so by (f4], Theorem 7.1 and succeeding

remarks) we have |n.(x)] < [|A(x)]. The inequality jp.(x); < |I&IBA®] =
=lloull 2G| follows. 7

COROLLARY 4. Let @: E — #(H) be a singular representation of a non-trivial

product system E. For every t > 0, let @, be the representation of E on H, = [o(E(t))H]
defined by

90) = ¢()H,, veE.

Then @, is unitarily equivalent to a direct sum of copies of the regular representation
t: E - A(LHE)).

Proof. Fix t > 0, and let n,: C*(E) — %(H,) be the corresponding representa-
tion of C*(£). Since A is an irreducible representation of C*(E) ([4], Corollary of
Theorem 5.2), it suffices to show that for every vector ¢ € H,, there is a positive
trace-class operator 7 = T, on L%E) such that
(3.16) {nx)E, & = tr(TMx)), x € CH*E).

Let n: C*(E) — #(H) be the representation defined by n(f ® g) = o(f)e(g)*
for f, g € L(E), and consider the positive lincar functional p on C*(E) defined by
p(x) = {(r(x)¢, &>. p is obviously singular, and we have

Bio(f ® 8) = Ke(NNP(g)*¢, & = {n(f @ &), &
for all f, g € L}(E), P, denoting the projection onto H,. Hence
Bip(x) = Kn(x)¢, £, x € CHE).

Formula (3.16) follows after an application of Corollary 2.

4. IRREGULAR SINGULAR STATES

Let E be a nontrivial product system. It is natural to ask at this point if every
singular state of C*(E) is a regular singular state. In view of the isomorphism

P = (B
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and the properties of .#(f..) discussed in Section 2, this is equivalent to asking
if every positive function 4 € .#(f,) has a trace-norm limit at ¢ = 0:

A(0+) = lim A(r).
1-0

In this section we exhibit a class of examples which show that this is not the case.
The notation of Section 3 remains in force.

LemMA 4.1. Let t,, t5, ... be a sequence of positive real numbers. There is a
sequence of rank-one projections e, , ey, ... in B(L*(E)) which converges to zero in
the weak operator topology such that

ﬂ,,n:_ﬁ(e,,ﬂ) =e, nh=12 ...

Proof. Choose any faithful normal state @ of Z(L3*(E)). Let e, be an arbitrary
rank-one projection. Inductively, we will construct a sequence e,, €5, . .. of rank-one
projections such that

wle) < 1k,

ﬁkaz(ek-{-l) = e, k=1

Assume that e, , e, ..., ¢, have been defined and satisfy the above conditions
insofar as they make sense. Since FE is not the trivial product system, each fiber space
E(t) is infinite-dimensional ([3], Corollary of Lemma 7.3). Therefore since each ¢,
is positive, the von Neumann algebras ﬁ,n(,@(L‘“’(E))) are (degenerate) type I, fac-
tors of infinite multiplicity. Hence B (e,) is an infinite-dimensional projection. Let
Ji+Jzs - - - be mutually orthogonal one-dimensional projections such that

zﬁ. = Bl‘n(en)'
[3
By normality of the state @ we have

Zk w(.ﬁc) = w(B'n(en)) < oo,

and hence w(f;) — 0 as k — oo. Choosing k, so that

o(fi) < 1l + 1),

we put e,,+1 =fko.
We claim that B,n*(e,,“) = e, or, what is the same,

@2) tr(ens 181, (B)) = tr(enB)
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for every B € #(L*(E)). Indeed, we have e,., = fk0 < B,"(e,,), hence e,;; =
= B,n(e,, e,,ﬂﬁ,n(e,,). So for B fixed, the left side of (4.2) can be written

tr(eas1Br (e (BYB: (e,)) = tr(eys1Be (euBey).

Since e, is one-dimensional we have e,Be, = tr(e,B)e,, and the right side of the pre-
ceding formula becomes
tr(enB)tr(en +1ﬂ’”(en)) = tr(enB)tr(en+l) = tr(enB)’

as required. 7]

PRrROPOSITION 4.3. Let t, > t,> ... be a sequence of positive reals which decre-
ases to zero. There is a positive element A € M (B,) such that tr(A(t)) = 1 for all
0<t<g1, and '

lm A )E, n) =0, & nel¥E).

n—>0O

P is a singular state of C¥*(E) which is not a regular singular state.

Proof. By adding an initial term to the sequence {#,} if necessary, we can
assume that ¢, > 1. By Lemma 4.1, there are rank-one projections e,, €,, ... in
B(LXE)) such that ¢, —» 0 weakly and

Bi -1, wllar) =€, n>=1
For each n > 1, define 4,:[t,, c0) — LWL¥E)) by

An(t) = ﬂ'—f"*(en)-

A(2) is positive for every ¢ > f, and tr(4,()) < tr(e,) < 1. Note that the restric-
tion of 4,,, to [t,, o) agrees with 4,'. Indeed, if £>¢, then using the semigroup
property of B, we have

An+1(t) = Bt—tﬁl*(enu) =

= ﬁr-rn*(ﬁt”—t (ens+1)) = ﬁ’—f”*(en) = 4,(t).

ny1¥®
We conclude that there is a unique positive element 4 € 4 (f3,) which agrees with
each A4, on its domain.

We claim that tr(4(¢)) = 1 for every ¢t €(0, 1]. Fixing such a ¢, we have t < ¢,
so that

ey = A(ty) = ﬁll—t*(A(t))-
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Hence

HAW) > tr(B,- (D) = trles) = 1.

The opposite inequality tr(A4(z)) < 1 was pointed out already.

Finally, 4(t,) = e, converges weakly to zero by the choice of {e,}.

Let p, be the singular element of C*(E)* determined by 4. p, is positive be-
cause A(t) > 0 for all > 0, and p,|| = 1 because tr 4(t) = 1 near r = 0. Hence
p4 is a singular state.

We claim that p, cannot have the form

4.4 p4x) = tr(TA(x)), x € C*E)

for any p'ositive trace-class operator T on L*(E). Indeed, if (4.4) were to hold then
for + > 0 we would have

tr(B,(TA(X)) = Bip(x), x e CHE),
while by Theorem 2.4,
Bip a(x) = tr(A()A(x)).

It follows that tr((4(f) — B,4(T))B) = 0 for all B [in the irreducible C*-algebra
MC*(E)), and hence A(t) = B,,(T), t > 0. By strong continuity of the semigroup
By we conclude that tr! 4(t) — T'| — 0 as # — 0; while on the other hand, A4(t,) — 0
in the weak operator topology. It follows that 7" = 0 which is obviously absurd. %

REMARK. Let £ be a non-trivial product system. In view of the correspon-
dence between representations of C#(E) and representations of E, we conclude that
there is a singular representation ¢: E — #(H) which is not unitarily equivalent
to a direct sum of copies of the regular representation of E on LYE).

5. LOCALLY NORMAL STATES

We conclude by giving a description of .#(f,) as the space of all locally nor-
mal linear functionals on a certain C¥-algebraic inductive limit of type I, von
Neumann algebras. Taken together with the results of §§ 2—3, this provides a rea-
lization of the singular part of C*(E)* which istied ratherclosely to the regular
representation (cf. Corollary 5.2).

Let E be a product system, which will be fixed throughout this section. Let M
denote the von Neumann algebra #(L*(E)) of all bounded operators on LX(E), and
let § = {B,: ¢ > 0} be the semigroup of =-endomorphisms of M determined by the
right regular anti-representation r: £ — Z(H) as in Section 2.
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For every t > 0, f,(M) is a (degenerate) type 1, subfactor of M whose unit
is (1) = P, # 1, and we have (M) < B (M) for s < 1. Define

of = U ﬂ‘(M')H'll.

& is an irreducible unitless C*-algebra which is thc C*-algebraic inductive limit of
the increasing sequence of von Neumann algebras M, = §;, (M), n =1,2,....
The inclusion of M, into M, ,, is isometric and normal, but not unit-preserving.

A bounded linear functional p on <7 is called locally normal if the restriction
of p to B, (M) is normal for every ¢t > 0. .7, will denote the Banach space of all
locally normal elements of &/*. o7, is an order ideal in the sense that if p, and p,
are positive linear functionals on &7 satisfying p; < p, and p, is locally normal,
then p, is locally normal. Finally, we say that an element p € &/* is normal if there
is a trace-class operator A on Z(H) such that p(B) = tr(4B), B € &/. A is necessarily
unique, whenever it exists.

The following result shows that the Banach space .#(f,) introduced in Sec-
tion 2 can be identified with o7 .

PROPOSITION 5.1. For every element A € #(B,) there is a unique bounded linear
Junctional w, on of satisfying

w(B(B)) = tr(A(t)B), BeM, t>0.

4 is locally normal and A — w, is an isometric order isomorphism of 4 (B,) onto
. @ is normal iff the limit

A(0+) = lim A1)

tes0-f

exists relative to the trace-norm. '

Proof. Choose A € #(p,) and fix t > 0. Since B> B,(B) is an isometric *-iso-
morphism of M onto B,(M), it follows that there is a unique bounded linear func-
tional w, on B,(M) satisfying

w/B(B)) = tr(4(1)B), BeM.

o, is normal because it is the composition of the normal map g;l: (M) > M
and the normal linear functional B € M w» tr(4(t)B).

Clearly fo,|| = trl4(t)] < |4, and we claim thatif 0 < s < rthen w |f(M) =
= w,. Indeed, every element of f,(M) has the form S,(B) for some B € M, hence

@(B(B)) = y(Bs(Bi- (B))) = tr(A(s)B,- «(B)) =
= tr(B,- 4 (4(5))B) = t2(A(1)B) = w,(B(B)).
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Thus, there is a unique element w, € o * satisfying w'f(M) = o, for t > 0, and we
have |lw,ii < 4] |
4 is obviously locally normal, and since {_J f,(#) is norm-dense in <& we
>0
have

w4l = supllw,|i = sup trid()| = 4],
60 £3-0

Finally, w,>0 iff , > O for every ¢t > 0 iff A(¢)>0 for every t > 0 iff 4>0.
Conversely, let € o, and fix ¢ > 0. Since w!f,(M) is normal,

B+ (B(B))

defines a normal linear functional on M. Hence there is a unique trace-class oper-
ator A(t) € M satisfying

w(B(B)) = tr(A(t)B), Be M.

We claim that B, (A(t)) = A(s + ?) for all s>0, ¢t > 0. To see that, choose Be M
and write

tr(Bes(A(1))B) = tr(A(D)B(B)) =
= w(B(BBY) = 0(Bysi(B) = tr(A(s + 1)B),
and the assertion follows. 4 is a bounded function because
tA®); = sup ((AOB)] = sup lo@B) < o,

Hence 4 € A(f,) and w = o .
Finally, we show that w, is normal iff the trace-norm limit A(0+) = lim A(¢)
) t-0

exists. Suppose first that A(0+) exists. Then A(t) = B,,(A(0+)) [for every ¢ > 0,
and hence for B € M we have

w(B(B)) = tr(A(1)B) =
= tr(B,..(4(0+)B)) = tr(4(0+)B,(B)).

This implies that for the normal functional on M defined by w(T) = tr(A(0+)T), we
have

“)Azﬁr(M) = wo.lﬁt("w),

for every t > 0. Hence w, = w, on &, proving that o, is normal.
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Conversely, if w, is normal then there is a trace-class operator 4, € M such
that w4(B) = tr(A,B), B € of. For each t >0 and Be M we have

tr(A()B) = w,(B(B) = tr(4aB(B)) = tr(Biu(do)B),
which implies that A(¢) = f,.(4,). Hence

lim tr|A(f) — Ao| = lim tr}B,4(Ao) — Ao} = 0,
t-0 t-0 :

by strong continuity of the semigroup S, .

COROLLARY 5.2. A(C*(E)) is contained in . Moreover, letting A € H(f,) —
—p €S and A € M(B)—> w, € A, be the isomorphisms deﬁned by Theorem
2.4 and Proposition 5.1, then we have

pu= ol APy
In particular, a bounded linear functional p on C*(F) is singular iff it has the
fornmi p = we A for some w € A,

Proof. We show first that &/ contains A(C*(E)). Since C*(E) is spanned by ele-
ments of the form f ® g with f, g compactly supported functions in L*(E) and since
& is norm-closed, it suffices to show that A(f ® g) € o/ for all f, g € L*(E) of com-

pact support. Fix f and g. Then by ({4], Proposition 6.4), for every &, n € L*(E)
the integral

o

S BT ®BIE, e

0

is absolutely convergent and agrees with (A(f ® £)&, n). Moreover, for every
t >0 we have

O ® B — BT @ DNETd = S BLS ® B)E nds.

Fix ¢ > 0 and choose ¢ small enough so that

t t

S 1S ® B)lds = S If ® Blds < ¢
0

(1]
The preceding expression implies that

M ® &) —BAMf@ N < ¢
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and since B,(A(f®¥)) € B,(M) < 7, we see that the distance from A(f®2) to ./ is
at most ¢&. Since ¢ is arbitrary and & is norm-closed, we conclude that A(f ® g)& ..
Notice that the preceding argument implies that

lim [[2(x) — B(A(x))]| = 0

H
1-0

for every x € C*(E). We also point out that, for 7 > 0, the operators 8,(/(x)) be-
long to A but they do not belong to A(C*(E)).

Now fix 4 €.#(f,). It remains to show that p, = w o4 Again, it is enough
to prove that

PAf® 8) = 0 A/ ® g)

for f, g € LME) n LYE). Fixing f and g, we see from the preceding paragraph
that

wA(f® 8)) = Ein(} w B ® 2.
Now for t > 0 and B € M we have

w(B«B)) = tr(A(t)B).
Hence

wBL(f ® 8)) = tr(A(NAf @ B)) =

- S (AP ® B)s.

But for s > 0 we have

HANBL ® B)) = il AN ® ) = <A(s + 0)f; .
Hence the integral on the right is
S CA(s + 1)f, gdds = S AR, gdx.
1] t
We conclude that
0/ ® B) = lim S CARS, gdx = S (AW, gdx,

and the latter is p(f ® £)-
Research supported in part by NSF Gramt DMS — 86 — 00375.
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