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UNIFORMLY CONTINUOUS SEMIGROUPS WITH
BOUNDED CHARACTERISTIC FUNCTIONS

BRIAN W. McENNIS

1. INTRODUCTION

Let 7(r) be a uniformly continuous one-parameter semigroup of operators
on a separable Hilbert space # . Thus, foreach ¢ > 0, T(¢) is a bounded operator on
H, T()T(t,) = T(t, + t,) for each t,, 1,20, T(0) =1, and {|T(t)—1I)] - 0 as
t - 0". Such a semigroup possesses a bounded infinitesimal generator A, defined
as the limit (in norm) of t"{(T'(¢) — I),as t — 0*. We can then write 7(t) = exp(4t)
(See, for example, (2], [4], [6], [71, [13], [14], [15).)

As in [2], we define the following bounded operators on #: G = A + A%,
Q = |GP'2, and J = sgn(—G) (this is the operator S in [2]). We have the relations

(1.1 JQ* = —G,

(1.2) »jt—mr)m)*) = TW)GT()*,
and

(1.3) r;? (T()*T(1)) = T(Y*GT(1).

A Krein space % is defined by taking ¢ to be the space J#, equipped with the
indefinite inner product

(14) [X, _,V] = (Jx, y) X, y € ga

where (-,-) denotes the inner product on #. The topology on ¥ is that which it
inherits as a subspace of # . We also define the characteristic function @(1): ¥ —»
of thc semigroup 7(¢) by

(1.5) () = I— Q(A— A*)~1JQ
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for all complex numbers 4 for which (2 — 4%)~1 is bounded. (Compare this with
the characteristic function @, given in [13], p. 358 for a dissipative opcrator.) We
will be assuming that the characteristic function (1.5) is defined and bounded in the

right half-plane:
(1.6) sup{;@() :Re’ >0} = C< o0

and will prove the following theorznz, analogous to [3]:

THEOREM 1.1. Suppose T(t) is a uniformiy continuous seimigioup with bounded
characteristic function. Taen T(?) is similar o a contraction semigroup.

As in the case of a single operator [3], boundedness of the characteristic function

.y

is a sufficient, but not a necessary condition for T{#) to be similar to a contraction
semigroup:

ExampLE 1.2. Let 2 be a two-dimensional Hilber: space, and define 77¢)

on H by
et ef--1
(@) -( 0 . )

&

Then it can be readily checked that 71¢) is a semigroup, and that for the operater
1 1
S= (
o --1

. e’ 0
S TS = .
) ( 0 ﬂ)

we have

Thus T(¢) is similar tc a contraction semigroup. However, T(f) has infinitesimal
gencrator
—1 1
A=
0 0

for which ¢ is invertible and for which | (A — A4t is unhounded as 2 — G,
Consequently, ©(4) is unbounded. r4

As in [13], [31. and {8], the characteristic function is studied in the context of
a unitary dilation, in this case the dilation constructed by Davis [2]. Since this
dilation is given only for vniformly continuous semigroups, we restrict oursclves
here to this case. No dilation theory currently exists for arbitrary strongly conti-
nvous semigroups, although in recent work by the author [117 a dilation is construct-
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ed for a class of holomorphic semigroups. The unboundedness of the infinitesimal
generator also creates difficulties in the definition of the! characteristic function of
an arbitrary strongly continuous semigroup; these problems are avoided here by
assuming that the infinitesimal generator is bounded.

The proof of Theorem 1.1 will be developed over the remaining sections, in which
the characteristic function is represented as a projection on the dilation space.

Acknowledgement. Much of the research of this paper was done while the
author was visiting at the Centre for Mathematical Analysis, at The Australian
National University, during 1987. The support of the Centre and of the Ohio State
University, for this visit, is gratefully acknowledged.

Some of the results of this paper also appeared in [10].

2. SOME PRELIMINARY RESULTS

Throughout this paper, the adjoint of an operator on a Krein space will
always be used in the sense of the indefinite inner product. In particular, we will
be making repeated use of the following property of the adjoint on the Krein space :

2.1) (QSJQ)* = Q5*JQ

for any operator S on 2. (See [1], Lemma VI.2.1. Note that the adjoint on the left
side of (2.1) is taken in the indefinite inner product of %, whereas the adjoint of S
(a Hilbert space operator) on the right side is taken in the Hilbert space inner pro-
duct of #.)

We present here some elementary properties of the characteristic function
which are analogues of similar properties of the characteristic function of a single
operator. (In Theorem 2.1 below, the adjoints @(p)* and @(A)* are, of course, taken
with respect to the indefinite inner product of .)

THEOREM 2.1. Suppose A and p are complex numbers for which ©(2) and O(u)
are defined. Then we have

2.2 I— oW 0@ = (4 + pO(i— A)(h— A4%)-JQ
and
(2.3) I— O()OW* = (4 + DO — A% — A)~JQ.

The characteristic function is purely contractive, i.e. for every nonzero a €%, and
Jor all A with Rel > 0, we have

(2.4) la, a] — [@(A)a, O(N)a] > 0
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and
(2.5) [a, a] —[O(i)Y*a, O(2)*d] > 0.

Proof. From the definition (1.5) we get, using properties (1.1) and (2.1)
OW)*O() =I— 0 — A*)Q — O(ii — Ay JQ — Qi — A)~'G(2— A4*)"JQ.
Thus,

I—0(*0() = Qi — A) (1 — A) + (A — A4%) + G)(2 — 4%)~VQ,

proving (2.2), since G = A + A*. (2.3) follows similarly. By putting p = 2 in (2.2)
we get
[a, a] —[6()a, B(La]l = [(I— O()*O(A)a, ¢} =

= 2(Re )i (4 — A*)~%JQa}® > 0.
7

The strict inequality in (2.4) follows from the observations that Res > 0 ard
that JQ is injective on %. (2.5) is proved similarly.

COROLLARY 2.2. If T(1r) is a uniformly continuous contraction semigroup, then
its characteristic function is bounded by one.

Proof. It T(t) is contractive, then A4 is dissipative, ie. G = 4 + A% < C.
(See, for example, [13], p. 141.) Therefore J = I, and the indefinite inner product
(1.4) on % is the same as the Hilbert space inner product. Thus, (2.4) implies
LOA)E < L. A

The following example shows that there are semigroups with boundzd cha-
racteristic function which are not contraction semigroups.

ExampLe 2.3. Let 57 be & two-dimensional Hilbert space, and define 7T{¢)
on 4 by
—-at gt
) = e te
0 e—m’

for some a > 0. It is easily checked that 7(r) is a semigroup with infinitesima! gener-

ator gi\’cn by
( ) '
0 —a

The numerical range of A4 is a circle of radius 1,2 centered at -—a (cf. {5}, p. 112),
and the spectrum of 4 consists of the single point {-——a}. Thus, for 0 < a < 1/2,
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A is not dissipative (its numerical range includes points in the right half-plane),

but (7 — A*)~-1 is uniformly bounded for Rel > 0. Consequently, for0 < a < 1/2,

T(t) is not a contraction semigroup, but does have bounded characteristic function.

%

In the course of proving Theorem 1.1, we will be needing the following preli-
minary estimate.

LemMA 2.4, If T(t) has bounded characteristic function, then there is a constant
M such that, for all t > 0,

(2.6) IOT()JQl < M and | OT(1)*JQ} < M.

Proof. Note that QT(+)*JQ is the adjoint of QT()JQ in the indefinite inner
product of ¥ (see (2.1)). Thus it suffices to prove just the first inequality of (2.6).

We can express T(t) in terms of the resolvent of its infinitesimal generator 4
by means of the integral

(2.7 () =

Sez'(;. — A)-1di,

r

where I is a positively oriented curve enclosing the spectrum of 4 (see {6], Theorem
11.3.1; [7], p. 489)./ The adjoint of 9(7), with respect tofthe indefinite inner product

on ¥ is O()* = [— O(j — A)~1JQ and thus, by (1.6), we can conclude that there
is a constant K such that

(2.8) Q¢ — A4)~JQ| < K for Re’ > 0.

Since ||(2 — A)~Y|] — 0 as /| — oo, there is a constant R such that the spectrum of
A is contained inside the circle 2] = R and

(2.9) [Q(%— A4)='JOl| < K for 4 = R.

Let ¢ be an arbitrary positive number, and take I' to be the positively oriented
curve consisting of the line segment ReZ = ¢, |4] € R, and the circular arc |4} = R,
Re /. € & Note that, by (2.8) and by the assumption on R, the spectrum of A is
contained inside I'. Thus, since the length of I' is less than 2z R, we obtain from (2.7),
(2.8), and (2.9) the estimate

(2.10) IOT(1JQ| < RKe*.

Since (2.10) is valid for all + > 0 and for all ¢ > 0, we obtain the result (2.6). Z
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The semigroup 7(7)* has infinitesimal generator 4%, whose resolvent can be
given by the formula '

@2.11) (o A = Se_,c_,m),;:d,,

valid for Re 4 > f§, where § = 4", (See [4], Theorem VIII.1.2; {6], Theorerz 11.2.1.)
Thus for ReZ > §, the characteristic function can be represented by

<o

(2.12) OU) = I —\e=#QT ()10 d.

J
3

When the characteristic function is bounded, we can use Lemma 2.4 to con-
clude that both sides of (2.12) are defined and holomorphic for Reli > 0. Thus
we get:

THEOREM 2.5. If the seinigroup T(1) has bounded characteristic function, then
ihe representation (2.12) of ©(4) is valid for all /. with ReZ > 0.

3. FOURIER TRANSFORMS

If @ is a Krein space, and if R denotes the real numbers,! then we denote by
LR, %) the Banach space of (equivalence classes of) functions f: R -» % which
are strongly measurable and for which

” o 1"
(5.1) fifi, = ( S ?@f(t)i;-”dz} p< co, P <o

For p = oo, (3.1) is replaced by
(3.2) i = esssup{l {(N))]: 1€ R}.

T ie subspace of L?(R, %) consisting of all functions with support contained in the
interval [0, oo) will be denoted by LP(R+, %). Likewise, L(R~, %) and L#([0, 5], ¥)
will denote the subspaces of functions supported on (—oo, 0] and [0, s}, respectively.

The space LR, %) is a Krein space with indefinite inner product defined by

(- -]
(3.3) [, ol = S 0, et ¢ € IR, 9),

-0

wiere [f(#), g(r)] denotes the indefinite inner product of 4.
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We will be needing a vector-valued Fubini theorem (see [4], Corollary 111.11.15):

THEOREM 3.1. Suppose that f is a strongly meausurable function of two variables
which satisfies

(== o}

ad Ay

34 S ( S 1 f(u, v} du)du < 00,
then
3.5 S Sf(u, v)dudv = S S fu, v)do du. %

Consider the Fourier transform of a function f'e LR, %), defined for y € R by

1 u o
(36) F(y) ittt S C"l'”f(\t)df.
V2n

-0

We have a vector-valued Plancherel theorem (see [14], p. 139):

TBEOREM 3.2. Let f be a function in LXR, ) 0 LAR, 94), and let F(y) be
the Fourier transform given by (3.6). Their Fe L2(R, Gy and ||[Flla = || flla- a

Consequently, the definition (3.6) can be extended by continuity from
LY(R, 9) n LX(R, %) to all fe LR, %), and as in the scalar case, this extension
is given by

n

(3.7) F(y) = Lim. — S e () de
] n—-00 V 14

-n

where Li.m. denotes limit in mean, i.e.. the strong limit in L*(R, ).

Now let f be a function in L?(R+, %) (1 < p < co). Then the function e~#£(t)
is in LY(R+, %) for all complex numbers 2 with Re A > 0, and we can define the
holomorphic Fourier transform

3.8) f(/",) = ——I:Se""f(t) d¢#, Rel > 0.
2n
0
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We will be needing the following:

THEOREM 3.3. Suppose fe L?(R+, %), 1 < p < oo, and that f().) =0 for all
complex numbers . with Rel > 0. Then f=0.

Proof. The function g(t) = e~f(f) is in L'(R*, %) and has Fouricr transform
given by

o0

Se--i.we--'f(t) de = it + i) = 0.

v

G(y) = -

V

I o

T

For any a € 4, the Fourier transform of (g(1), @) is {(G(3), a), which is zero. By the
uniqueness theorem for the scalar-valued case (see, e.g. [12], p. 187). {g(¢}, a) =0
for each @ € ¥ and for almost all ¢. Since ¥ is separable, g(t) = 0 a.e., and it follows
that = 0. A

Let F(4) denote a function taking values in ¥ and holomorphic in the right
half-plane Re/ > 0, and for x > 0 define F, by F.(y) = F(x +iv)(r=R). The
Hardy-Lebesgue space H*0, %) (cf. {15], p. 163) is defined as the space of ail such
functions F(2), with F, € LR, %) for all x > 0 and

(3.9) LFl, = sup{ F/st x> 0) <oo.

For this space, we have a vector-valued Paley-Wiener theorem:

THroreM 3.4, If fe LAR*, %), then fe H*0, ’?) Conversely, if Fe HX0, %),
then there is a function f'e L3R+, %) such that F = 1.

Proof. Suppose f'e L*(R*, %)Yand let £ = /. since (F(4), a) is the holomorphic
Fourier transform of the scalar function (f(2), @), where a € %, it follows (sec (i3],
p. 163) that (F(4), a) is holomorphic, and thus F(2) is holomorphic ([6], p. 92}. Aiso
note that £ (v)is the Fourier transform (3.6) of the function e~¥f{1). Since this iz a
function that is in LYR*, ) n L¥R*, @), then by Theorem|3.2, F, s L*R. %} and

43.10) ;‘Fx'!g == ”e“‘!f(,) 2 < f’f?lf’

proving that Fis in H*(0, %).

For the converse, assume that F = H*0, ¢). Then. by hyvpothesis, thz :et o
finctions {F,: x > 0} is a bounded subset of L%R. ¥). Since L¥(R, %) is a Hilbert
space, it is locally sequentially weakly compact, and thus there is a sequence of posi-
tive real numbers x{n), converging to zero, and a function F, e L}R. %) such iqat
F, ., converges to F,, weakly in LR, %).
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Define a function f by

nN-+0o0

(3.11) A SO =1lim. —]/-]2;{ S e Fo(v) dy.

-—n

A comparison with (3.7) shows that fe L¥R, ¥). To complete the proof, we need
to show that the support of fis in [0, co) and that F is the holomorphic Fourier trans-
form of /. This can be done by appealing to the scalar-valued case for the func-
tions (f(t), @) and (F(}), a), for each a<¥. (See, for example, [15], Theorem
VI1.4.2)

THEOREM 3.5. The holomorphic Fourier transform (3.8) is a unitary operator
Srom LAR™*, 9) onto H¥0, 9).

Proof. By Theorems 3.3 and 3.4, the holomorphic Fourier transform is one-
to-one and onto. It therefore suffices to show that it is isometric.

Let fbe in LR+, %), and let F be its holomorphic Fourier transform. From
{3.9) and (3.10), we conclude that {|Fj < |if]is. Comparing (3.11) and (3.7), we
sce that f(—r) is the Fourier transform (3.7) of Fy, and thus, by Theorem 3.2, || f]l; =
= 11Fy|ls. But F, was defined as the weak limit of functions that are bounded in
LXR, %) by | F||. and thus [|Fy|l, < ||F]|. Consequently, ||f]ls = ||F], and the proof
is complete. o7

The above theorem shows that H*(0, %) is a Hilbert space. Since L*(R*, %)

is also a Krein space, with indefinite inner product given by (3.3), we can make
H*0, %) into a Krein space too, by defining

3.12) [/, 81 =1f8l. [ gel*®R+ %).

4, THE DILATION SPACE

Let us now return to the study of the semigroup 7'(t) by introducing its uni-
tary dilation, as constructed by Davis [2].

Define a Krein space 4 by 4" = # @ L*(R, %), where ¥ is the Krein space
introduced in Section 1, with indefinite inner product given by (1.4). A vector k
in.#" will be denoted by k = (A, />, where e # and fe L*R, %); the indefinite
inner product on % is given by

(4.1 Mk KT =0, ) + (L) k= ) R = ),
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where (&, /') is the Hilbert space inner product o J# and [, f7] is the indefinite inner
product (3.3) on (LR, ¥). The unitary dilation U(s) is defined for s > 0, by
Ulsyh, > = O, f7), where
(4.2) b= T{s)h — S T(s - 1O f(—~1) dt,
and ‘

fr=@=ft—9+
4.3)

Here, and in the sequel. we have adopted the convention (also used in [2]) of
vsing a special symbol 7 to dencie the independent variable. Thus, for example
J{=) represents an element of L3(R, %), whereas f(f) represents a vector in 4. fi{t - - 5)
in {4.3) is the function obtained by shifting f'to the right by s units. We will also be
using 4 in the same role when discussing functions in H2(0, %).

In [2] it is shown that the U(s) defined above is a semigroup on %, and that
it is a dilation of T'(s) which is unitary in the sense of the indefinite inner product,
i.e.. U(s) is invertible and [U()k. U(s)k'] = [k, k'] for every &, k' € # and s = 0.
By defining U(—s) = U(s)* (where the adjoint is taken in the indefinite inner pro-
duet), U(s) becomes a unitary group on ', again in the sense of the indefinite
mrer product.

We will be censidering the subspace .# . of 4 given by

(4.4) A= Kh [y ex feXRY, 9)},
and the semigroup
4.5) Ut(s) = U(s)' %, fors > 0.

(Noze that 7 , is invariant for U(s), for & > 0.) Then Theorem 1.1 will be proved by
cstablishing:
THEOREM 4.1. U*(s) is similar to a semigroup of operators which are isometries

with respect to a Hilbert space inner product.

The proof of this theorem, and Theorem 1.1, will be completed in the remain-
ing sactions, after investigating some of the structure of 4, .
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We consider two subspaces .# and .#, of 3 ., and their Fourier representa-
tions @ and @,,, respectively. The simplest to describe is the space . and its Fou-
rier representation:

(4.6) M =10, e : feINR*, %)} and @0, f) =1,

where [ is the holomorphic Fourier transform (3.8). By Theorem 3.5 and (3.12),
< is a unitary operator from .4 onto H*(0, ¢), preserving both the Hilbert space and
indefinite inner products. Also, ®(U(s)0, ) is the holomorphic Fourier transtorm
of f(z — ), so that ‘

PU(s)m) = e=*Pnm  forallm .4 and s > C.

In order to parallel the theory for aisingle operator, we define ./, in the fol-
lowing way. Take s > 0, and let f be a function in L*([0, 5], ¥). Shift f to the left
by s units, so as to get a function in LAR~, %), and then apply U(s). This gives a
vector in the subspace A, of #; we define .# . to be the closed linear span of such
vectors, i.e.,

4.7) My = V{UGKO, fr + .5y 1 f e L0, $], %), s > O}
The Fourier representation @, of .#,, is densely defined on .#/,, by
4.8) LB JUGKO, f(r + =1, s>0.

{It is easy to check that this is well-defined, i.e., that U(sXO0, f{zr + s)> uniquely
determines f.) For all s > 0 .and for a dense sct of vectors mi, € .7/, namely
my, = U@){0, f(z + u)), where f € L({0, u], ¥). « > 0, we have

B (Ulsymy) = B (Uls + u)0. £z + u))) =

{4.9)
=P (U + u)0, flr—s+s+ud)=

= the holomorphic Fourier transform of f(1 — 5) = ¢~ d .

1t follows immediately from the definition (4.8) that &, preserves the indefinite
inper products on ./, and H*0, %), since both U{s) and the holomorphic Fourier
transform have this property. We can, however, draw no conclusion about the bound-
edness of &, without (as in [3]) first obtaining a geometric interpretation of the
characteristic function. This is done in the following paragraphs.
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Suppose  my, = U(s)(0, f(t + s)) € #, and m=<{0D,¢g>e.#  where
S e L¥[0, s}, ¥) and g € L¥[0, N], %) for some s > 0 and N > 0. Then by (4.2)
and (4.3), m, = ', D, where

&

(4.10) B o= —S T(s — 1)JOf(s — t)dt = —S T()JQf(2) dt
end 3 ]

S=T

7 = ) = Ty o) S QT(s — 1 — )JQf(s — 1) dt =

¢

@.11) ?
= £(0) — Tgg of0) 5 OT(t— Q) dt.
Therefore . '
tmg , 1] = S[f’('u), ¢l du =
= \ 0. seonan—\ S QT — aNQS(1), g(u)}dr du =
(4.12) ’ o

= K (). g(0)] di— S S [QT(t — 1)JQ (1), ()] dudr =

5 56
- S L), g(r)] de— S S /(). Q{1 — u)*JQg(i)] du dr,
[} ({4
using (2.1). The interchange of order of integration in (4.12) is justified by Fubini's
theorem, since (using Lemma 2.4)
.

HOT( — u)Of(r), glw)]dt du <

O u

< N\ MU0} igu)li de du <
(U]
< Ml/.?i%f:szg le@)ildu < Msifislgils < oo

[}



UNIFORMLY CONTINUOUS SEMIGROUPS 221

Thus we have

5

@13) [y, m] = S @), g(t)— )] dr,
where ) .
(4.14) h(t) = SQT(: — W Qg(u) du.

[4]

Note that, for all >0, the integrand of (4.14) is in L}(R+, %) since, by Lemma 2.4,

1

@.15) S IOT( — uy*JQg(w)]| du <

[\

1QT(t — uy*JQgw)l| du < MYNlgll,,

T

for g € L*([0, N], %). Since the right side of the inequality (4.15) is independent of 1,
it also follows from (4.14) that 4 € L*(R+}, 9).

The function A has the form of a convolution, and so it is to be expected that
its holomorphic Fourier transform will be of the form of a product of two functions,
one operator-valued and the other vector-valued. In fact

AQ) = -Vgﬁ Se‘“s OT(t — w)*JQg(u) du dt =

<

(4.16) - #_ITZ.S S e~ MOT(t — u)*JQg(u) dt du =

] oo o0
" Vn S S e~ OQT(1Y*JQg(u) dr du
00

where the interchange of order of integration in the second line of (4.16) is justified
by Fubini’s theorem and the estimate (using (4.15))

oo !

S le=*QT(t — u)*JQg ()] du dr <

4 ¢

<\ e~®ReAM/N|gll,dt < oo for Reld > 0.

Sl 3
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Therefore we have, for Rez > 0,

() = (S e~ HQT()*JO dt) },-.f) S e=g(u) Gt =
¢ < (V)

4.17)
= (I — O@)& (%),

by Theorem 2.5. We are assuming (1.6) that ©(2) is bounded for Rel > 0. Since
g€ LX(R*, %), then § € HX0, %), and it follows immediately from the bounded-
ness of © and the relation (4.17) that h € H30, %). Thus, by Theorem 3.4, i is
the holomorphic Fourier transform of a function in LXR™, 4). The unigueness
theorem (Theorem 3.3) then implies that 4 € L3R+, 4).

We can now rewrite (4.13) as an inner product in L*(R*, %) and, using (3.12),
as an inner product in /%0, %):

.
L&J>

i, ml ={fg—il =], g~ =17, 03] =
(4.18)

= [P m, . OPm]

for all my, of the form U(s) <0, fiz + &) (f e L¥([0, si, ¥), s > 0} and for alt m
of the form €0, g)> (g € L*([0, N, %), N > 0). We arc using © in (4.18) to represent
the bounded operator on 30, ) defined by (OF)(%) = O()F{A), for Rei > 0.
If C is the bound for ©. as given in (1.6), then ior the operator © on H3(C, ¥) we
have 10, < C.

(4.18) is valid for a dense set of vectors m & .#. Since @ is u bounded operater
from .# to H*{©, %) and @ is 2 bounded operator on H3(0, %), (4.18) 1s in fact valid
for all m € .. In order to extend (4.18) to all m, € 47, , it is necessary to first esta-
blish the boundedness of @... This can be done by using an approach that is formaliy
the same as that used in the study of a single operator in [3], and thus the details
can be omitted. As in [3], we get the estimates

4.19) 10,02 < 1+2C% [@31R < 1+ 2C

2

and therefore @, can be extended to 2 bounded opecrator mapping .7, onto 0.4},
(4.18) can be extended to give

4.20) g, m} =[@m), OPm] for all ms ¥, m,e.d,,

giving the promised representation of @ as a projection.
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@, preserves the indefinite inner products of .#,, and H*(0, %), and hence its
adjoint (with respect to the indefinite inner product) is a Krein space isometry
mapping H*0, %) onto .#4. This implies that, when O is bounded, &, is a regular
subspace of A", i.e.

@.21) K = MR,
where
4.22) R =1{ket, [k, mg =0, for all my, =.4,}.

(Sec [8], [9]. Note that (4.22) does not follow automatically from (4.21) when the
mner product is indefinite.)

The relation (4.9) can now be extended to all of .#,,, using the boundedness of
@, ie.

(4.23) @ (U(s)my) = e @, m, for all m, € .# and s > 0.

Thus the semigroup {U(s) [-# 15 20} on A is similar to the semigroup {(w(s): s>0}
of operators on H3(0, ¥), where W(s) denotes multiplication by the function
e~*s. Tt is readily checked that each W(s) is anisometry on H2(0, %), with respect to
both the indefinite and Hilbert space inner products (it corresponds, via the holo-
morphic Fourier transform, to the shift to the right by s units on L}R,, 9)).
Thus we have established:

LemMmA 4.2. If the characteristic function O(3) is bounded, then the semigroup
Uu(s) =UE) My, s > 0, is similar to a semigroup of isometries on a Hilbert space.
U..(s) can be changed to a semigroup of isometries by renorming M, with an equivalent
Hilbert space norm -\ obtained from the norm of H*(0, %):

(4.24) Imy = Ooml  (m,e . 4,).

5. THE RESIDUAL SPACE

One of our objectives was to prove Theorem 4.1 by showing that Ut(s) =
= U(s) ! A, is similar to a semigroup of isometries. We have shown (Lemma 4.2)
that U(s) acts this way on a subspace ., of #" . ; we now need to consider the residual
space #, defined by (4.22). In our analysis of the properties of 22, we do not ini-
tially assume that the characteristic function is bourded, although the boundedness
of @(7) will be required later.

2 —- 1359
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We will need the following:
. THrorREM 3.1, % is invariant for the group U(s).

Proof. Since .#., is invariant for U(s), s > 0, it follows immediately from the
definition (4.22) that # is invariant for U(s)*, s > 0, where the adjoint is taken in
the indefinite inner product. By the unitary property of U(s), this is equivalent to
saying that # is invariant for U(s), for s € 0.

Let #'_ = {0, fy ex:fel*R-, %)}. It is not difficult to verify that
A =H_SH,,that #_ D .74, is invariant for U(s)*, s > 0, and that

R = {k ex [k, ‘m] = 0 for-ail meN_ @ /Z’,;.}.

From this we can conciude that 2 is invariant for U(s), for s = 0. B
CORGLLARY 5.2. # is invariant for the semigroup U+(s).

We have a representation of the residual space which is analogous to [8].
Theorcm 4.2.

THEOREM 5.3, Let & be a vector in K .. given by k = {hy, [, where h, ¢ #
and fe LXR*, %). Thenk is in A if and only if there is a function h: [0, oc) — A’
such that

(5.1) 50) = hy,

(5.2) OI(t) = fit) for almost all t = 0, and

(5.3) T{YA(s) = h(s — 1) for all 5 and ¢ sati.vvf)'ing 0<t<gs
The function h and the vector k uniquely determine each other.

Proaf. Let us assume the existence of a function /i with the' properties (5.1),
(5.2), and (5.3). It m, = U(s)(0, g{t + 5)) for some gel¥[0,s].%), s>0,
then we have, using (4.10) and (4.11),

5

fk, m,l = —S(ho, T(6)JOg(1)y dr + S[f('t), 2(1)] dt -—
0]

¢

s

— SS [fte), OT(t — )JQe(r)] At du.
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Using Fubini’s theorem (along with Lemma 2.4) and (2 1) we can write the
third term in (5.4) as : :

— S S [QT( — uy*JOf(u), g(1)] dudt =
_ SS[QT(t — WM IQHW. gt} dudt = (by (5.2))
00 ' .

S[QT(u) *Gh(t — u) g®)]dudt = - (using (1.1))
5 .

Omh

t

S[QT(U)QGT(u)h(l), g(n)] dudt,
o

Omu

vsing (5.3). But, by (1.3), T(t)*GT(u) is the derivative of T:(w)*T(u), and thus we. get
for the third term in (5.4)

S [QT()* T(1)h(c) — Qh(r), g()] dr =
- S[QT(z)*hw)—Qh(r), gOldi= . (using (53))

(ho, T()JQg(1))dt — S L), g()] dt,
: 0

i
S,

using (5.1) and (5.2). Comparison with the other two terms in (5.4) yields the result
that [k, m,] = 0, and since this is true for a dense set of m,, in .#,, it follows that
ke A '

Conversely, suppose k € #. Then ke, and [k, m,] =0 for all m, =
= U(s)D, g(r + 5)>, with g € L*([0, 5], ¥), s > 0. We define

t

(5.5) h(t) = T(t)* by + S'T(t — Wy JQfw) du.

0
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That #(0) = h, is immediate from (5.5), but the other two properties of & are not
so obvious. Let us first show that f = Q/. From (5.4), and the fact that [k, m,]) = 0,
we have

S[f(r), ¢(ldr =

S[QT(«’ -y JQf(u, g(1)] Gt du =

o

_ S(JQT(t)*‘izo, () ét +

=] By TN

(5.6)

- S[QT(:)*lao, (Ol + S [OT(t — a):JOf(u). gle)] dus df =

Cat™ )

- SIQr’z(f), 2] dr.
1

Since (5.6) is valid for all g € L*([0, 5], %) and all s > 0, we conclude that f = Q.

We now wish to show that T(1h(s) = his — 1) for all s and ¢ with 0 < ¢ < 5.
To this end, consider, for ¢ > 0, the quantity T7(v)GT(v)*h(s — #). By (1.2), this is
the derivative, with respect to ¢, of T(¢)T(¢)*h(s — t), and therefore

(5.7 S T()GT () h{s — £) dv = (T(YT(EY* — Dh{s — £).
0

On the other hand, it is readily seen from (5.5) and the semigroup property that

(58 TWHh(s—1)=Mv+5—1)— S T(v + s —t —wy*JO flu) du.

s—t

Using the fact that f = Qh and JO* = —G, we get

T)GT () h(s—1t) = —T()JOf(v + s—t) —
(5.9)

vi-s—¢
— S T(OGT(z + 5 — t —u)*JQ f(u)dz.

s=¢
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Combining (5.7) and (5.9) gives

I—TOTEOMh(s—1) =
(5.10)

t t vts—-10
= S TYOf(v + s—1t)dv + S S T()GT (v + s—t—w)*JOf(1) dudr.

0 s-t

The second integral in (5.10) can be rewritten, applying Fubini's Theorem and the
semigroup property, as

8 t

Tu—s + DT+ 5s—1—uw)GT(v + s —t —u)*JQ f(u)dvdu =

S—1 u~s<gt

= S Tu—s +1) S T()GT(w)*JOf(1) dv du =

=1

(5.11)

= S T(u—s + )(T(s — w)T(s — a)* — DJIOf(u) du =

s—1

3

= T(t) S T(s — w)*JQf(u) du — S T)JQf(u + s— 1) du.

§—1

Therefore we get, from (5.10) and (5.11), and by applying (5.8) with v = 7,

h(s—1) = TOT@Y*h(s—1) + T(1) S T(s — wy*JOf(r) du = T()h(s).
st

It remains to prove the uniqueness assertion. It follows immediately from pro-

perties (5.1) and (5.2) that % uniquely determines k. To show that & uniquely deter-

mines /1, we need to show that any function # satisfying (5.1), (5.2), and (5.3) must
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necessarily be given by (5.5). This follows, since

S T@ —u)*JOf() du = —S T(t — wy*Gh{uy du = {by (5.2))

— S T()*Gi(t — uydu = — S T@)*GT(@Yr(t) de = (oy (5.3)
g 0

= h(t)-— f(t) T(OA() = h(?) — T(r) /i(@),

by (1.3) and (5.3). Thus using (5.1), we obtam (5.5). .-

Using the representation in Theorem 5.3, we can now derive some properties
of the residual spacc, which are analogous to soms of the results obtained for a
single operator in [8]. We begin by introducing some terminology.

A subspace of a Krein space is called positive (positive definitey i [k, k] = 0
{k, k] > 0) for all nonzero & in the subspace. A subspace is called son-degeicrete
if no nonzero vector in the subspace is orthogonal to every vector in the subspace
{in the sensc of the indeiinite mnm pmuuct). :

THEOREM 3.4. % is a positive subspace. If the semigroup T(t) is egui-bourled,
i.e. if there is a constant M sueh that

Y)Y < M for all £ 20,

then A is positive definiie.

Prooy Let o = (g, 1) 0
ing to X, given by Theorem 5.

(5.172) B L TR VA

Since the functions fi(z) = ¥, 1)A7) converge strongly to f in L¥R*. ¥, «s
s> 00, it follows that [ 7} can be obtained as the limit of {f;, 7). where

8 3
r .

oS3 = R0, ol -=g1@am. Oh(n] a1 =
:

QEQ}V!(S — 1), Ohis — )] d¢t == S[ 1), Oﬂt})}’w(s)] ds.
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Using (1.1), the integrand of (5.]3)’can be written in the form
JOT()(s), QT (HHh(s)) = —(T(t)*GT(t)h(s), h(s)),

which is the derivative, with respect to ¢, of —(T(¢)*T(t)h(s), h(s)) (by (1.3)). Thus,
by (5.1) and (5.3),

Us: fd = 1h®IF— 1T = [h(s)[2 — [ih0)| =
(5.14)
= [[i(s)i® — lilnoli®

Since the limit of [f;, f,] equals {f, f1, it follows from (5.12), (5.13), and (5.14) that

(5.15) e, k] = hnl[]/;(s)y

Hence # is positive. )
Now suppose that 7(¢) is equi-bounded and that {k, k] = 0. If follows from
(5.15) that /i(s) — 0 as s — oo, and thus for ali t > 0 and s > ¢ we have

a1 = T(s — D). < Mih(s): — 0] as 5 — oo.
Therefore, i(¢) = 0 for all t > 0, and herice k = 0. Thus, if T(1) is equi-bounded,
A is positive definite. X7
COROLLARY 5.5. If T(t) is equi-bounded, then 47, is non-degenerate.
COROLLARY 5.6. For eacl: ke R, the Sunction h giveir by Theorem 5.3 is bounded,

Proof. By (5.15) the limit of ||A(s)|!, as s — co. exists. Since & has the form (5.5),
this implies that /1 is bounded. -

THEOREM 5.7. If T(t)* converges strongly ts zeio as t — oo, then 2 = {0},
e, Mye=H,. - '

Proof. Suppose k e%-and let 7 be the funciien given by Theorem 5.3. Then
for all A €, and for all + > 0 and s > #. we have '

(h(2), 1) = (T(s— ), 'y, = Wits), T(s — )W) <
(5.16)

< WhIET(s — 0.

let 5 - co. Since /i(s) is bounded, and since, by assumption, T(s — 1)} — 0, it
tollows from (5.16) that (i(r), ') = 0 for all t+ > 0 and for all 2’ € #. Thus £ = Q,
and it follows that k = 0. We conclude that # =: {0}, and thus, using the definition
(4.22) and [1], Theorem I11.6.1, #, = %, .
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CoROLLARY 5.8. If a vector ' €5# satisfies T(1)*h' — 0 as 1 — oc. then h' & M 4«

Proof. Suppose k € Z. Then, as in (5.16). we have
e, 1 = (h(0), &) < h(s)! i TG) Rl >0 as s — oco.

Thus &’ is orthogonal to # (in the indefinite inner product), and so h' € .%,.. W

Theorem 5.7 does not in general have a converse: it is possible to have # = {0}
when T(1)? does not converge strongly to zero.

EXAMPLE 5.9. Let T(r) be the semigroup introduced in Example 1.2. Clearly
J(¢y* does not converge to zero as f — oc: we will show, however, that its resi-
dual space 1s zero.

It is clear that T(¢) is equi-bounded and thus, by Theorem 5.4, # is positive
definite. Suppose & = {f,, /> € #, and let /i be its associated function, given by
Theorem 5.3. Note that @ is an invertible 2> 2 matrix, and that /= Qh. Thus,
since f € LAR*. ¥), it followsthat s € L3R *, %). Since, by (5.15), the limit of A(s);
exists, this Jimit must therefore be zero. By (5.15), we have [k, k] = 0, and therefore
sincz # 1s positive definite, we conclude that Z = {0} )

Let us now reintroduce the condition (1.6) that the characteristic function
©(4) be bounded. We demonstrated at the end of Section 4 that the subspace .# is
regular (4.21) when the characteristic function is bounded. We include this, and more,
in the following:

Treoren 5.10. If @(2) is bounded, then ., and A ave regular subspaces of K .. .
Witk the inner product {-.-1. # is a Hilbert space, and the intrinsic topology (i.e., the
vopology derived from the norm x| = [x, xJ¥%) coincides with the strong topology
that A inkerits from KA.

Proof. The regularity of both #, and % was established when (4.21) was
proved. Since a regular subspace is 2 Krein space (this follows from [1], Theorem
V. 3.4}, and since the indefinite inner product on # is positive, then # must by
¢ Hilbert space. The intrinsic and strong topologies coincide by virtue of [11, Theo-
rem V.5.2. Z)

¢. PROOFS OF THEOREMS 1.1 AND 4.1

Let us assume throughout this section that the characieristic function is
bounded. Then, by Lemma 4.2, we know that .4, can be renormed by (4.24) so
as 1o make the semigroup U(s) = U(s) .#,, s > 0, a semigroup of isometries on
a Hilbert space. We also have, as immediate consequences of Theorems 5.1 and 5.10,
and the basic unitary property of U(s) (sec Section 4), the following:
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LeMMA 6.1. If the characteristic function ©()) is bounded, then the group
Ux(s) = U(5)4 is similar to a unitary group on a Hilbert space. Ug(s) can be changed
%o a unitary group by renorming R with the equivalent Hilbert space norm |.| obtain-
ed from the inner product [-,-]:

6.1) . | =[r, rP* (re).

We can now complete the proof of Theorem 4.1. Since .#,, is regular (Theorem
5.10), every k €4, has 2 unique representation in the form k = m, + r, with
my € 4, and r € #. Renorm &, with the norm, derived from (4.24) and (6.1)

6.2) k2 = |[@n i + [r, r].

Using Lemmas 4.2 and 6.1, we can conclude that this norm is equivalent to
the original norm on £, (cf. [9], Section 6), and the same lemmas show that U*(s)
is isometric with respect to this norm, proving Theorem 4.1. All that remains is to
supplv a proof of Theorem 1.1.

Let P denote the projection on A defined by P<(h, f) = <h, 0); P is the
orthogonal projection onto J#°, with respect to both the indefinite and Hilbert space
inner products on . The dilation property of U(s) may be described as T(s) =
= PU*(s) | #, where U*(s) = U(s) | ', . Note that, by (4.4) and (4.6), £, =4 @
@ . and .4 is invariant for U+(s). Thus, # is invariant for U*(s)*, and we may
write the dilation property as

(6.3) T(s)* = U*(s)* | .

Since U+(s) is similar to a semigroup of Hilbert space isometries (Theorem
4.1), it follows from (6.3). that T(s)* is similar to a contraction semigroup. Thus
T(r) is similar to a contraction semigroup, and Theorem 1.1 is proved.
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