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DILATIONS OF HOLOMORPHIC SEMIGROUPS

BRIAN McENNIS

1. INTRODUCTION

In this paper we present a dilation of a semigroup which generalizes that given
in the paper [2] by Ch. Davis. As in [2], the dilation space is a Krein space, on
which is defined an indefinite inner product, and the dilation is a strongly continuous
group which is unitary with respect to 'this inner product. The construction also
follows that in [2], in that it represents the original Hilbert space as a state space
and obtains the dilation by incorporating incoming and outgoing shifts into a
system.

The paper [2] treats only uniformly continuous semigroups, in which the infi-
nitesimal generator is bounded. Here we consider strongly continuous semigroups
for which the infinitesimal generator has numerical range that is contained in a sector
in the complex plane of the form

L.n : S,e = {A:larg(y — 7)| < 0},

for some complex number y (the vertex) and for some real number 0 (the semi-an-
gle), with 0 € 0 < =/2. With this restriction, a dilation is obtained which preserves
the symmetry of the Davis construction, in that the incoming and outgoing shifts
act on functions taking their values in the same Krein spaces.

The condition that the numerical range of the infinitesimal generator be con-
tained in a sector S, 5is necessary in order to apply the techniques used in this paper.
Therc is, however, a sense in which this restriction is the minimal restriction on the
numerical range that will guarantee this symmetry of ihe dilation. (See Example
5.1 below.) As we will see, in Theorem 2.1, this condtition implies that 7(r) is a
quasi-bounded holomorphic semigroup, in the sense of [4], Section IX.1.6, with
170} < e, for some real constant f, and for all ¢t > 0. .
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2. SEMIGROUPS AND DILATIONS

Suppose T(t) is a strongly continuous semigroup, acting on a separable Hil-
bert space #. Then, for each ¢ > 0, 7(¢) is a bounded operator on .#, T(s)I(t) =
= T(s + t) for each s,z = 0, T(0) = I, and T(¢) converges strongly to zero as
t - 0%, The infinitesimal generator A of T(¢) is defined as the strong limit of
tYT(t) --I),as t—0*. A1is a closed operator, with domain Z(A) dense in 3¢, and
we can write T(f) = e4’. For such a semigroup, there exists a real number x such
that

@.D o(d) < {#:Re’ < a},

where o(A4) denotes the spectrum of A. (See, for example [3], [4], [S], and [7].)
A stronger condition on A is that its spectrum be contained in a sector S, g,
defined by (1.1), with 0 < =/2. Then for a suitable choice of the real number p,

the operator B = A4 -— f§ has

2.2) a(B) = Sop,

a sector with vertex at the origin. Suppose that, in addition, we have for each ¢>0,
2.3 A —B)% < M 4> for arg())l €« m — 0 — ¢,

where M, is independent of /. Then, following [4], Section 1X.1.6, we will refer to
T(t) as a holomorphic senigroup, quasi-bounded by B. 1t is shown in [4] that such a
semigroup has a holomorphic extension to a sector of the form larg(t) < n/2 — 0.

Let W(A) denote the numerical range of 4, i.e. W(4) = {(Ax, x): x € 2(4),
['x| = 1}. We will call 4 sectorial if

(2.4) W(4) < S,.0,

for some vertex y and semi-angle 0 < /2. (This is equivalent to —~A4 being sec-
torial in the sense of [4], p. 280.)
We have the following:

THEOREM 2.1. If the infinitesinal generator A of a semigroup T(t) is sectorial,
then there is a real constant 8 > 0 such that T(t) is a holomorphic semigroup, quasi-
-bounded by B, and ||T(H)}] < ef* for all t > 0.

Proof. We are assuming that (2.4) bolds, so for a suitable choice of § > 0,
we can get W(B) € So,5, where B = 4 — [. Let I' denote the closure of W(B),
and Iet 4 denote the complement of I' in the complex plane. Since I' is a convex set
contained in a sector with semi-angle less than 7/2, it follows that 4 is connected
and, since, by (2.1), 6(B) is contained in a half-plane, 4 contains points of the resol-
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vent set of B. Thus, by [4], Theorem V.3.2, we conclude that 4 is contained in the
resolvent set of B, or equivalently,

By < Sos.

Therefore, — B is m-accretive, in the sense of [4], p. 279, and we conclude from [4],
Theorem 1X.1.24, that B satisfies condition (2.3), with ||e?*|| < 1. Since T(¢) is gene-
rated by A = B + f3, the conclusions of the theorem follow. %,

COROLLARY 2.2. If A is sectorial, then for every x € # and for every t > 0,
we have T(t)x € 2(A) and

(2.5) -;it— T(t)x = AT(t)x.

In addition, there is a constant M such that, for all t > 0,
(2.6) ATl < (Mt~* + Ber’.

Proof. Let B= A — f be the operator introduced in the proof of Theorem
2.1, and let S(r) = ¢%, so that T(t) = e#'S(t). Then, since B satisfies (2.2) and (2.3),
we can conclude from [4], Section IX.1.6, that for all x € # and t > 0, S(¢)x €
€ 9(B) = 9(4), IS <1, and

4 o ld 1
£-S() = BS() |: S50 || < e,

for some constant M. Thus T(t)x € 2(4), and (2.5) and (2.6) follow by differen-
tiating the equation 7(¢) = e#S(¢). %

COROLLARY 2.3. If the infinitesimal generator A of T(t) is sectorial, then it
is m-sectorial (see [4], p. 280).

\

Proof. This follows immediately from the fact that — B is m-accretive. @4

Under the assumption that 7(¢) has a sectorial infinitesimal generator A4,
we are able to construct a dilation {U(s) : s € R} (where R denotes the real numbers),
which is analogous to the construction in [2] for a semigroup with bounded infini-
tesimal generator. The dilation acts on a Krein space 2, on which is defined an
indefinite inner product [-,-] and a Hilbert space inner product (-,-). These inner
products are linked by the relations

(x, ») =[Jx, 3] and [x, y] = (Jx, y) forall x, y et
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for an operator J which is selfadjoint and unitary, with respect to both inner pro-
ducts. (Such an operator is referred to as a fundamental symmetry. See [1].)

If the numerical range of A lies in a sector contained in the half-plane {% : ReA<
< 0}, then T'(¢) is contractive, and this paper presents a construction of the minimal
unitary dilation of T(¢) (see [6]). The fundamental symmetry J is, in this case, equal
to the identity operator, so that ¢ is a Hibert space. Our construction does not cover
all contractive semigroups, as can be seen from Example 5.1 below.

We will prove:

THEOREM 2.4. Let T(t) be a strongly continuous semigyoup, acti;zg on a separable
Hilbert space #, with a sectorial infinitesimal generator A. Then there exist a Krein
space A 2 K. a fundamental symmetry J on A", and a strongly continuous group
U(s) on A, such that

(i) Jx = x for all xe #;

(i) [Us)x, ¥} = (T(s)x, y) for all s > 0 and all x, y € H# ;

(iii) [U(s)x, U(s)y] == [x,y) forallse Rand all x, y € A ;

(iv) V{U(s)# :seR} =L

The construction of the dilation is similar to that in [2], except that unbounded
operators are involved. In the next section, we use bilinear forms to define these
operators and to establish their domains. In Section 4, the dilation is constructed
and its properties are verificd. Finally, in Section 5, an example is presented to illu-
strate that the assumption that A be sectorial cannot be relaxed if the symmetry of
the dilation is to te preserved.

3. BILINEAR FORMS

When the semigroup 77#) is uniformly continuous, its infinitesimal generator 4
is bounded, and we can consider the cperator

3.1 G=A+ A%

used in the construction of the di'ation in [2]. When A is not bounded, the operator
G cannot be defined by (3.1), since the intersection of the domains of 4 and A% may
be too small. However, when A is sectorial, we can use bilincar forms to define an
operator which is an analogue of (3.1), and use this to construct the dilation.

A bilinear form f, with domain Z(f) (a lincar manifold in J), is a function
from Z(f)XZ(f) into the complex numbers, which is lircar in the first variable,
and conjugate linear in the second variable (sec [4], [5]). We follow the usual conven-
tion of denoting f(x, x) by f(x), for any x € @(f). We call f symmetric if f(3, x) =

= f(x, y) for all x,y € G(f).
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The numerical range of f, denoted by W(f), is defined by

W) = {f(x): x € 2(f), ||Ix|| = 1}.

fis symmetric if and only if W(f) is a subset of the real line (see [4], p. 309). fis called
sectorial if W(f) € S, for some vertex y and semi-angle 8 < 7/2. (This is equi-
valent to —f being sectorial in the sense of [4], p. 310.) If F is a closed operator on
#, and if we define a bilinear form f by f(x, y) = (Fx, y), for x, y € @(F), then
W(f) = W(F) and f is sectorial if and only if F is.

A sequence x, in S is said to be f-convergent to x € # if x, € D(f), x, - X,
and f(x, — x,)— 0 as n, nt— co. We say that fis closed if, whenever x, is f-con-
vergent to x, it follows that x € 2(f) and f(x, — x) - 0. f is called closable if it
has a closed extension. We will make repeated use of the following results. (See
{4], Theorems VI.1.17, VL1.18, and VI.1.27)

THEOREM 3.1. Let f, be a sectorial bilinear form. Then fy is closable if and
only if fo(x,) - O whenever x, is fy-convergent to zero. If f, is closable, then it has a
smallest closed extension (the closure of f, ), denoted by f, with the following properties :

(1) 2(f) is the set of all x € # such that there exists a sequence x, which is
Jo-convergent to Xx.

(i) If x, is fy-convergent to x, and y, Is fy-convergent to v, then f(x, y) =
= lim fo(x,., 30)-

(iil)y W(fp) is dense in W(f).

THEOREM 3.2. Let A be a closed operator on A, and define a bilinear form a,
by aog(x, 3) = (Ax, 3), with D(a,) = D(A). If the operator A is sectorial, then the
Jorm a, is closable.

If fis a closed sectorial form, a sct @ < Z(f) is called a core of fif the restric-
tion of f to & has closure equal to f. There is an analogous concept for an operator:
if A is a closed operator, a set @ < Z(4) is a core of A if the restriction of 4 to
% has closure cqual to A. :

We have the following useful criterion for comparing domains of two bilinear
forms.

PROPOSITION 3.3. Suppose f and g are two closed sectorial bilinear forms, and
let & be a core of f that is contained in the domain of g. If there exist real numbers
w3z 0and B =0 such that

(3.2) g < el f() + Biixl?,

Jor all x € 2, then Z(f) < 9(g), 3.2) is valid for all x& Z(f), and any sequence
that is f-convergent is also g-convergent.

Proof. Cf. [4], pp. 319-320. %
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Let us now return to considering the infinitesimal generator 4 of a semigroup
T(t). Throughout the remainder of this section, we will be assuming that A4 is sec-
torial, so that W(A) is contained in some sector with real vertex y » 0. In Theorem
2.1, we can take f = 2y; we make this choice in order to simplify some subsequent

formulas. By Theorem 3.2, the bilinear form
(3.3) ay(x, 3) = (4x, ),

defined for x, y € Z(4), is closable. Denote the closure of a, by 4, and define a form

(3.4) g(x, ) = alx, y) + a(y, x)

with 2(g) = 2(a). Then g = 2Rea ([4], pp. 309—310) and, since the form a is
closed and sectorial, with vertex /2 (by Theorem 3.1 (iii)), it follows that g is closed
(see [4], p. 313) and symmetric, with W(g) < (—co, Bl. Also, by [4], p. 313, g-conver-
gence is equivalent to g-convergence, and thus Definitions 3.3 and 3.4 imply:

PROPOSITION 3.4. £(A) is a core of g, and for x, y € 2(A), we have g(x, y) =
= (dx, 3) + (x, 43).

From the form g we can obtain an operator G, which is analogous to that
defined by (3.1) when A is bounded.

LEMMA 3.5. There exists a selfadjoint operator G, such that 2(G) is a core of

g, and
(3.5) g(x, 3) = (Gx, »)

Jor all x, y € 9(G). G is bounded above by [}, i.e.
3.6) (Gx, x) £ Bix®  for every x € 2(G).

Proof. The existence of an operator G which has 2(G) as a core of g, and which
satisfies (3.5), is guaranteed by [4], Theorem VI.2.1. The fact that ¢ is selfadjoint
with the same upper bound as g foilows from [4], Theorem VI.2.6. (The results in [4]
need to be applied to the form ~g.) ¥

Thus the operator G given by Lemma 3.5 provides a generalization of the defi-
nition (3.1). In fact, we have G = 2Re 4, as defined in [4], p. 337, where the follow-
ing important fact is also established :

PROPOSITION 3.6. If G = 2Re A4 is the operator given by Lemina 3.5, then we
also have G = 2Re A%,

‘ In other words, the same operater ¢ is obtained regardless of whether the
construction is started with 4 or with its adjoint A%, This fact is the origin of the
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symmetry in the dilation referred to in Section 1, and will be used repeatedly in
the sequel. An immediate consequence is:

PROPOSITION 3.7. 9(A*) is a core of g, and for x, y € D(A*) we have g(x,y) =
= (A%x,y) + (x, 4%).

We know that 2(G), Z(4), and 2(4*) are all cores of g, but it is not clear
what relationship (if any) exists between these domains. Consequently, we will be
working, for the most part, with the form g, whose domain contains 2(4) and
Y(A*), rather than with the operator G.

In [2], where A is assumed to be bounded, G is important because of the fact
that the derivatives of T(¢)*T(z) and T()T(t)* are, respectively, T(t)*GT(¢) and
T(t)GT(t)*. We have an anlogous result for the bilinear form g:

PROPOSITION 3.8. For every x, y €4, we have

G :7 (T()x, Ty) = g(TOx, T(t))
and
68) (@@, TO%) = sT 0, T0).

Proof. Since the infinitesimal generator of T(#)* is A%, we can exploit the sym-
. metry mentioned above and prove only (3.7). This follows immediately from Corol-
lary 2.2 and the calculation

d ., Y , o4 _
S (T, TO) = ( S 7(0s, T(r») . ( O T(r)y)

= (AT()x, T(1)y) + (T()x, AT(1)y) = g(T()x, T(1)y),

for all x, y es#. Z

The operator G has a unique polar decomposition of the form G = UH,
where H is selfadjoint and nonnegative, with 2(H) = 2(G), and where U is a self-
adjoint partial isometry. Let us define J = —U, and Iet ¥ be the closure of the
range of G, or equivalently ¥ = Js#. Then J is a bounded operator satisfying

3.9 J o= JE
(3.10) Jix = x, forall xe9,
and

(3.11) Jx =0, forallxe®%?t,
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(See [4], Section VI.2.7.) (We are using J instead of the S used in [2]. We could also
define J = sgn(—G) and H = |G}, by using the functional calculus for unbounded
selfadjoint operators.)

PROPOSITION 3.9. For every'x € 2(G) = Z(H) we have Jx € (G), with Gx =
= —JHx = —HJx, and Hx = —JGx = —GJx.

Proof. See [4], p. 335. 2

ProPosITION 3.10. For every x € 2(g) we lave Jx € 4(g) and
gWUx) = g(x).
Proof. (3.9) and (3.10) imply that, for x € 2(G),
(3.12) g(Ux) = (GJx, Jx) = (JGx, JX) = (Gx, x) = g(x).

Now let x € Z(g), and let x, be a sequence in Z(G) which is g-convergent to x.
From (3.12) it follows that Jx, is g-convergent to Jx, and thus, by Theorem 3.1,
Jx € 2(g) and (using (3.12) again) g(Jx) = limg(Jx,) = lim g(x,) = g(x). 74

LemMa 3.11. There exist operators G, and G_ ., with domains containing 7(G),
such that for all x € 2(G), Gx =G, x+ G_x, Hx =0, x — G.x, and 0 (G . x,xX)<
< Blix|P.

Proof. The decomposition of G is that given in [4], p. 335. We can write expli-
citly G, = GP, and G. = GP_, where P, = (J® — J)/2 and P_ = (J* + J)2
are selfadjoint projections. Since G and J commute, we have GP, 2 P .G, and
thus the domains of G, and G_ contain Z(G). An application of Proposition 3.9
then gives Gox + G_x = GJ3x = —HJx = Gx and G, x — G_.x = —GJx = Hx
for all x € Z(G).

P, is a projection with GP, = P, G, so we can conclude that, for all x € 2(G)
Gux = P, Gx = P3Gx = P_.GP,x. Thus, by Lemma 3.5,

(Gix, x) = (GP,x, P.x) < BijPox|P < fix 2.
On the other hand, the properties JP, = — P, and JG = - H imply that, for all
x € J(G),
(Gix, x) = —(GP,x, JP.X) = (HP,x, P,x) > 0,
since [/ is positive. 2

Let us define @ = H*2, using the functional calculus for selfadjoint operators.
Note that the space ¢, defined as the closure of the range of G, is also the closure of
the range of Q. Also note that, since J and H commute, so do J and Q.
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It will be important to know that Z(4) and Z(A4*) are cores of Q, and to
develop an estimate for ||Qx| when x € @(Q). Towards these ends, we consider
the symmetric bilinear form /,(x, ¥) = (Hx, y) defined for x, y € 2(H) = 2(G).

LeEMMA 3.12. The bilinear form hy is closable. If the closure of hy is denoted
by h, then
- (D) 2(h) = 2(g).
(it) h is symmetric, with W(h) < [0, co),
(ii) g(x, y) = ~h(Ux, y) for all x, y € 2(g),
(iv) 2(A) and B(A*) are cores of h, and
(V) h(x) < —g(x) + 2B||x|® < 1g()| + 2B|[x|[* for all x € D(g).

Proof. Since W(H) < [0, o), —H is sectorial. From Theorem 3.2 we deduce
that &, is closable. If 4 is the closure of A, Theorem 3.1 implies that W(h) < [0, o),
and hence /i is symmetric.

Observe that, by definition, 2(G) is a core of A, and for x € 2(G), we have

(3.13) lg()l = 1(Gx, 0| < (IGlx, x) = (Hx, x) = h(x).

(See, for example, [4], Problem VI.2.35.) Thus, by Proposition 3.3, 2(h) < 9(g).

For the reverse inclusion, we apply Lemma 3.11 to obtain, for x & 2(G),
g(x) + h(x) = (Gx, x) + (Hx, x) = 2(G,x, x). Thus, using Lemma 3.11 again,
we have for every x € Z(G),

(B.14)  h(x) = —g(x) + 2G4 x, x) < —g(x) + 2B||x? < {g(x)| + 2B]x|[>.

Since 9(G) is a core of g (Lemma 3.5), it follows from Proposition 3.3 that 2(g) =
< 2(h), and thus 2(g) = 2(). As in Proposition 3.3, we also conclude that (3.13)
and (3.14) are valid for all x € 9(g).

We can also conclude from Proposition 3.3 that g-convergence is equivalent
to /i-convergence. Since 9(A4) and D(A*) are cores of g (Propositions 3.4 and 3.7),
it follows that they are also cores of /1.

It remains to prove (iii). If we restrict x and y to be in 2(G), we can write,
using Proposition 3.9,

(3.15) g(x, ») = (Gx,y) = —(HJx,y) = ~h(Jx, ).

Since Z(G) is a core of bothé and /1, and since g-convergence is equivalent to /i-con-
vergence, we can use Theorem 3.1 (ii) and Proposition 3.10 to extend (3.15) to all
X, e %g). %

We can now make use of this closed bilinear form /i to obtain the information
we need about the operator Q.
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LeMMA 3.13. The operator Q = HY? has Q) = 2(g), and Z(A) and Z(A*)
are cores of Q. We have

3.16) (JOx, Qy) = —g(x, ) for x, y € AQ), .
and
(3.17) HOXP < —g(x) + 2BIx > for x € 2(Q).

Proof. Since & is closed, symmetric, and bounded below by zero, we can apply
{4], Theorem VIL.2.23, and deduce that the opzrator Q = H*2 has 2(Q) = F(h) =
= %(g), and

(3.18) h(x, 3) = (Qx, O

for all x, y € Z(Q). (Note that, by the uniqueness assertion in [4], Theorem VI.2.1,
H is the selfadjoint operator associated with A.) Using (3.18), and the fact that J
and Q commute, we can deduce (3.16) and (3.17) from Lemma 3.12, (iii) and (v).

[4], Theorem VI.2.23 also asserts that any core of h is also a core of Q, and
thus Lemma 3.12 (iv) implies that %(A) and Z(4*) are both cores of Q. Z

4. THE DILATION

In the previous section, under the assumption that the infinitesimal generator
A is sectorial, we introduced on # a closed symmetric bilinear form g, a bounded
operator J, and a closed operator @, with 2(4) and @(4%) being cores for both the
form g and the operator Q. In this scction, we again assume that A4 is a sectorial
operator, acting on a separable Hilbert space, and use g, J, and Q to construct the
promised dilation U(s) of the semigroup T(¢).

We define on the space 4 = J## an indefinite inner product [x, )] = (Jx, »),
for x, y € 4, where (-, -) denotes the inner product of . Then, with the Hilbert
space structure inherited from 4#, 4 is a Krein space, with J acting as a fundamental
symmetry on %. (See [I].)

Consider the Krein space & = LR, %) of (equivalence classes) of functions
from the real line R into %, which are measurable (strongly or weakly, since these
are equivalent in a separabe space) and square integrable. In addition to the usual
Hilbert space inner product (-, -) on & we define an indefinite inner product

s fi] = S LA, fuoldr,
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for f;, f, € &. The topology on % is that given by the Hilbert space norm (f, f)V2.
If we extend the definition of the operator J to &, by defining (Jf)(®) = J(f(1),
then J is a fundamental symmetry on &, with (f;, f;) = [Jfi, fo] and [f, f3] =
=(If1, fo) forall f;, f, e Z.

As in [2], we will be considering two complementary subspaces &, and Z_
of &, where &, (respectively, Z_) consists of all functions in % with support in
[0, o) (respectively, (—oo, 0)).

The dilation U(s) acts on a Krein space ., defined by A =# @ L. We
will use the notation k = {x, /), where x € # and f € %, to denote a vector k €.#".
We will consider 2 and £ as subspaces of 47, and freely identify {x, 0> with x,
and <0, f) with f.

The inner products on ¢ are given by [k, , kol=(xy, x,) + [/, fzland (&, k) =
= (xy, Xp) + (f1, f), where ky = {xy, fi) and k, = {x,, f,). If we extend, once more,
the definition of J to get an operator on J, by defining J{x, /) = (x, Jf), then J
15 a fundamental symmetry on X, satisfying property (i) of Theorem 2.4, and with
(ky, k) = [Jky, Kyl and [ky, k] = (Jky, ky).

The dilation U(s) is defined in a manner which is analogous to that in [2],
but we need to be careful about domains, and the verification of the boundedness
of some of the operators involved is not as straightforward. Let us begin by writing
down, for s > 0, a definition of U(s) which is valid when A is bounded, and which is
equivalent to that in [2]. We will then show how this definition generalizes to the
case when A is sectorial. As in [2], we will be using a special symbol to represent the
“*dummy variable” in .#; in this paper, the symbol 7 will be used for this purpose.
Thus, f{z) denotes a function fin &, whereas f(¢) denotes a vector in 4. The function
J{t — s), in (4.2) below, is the function obtained by shifting f to the right by s units.

When the infinitesimal generator is bounded, we have [2], for s > 0 and for
k = <x, fy eA". the definition U(s)k = <{x’, f’>, where

¥

4.1 x" = T(s)x — ST(s — )JOf(—1)dt
0
and

42)  f'=ftc—s) +Z[o_s1(f)[QT(S Cx— S Qr(s—r—r)JQf(—t)dt].

In order to extend this definition to semigroups with sectorial infinitesimal gener-
ator, we must take into account that the operator Q may be unbounded. We wiil
be obtaining estimates which will serve to verify the boundedness of the operators
U(s), and the strong continuity of the semigroup {U(s): s > 0}.
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Let us introduce some notation for one of the functions appearing in (4.2).
We define R(s):# - £ by

R(s)x = X[o,s)(T)QT(S — )X,

for x e # and s > 0, and define R(0) = 0. R(s) will serve as the output part of U(s),
carrying vectors in # to functions in the output space &, . It is not readily apparent
that the domain of R(s) will be particularly large; it is a key result that R(s) is in
fact bounded and that the span of functions of the form R(s)x is dense in &, .

THEOREM 4.1. For all s > 0, R(s) is a bounded operator, with
(4.3) RO < €.

For cach x, y e # and s > 0, we have

(4.4) HR(s)xl? < e B — || T(s)xif?
and
4.5) [R(s)x, R(s)y] = (x, ») — (T(s)x, T(s)y).

The closed linear span of (R(s)x:xe€H. s > 0} equals &, .

Proof. Choose any x € # and s > 0. By Corollary 2.2, we have T(s — t)x €
€ 7(A) € 2(Q) for every t=[0, 5), and thus the function R(s)v is well-defined.
Also, R(s)x is the limit almost everywhere, as ¢ — 0+, of the functions R (s)x =
= J10.5- AKTGT()T(s -- T — €)x, each of which is continuous, because of the strong
continuity of T(t) and the boundedness (for ¢ > 0) of the operator Q7 (&) (by Corol-
lary 2.2). Thus, R(s)x is strongly measurable. (See, for example, [3], Section 3.5.)
We can use Lemma 3.13 to obtain the estimate

8

S!?QT(S — nxlde = RI!QT(t)xH‘-’ dt <

v

< S(—gamx) + 2B TN At <

(1]

< S - : IT(t)x2 dt + Szﬁcﬂﬂ'u.\-,;ﬂ dt,
t
V]

4]



DILATIONS OF HOLOMORPHIC SEMIGROUPS 33

by Proposition 3.8 and Theorem 2.1. Performing the integration gives (4.4), and
(4.3) follows 1mmed1ately Also, Lemma 3.13 and Proposition 3.8 imply that

[@T()x, QT(t)] = —g(T()x, T(t)y) = — —j{* (T()x, T(t)y),

and integrating this from zero to s gives (4.5). ]

Let us now show that {R(s)x : x €, s > 0} has span that is dense in 2, .
Suppose f € £, has the property that [R(s)x, f] = O for every x € and every
s > 0:; we need to show that f(t) must necessarily-be zero, for almost all ¢. Since
(t) €9, and ¥ is the closure of the range of Q, it suffices to show that f(¢) is ortho-
gonal to the range of Q, for almost all .-

Choose x € # and s > 0. Then, for all u with 0 < u < s we have

H

[QT (s — )%, f(N]dt = [RW)T(s — uw)x, f1=0

Thus
(4.6) [QT(s — D)x, f(1)] = O,

for all t €[0, s), with the exception of a set E, ; (depending on x and s) of measure
zero. Since we are assuming # is separable, we can obtain a set E, of measure zero
by taking the union of the sets E, ; over a countable dense set in #. For t €0, ),
the operators QT(s — ¢) are bounded (since, by Corollary 2.2, the range of T(s — 1)
is in 2(4) € 2(Q)), so we then have (4.6) valid for all x € # and for all ¢ € [0, ),
with ¢ ¢ £,. If E is the union of the sets E with s rational, then E has measure zero,
and (4.6) is valid for all x € 2, for all nonnegative ¢ ¢ E, and for all rational s > 1.
Therefore, for any nonnegative ¢ ¢ E, and for any x€  and s > 0, we have

[RT()x, f)] = [QT(r — OT(s + t — r)x, f(N] = O,

where ris any rational number between ¢ and s + 7. Consequently, for almost all
t = 0, f(#) is orthogonal to ¢,, where

Yy = V{QT(s)x:xe #, s > 0}.
For any real number 2 and x € #° for which the integral exists, the vector

o0

@7 S e~MQT(t)x dt
0

3 — 1652



14 BRIAN McENNIS

is contained in %, . In fact, the integral exists for all x € # and for all 1 > B: As
with the functions R(s)x, we can establish the strong measurability of the integrand,
and by using Lemma 3.13, Proposition 3.4, Theorem 2.1, and Corollary 2.2, we
obtain the estimate, valid for ¢ > O,

HOT(Nxi? < —g(T(1)x) + 2BT(Nx|? =
= —2Re(AT({t)x, T(t)x) + 2B T()x}i* <
< 204ATOx|HIT@Ox]| + 2B TOx|* <
< Mt + B)etx® + 2BeixiP.
Thus, if 2 is a real number greater than j, we have
e~ QT (t)xi] < (2Mt™! -+ 4f)1i2e~C=M|ix],

and so the integral (4.7) exists. On the other hand, we have, for 2 > j,
(L — A)Ix = Sc“’T(t)x dr.
0

(See [7], Section IX.4, Corollary 1, which should be applied to the bounded semi-
group e~#T(t).) Since Q is closed, it folows ([3], Theorem 3.7.12) that the integral
(4.7) equals Q(4 — A) 1x. The range of (A — A)~'is 2(4), and (4.7) is in ¥,. We
can therefore conclude that, for almost all ¢, f(¢) is orthogonal to the range of Q,,
where Q, = Q%@(A). Consequently we have, for almost all 1, QFf(t) = 0, and thus
f(¢) is orthogonal to the range of QZ*, the closure of Q,. We are wanting to show
that f(¢) is orthogonal to the range of O, for aimost all ¢; this follows immediately,
since Z(4) is a core of Q (Lemma 3.13), and hence QF* = Q. A

We also define, for x € % and for 5 > C, an operator II(s) : 3¢ — £ by

4.8) II{s)x = —1(-5s.0/(T)QT(s + 7)*x,

and define II{0) = 0. II(s) plays a similar rcle for U(s)* as R(s) does for U(s), map-
ping vectors in 52 to functions in .Z_ . By symmeiry (see Proposition 3.6), we have:

COROLLARY 4.2. For all s > 0, II(s) is a bounded operator, with

4.9 HI(s)i| < €.
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For each x, ye s# and s > 0, we have

(4.10) ([I(s)x|* < e*f|x|F — || T(s)*x|[
and
(4.11) (HI(s)x, I(s)y] = (x, y) — (T(s)*x, T(s)*y).

The closed linear span of {II(s)x : x € 5#. 5 > 0} equals £ _ .
In defining U(s), we will be using the adjoint of I1(s):

4.12) P(s) = II(s)* : & -,

where the indefinite inner product is used on .#. Note that, since functions in the
range of II(s) have support in [~s, 0], P(s) annihilates any function whose support
is in the complement of [—s, 0]. P(s) will serve as the input part of U(s), carrying
functions in the input space & to vectors in 2.

COROLLARY 4.3. For all s > 0, P(s) is a bounded operator, with

(4.13) 1P < e,
and
(4.14) PI(s) = I — T(s)T(s)*.
Proof. This follows immediately from (4.9) and (4.11). 2]

A simple application of the semigroup property yields:

PRoOPOSITION 44. If 0 < s < t, then

4.15) Xro.siR(t) = R(S)T(t — 5)
and
(4.16) Xi- 5,01 1(t) = H(HT(t — s)*.

ProrosiTiON 4.5. If O < s < t, and x, y € . then

(4.17) [R(s)x, R(Dy] = (x, T(t — s)) — (T(s)x, T(1)y)
and
(4.18) I(s)x, O()y] = (x, T(t — 8)*y) — (T(s)*x, T()*).

Proof. From (4.15) we get [R(s)x, R()y] = [R(s)x, R(s)T(t — 5)y], and (4.17)
follows from (4.5). We prove (4.18) similarly. %
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ProrosiTioN 4.6. If 0 < s < t, then
(4.19) PEII() = T(t — s)* — T(s)T(t)*.
If0< 1< s, then
(4.20) PS)II(1) = T(s — 1) — T(s)T(1)*.

Proof. (4.19) follows directly from (4.18). (4.20) can be proved from (4.19)
by taking adjoints. %

We are now in a position to extend the definition of U(s) in (4.1)—(4.2) to
semigrous with sectorial infinitesimal generator. Let us consider first the case where
k=Lx, f) for fe ¥,. We define

.21) U x, [5 = <KT(s)x, [z — 5) + R(s)x),

for s > 0, xed', and fe€ &, . Theorem 4.1 implies that (4.21) defines a bounded
operator into 4, with

HU@)Kx, 207 = i T()x(® + U1 + [R(9)x? <
(4.22)
< BfE + el

and the dilation property (it) of Theorem 2.4 is obvious. We also have i(U(s) —
— Dxii® = [(T(s) — Dxl2 + ||R(s)x|2— 0 as s— 0+, by (4.4) and the strong con-
tinuity of 7(s). Since U(s)f = f(t — s) — f as s — 0+, we conclude that

(4.23) U<y, fP>-<x, f> ass—=07,

forall xe # and fe &, .
Verification of the semigroup property U(s)U(H)<x, f> = U(s + 1) {x, [
fors, t 20, x e, and fe &,., comes down to a verification of

(4.24) [RE)T()x] (1) + [R(OX] (r — ) = [R(s + 1)x](v),

details of which are similar to those in [2]. The unitary property, [U(s)k,, U(s)k,] =
= [ky, k,], follows immediately from property (4.5) of R(s) and the fact that
U®)x L flz —s).

The definition of U(s) is completed by defining, for fe .2,

(4.25) U@ = <PsY, f(t = ) + x40 g(DQP(s — .
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Three things should be noted. First, since every operator P(f) annihilates 2.,
(4.25) agrees with (4.21) when fe £, . Second, (4.25) is an extension of (4.1) and
(4.2), since (4.8) and (4.12) imply that :

PE)f = — ST(S — tJJOf(—1)ds,

whenever the integral is defined. Third, (4.25) may not be defined for some f € .Z,
since we have no guarantee that P(s — #)f is in the domain of Q for almost all
t €[0, 5], or that the.function g (1)QP(s — 7)f is in £ if it is defined almost
cverywhere. We do have:

Lemma 4.7. For every s 2 0, the operator U(s) is densely defined by (4.21)
and (4.25). In particular, we have, for x e #,

(4.26) USHN)x = (T{s — w)x — T()Tw)*x, R(s — u)x — R(HTWwy*xD,
whenever 0 < u < s, and
4.27) U®Hw)x = (T — sy*x — T($)Tu)*x, N1 — s)x — R(s)T(u)*x),

whenever 0 < s < u.
For every x e and u > 0, U(S)I1(u)x - H(u)x as s - 0+,

Proof. (4.25) is defined for any function f € %, . By Corollary 4.2, the proof
that U(s) is densely defined will be completed once (4.26) and (4.27) are established.

For any s, u > 0, the part of U(s)II(1t)x in A is P(s)I1(u)x, and Proposition 4.6
shows that this agrees with (4.26) and (4.27). Note that, if u is constant, then (4.19)
and the strong continuity of T(r) and 7(7)* show that P(s)[I(u)x - 0 as s — 0+,

Suppose 0 < u < 5. For the part of U(s)II(i)x in %7, we have, using Propo-
sition 4.6,

@)Xz = 8) + 710,9(DQP(s — DI(U)x =
= —X-uoi(t — HOT(u + T — )*x +
+ 20 5 f(DOT(s — T — u)x — T(s — DT(W)*x) +
+ Kpsmu DT — s + D*x — T(s — )TW)*x) =
= X10,s-ul(DQT(s — # — Dx ~ 770 f(DQT(s — T)T(W)*x,

since yp-, ¢f7 - 5) = Xs-n 5(7), agreeing with (4.26).
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Now suppose that 0 < s < u. Proposition 4.6 gives us for the part of U(o)IT(u)x
in &:
(T(w)x)(r — 5) + %70 (MO(T (U — 5 + 1)*x — T(s — 1)T(w)*x) =

= [H@)xI(t — 5) — =50yt = HUIW)xHz — 5) — R(s)T(1e)*x.

(4.28)

If we let s — 0+, then the first term in (4.28) converges to I1(x)x, whereas the other
two terms converge to zero (using (4.4) for the third term). Thus we have U{s)T(u)x —
- I(u)x as s-0+,

The first two terms of (4.28) can be rewritten as

Ai—u,-(T = AW (T = 8) = — ypoys s 0fDOT @ + T — 5)*x = N(u — 5)x,

and (4.27) is proved. Z

The definition of U(s) will be completed by showing that, for each s > 0,
U(s) is bounded, and therefore can be extended by continuity to all of 2. Before
doing that, we will verify that, on a dense set of vectors, U(s) has the semigroup
property and preserves the indefinite inner product.

We have verified the semigroup property on the subspace of vectors of the
form <{x, [, where xe # and fe .Z,. We will now show that U(s)U(1)f =
= U(s + t)f for any s, ¢ > 0, and for a dense set of fin Z_ . The result is trivial if
the support of fis contained in { —co, —s—t], and so, by Corollary 4.2 and Proposi-
tion 4.4, it suffices to verify the result for functions of the form IT(x)x, where x €
and O<u<g s+t

By Lemma 4.7, we have the following expression for U(s + )IT(u)x:

4.29) KT(s+t—ux —T(s + OHTW*x, Rs + ¢t — w)x — R(s.+ HT@)*xD.

The expression for U(t)II{(x)x depends on whether v < 7 or u > ¢. If u < ¢, we use
(4.26) to calculate U(s)U(t)II(u)x. The part in # is given by T(s)(T(t — u)x —
— T(OHT(u)*x), which agrees with (4.29), whereas the part in & is

RGYT(t — w)x — THOT@)*x) + [R(t — u)x — R(OT(uy*x)(t — ).

Two applications of the formula (4.24) then give the second part of (4.29).

If 4 > ¢, we use (4.27) to calculate U(t)[I(x)x. One term that is obtained
is II(u — t)x, and (4.26) is used for this term in the calculation of U{(s)U(¢)IT{u)x.
After simplification, (4.29) is obtained; details are omitted.

We now wish to verify that U(s) preserves the indefinite inner product, i.e.,

(4.30) [U(s)ky, U(9)ks] = [k, k),

for &y, ks belonging to a linear manifold dense in.#". Let us consider three subspaces
of #, mutually orthogonal in both inner products: .# , , the subspaces of vectors
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of the form <x, f), where x e )# and f € ¥, ; &,, the subspace of & _ consisting of
functions with support in [—s, 0]; and Z,,, the subspace of % consisting of func-
tions with support in (—co, —s]. We have already shown that U(s) preserves the
indefinite inner product on J¢, , and it is trivial that (4.30) is satisfied if &k, and k,
arein Z, . Itis also trivial that both sides of (4.30) are zero ifk, € L and k, € L, n
NU@s), or if kie¥, and k,ed ., or k, e £, n2(U(s)) and ke &L, .
Functions of the form II(#)x, with x € # and 0 < u < s span a dense linear mani-
fold of #,. Thus, to prove (4.30) on a dense linear manifold of ¢, it suffices to

show that
U I(w)x, UHI(v)y] = [H(u)x, O(v)y]

and
[UO@)x, Uls)yl = 0

{or all x; y € % and for all u, v with 0 < v < u < 5. These can easily be proved by
using the expression (4.26) for U(s)II(u)x and U(s)II(v)y, and (4.21) for U(s)y. The
inner products are computed with the aid of Proposition 4.5; the details of the rou-
tine calculation are omitted.

We now complete the definition of U(s) by showing that it is bounded on its
domain of definition. The only part of this demonstration that has not already been
verified, or is not trivial, is to show that |[U(s)f]| < K]||f||, for some constant KX,
for a dense set of f with support in the interval [ —s, 0].

Suppose f is a linear combination of functions of the form IT(u)x, where
x€# and 0 < u < 5. Such f are dense in .%,, and we have shown in Lemma 4.7
that, for such a function f, U(s)f is defined. Using (4.25), we have

NUGHIE = 1P + [IfGz — ) + m[® <
4.31)
< PGP + 20/1F + 2)mi?,

where m(t) = 0 (D@P(s — 7)f. By Lemma 3.13, we have

.

mie = S 1QP(s — )ffit di = S 0P@O(Edr <
(@.32) <- Sg(P(t)f) at +S2/3HP(t)fIP d <

< - Sg(P(t)f) dr + e — D,
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using the cstimate (4.13) in Corollary 4.3 for ||P(f)f|. An estimate for the integral
appearing in the last line of (4.32) is found by considering the indefinite inner

product of U(s)f — f(r — s) with itself:

(UG —f(x = 8), U ~ f(x — 8)] = [[PE)fI + [m, m] =

(4.33) = [[P()fI}* + S[QP(f)./; QP@)f1dt =

= [iPG)I* — \gP@)y) ds,

C ™™ 2,

by Lemma 3.13. Note that (4.30) has been verified for vectors k; and k, whichare
linear combinations of functions of the form IT(x)x. Thus we can use (4.30) to show
that the left side of (4.33) is

A /1~ 2RUI, £z — D)< 2LS 1 + AUEST i
Combining this with (4.32) and (4.33), we obtain

Imil® < 2BUGANIE + @5 + DIIF - [POfiE,

and therefore, by (4.31),
(4.34) MUGHEE < HUGHIIA + (2% + 4)f1E.

This gives us our bound, since we can divide (4.31) by ||U(s)f!| (assurning, without
any loss of generality, that this is at least as big as |!f]|), and obtain

(4.35) LU < (2% + 8)IIflI.

The estimates (4.35) and (4.22) show that, for each s > 0, U(s) is a bounded
operator; since we have shown U(s) is densely defined, it extends by continuity to
be defined on all of #". The scmigroup property and property (iii) of Theorem 2.4
have been verified on a dense set of vectors in #°, and therefore are valid on the whole
space. We have shown that U(s)k - k, as s — 0+, for a set of vectors dense in &~
{Lemma 4.7 and (4.23)). Since the estimates (4.22) and (4.35) for the norm of U(s)
show that U(s) is uniformly bounded on the interval [0,1], it follows that U(s) is
strongly continuous.



DILATIONS OF HOLOMORPHIC SEMIGROUPS 41

As in [2], we can show that, for s > 0, U(s) is invertible. Indeed, it is obvious
that any function f with support in the complement of [0, s] is in the range of U(s),
and for any x e, the definition (4.21), and Lemma 4.7, show that we have

U(sKT (s)*x, I(s)x) = x,

so that # is in the range of U(s). If 0 < ¢ < s, then x is in the range of U(s — 1),
and the semigroup property then implies that R(f)x is in the range of U(s). Thus, by
Theorem 4.1 and Proposition 4.4, U(s) has dense range. Property (iii) of Theorem
2.4, proved earlier, shows that U(s)* (where the adjoint is computed in the indefinite
inner product) is a bounded inverse of U(s) (cf. [2]).

The semigroup {U(s): s > 0} can be extended to a strongly continuous group
by defining, for s > 0, U(—s) = U(s)*. 1t is straightforward to verify that we then
have, for x e and s > 0,

U(—s)x = {T(s)*x, TN($)x).

With this, and (4.21), we can use Theorem 4.1 and Corollary 4.2 to prove the mini-
mality property (iv), and the proof of Theorem 2.4 is complete.

5. AN EXAMPLE

With the dilation constructed in Section 4, we have an input space % _ and
an output space .2, , characterized by

HADL, = VUK :s>20, DL = V{UsH :s<0}.

There is symmetry between these two subspaces: the action of U(s) on &, is
isomorphic to the action of U(s)* on #_. In what sense can we relax the require-
ment that the infinitesimal generator 4 be sectorial, and still expect to obtain this
symmetry in the dilation? The following example shows that if the numerical range
is a half-plane, then the symmetry in the dilation can be lost.

ExampLE 5.1. Let o be the Hilbert space L0, oo) of square-integrable
complex-valued functions, with support in (0, co), and let T(r) be the backward
shift on # : T(t)x = x(r + t). The infinitesimal generator A of T(1) is the differen-
tiation operator, with domain equal to all absolutely continuous functions ([4],
Example 1X.1.8). We have (Ax, x) = —!x(0)|>, and so the numerical range of A
is the half-plane {/:Rel < 0}. Since T(r) is a contraction semigroup, it has a
unique minimal unitary dilation, given by " = L%(~o0, c0) and U(s)f = f(r + s),
It is easy to see that, for this dilation, 2, = L%(—oco, 0), whereas .Z_ = {0}.
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In Example 5.1, an attempt to construct the form g of Section 3 gives, for

%,y € D(4), g(x,y) = x(0)y(0), which is not closable (see [4], Example VI.1.26).
However, (4.21) can be used to define U(s) on a dense linear manifold of # if, in
the definition of R(s), we let O be the (non-closed) operator from . to the complex
numbers defined by Qx = x(0). (We do not necd (4.25), since £_ = {0} in this
case.) This sugests that a non-symmetric extension of the theory should be possible.
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