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INDEX THEORY AND TOEPLITZ ALGEBRAS ON
CERTAIN CONES IN Z?

EFTON PARK

The study of Toeplitz operators in various contexts has been an important
application of operator algebras for several years, and there has been much progress
lately in studying Toeplitz algebras defined on semigroups of abelian groups.
In this paper we use operator algebra techniques to study the index theory of oper-
ators in Toeplitz algebras defined on certain cones in Z2. Specifically, we take two
lines in R2 passing through the origin with slopes « and f§, and we form the C*-
-algebra 7 *# generated by the Toeplitz operators obtained by compressing the tran-
slation operators on Z? to one of the four cones in Z* bounded by these two lines.
We shall call such a cone a quarter-plane.

The index theory of these Toeplitz operators has been examined in the special
case where the cone considered is the first quadrant in Z2, In [8], the authors form
the C*-algebra 7" generated by the Toeplitz operators on the first quadrant,
and use the fact that this C*-algebra can be expressed as a tensor product to
obiain necessary and sufficient conditions for operators in 7 %% to be Fredholm.
We extend this result to arbitrary quarter-planes. However, our techniques are some-
what different than those used in [8], since in general F ## cannot be written as a
tensor product.

In [4], homotopy theory is used to give a procedure for finding the index of
Fredholm operators in %%, While this result allows one to compute indicesin
theory, in practice the necessary homotopies are almost impossible to construct.
In this paper, we use cyclic cohomology to construct an index formula that can be
used to compute the index of many Fredholm operators in the C*-algebra gencrated
by the Toeplitz operators on an'arbitrary quarter-plane.

This paper is organized as follows. In Section 1, we define most of the rele-
vant C*-algebras, including the Toeplitz algebra 7 *#, and we also define several
important maps. In Section 2, we establish necessary and sufficient conditions for
operators in 7 = to be Fredholm. In Section 3, wc use K-theory to show that Fred-
holm index is a complete stable deformation invariant for the operators in J ¥ in
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the case that at least one of « and B is rational. When a and f are both irrational,
we do not know what happens, and we discuss some possibilities. In Section 4, we
use cyclic cohomology to construct an index formula that can be used to explicitly
compute the Fredholm index of operators in 4 %4, Finally, in Section 5, we use our
results fo show that a specific operator in J *# is Fredholm, and we compute its
index.

1. PRELIMINARIES

We first establish some notation and definitions. For each pair of integer
(m, n), let e, , denote the element of £2(Z?) that is 1 at (m, n) and zero elsewhere.
Also, for each pair of integers (1, i), define the translation operator M, , onA(ZP)

by (M, f)(k, I) = fan + k, n + I). Next, choose real numbers « < f, and define
the following subspaces of £%(Z?):

H#* = closed span of {e, ,: —am + n > 0}
% = closed span of {e,,: —fm + n < 0}
A = g 0 A,

We could also take « = —co or B = co (but not both). All the results we prcve in
this paper are still true, but many of them require a separate proof. Therefore, for
convienence, we will not consider these cases.

Let P and PF be the orthogonal projections of £%(Z?) onto s#¢ and 37, res-
pectively ; note that P2P? is the orthogonal projection onto %8 We then define
the quarter-plane Toeplitz C*-algebra

T P = C*-algebra generated by {P*PAM,

mn

PePt : (m,n) € Z*}.

To study the index theory of 7 =8, we also need to consider the half-plane Toeplitz
C*-algebras

J® = C*-algebra generated by {P°M,, .P* :(m,n) € 22}

gk

it

C*-algebra generated by {P?M,, ,PF : (n,n) e Z}.
We begin by defining maps

p*: T - L(HF)

pb: T L(H=F)
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by
p*(X) = PEXPS$

pA(Y) = P=YP*.

These maps are linear, but they are not multiplicative. Also, we cannot immediately
assert that the ranges of these maps lie in  *#. For example, consider the operator
X = P*M, M, P*in ¢ Then p*(X) = P*PPM, P*M, ,P°P#, and since the projec-
tions P and P# always appear together in operators in J %8, p%(X) is not obviously
in 7P We therefore define the C*-algebra

R*# = C*-algebra generated by p*(F®) and p#IT 7).

Clearly %8 contains J *#, and a dense subalgebra of £ consists of operators of
the form

! "
;PePh ij PP
Y aPPPM, [,II1 QUM'"U’"U'] Pep

i=0

where the ¢, are constants and each Q,; is either P, P#, or P*P#.
We wish to construct algebra homomorphisms from %£*# onto ¢ and %,
but first we need the following lemma :

LeMMA 1.1, Let {(mi, n,-)} be a finite collection of pairs of integers. Then there
exists a pair of integers (p, q) such that, for all i,

(@) —a(m; + p)+ (n; + q) = 0 if and only if —am; + n; 2 0.
(i) —B(m; +p) + (m + q) <O.
Proof. Choose positive numbers € and M so that
¢ < min{—(—am; + n,) : —am; + n; < 0}
M > max{—fm; + n;}, &< M.
Then it suffices to show that there exist integers p and g so that 0 < —oap + g < ¢
and —-fp+g< —M.

In [9], it is proved that there exist an infinite number of integers p for which
there exists an integer g with
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Choose such a p so large that

1 2M }
p > max{--, .
e B -—-a
Then
1
0K —~p+g<--<c¢
14
and
“Pptg=-B-p+(-p+g<-F-ap+te<
< —-2M+ e < -M,
as desired. 7l

ProrosITION 1.2. There exist suijective C*-algebra homomorphisms
v R 5 g
v RE -~ TE
such that y%p® = id, y'pf = id.
Proof. Let T be an operator in 727 of the form

! kﬂ.
T = Z ciPaPﬂMm;u'"io [IIII Qa’ij.,n..] P“Pﬂ,

i.0 M
and define

1 ki
'yq(T) = E CiPJ‘M’",'Uv",’O [;[IIL Qijﬂ/[mij‘"ij] Pl,

i 0

where each QF equals P%, I, or P%, depending on whether Q;; equals P2, P5, or P*P3.
To show that y2 is well defined and can be extended to an algebra homomorphism
on #*f, it suffices to show that |y*(T); < {7}

Fix ¢ > 0, and choose fin £%(Z?) so that f has finite support, |fi. = 1, and

)L < I yUT)f ! + e. Then since f has finite support,
ki

([:E:) [ H Mmij'"ij]f
i N

is also finitely supported for all 0 < i < /and 0 < N < k;. Next, considet the set

S ={(m n)eZ®:e,, crange of (+) for some i, N}.
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Apply Lemma 1.1 to the pairs of integers in S to obtain a pair of integers (p, ).
The first conclusion in Lemma 1.1 implies that

Mp,qY"(T)f= 'V!(T)Mp,qf:

The second conclusion in Lemma 1.1 implies that in the expression for TM, f,
the projection P? is unnecessary each place that it appears. Therefore

')"'(T)Mp,qf= TMp,qj;

and, since M, , is a unitary operator,

(DI < (Dl + & =
= M, y*(D)fll + & = |TM, fll + ¢ <
<N TM, )l + ¢ = ||T] + e

Since ¢ was arbitrary, [|y¥(T)|| < [|T], and thus y* extends to a contractive algebra
homomorphism from #£*8 to °. An appropriate modification of Lemma 1.1 implies
that there also exists a contractive algebra homomorphism y# from #%*f to I8,
Finally, direct computation shows that y2p® and y7pf are the identity on J* and
T8, respectively, and this implies that y* and y# are onto.

Next, we need to examine the half-plane Toeplitz algebras 7 and Z#. From
[2] we have the short exact sequence

0 - % -7 5C(T2) -0,

where T? denotes the two-torus, €¢ is the commutator ideal of 7%, and ¢ is defined
by requiring

o-a(PaMm’nPa) = Zm,n’
where

A o0, 00) = einieins,
This sequence has a linear splitting
L C(MY) - T
defined by
& tmn) = P°M,, , P*.

Similarly, we have a short exact sequence

o
0 %P5 T C(TH -0

with linear splitting &f: C(T?) — J4.
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We now record several useful relations among the maps we have defined.
LeEMMA 1.3, o%p% = gfyh.

Proof. It suffices to show that ¢*y*(T) = a#y#(T) for operators T of the form
k
T = PaPﬂMmo,no [;,[Il Qijj,nj]PaPﬁ:

since these operators have dense linear span in %5, As in Proposition 1.2, we define
Q5 to be P%, I or P* when Q; is P%, P#, or P*P#, respectively, and we have

o?y4(T) :: oy {PuPﬂj meon [H QJM,,, . ] aPi’} =

& k
= { JlF{m W [I aMm oY/ 2 ] } = H ij,nj = Uﬁvﬂ(T). %

i j=0
LeMMA 1.4, y0p% = (6% and y2ph = {28,

Proof. We will only verify that pfp® = £fg¢; showing that y2pf = &g involves
a similar calculation.
Consider an operator T in 7 that has the form

k
T = IIJPEIW;,,j,,,qu~

It will suffice to prove that y#p*(T) = £Po*(T) for operators of this form, since these
operators have dense linear span in J°

'yi;’pd(T) = ybp" [H Pe 11’[1;: oy ]=

=0

k k
= )"ﬂ {PP[)IIO P“Mmj,anz] Pﬂ} = Pﬁ[H Mmj,nj]Pﬂ'

7=0

On the other hand,

¢io™(T) = Lio® {ﬁ P BM’”;’"J'PG] -

i =0

k I
== ‘;‘ﬁ [II X“’ij’"ij] = P& [ H M'"ij'"ij] Pa,
=0 j=0
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Finally, we define a linear map
Ewb: C(T?) » T =8 = R
by requiring
£ (Ytmm) = P*PPM,, , P*PP.
LEMMA 1.5, po¢® = £o8 = pBEP,

Proof. Tt is enough to verify the lemma for the functions ¥, ,, since the linear
span of these functions is dense in C(T?).

P A n) = p(P*M,, ,P*) =

= P*PPM,, PPt = {B(y,, ).

wm,n

Similarly, &#8 = phEs, %,

2, FREDHOLM OPERATORS IN THE QUARTER-PLANE
TOEPLITZ C*-ALGEBRA

In this section, we establish necessary and sufficient conditions for operators in
#*8, and hence I *¥, to be Fredholm. Define the ideals

J¢ = keryf
JB = kery®
Feb = g n Fh.

ProrositioN 2.1, There exists the following commutative diagram with exact
rows and columns:

0 0 0

Lol

0> g%f—5 F° —3%*—0

Lol
0 —> I8 — G o T% 50
U

aﬂ
0 —>%"— Jf— C(1TH—0

Lol

0o 0 0
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Proof. We have already shown that ¢%y* = ¢8y5. To show that rest of the dia-
gram commutes, we need only check that y* map 42 to ¢* and y map #% to %%,
since the other maps in the diagram are inclusions.

Take X in .#% Then Lemma 1.3 and the definition of .#* imply that ¢*y*(X) ==
= ¢fyA(X) = 0. Thus y*(X) is in ker 6* = %°. Similarly, ¥ takes % to €*.

Next, let us verify that the rows and columns of the diagram are exact. The
last row and last column are exact by the results in [2], and the definitions of >
and #% make the second row and column exact.

1t remains to show that the first row and column are exact. We will show that
the first row is exact; the first column is exact by similar reasoning. -

Let Y be in %% Then we have from Lemma 1.4 that yp*(Y) = ie*(Y) = 0,
so p*(Y)is in S and y*p*(Y) = Y. Therefore the sequence is exact at $*. Next,
take X in £¢ to be in the kernel of y*. Then obviously X will be in S*#. Conversely,
let X be in.#*f. Then Xisin 47, so y(X) = 0, and hence X is in the kernel of 7*
restricted to £7 Therefore the sequence is exact at £ Finally, the sequence is exact
at J*#, since the map from S*Ff to 4° is just the inclusion map. &)

Define the C#-algebra &'*# by
Fui = (T2, T’ € T* @ T¥ : 6(T?) = o¥(TP)}.

Note that &= is the pullback of * and 7 ¢ along C(T?).

ProPosITION 2.2. There exists a short exact sequence

b4
0 o S5 o R=d Ly g2 0,

where
ATy = (1), »(T)).

Furthermore, this sequence has a linear splitting

p:FEl o R
defined by
p(T%, T7) = pX(T*) + pi(TH) — E=Po(TV) =

= (T + pi(T?) — E=Pa*(T).

Proof. Let T be in #%5. Then o%ydT) = ofy8(T), so y maps R*F into L+,
Next, suppose T'is in#£% 8. Then y*(T) = 0 and y#(T) = 0, so T is in ker y. Conversely,
suppose that T is in kery. Then T is in ker y¢ and keryf, whence T is in JFF,
Therefore the sequence is exact at ##, Clearly the sequence is exact at S*# since
the map from #*F to Z=# is the inclusion map. To show that the sequence is exact
at &5, it suffices to show that the map p defined above is a splitting.
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Choose (T%, T%) in %*#; we must show that y*p(T%, TF) = T° and that
yBp(T?, TF) = T#. Combining Lemma 1.4 and Lemma 1.5, we obtain

yp(Te, TP) = y[p*(T*) + pH(TF) — E*Pel(TF)} =
= y°pX(T) + y*pl(T¥) — y*c=Fah(T7) =

T* + y°pX(T?) — y2p*E7ef(T7) =

1

T® + E20f(TF) — EoB(TF) = T
The proof that yfp(T*, TF) = T# is similar. %

Before continuing, we make a definition. An operator 7 in J %# of the form
&
T= Pu}mﬂjw'mo,n0 [I-I1 Qijj’"j -| PazPﬂ,
J- -

where cach Q; is either P2, P#, or P*P*, will be called a finite product. Note that the
finite products have dense linear span in #%#.
Now, for the finite product T above we define the numbers

k
Ty = — Y, min{—om; + n;, 0}
o

k
KTy =Y, max{—pm; + n;, 0}.
i

Note that A*(T) and Z(T) depend upon the particular representation of T'; that is,
if T can be expressed in an altternate way as a finite product, then 2%(T) and 24(T)
may be different.

The definition of 1%(T) implies that when —am + n is greater than or equal
to A%T), T(e, ) = (0#y%(T))e,, ), since then the projection P¢ is unnecessary each
place it appears in the expression for 7. Similarly, when —fm + n is less than or
equal to —Aﬂ(T)a T(em,n) = (P")’“(T))(em,nl

We now return to the exact sequence in Proposition 2.2, and show that we
can identify £*# as a more familiar object.

ProposiTiON 2.3. #£%8 s the ideal A (H %) of compact operators on %P,

Proof. We first show that #¢-8is contained in 2 (#%#). Since p is a splitting,
every clement of £ # can be written in the form T — py(T) for some T in #*F.
Furthermore, since finite products have dense linear span in #%#, to show that #*#
is contained in J( °-%), it suffices to show that T — py(T) is a finite rank operator
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for every finite product T. Therefore, let T be a finite product. Then using Lemmas
1.4 and 1.5, we obtain

T —pAT) =T - p(34(7), yXT)) =
=T = pyXT) — pPyA(T) + EPalyH(T) =
=T — py%(T) — pPyT) + p*LealyN(T) =
=T — py#(T) — py*(T) + p*y*p’y(T) =

= (T = p"y¥(T)) — p*y(T — pMy(T))-

Our discussion above yields that (7' — py(T))(e, ) = 0 for all ¢,, such that

— am + n 2z 2%T). We can also write

m,n

T — py(T) = (T - p*y(T])) — pyAT — p=yT)),

80 —fm + n < —/XT) implies that (T — py(T))(e,,,) = 0. Therefore the rank
of T' — py(T) is bounded by the number of pairs of integers (i, 1) that satisfy the
following two inequalities:

0< —am + 0 < 24T)
2Ty < =P+ n g 0.

It is easy to see that since « and f§ are distinct, there are only finitely many
pairs of integers satisfying these two inequalities. Therefore, T — py(T) is a finite
rank operator when T is a finite product, and thus for arbitrary X in #*J, X — pp(X)
is compact.

To show that S~ contains J# (# *#), it is enough to show that 2+, and hence
Fo8) is irreducible. That £%# is irreducible follows from the fact that 7= is irre-
ducible ([2]) and that T8 < s=-, ‘

ProposiTION 2.4, 906 == 5,

Proof. The proof breaks into two cases, the cuse where % and ff are both rati-
oral numbers, and the casc where at least one of « and f is irrational.

Case 1: a and B boiir rational. Write o = plg, where p and g are relatively
mrime integers, let x and y be arbitrary integers, and consider the expression
PM. ,P*Ps. Now, for every integer i, M, ., commutes with P*, so

PzM\'_sz‘P:; = M. mq’-:iniﬁ[mq-i-::,mp'fyPlPﬁ‘



INDEX THEORY 135

Furthermore, if we choose m so that —B(mg + x) + (mp + y) is less than zero,
then we have

PaM\',dePﬁ = M— mq,—mpPaPﬂMmq+x,mp+yPQPﬁ'
Similarly, if we write B = r/s for relatively prime integers r and s, then we have
PﬁMx,dePﬁ = M—-ns,—anuPﬁans+x,nr+yP¢Pﬁ

for some integer n.
Now let

k
T=FP ﬁMxono[H Q,-ij,yj] et
st

be a finite product in #%7. If Q; = P*Pf for all j, then T is in 7 *F. Otherwise, let
I be the largest integer such that Q, ¢ P*Pl; say Q, = P* Then the argument
above shows we have

, ¥ 1Ql x le1+1 = PaMx,,y,PEPﬁ =

l 2

— o «
= M_giny ~mobsr PP Mg, mpsy PP?

for some integer m. Thus we can use this equality to rewrite T so that Q, = P*P?;
similarly, if Q, = P?, then we rewrite so that Q, = P*P#, There are only finitely
many projections Q;, so by induction we can rewrite 7' so that T' is in J*f. More-
over, since finite products have dense linear span in #%#, we sec that Z*f = T8,

Case 2: a and f not both rational. Now suppose that at least one of « and S
15 irrational; without loss of generality, suppose that f is irrational. We cannot
proceed as we did in Case 1, since there is no translation that commutes with P#.
However, in Case 2 we have an additional fact at our disposal which we shall use
shortly.

Since y*(P*PPM,, ,P*PF) = PPM,, ,P* for every pair of integers (m,n), we see
that y* maps 7 %f onto % Similarly, y maps 7 *# onto J#. Let .# be the kernel of
~® restricted to 6. Then we have the commutative square

> 7

e

@ —s T0,

where the horizontal maps are inclusions. Now, . is an ideal in &% and y# maps
JEdonto I, so yA(F) is an ideal in JF. Furthermore, the commutativity of the
square above implies that yA(#) is an ideal in €#. But since f is irrational, €¥ is sim-
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ple ([6]),s0 y#( #) is either zero or all of ¥/, It is easy to show that y#(#) contains non-
zero operators, so y# maps £ onto €. Next, [2] implies that 7= is irreducible. so
£ is also irreducible. Therefore £ contains all the compact operators, and we have
the following commutative diagram with exact rows:

0 >N —F—6-—0

ol

0t — I —5CF—0,

where the first and third vertical maps are identity maps and the middle vertical
map is inclusion. Since the first and third maps are isomorphisms, the Five Lemma
implies that the middle map is also an isomorphism, so # = #f. Then we have
another commutative diagram with exact rows:

0> Ifg®b—F*—30

Lol

0 —>fP —> R=F —> T —>0,
where the first and third maps are again identity maps and the middle map is inc u-
sion. A second application of the Five Lemma yields £2%# = 75, %

COROLLARY 2.5, The following sequence is exact:

0 —> A —> Fob L5 Fob —50,

ond has a linear splitting p: 9% — F 5,
This short exact sequence gives an index theorem for opecrators in 7 ¢

THEOREM 2.6. An operator T in T8 is Fredholm if and only if y(T) is inver-
tible in =3, or equivalently, if and only if y5(T) and y#(T) are invertible in 7 ¢ and
T8, respectively.

It should be noted that the exact sequence in Corollary 2.5 remains exact
when tensored by M, (C), so Theorem 2.6 extends to give an index theorem for matri-
ces over F 8,

3. K-THEORY AND DEFORMATION INVARIANTS FOR FREDHOLM
OPERATORS IN F#

In this section, we compute K,(¥*Ff) using the Meyer-Vietoris sequence in
K-theory, and then use our results to show that in the case where at least one of «
and B is rational, index is a complete stable deformation invariant for Fredholm
operators in J %8,
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We begin by discussing the K-theory of the half-plane Toeplitz algebra 7=
If « is rational, then [6] shows that ¢ = J ® C(T), where 7 denotes the C*#-al-
gebra generated by the unilateral shift. An application of the Kiinneth formula ([13])
yields that K,(7%) = Z, where the copy of Z comes from the “standard” projec-
tions; 1.e., the projections p, that have n ones on the diagonal and the rest of the
entries zero. We can also use the Kiinneth formula to compute K{(7*) = Z; if we
write « = p/q with p and q relatively prime, then [P*M, ,P°] is a generator for
KT ).

When « is irrational, computing the K-theory of 77 is somewhat more difficult.
It has been shown in [10] and {15] that in this case, K\(Z %) =~ 0 and K\(9°) = Z,
where the copy of the integers again corresponds to the standard projections p,.

Before we compute the K-theory of the symbol algebra &*#, we need to know
the K-theory of C(T?). First, Ko(C(T?) = Z @ Z, where one copy of Z corres-
ponds to the standard projections, and the other copy of Z is generated by the pro-
Jjection that corresponds to the complex line bundle over T? with Chern class one
({11]). Also, K,(C(T?)) = Z @ Z, with the copies of Z generated by [y, ,] and
D10l

We can now compute the K-theory of &###. Since ¥ is the pullback of 7=
and 7/ along C(T?), we can apply the Mayer-Vietoris sequence in K-theory ([14])
to obtain the following exact diagram:

Ko(£28) — Kog(T) @ Ko(TF) —> K,o(C(T2))

[ I

K, (C(T?) «— K (7% @ K (TF) «— K (&F*P).

Consider the map from Ky (7% @ Ky (T #) to K, (C(T?). The elements of
Ko(.77%) and K, (JF) consist of standard projections, and thus the map from K (7% @
® Ko(7) to Ko(C(T?)) maps onto the standard projections. Combining this fact
with the calculation of Ky (C(T?)) above, we see that K,(¥*#) contains at least a
factor of Z. Next, consider the map from K,(7%) @ K,(Z#) to K,(C(T?)); there arc
theree cases. First, if @ = p/g and f = rjs are rational numbers, then [P*M, ,P°]
and [PPM ,PF] are generators of K (7 %) and K (F#), respectively, and these genera-
tors map to [y, ,] and [y, ], respectively. Moreover, it is easy to check that since «
and f are distinct, the map from K,(7%) @ K,(.7#) to K,(C(T?)is injective. Next,
if only one of « and § is rational, say «, then X,(7 %) 220 and K,(Z %) maps injectively
into K;(C(T?). Finally, if & and § are both irrational, then K (7 and K,(7#)
are both zero. Hence in all three cases, the only contribution we have to K (¥%#)
comes from Ky (C(T?), so

Ky(F=6y = Z.

Let S and T be Fredholm operators in 7 «#. If S and T have the same index,
can they be connected by a path of Fredholm operators in 7 %#? The next result
shows that if one of o and S is rational, S and T can at least be stably connected-
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THEOREM 3.1. Let o and B be distinct numbers, at least one of which is rational.
Then index is a complete stable deformation invariant for Fredholm operators in

G e,

Proof. In view of the calculation of K,(#*%) above, it suffices to exhibit a
Fredholm operator in & %# that has index one.

Without loss of generality, assume that « is rational and write « = p;g, where
P and g are relatively prime integers and ¢ is positive. Since p and g are relatively
prime, there exist integers m and n so that —pm + gn = 1. With this in mind,
define operators

A = P*P3M_, _ ,P*P",

-4q,"p
B = PPiM,, ,P*M._,, _,P*P?,

T=I-({U-A4)({- B).
Then
7T =1 — (I = 7(AN I — y*(B)),

and since y*(A) is unitary, y*(B) is a projection, and y%4) and y%(B) commute,
»4(T) 1s invertible with inverse
PHT) == I — (L = 7)) U — y(B)).
Morcover, 79(B) = I, so
I =1~ (I — AN - 7%(B)) =1=7¥T)"

Since (7)) and y#(T) are toth invertible, T is I"redholm by Theorcm 2.6.

Now we compute the index of T. Since » < f and ¢ is positive, - fig -+ p <
< -3 + p = 0. Therefore A% is an isometry. Next, since —pn + gir = 1 and ¢
is positive, --am + i 1S positive, and therefors B is a projection that is not the iden-
tity. ¥inally, direct computation shows thut 4 and B commute. Hence, it is easy
10 check that

T7% =1
T#T == [ — (I — AA)(I — B).
““he tirst equality implies that ker 7% = {0} Furthermore, we have ker T =ker T#7.

Now. it is easy to check that ¢, , is in the kerael of T*T if and only if the integers
& ond 7 satisfy the inequalitics

0 —dbk +i1< —am +n
Oz —-fk+1> —fqg+p;

otherwise, T#T(e, ) = ey -
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Consider the first inequality. If we write « as p/g and multiply through by ¢,
we obtain

0 —pk+4qgl< —pm + gn = 1.

Therefore, —pk + gl =0, or ak = [.
Now consider the second inequality. If we substitute ok for /, we obtain

0> (@—pPk>—pq+p,
or, since o -- f§ is negative,

@ —f

0<k<

Now, since / = ak = (p/qg)k, we see that the only integers k& and / that satisfy both
inequalitics are k = [ = 0. Therefore T is a Fredholm operator, and

indexT = dimker T — dimker7% =1 — 0 = 1. 2

‘Theorem 3.1 only applies in the case when one of « and f is rational, so it
is natural to ask what happens in the case where « and f are both irrational. We
still have the result K (¥*#) = Z. However, we have been unable to construct Fred-
holm operators in %+ that have nonzero index. It may be that there are Fredholm
operators of nonzero index in & *# and that index is a complete stable deformation
invariant here as well. Another possibility is that this case is fundamentally different
from the other two and all the Fredholm ogerators have index zero. If this is indeed
true, then the isomorphism K,(#*#) =~ Z would correspond to some kind of “sc-
condary” index. Finally, it is possible that the index theory of Z*# depends upon
the relationship between o and . For example, it could turn out that when o and
f are rationally dependent, I ## contains Fredhoim operators with nonzero index,
and otherwise all the Fredholm operators have index zero. At present, we do not
know which of these possibilities occur, and we hope to resolve this point in the
future.

4. CYCLIC COHOMOLOGY AND AN INDEX FORMULA

In Section 2, we established criteria for an operator in *f to be Fredholm.
In this section, we seek a formula for computing the index of Fredholm operators in
g An index formula for Fredholm operators in 7% was given in [4]; the formula
uses the existence of certain operator-valued homotopies in the symbol algebras”0:e,
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and these are in practice difficult to produce. Presumably this result generalizes to

arbitrary quarter-plane Toeplitz algebras, tut we seek an index formula that is

casier to compute. We use Connes’ cyclic cohomology to produce such a formula.
Consider the following short exact sequence from Section 2:

0= A - T8 P05 0.

We showed in Proposition 2.2 that this sequence has a linear splitting p from &% to
G B L{(AH*F), and therefore for all X and Y in &7, p(XY)—p(X)p(Y) is compact.
Unfortunately, in this generality, this is the most we can say. For example, it is not
true that p(XY) — p(X)p(Y)is always a trace class operator. To ensure that p(XY) —
— p(X)p(Y) is trace class, we will restrict our attention to a dense subalgebra %
of &#=# which we will define presently.

Let T be a finite product, and define

A(Ty = max{1, 2X(T), 2XT)).

Then define 7 2% to be the collection of cperators X in =¥ that can e written in
in the form

[xe]
X = 2. oy,
k0
where each T, is a finite product, and where the sequence

{e AT

is absolutely summable. Note that in particular the sequence {ck} is absolutely sum-
mable, and since each finitc product 7, has norm I, the infinite sum above is well
defined.

PropesitioN 4.1. %7 is an algebra.

Proof. Clearly %7 is closed under addition and scalar multiplication. The
only nonobvious point to check is that 7 %# is closed under multiplication.

Let S and T be finite products. Then it is easy to see from the definitions of /°
and 47 that

J(ST) = 7%(S) + +«T)
JHST) = iK(S) + 4T,

and therefors

A(ST) < A(S) + A(T).
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Now let $ = ¥ 5,5, and T = ¥; ¢,7; be in 757, Then
1.0 k-=0

ST =73 Y basST,

{=0k-0

and it is a simple computation to check that

Y Y, 16ed(A(SITY) < oo.
1=0 k=0
Therefore, ST is in T%P.

LeMmA 4.2. Let T be a finite product in 7, and let |} ||| denote the trace
norm. Then

1T — pr(D)lh < CA(T)®

where C is a constant depending only on o and f.

Proof. Since T is a finite product, we may write T in the form
k
— aph wpp
T - P PfMl”O'"O[I-IOQjM’"j'"J.]P P["
iz

We first claim that 7" — py(7) is a partial isometry. To see this, first observe
that both T and py(T) are finite products, T and py(T) are partial isometries, and
moreover, appropriate subsets of the basis elements ¢, , of ¢ serve as bases for
the ranges and kernels of T and py(7"). Furthermore, T and py(T") are composed of
the same translations, so if T(e,,) and (py(T))(e,,,) are both nonzero for some
e, then T(e, ) = (py(T))(e,, ). Therefore, T — py(T) is a partial isometry.

Now, since T — py(T) is a partial isometry, the operator [T — py(T)}[T —
— py(I)]* is a projection onto the range of T — py(T). Therefore,

(T — py(Dliy = (T = pATH*y =
= trace{[T — py(D] [T — py(T)}*} = dim ran(T — py(T)).

The dimension of the range of T — py(T) is no greater than the number of e, ,
such that (T' — py(T))(e,, ) #* 0, and in fact is actually equal to this number. Now,
we proved in Proposition 2.3 that (T — py(T))(e,,,) # O implies that the pair of
integers (m, n) satisfies the following inequalities :

@

0< —am + n < 2¥T)
-MIT)< —-pm +n< 0.
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We can combine these two inequalities to obtain
0< (B —)m< A(T) + IT),

so the number of different possible values of m that can appear in a solution to the
inequalities is bounded by

va P
AT+ 0T
B —a
We can also add these inequalities to eliminate m. Taking into account the fact that

o and  may be positive or negative, we see that the number of possible values of »
that can appear in a solution to the inequalities is bounded by

IBIAS(T) + |aAT) |
B —a

Therefore, the total number of possible solutions, and hence the dimension
of the range of T — py(T), is bounded by

[_f":"_‘(T ) +AT) 1] [J_/i_lé-“g )+ KT ]
p - p—=

We get the bound in the statement of the lemma by recalling the definition
on A(T) as the maximum of 1, 2%(T), and A¥(T). #

We now define a dense subalgebra #%f of %8 by
FE = nTEh).

PROPCSITION 4.3. Let X and Y be in S5P. Then p(XY)—p(X)p(Y) is trace class.

Proof. Choose operators S and T in J%F such that y(S) = X and (T) = Y.
First consider the casec where S and T arc both finite products. Then

pXY) — p(X)p(Y) = p(y(ST)) — p(#SNp(H(T)) =

= S[T — p(T)] + [S — py(S)lpy(T) — [ST ~ py(STHL.

Thercfore,
oY) — p(Xp(N)h < USiefiT — pp(T +
IS = PUSYT s + ST — pUSTil, °
where |} |l denotes the operator norm. Since {|Slis = [iT]lw = 1, the estimate
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from Lemma 4.2 gives
lp(XY) — p(X)p(Y)lh — CIA(S)? + A(ST) + A(T)].
Thus p(y(ST)) — p(¥(S))p(¥(T)) is a trace class operator, and is in fact a
finite rank operator.
Now, let § =Y 4,5, and T = Y. &7, be operators in Jg?, where the
120 k=0

S, and T, are finite products. Since p and y are linear,

p((ST)) — p((SNp(y(T)) =

oo

= 3 Y beloGST) — pOSHPGTI,

=0 k=0

-

and therefore

llo(XY) = p(X)p(N)ly <

<3 Y balll p(STY) — pHSNPGTNN <

1.0 k=

(=]
(=]

<C Z Z 1bicilfA(S)? + A(S,T)? + A(Ty).
=0 o

Since A(S,T)) < A(S)) + A(T,) for alll and k, the above sum is finite, and therefore
p(XY) — p(X)p(Y) is a trace class operator. Z

Proposition 4.3 shows that we can define a cyclic 1-cocycle v on ¥#%# by

(X, Y) = Trace[[p(XY) — p(X)p(¥)] — [p(YX) — p(¥)p(X]I.

Now, from [5] we have a bilinear pairing <, > of K-theory with cyclic cohomology.
This pairing has the property that if « is an invertible element in %P that represents
the class [u] in K(#%F), and if [1] denotes the class of 7 in the cyclic cohomology
group HY¥%M), then

{[u], [r]> = index p(u).

We will use this fact to produce our index formula.
Let T be a Fredholm operator in 7 /. Then since T and py(T) differ by a com-
pact operator, py(T) is also Fredholm, and T and py(T) have the same index. The-
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refore, to determine the index of T, it suffices to compute the index of py(T). Combin-
ing this observation with the definition of the pairing between K-theory and cyclic
cohomology, we obtain the following index formula:

THEOREM 4.4. Let T in T %6 be a Fredholm operator such that (T) and (T)™?
are in S%P. Then the index of T is given by the following formula:

Index T = Trace[p(y(T)p(y(T) ™) — p(W(T) Hp(AT)]- 28]

We conclude this section with some remarks. First, the class of Fredholm
operators we consider is not the largest class for which this formula will work.
However, Theorem 4.4 applies to many cases of interest. Second, this index formula
will also give the index of operators in the matrices over  ®5. In this case, the trace
in the formula is composed with the usual matrix trace. Finally, Theorem 4.4 is true
even when « and B are both irrational. However, when « and § are both irrational,
it is not known if there are any operators of nonzero index, so in these cases the
theorem may turn out to be uninteresting.

5. AN EXAMPLE

We now take a specific operator T in %%, use Theorem 2.6 to show that T
is Fredholm, and then use Theorem 4.4 to compute the index of T.

Let « be rational and negative, and let  be any positive number, rational or
irrational. Write & = p/q, with p and ¢ relatively prime and p < 0, ¢ > 0. Also,
choose positive integers » and s. Then let

1
= -—2—P“Pé"‘!\fl_q__I,P“Poq + P’PA’MS,,P“M_S‘_,P’P'{
Now,
1
v4(T) = »2-P’M_,,__pP’ + P*M, P*M_, _,P*
y(I)™ = 2P*M, P* — 2P°M, ,P°M, P°M_, _,F* +
+ [ (—2)‘"P’M_,,q__,,pP“] PM, P*M_,_ P~
n-.0
and

)
YA(T) = I+ - -PiM_, P

P = Y (=2)""PEM .y PP,

n=:0
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Both y*(T) and yA(T) are invertible, so T is Fredholm by Theorem 2.6. Next,
1
p(y(1)) = ?P“PﬂM_q'_,,P“'Pf3 + P*PPM P°M_, _ P°PF

p(y(T) ™) = 2P*PPM, ,P*PXI — P*PSM, P°M_, _ F°PF) +

n=0

o]
+ [Z (=2)""P*PPM _,, _,,P°P? ] P*PéM, P*M_, _ P*PP.
Therefore,

pG(TNp((TY ™) = p(y(T) p((T)) = AB,

where
A = P*PPM, (I — P*PE)M_, _ P*P?
B = P"PﬂMs.,(l — PHYM_ s,_,P"Pﬂ.

Direct computation yields that 48 is a finite rank projection, and e, is in
the range of AB if and only if the pair of integers (k, /) satisfies the inequalities

0K —ak+1l< —as+r
0> —fk+1> —fq+p.

Theorem 4.4 yields that the index T is the number of pairs of integers (k, /) that
satisfy the inequalities above. '

To make this example more concrete, let ¢ = 1, p = —1, r = 1, and s = 2.
Then a == —1. Also, let § = }/2. The above inequalities become
O0<k+1<3

0> —kVZ +1>-}2-1.

The only pairs of integers that are solutions to the inequalities are (0,0), (1, 0),
and (1,1). Therefore, the index of T in this case is 3.
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