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ON MAXIMAL PRIME IDEALS IN CERTAIN
GROUP C*-ALGEBRAS AND CROSSED
PRODUCT ALGEBRAS

SIEGFRIED ECHTERHOFF

Several authors have investigated the question under which conditions a lo-
cally compact group G has a T, primitive ideal space Prim(G). A complete answer
was given by Moore and Rosenberg for connected G in [27]. In case G is an amenable
and countable discrete group they have shown that, if Prim(G) is a T3 space, then
G must be FC-hypercentral. Note that G is called FC-hypercentral, if G is the limit
of the ascending FC-series (G,), defined by G, = {e}, G, = |J G, if « is a limit

B<a
ordinal number, and G,/G; = (G/Gp)f if « = f + 1. Here, for a discrete group

G, G¢ denotes the union of all finite conjugacy classes in G. If G is a finitely generated
FC-hypercentral group, then G is a finite extension of a nilpotent group, and it was
also proved in {27] that every solvable finite extension of a finitely generated nil-
potent group has a T; primitive ideal space. This result was extended by Poguntke
in [31] for arbitrary finite extensions of nilpotent discrete groups. Furthermore
Ludwig, generalizing a result of Carey and Moran [7] to the nonseparable case, has
shown [22] that every closed prime ideal in C*(G) is maximal if G is a nilpotent
group containing a compactly generated open normal subgroup.

Our first purpose for writing this paper is to demonstrate that every FC-hyper-
central group has a T, primitive ideal space. But it turns out that even more is true.
Recall that, if a locally compact group G acts strongly continuous by *-automor-
phisms on a C*-algebra A, then one can form the crossed product algebra C*(G, A)
of the covariant system (G, 4). Our main result is the following theorem (Theorem 3.1).

THEOREM. Let (G, A) be a covariant system, and N an open normal subgroup
of G such that G/N is FC-hypercentral. Then a closed prime ideal J in C*(G, A) is
maximal whenever the restriction of J to C*(N, A) is a maximal G-invariant closed
ideal in C*(N, A).

An easy corollary of this theorem is the fact that, for an amznable discrete group
G, every closed prime ideal in C*(G) is maximal if and only if G is FC-hypercentral.
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This result will be extended in Theorem 3.7 to polynomially growing Lie groups
with nilpotent connected component of the identity (Corollary 3.8) and to [IN]-groups
(Corollary 3.9). The laiter are locally compact groups containing an invariant com-
pact ncighbourhood of the identity. But we obtain alse some interesting results
for twisted covariant system (G, 4, ty) as defined by Green in [17]. These are given
in Theorem 3.2, Theorem 3.4 and Theorem 3.10. We prove our main theorem by
transfinite induction on the ascending FC-series of G/V. For this we reduce the in-
duction step from z to 2 -+ 1 1o a “'central step™ and a “finite step””. The method of
the proof of the “‘central step” is similar to that of Lemma 6 in [22). To prove the
“finite step™” we make extensive use of Poguntke’s methods in [30], where it is show:
that, if .V is a normal subgroup of finitc index in G, then Prim(G) is a 7, space if
and only if Prim(N)is a 7| space. To this end, we need several results about induced
representations and tensor products of representations for covariant systems, which
arc all well known in the group case. It turns out to be appropriate to give a defini-
tion of induced representations for covariant systems modelled after Blattier's
induced group representutions.

1. COVARIANT SYSTEMS AND INDUCED REPRESENTATIONS

A covariant system is a pair (G, 4) consisting of a locally compact group G and
2 C*-algebra A on which G acts as a strongly continuous automorphism group.
For x € G and ¢ € 4 we denote the action of x on @ by “a. The crossed product
algebra (or covariance algebra) C#(G, A) is the enveloping C#-algebra of the Banach
s-algebra of all Bochner-integrable 4-valued measurable functions on G with respect
to left Haar measure, where convolution and involution are defined by

frge) =\ 0)el2Ndy and £4(0) = A D)
:

<

for f, g € LMG, A) and x € G (4 denotes the modular function of G).

A covariant representatior: = of (G, A) in the algebra of bounded operators on
a Hilbert space #(7) is a pair (x4, 1), where ng is a unitary representation of G
in #(r) and m, a non-degenerate =-representation of A in H#(x) satisfying
(O @)me(x~Y) = 7,4*¢) for all @ € 4 and x € G. There is a one-to-on¢ cor-
respondence between covariant representations of (G, 4) and =-representations of
C*(G, A), which is given in one direction by

a( f) = & 7 (f(xX)Drg(x)dx for f e LUG, A).

o

G

Covariant representations were studied extenstvely in the literature, for instance in
110, {17] and [36].
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Induced representations of covariant systems were introduced by Takesaki
[36] in the separable case. These are closely related to the induced representations
of locally compact groups as defined by Mackey [24]. Later Green [17] gave a defi-
nition of induced representations in the general case using the theory of induced
representations of C*-algebras developed by Rieffel [32]. We will now give a defini-
tion of induced representations of covariant systems which coincides with Take-
saki’s in the separable case. Therefore, we use Blattner’s [3] definition of induced
representations of locally compact groups.

Recall that if p is a unitary representation of a closed subgroup H of the locally
compact group G, then the Hilbert space #(ind§ p) of the induced representation
ind% p consists of all Bourbaki-measurable functions £: G — #(p) with the follow-
ing properties:

1) &xh) = y(Mph~—2é(x) for all xeG and heH, where y(h) =
A,(N{4s(0))* and A, and Ag denote the modular functions of H and G
respectively;

ii) the map x — /¢(x)1? is locally integrable;

iii) ¢ defines a finite Radon measure on Cyo(G/H), the space of complex con-
tinuous functions on G/H with compact support.

For x € G the unitary operator ind% p(x) on #(ind§ p) is given by

(indf p(DE)Y) = E(x~1y), yel.

Now let (G, A) be a covariant system, H a closed subgroup of G, and p = (py, p,)
a covariant representation of (#, A). Then we define ind§ p = ((ind$ p)g, (indG p) )
by

(indf p)g:= ind py and ((in;lfl PA@OE) = pa a)E)

foracAd, x €@, and ¢ e#(ind§ p):= #(ind py). Easy calculations show that
ind9, p is a well defined covariant representation of (G, 4), and we can see by a proo f
similar to that given in [18, Remark 2.5], that this representation is equivalent to
the induced representation as defined by Green.

If A is any C*-algebra, we denote by Rep(A4) the space of all equivalence clas-
ses of =-representations of 4 with dimension less than or equal to a fixed cardinal
number x, equipped with the Fell topology [13]. Because this topology does not
differ representations with the same kernel, it induces a topology (also denoted
by Fell topology) on the space F(A) of all closed (two-sided) ideals in A via the
mapr -» kern from Rep(A4) onto #(4). Note that the restrictions of these Fell
topologies to 4 and Prim(4), the spaces of all irreducible elements in Rep(4) and
the primitive ideals in A4, respectively, are the usual hull-kernel topologies. Recall
that a representation n is said to be weakly contained in S & Rep(4) (denoted by
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n < S)if kerrx(My{kero; s e S}, and that two sets S and T of representations
are said to be weakly equivaient (S ~ T') if every element of S is weakly contained
in T and conversely. If G is a locally compact group or (G, A) a covariant system,
we will also denote by Rep(G), F(G) Rep(G, A), J(G, A), etc. the corresponding
spaces of C¥(G) or C*(G, A), respectively.

Now let (. A) be a covariant system and H a closed subgroup of ¢. The
restriction 7' H of a covariant representation n = (g, 7,) of (G, A) to (F, A) is
defined by mH:= (rg H, ), where n; H denotes the restriction of the unitary
representation n to H. The following proposition is due to Green (see [17]).

1.1. ProOPeSITION. The inducing map from Rep(H, A) into Rep(G. A), and the
restriction map from RepiG, A) into Rep(H, A) are continuous with respect to the
Fell topologies, and they preserve weak containment.

If p is a unitary representation of G and = = (ng, n,) a covariant representa-
tion of (G, A). then we can define the tensor product p ® 7@ = ((p ® n)g, (p & ™))
on the Hilbert space #(p) ® #(x) by

4 (p ® m)e(x) = p(x) ® ng(x) for xeG,
an
(p @ mya) =1, ® myla) for aeA.

Here I, denotes the identity operator on #(p). Note that the unitary part of
p ® = is the usual inner tensor product of p and =;.

1.2. PropesiTion. Let S < Rep(G). T < Rep(G, A), o €Rep(G). and
7 e Rep(G, A) such that o is weakly contained in S and t is weakly contained in T.
Then ¢ ® t is weakly containedin S @ T = {a' ®1t1;, €S, el }

Proof. The proof is the same as in the group case {15, Theorem 1], if we use
the description of weak containment in terms of vector valued positive definite func-
tions on (G, 4) (compare [28, Proposition 7.6.10] with [12, Theorem 1.2]).

1.3. ReMaRK. If follows from Proposition 1.2 and [14, Proposition 1.2], that
the map Rep(G)xRep(G., 4) - Rep(G, A4), (o, 7)» ¢ ® t is separately conti-
nuous. But arguments similar to those used in the group case {15, Theorem 2] show
that this map is also jointly continuous. In the case that G is abelian, the restriction
of this map to G x Rep(G, 4) is well known to be jointly continuous, because this
is exactly the action of G on Rep(G, A) induced by the dual action of G on C#(G, A).

1.4. PROPCSITION. Let (G. A) be a covariant system and H a closed subgroup of G.

a) If peRep(G) and 7 € Rep(H, A), then ind§ p:H ® w) is equivalent to
p ® indgr.

b) If p e Rep(H) and 7 € Rep(G, A), then ind§(p & 7 H) is equivalent to
(ind§ p) ® =.
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Proof. By [2, Lemma 4.1] the linear map ¢:#(p) ® s#(ind§ r) -
— A(indG(p H ® 7)) given by ¢(v ® &)(x) = p(x~Yv ® &(x) extends to a unitary
operator which intertwines the unitary parts of indg(p\H ® ) and p ® ind§ 7.
Now easy calculations show that ¢ also intertwines the #-representation parts. This
proves a). The proof of b) is analogous to a).

1.5. CoROLLARY. Let N be a closed normal subgroup of G, and n € Rep(G, A).
Thenind§ n'N = A @ n, where 2. denotes the le ft regular representation of G/N.

Proof. This follows from Proposition 1.4 b) by taking for p the trivial one-di-
mensional representation 1y of N.

The next proposition is an analogue of the Frobenius reciprocity theorem for
finite groups in the case of “finite extensions” of covariant systems. It is well known
in the group case (see [25] and [30]), and the proof uses the ideas of Moore in [25].
It = and p are covariant representations of a covariant system, we denote by
Hom(=, p) the space of all intertwining operators of = and p, i.e. the space of all
bounded operators T: #(n)— H#(p) such that pg(x)T = Trg(x) for all xeG
and p (&)T = Tr(a) for all ac A.

1.7. ProposITION. (Frotenius reciprocity theorem). Let (G, A) be a covariant
system and H a closed subgroup of G such that [G: H)< oo. Suppose that n is a cova-
riant representation of (G, A) and p a covariant representation of (H, A). Then
Hom(p, n[]]) is isomorphic to Hom(ind§ p, 7).

Proof. Let T be an element of Hom(p, n:H). Then, as in [25], we define an
operator ¢(T) € Hom(ind$ p, n) by

(M) = Y, me(X)TE(x)  for & e (indg p).

xeGlH

As in [25] one can see, that ¢ is a bounded linear map from Hom(p,n]H) into
Hom(ind§ p, 7).

We are going to construct an inverse for ¢. For ves#(p) we define
&, e #(ind p) by £, (M) = py(h~YDvforh € H and ¢,(x) = 0 for x e G\H. Simple
calculations show that (ind§ p)g(m)E, = ép”(,,,)l. for me H and (ind$p)(@)é, =
= L_‘,,A(,,)v for a € A. Now for S € Hom(ind¥ p, ) we set

Y(S = S¢,  for v e #(p).

Then for every me H and v € #(p):

na(mW(S)o = ng(m)SE, = S(indg p)e(m)¢, = Sfp"(m)w = Y(S)pu(mv



322 SIEGFRIED ECHTERIIOVF

and also for every a e A4:
Ty (S)r = 7 ia)SZ, = Stind% p) o), = S€Cp e = P(Shoylain.

Thus ¥(S) intertwines p and 7 i{. So, by the fuct that (S} < S forall § ¢
e Hom(ind% p, =), ¥ is a bounded linear map from Hom(ind§ p, =}into Hom{p, = If).
Now let i €.# (indf p). Since &, alx™0) = pu(~y(x) = 5(3) for x~ Y c H and
X 1) = 0 for x~7p ¢ it follows that (indf p)e(x)<, () = ol Iy) v
= 2a(M)(¥), where y,, denotes the cheracteristic function of xF. So for cvery

S e Hom(ind§ p, 7) and § € 3¢ (ind§ p) we have

QWS == Y meOW(Sin(x) = Y 7e(3)SE, =

YeGH i€CH
= S( 2 (indﬂp)a(x)émx;) =S¢ 2 L) = Sij.
XGGH YeGH

In the other direction for every T € Hom{p. 7 H) and v € #(p):

Y(o(ThHo = o(T)E, = Y. m6(MTE(x) = T
*eG H
since ,{x) = O for x ¢ H and £,(¢) = . So ¢ isindeed inverse to ¢ and the pro-
position is proved.
1.8. COROGLLARY. Let (G, A), H, 7 and p be as in Proposition 1.7. If = and p
are irreducible, then ind§p contains © exactly as many times as a subrepresentation,
as mH contains p as a subrepresentation.

The next proposition was shown by Poguntke [29] in the group case. But a
careful study of his proof shows that it goes through without any changes in the
following situation.

1.9. ProrosiTiON (Pogurtke). a) Let = be an irveducible covariant represen-
tation of the covariant system (G, A), and let p be an n-dimensional unitary represen-
tation of G (n€ N). Then p ® r is the direct sum of at most #® irreducible represen-
tations.

b) Let H be an open subgroup of finite index in G gnd let = be an irreducible cova-
riant representation of (G, A). Then m H is the direct sun of finitely many irredu-
cible representations. V

If Nisaclosed normal subgroup of G, then there is an action of G on C*(N, A),
which is given on Cgy(N, A4) by

*f(n) := d(x)*(flx~nx)).

Here C,y(N, A) denotes the space of continuous A-valued functions on N with
compact supports, and d: G- R* is the continuous homomorphism satisfying
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5(x)S f(x—nx)dn = & fm)dn for all feCy(N). For a covariant representation

o

N
p = (py, pa) of (N, A) we define an action of G on p by p* = (p¥, pJ), where

ew(n) = py(x~nx) and pi(a) = pA("_la). Then p*(*f) = p(f) holds for every
fe C*(N, A). The following proposition extends a result of Blattner [4, Lemma 2]
to the case of covariant systems.

1.10. ProrosiTION. Let (G, A) be a covariant system and N < H closed sub-
groups of G such that N is normal in G. Suppose further that p is a covariant represen-
tation of (H, A). Then, for f € C*(N, A) and ¢ € 7 (ind$p)

((indGp) N(NENX) = (0 NY(F)E))
of locally almost all x € G.

Proof. It is easy to see that the right hand side of the above equation defines
a x-representation T of CH(N, A4) in #(indGp). Therefore, it is enough to show that
this representation coincides with (indf,p)lN on the algebraic tensor product of
Coo(N) and A. From [4, Lemma 2} we know for every f € C*(N),
(indGp)! N(NEE) = (pu NY(fNEX))
for locally almost all x € G. Thus, for a e A and fe Cyo(N), we obtain

((ind§; p)IN(f ® a)é)(x) = ((ind p) «(@)(ind§ p)| N(f)E)(X) =
= pA( " a)(ind§ p)| N £)E)x) = p% (@) | NY(f)(EX)) =
= (PINY(f ® a)(E(x)

for locally almost all x € G. This finishes the proof.
1.11. CoroLLARY. Let (G, A), H, N and p be as in Proposition 1.10. Then

ker(indf; p)|N = (M {ker(p|N)*; x € G}.

Proof. The proof follows immediately from Proposition 1.10 using the fact
that {&(x); & es#(ind§ p), ¢ continuous} is dense in #(p) for all x € G.

Corollary 1.11 seems to be well known. In the case H = N a proof is given in
[17, Proposition 11]. But we could not find a reference for the general case.

An automorphism « of a covariant system (G, A) is a pair « = (g, a,), where
o is an automorphism of G and a4 a *-automorphism of 4 satisfying «(*a) =

ag Ix
= "6 )(aA(a)) for all xe G and a € 4. Clearly, every y € G defines an (inner)
automorphism of (G, )by x —»y~ixy for xe€ G, and @ —va foracd.If H is
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a closed subgroup of G we denote by H, the closed subgroup x51(H). Then, for a
covariant representation p = (py, p,) of (H, A), we can define a covariant represen-

tation p* = (pfr_, p3) of (H,, A) by pi (25¥(h)) = pu(h) for h € H, and piia) =
= pa(2;a)) for ae A. The following proposition extends [17, Lemma 10].

1.12. PROPOSITION. ind}}z P, is equivalent to (ind$; p)®.

Proof. Let ¢ be the positive number determined by

Sf(x)dx e Sf(da(x))dx, 7 € Can(G).
G G

. o . . e i 4G o . .
Then it is easy to verify that ¢: #(indf p) — #(indx, p?); (PENX) = c&{2,(x)) is
a unitary operator which intertwines the unitary parts of the above representations.
So let «c 4 and ¢ & # (ind§; p). Then

((indf7, p)(@POx) = pA(T aNPE(x)) = ep @i a(E(aelv)) =

= 0p4(CG¥ T WL H@NEAY)) = ((indfp) (21 H@)E)26(¥)) = o((indfy PIH@IENX)s

which completes the proof.

2. THE «CENTRAL STEP” AND THE -‘FINITE STEP*’

2.1. DerinitioN. Let (G, 4) be a covariant system, N a closed subgroup of G
and 7 a closed ideal in C*(N, 4).
i) The G-kernel of 1is the ideal I¢ := (M {I¥; x € G}, where I* = {*f. feI}.
i) 7iscalled G-primitive,if I'is the G-kernel of some primitive ideal in C#(V, 4).
i) If I is G-invariant, then I is called G-prime, if for any two G-invariant
closed ideals I, I, = C*(N, A), I n I, = I implies that < Tor L,c I
iv) [ is called G-maximal if I'is a maximal closed G-invariant ideal in C“(V, 4).

2.2. REMARK. Obviously, G-maximal ideals are G-primitive and G-primitive
ideals are G-prime. On the other hand, one can show that conversely, if C*(V, 4)
is separable, every G-prime idezl is G-primitive (see {22]).

Now we define maps between the ideal spaces of C*(H, A) and C*(G, A),
where H is a closed subgroup of G. For this, let I be a closed ideal in C*(H, 4) and
p a covariant representation of (H, A) with ker p = I. Then we set

ind§ I = ker(ind§ p).

In the opposite direction, for a closed ideal J in C%(G, A) such that J = kerx for
scme covariant representation n of (G, 4), let

Resf? J = kern:H.
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Moreover, for a unitary representation p of G, we define
p ®J = ker(p @ n).

Note that ind% and Res are exactly the same as Ind$; and Res§ as defined in
[17]. They are continuous and intersection preserving maps between £(H,A) and
F#(G, A). Proposition 1.2 implies that (p,J) »p®J is a well defined map from
Rep(G) X #(G, A) into F(G, A) which preserves intersections in the following
sense: If S<Rep(G) and T< #(G, A) such that p < Sand J2 M {/;1eT},
then p® J 2 ST =MN{o®@[;0€S, IeT}

2.3. PROPCSITION. If N is a closed normal subgroup of G, then the following
conditions hold.

1) Res™(ind§ 1) = IC for every I F(N, A).

i) ind§(ResVJ) = A @ J for every J € #(G, A), where 7 denotes the left regular
representation of G/N.

iit) If G/N is amenable, then ind§(ResNJ) < J for every J e J(G, A).

Proaf. i) follows from Corollary 1.11 and can also be found in [17]. The proof
of 1ii) is a consequence of Corollary 1.5, and iii) follows from ii) by the fact that for

amenable groups the trivial representation is weakly contained in the left regular
representation.

2.4. PROPOSITION. Let N, H be closed normal subgroups of G such that N < H
and H|N is amenable. If I is a G-prime ideal in C*(H, A), then Res™[ is a G-prime
ideal in C*(N, A).

Proof. The proof is a repetition of the proof of {22, Lemma 1], using the maps
ind{ and Res” instead of e and v in [22].
The proof of the following lemma uses an idea in the proof of [20, Lemma 3.1].

2.5. LEMMA. Let N, M be closed normal subgroups of G with [G: M] < co.
Then for every G-prime ideal I in C*(N, A), there exists a M-prime ideal R in C*(N, A)
such that I = (M{R*; x € G/M}.

Proof. Let .# be the set of all M-invariant closed ideals J in C*(N, 4) such
that J=I and I = (M) {J%; X € G/M}. . is ordered by inclusion. Let(J)), be a
linearly ordered set in .#. We show that Q = L:J7,1 is an upper bound for (J)),.
For that, let P be a primitive ideal in C*(N, 4) with P = I. Then, for every 2, there

exists an X, € G/M such that P=J,*. Since G/M is finite, there is a constant subnet

(% 1,), Of (x7)1, say x;,=x for some X € G/M. It follows, that P2_) ./:ﬂ =UJr=
"N A

= Q¥ hence r‘\{Q*; xeGIM} < M {P*; xe G} for every Pe Prim(N, 4) with

P2l Thus I = ﬂ{Q—"; x € G/M} and Q € 4. Applying Zorn’s lemma we get
the existence of a maximal element R of /.
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To sce that R is 3 -prime, let Q, and Q. be closed AM-invariant ideals with
Q.00 < R, and let (ji =M {Qg; + R) ;e GiM} for i = 1,2. Then @1 o
n (:)2 == I, hence Q~; = [forsomeie {l, 2} because 7 is G-prime. Thus Q; + R .7,
from which it foliows by the maximality of R in .7 that Q; € R.

2.6. LemMa. If N and M are as above, then the following conditions holes.

1) If P e Prim{N, A), then PO is G-maximal if and only if PM is M-maximal.

ity A G-prime ideai I in C*(N, A) is G-maximal if and only if every M-prime
ideal J containing I is M-maximal.

I

Proof. The proof of i} follows by standard arguments using the finiteness of
G/M, and ii) follows from i) by using Lemma 2.5.

The if part of the foliowing lemma is the “*central step”” mentioned ir the intro-
duction. In [22] Ludwig has proved it in the case that G is nilpotent and 4 == C.
But his arguments go through in the general case as well, if we use the map ind in-
stead of the map ¢ defined in [22].

2.7. LEMMA. Let (G, A) be a covariant system and N, H closed norinal subgroups
of G such that N is open in G and HIN is central in GIN. Then a G-prime ideal J
in C*(H, A) is G-maximal if and only if ResVJis ¢ G-maximal ideal in C5(N, A).

Proof. By the remark preceding the lemma, it suffices to prove the “only if"
part. So let J be a G-maximal ideal in C*(H, A) and I a G-invariant closed ideal
in C*(N, A) containing Res™J. Then

indf7 2 ind¥ResVJ) = (HIN)” @ J

by ii) of Proposition 2.3. Now let J; be a G-primitve ideal in C#(H, A) with J; =
= ind} 1. A repetition of the proo”of [22, Lemma 4] shows that thereis a y € (H{N)"
such that J; 2 7 ® J, hence J;, = y @ J since J is G-maximal. Thus

ResVJ = ResVJ, = ResM(ind? 1) == 7 o ResVJ,
hence I == ResVJ, and the G-maximality of Res™ ./ is proved.

The *“finite step”” mentioned in the introduction turns out to be much more
complicated. The proof uses essentially ideas of Poguntke in [30], where he shows
that, if NV is a normal subgroup of finite index in G, then Prim(G)is 7, if and only
if N has a T, primitive ideal space. We start with some lemmas on covariant repre-
sentations of ““finite extensions™ of covariant systems. By (G, 4)" we will always
denote the space of irreducible clements of Rep(G, 4).

2.8. LEMMA. Let (H, A) be a covariant system, N an open normal subgroup of
finite index in H, and pe (N, A)". Denote by H, the stabilizer of p in H and let
sc(H,, A)" such that ¢'N contains p. Then

i) o' N is afinite multiple of p,

i) iﬁdf,p o is irreducible.
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Proof. Compare the proof of [30, Lemma 1] with Proposition 1.7.

2.9. LEMMA. Let (H, A) and N be as above, and let © € (H, A)" such that
niN is irreducible. If n' € (H, A)" and n'|N contains riN, then i’ =« @ n for a
unique o e (H, N)".

Proof. See the proof of [30, Lemma 2].

Recall, that < and ~ denote weak containment and weak equivalence, res-
pectively.

2.10. Lemma. Let (G, A) be a covariant system, and let N, H and M be closed
subgroups of G with the following properties: N is normal in G, [H: N] < oo, and M
acts trivially on HIN. If n € (H, A)" and p e (H/N)" such that n'lN is irreducible
and M(n) < p @ M(x), then M(n) ~ p ® M(n). Here M(n) denotes the M-orbit
of min (H, A)", ie. M(n) = {n" ; me M}.

Proof. We follow the proof of [30, Lemma 3]. First we set 7 = @ {n", m € M}.
Then 7 is weakly equivalent to M(n), and it is enough to show that 7 ~ p ® 7.
Since m < p ® © we can find a =-representation n’ of the C*-algebra of =
= (p ® ) C*(H, A))in s#(x)suchthatn = ' o (p ® 7). Now 7 is a subalgebra of the
C#-algebra 4 = L(#(n)) ® n(C*(H, A)), because Z(H(p)) is finite dimensional. The.
refore, we can find an irreducible =-representation 7 of £ such that r;ﬂ contains
7’ as a subrepresentation. By the structure of & there exists an irreducible =-repre-
sentation 7, of #(C*(H, A)) with 1(a ® b) = a ® t,(b) for all a e L(H#(p)),
ben(C*(H, A)). Let 19=r1,0n. Then 7, < @, and as in the proof of
{30, Lemma 3] we can sec that tiZo(p @ ©) = p ® T, and that t,|N contains
nlN. Thus by Lemma 2.9 there is a unique « € (H/N)~ with 1, = a @ m. But = =
= 7n'o(p ® 1) is contained in rl,szio(p @A)=p®1T,=p ®a @ m, hence by the
uniqueness condition in Lemma 2.9 it follows that & = p*. Now p* @ n =1, < 7
thus p* ® # < & since M acts trivially on H/N. From this it follows by the argu-
ments used in the proof of [30, Korollar zu Lemma 3], that p ® n < 7, hence
pROT ~ T.

2.11. LEMMA. Let (H, A) be a covariant system, N a normal subgroup of finite
index in H, and p € (N, A)" such that the stabilizer of p is all of H. Then, as in the
group case, there exists a multiplier r on H %X H and a r-multiplier representation R
in #(p) with the following properties.

Drx, )| =1and r(x, n) = r(n, x) =1 for x, ye H and n € N.
i) r(xn, ym) = r(x, y) for x, ye H and n, me N.
iii) r(xy, 2) r(x, y) = r(x, yz) r(y, z) for x, y, z € H.

iv) R(xy) = r(x, »R(X)R(), py(x~'nx) = R(x"1pyn)R(x) and PA(xﬂa) =
= R(xYp(a)R(x) for x, ye H, neNandac A.
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Proof. Choose a cross section {xy,..., x;} of H/N in H. Since p* is equiva-
lent to p for every x ¢ H, there exist unitary operators Ty, ..., T, on #(p) such

that pX(n) = T *py(n)T; and p(° 1a) = TI7pa)T; for | < i< I Then R(x) ==
= Typy(n) for x == x;n, and R(x3) and R(x)R()) intertwine p and p**. Hence by
Schur’s lemma there is a complex number r(x, 1) of absoute value one such that
R(x, ¥) = r(x, Y)R(X)R(Y). It follows by easy calculations that R and r satisfy the
properties i), 1i), i) and iv).

Now let H, be the locally compact group with underlying space 13 H, where
T denotes the torus group, and multiplication defined by

(t, XY (s, ) = (gsr(x, )74 x) for (7, x). (s, ¥) e H,.
If we define an actior of H, on A by ¥»¥lg = “q for (¢, ¥) € Hyand a € A, then (/.. A)
becomes a covariant system. Let p, (1, x) = tR(x) for (1, x) € H,. Then p = AP gy A pa)
. . I 1
1s a covariant representation of (F,, A4).

(t, x)e Ay Clearly N =:p~Y(A")is the direct product of T and N, and F, N, is isomor-
phic to H:N. If ¢ is any covariant representation of (H, A4),then ¢, = (6y°p, 7,
is a covariant representation of (A, 4). Let ¢ and ¢’ be two covariant representa-
tions of (F, A). Then, using the description of weak containment in terms of vector
valued positive definite funct’ons, it is easy to see that o is weakly contained in ¢°
if and only if ¢, is weakly containend in a;. Suppose now that (G, 4) is a covariant
system and that N, I/ as above are closed subgroups of G such that N is normal in
G. If M is a subgroup of G which acts trivially on H,.V, then M acts as an avtomor-
phism group on H; by (2. x)* = (¢, m~1xm) for m € M and (1, X) ¢ H,. The resulting
action of M on covariant representations t of (Hi, A) is given by t — (73 , 75).
=1 . °
where 1 (t, X) =1, (t, in"tym) and (@) = 7,7 a) for m e M, (t. x) ¢ H,
1 1

and ¢ € A.

2.12. PROPOSITION. Let y be the character of Ny defined by y(t, X) = 1. Thew

. . H, . Lo
every subrepresentation of indty is M-invariant.
1
Proof. By Mackey's theory the map x — 2', where %'(x) = 2(1, x), is a bijection
. . N . . H
between the set of all irreducible subrepresentations of ind, 'y and the set of alj
1

irreducible 7-multiplier representations of H/N. The latter are M-invariant since the

action of M on H/N is trivial. Now the proposition follows by the fact that (%) =
= (') for all m € M.

2.13. LEMMA. Let (G, A) be a covariant svstem and N, H closed subgyoups
of G such that N is normal in G and [H: N} < oc. Suppose that M is a closed sub-
group of G which acts trivially on HIN and that p € (N, A)" such that the stabilizer
of pinHisallof H. Then, if 6,0" € (H, A)" such that pis a common subrepresentation
of a:N and 0"1}\7 and M(o) < M(e'), M(o) is weakly equivalent to M(c').
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Proof. By Lemma 2.11 there exist a multiplier r of Hx H and a r-multiplier
representation R of H which extends p. Now let p, o, and o} be as in the remark
preceding Proposition 2.12 and define p, to be the covariant representation of (N; , A)
which is given by the pair (pNo(piNl), p4)- Then p, is contained in gy; N1 and
01|V, since p is contained in ¢|N and ¢’ N. It follows by Corollary 1.8 that &,

and o are contained in mle py. If y is the character of N, defined by ¥(¢, x) = ‘)
then by Proposition 1.4

. H . H ~ . ~
indyt py = indy1(x ® | Ny) = (indy2 ) ® p.
Hence there are irreducible subrepresentations o and f§ of ind’lf,1 ysuchthata ® p =
1

=0, and f ® p = o7. Now M(c) < M(a') by hypothesis, hence M(c,) < M(c})
and therefore « @ M(p) < R M(p) by Proposition 2.12. It follows that «* ® o ®
®OM(p)< o ® f ® M(p), hence M(p) < a*®f ® M(p) since the trivial repre-
sentation is contained in o ® «. Therefore, we can find an irreducible subrepresen-
tation 7 of o* ® f with M(p) < y ® M(p). But now y is an irreducible representation
of Hy/N,. Hence, since p N, is irreducible, we can apply Lemma 2.10 to conclude
that M(p) ~ y ® M(p). Thus o ® M(p) ~a ® y® M(p), from which it follows
by the fact that f is contained ino ® y that § ® M(p) < o ® M(p), hence M(o]) <
< M(o,). But this is equivalent to M(s") < M(o) and the lemma is proved.

2.14. Lemma (The finite step). Let (G, A) be a covariant system and| N, H closed
normal subgroups of G such that N = H and [H: N] < co. Suppose that I = C*(N, A)
is a G-primitive ideal in C*(H, A). Then the following conditions are equivalent :

1) [ is a G-maximal ideal in C*(N, A).
ii) Every G-primitive ideal J in C*(H, A) with ResN J = I is G-maximal.
iii) Every G-prime ideal J in C*(H, A) with Res™J = I is G-maximal.

Proof. i) = ii) Let P e Prim(H, A) with P% = J and let M be the pullback of
the centralizer of H/N in G/N to G. Then M is a normal subgroup of finite index in
G, so by Lemma 2.6 it is enough to show that P* is a M-maximal ideal in C*(H, A).
To prove that PM is M-maximal, we choose a © € (H, A)~ with ker = = P, and show
that for any t € (H, A)”~ with M(z) < M(n) it follows that M (1) ~ M(n). By Lemma
2.6 it is easy to see that ResVPM is H.M-maximal since I = Res™/ is G-maximal.
Thus, if M(z) < M(rn), hence M(r N) < M(x'N), then M(TiN) M(niN) since
M {ker(n N)"; m € M} = Res™ PM is H-maximal. It follows that

M) < MG ® n) = M(ind¥ n‘N) ~ M(mdNrbN) = MO ® 1),

where /. denotes the left regular representation of H/N. Since H/N is finite, 4 is
finite dimensional and hence 2 ® 7 is a finite direct sum of irreducible subrepresen-
tations by Proposition 1.9. Thus there exists an irreducible subrepresentation t’
of L ® 7 such that M(z) < M(n) < M(").
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Now we prove that M{t) ~ M(t'). Since 7' is a subrepresentation of
A ® z, there exists a common irreducible subrepresentation p of 7 ¥ and <
Denote by /I, the stabilizer of p in H. Then we can find an irreducible sub-
rcprcsmtdtion o of 7, such that ¢'N contains p. Since M(c) < M(z' I p) <
< M(7 H,), there exists an irreducible subrepresentation ¢’ of " H, with W(r) <
< M(a""). Now 1’ is contained in indf p by Corollary 1.8, hence aJV decomposes
into H-conjugates of p. Tt follows that ‘

M(p) < M(o N) < M(e" N) < MH,(p"")

for some /i’ € A. Hence ther: exists a 7 € A such that p# is a subrepresentation of
" Nand M(p) < M(p"). Using Lemma 2.6, we can see that (M) {ker p™, in & M}
is M-maxmml l"hus M(p) ~ M(p") and therefore M(indy; o) < M(ind% p).

Now, since ¢’ is contained in ind¥ p#, we can find an irreducible subrepresen-
tation ¢’ of ind4 p such tha: M(s"') < ¥ (¢’'). So M(6) < M(c") < M(s'), and p
is a common subreprescntation of ¢ N and o’ A It follows M(e) ~ M{(s") and
hence M(o) ~ M(6'’) by Lemuma 2.13. Finally t’ is contained in indﬁp g’ and 7 -
ai indﬁ”o‘ by Corollary 1.8 and Lemma 2.8, thus

M) < M(ind,’jp ") ~ :‘W(indfzﬂ a) = M(1).

But this proves M(t) ~ M(z).

i) = i) Using Lemma 2.8 and the remark preceding Lemma 2.11 it is casy to
see that every p c (N, 4)" is contained in = .V for some 7 € (1, 4)". Hence every
G-primitive ideal in C*(N, A) is the restriction of some G-primitive ideal in C#(H, A).
So let P & Prim (#, A) such that Res® P¢= I and et = e (H, 4)" with ker = = P.
Then ind¥ 7 N == / ® n decomposes into the finite direct sum of irreducible repre-

7
sentations 7, ..., x, by Proposition 1.9. Hence ind{(ResVP%) =M PF werc P; =
i1

= ker m; for 1 £ i< n Now let I’ be a closed G-invariant ideal in C*(N, 4}
containing 7 and J’ a G-p:'mntlvc ideal in C*(Ff, A) containing ind¥7’. Then

T2 ind¥ [ 2 ind{(Res¥ PO) = () PE.

i=1

Hence J' 2 PE for some i. By hypothesis PF is G-maximal since Res“Pf «= I.
Thus J' = Pf and therefore

-: ResVP¥ 2 ResV(ind{ 1) = I'.

Henee ' = I and T is G-maximal.
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ii) = iii) Now let J be any G-prime ideal with Res¥J = I, and let Pe
€ Prim(H, A) with P 2 J. Then ResVP% = ResVJ by the G-maximality of 7. Hence

I 2 indR(ResV/) = indf(ResVPC) = M Pf.

i1

Therefore, J 2 PE for some /. But PS is G-maximal by hypothesis, thus J is G-maxi-
mal too.

iil) = 1ii) is trivial.

2.15. COROLLARY. Let N be an open normal subgroup of finite index in G. Then
Prim(G, A) is T, if and only if Prim(N, A) is T.

Proof. The proof follows from Lemma 2.15 and Lemma 2.6 using the fact
that every G-primitive ideal in C*(N, A) is the restriction of some primitive ideal
in C*(G, A).

In [33] Rieffel shows that the crossed product of a finite group G with an arbi-
trary C*-algebra A4 has a T,-primitive ideal space if and only if 4 has a T,-primitive
ideal space. However, the above corollary is a little bit stronger, and it follows easily
that the result holds also for twisted covariance algebras (see the remark preceding
Theorem 3.4).

3. THE MAIN RESULTS

Let G be a discrete group. We denote by Gp the set of all x € G such that
x%= {pxy~'; y € G} is finite. Then Gy is a normal subgroup of G. The ascending
FC-series ((,),, where o runs through the ordinal numbers, is defined by G, =
=={e}, G, =\ JG,ifaisalimit ordinal number, and G,/Gy= (G/G)p if « = f + L.

p-a

This series eventually stabilizes and F = lim G, is called the FC-hypercenter of G.

If G = F, then G is called FC-hypercentral. Clearly every nilpotent group is
FC-hypercentral. One can show (see [34]) that every finitely generated subgroup
of an FC-hypercentral group is a finite extension of a nilpotent group. Thus every
FC-hypercentral group has polynomial growth and hence is amenable.

In [27] Moore and Rosenberg have shown that a discrete countable amenable
group with 7 primitive ideal space is FC-hpyercentral. Now, using the same
arguments, we prove that if G is any discrete amenable group such that every
closed prime ideal is maximal, then G is FC-hypercentral. For that, let F denote the
FC-hypercenter of G and G, = G/F. Then G, contains no non-trivial element with
finite conjugacy class. Thus the left regular representation A of G, is a factor
representation, and this implies that ker 2 is a prime ideal in C*(G,). Since G, is
amenable and since closed prime ideals in C*(G,) are assumed to be maximal, it
follows that {0} = ker 1 is a maximal ideal in C*(G,), hence C*(G}) is simple. But the
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kernel of the trivial one-dimensional representation is of codimension one.
Thus G, =: {¢} and G = F is FC-hypercentral.

The converse will be a special case of the following theorem which is the
main result of this paper.

3.1 THeorREM. Let (G, A) be a covariant system and N an open normal subgroup
of G such that G N is FC-inpercentral. Then a closed prime ideal J in CHG, A) is
maxiimal whenever Res™J is a G-maximal ideal in C*(N, A). If in particular G'N
is nilpotent, then J is maximal if and only if Res™ J is G-maximal.

3.2. COrRCLLARY. Suppose G is an amenable discrete group. Then every closed
priie ideal in C*G) is maximal if and only if G is ¥C-hypercentral.

We are going to prove Theorem 3.1 by transfinite induction on the ascending
FC-series of (/A" The next lemma is the induction step from x to % + 1. Recall
first that a discrete group G is said to be in the class [FClg, where B is a group of
automorphisms of G, if xF = {/3(‘.\-) ; B e B} is finite for all x € G. We say that G

¢ [FCl, if G e{FClys, . where I(G) denotes the group of inner automorphisms
of G.

3.3. Lemna. Suppose that N and H are closed normal subgroups of G such
that N is open in H and H'N e[FClg. Then a G-prime ideal J in C*(H, A) is
G-maximal whenever Res™J is a G-maximal ideal in C*(N, A).

Proof. If Z denotes the set of all subgroups L of A such that N L and L'N
is finitely generated, then it is easy to see that C*(H, A) = UTCT(ELTZT,_IC—-F }
Hence the proof of [35. Lemma 1.2.1] shows that I = DT{I—Q_C“([:. Ay Le ’}E for
every closed ideal I in C*(H, A). Clearly I n C%(L, A) = Res™ [ for every L e 7.
Now let [ be a G-invariant closed ideal in C*(H, A) containing J. To prove that
I = Jitis enough to show that Rest I = RestJ for every L € #. So let L € 7. Since
H/N &[FC]; it follows that L/N is contained in a finitely generated normal sub-
group K of AI/N. Then clearly RestJ = RestJ provided that ResfI = Res¥J, where
K denotes the pullback of K in G. But this is true if we can show that Res¥ J is a
G-maximal ideal in C#(K, 4).

Since K,V is a finitely generated [FCJ-group, the center Z of K'N has finitc
index in K'N[34]. If Z is the pullback of Z in G, then by Lemma 2.15 Res¥ J is G-ma-
mal if this holds for Res?J. To show this, let M be the centralizer of Z in G'N
and M the pullback of A in G. Then M is a normal subgroup of finite index in G,
since Z'N is a finitely generated [FCls-group. Therefore, by Lemma 2.6, Res*J
is G-maximal if every M-prime ideal J' in C*(Z, A) containing J is A-maximal.
If J’ is such an ideal, then Res™J' is an M-prime ideal coantaining the G-maximal
ideal Res™J. Again by Lemma 2.6, ResVJ’ is Af-maximal. Now, by the construction
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of A, Z/N is central in M/N. Thus we can apply Lemma 2.7 to get the A{-maxima-
lity of J'.

Proof of Theorem 3.1. For every ordinal number « let G, be the pullback of

G, where (G,), denotes the ascending FC-series of G/N. Suppose that J is a closed
prime ideal in C*(G, A) such that Res" J is G-maximal.

G . .
We claim that Res *J is G-maximal for every ordinal number x. For o = 0
this follows from the hypothesis. Now let a be any ordinal number, and assume

that Res #J is G-maximal for every f <o Ifa=f + 1 for some j3, then Res 87 is
‘G-maximal by Lemma 3.3. So let o be a limit ordinal number. Thea G, = Gy,

a<f
G
which implies that C*(G,, A) = \J {C*(G;, A), p < u}. Hence Res “J is G-maximal

G, . : .
by [34, Lemma 1.2.1], since Res #J is G-maximal for every f§ < a by assumption.
‘Thus the claim follows by transfinite induction, and the maximality of J follows
by the fact that G = G,,0 for some ordinal number .

The assertion in the case that G/N is nilpotent is an easy consequence of
Lemma 2.7.

Let (G, 4) be a covariant system and N a closed normal subgroup of G. Sup-
pose that there is a continuous homomorphism 7, of N into the group of unita-
ries of the multiplier algebra M(A4), equipped with the strict topology, such that t,(n)-
-aty(n~Y) = "a and ty(xnx~*) = *1(n) for a € 4, n € N and x eG. Then we can
form the twisted covariance algebra C*(G, A4, 1) of the twisted covariant system
(G, A4, ty) [17). C*(G, A4, 1) is the quotient if C*(G, 4) modulo a closed ideal IC.
If f1 is a closed normal subgroup of G containing N, then the ideal /¥ in C*(H, A)
is G-invariant. Furthermore C*(¥, A4, 1) is isomorphic to A. If J' is a closed
ideal in C*(G, A) and J the image of J' in C*(G, 4, t,), then the restriction Res J
of Jto A is defined to be the image of Res¥J' in A. Tt follows that J is maximal if
and only if J’' is maximal, and ResJ is G-maximal if and only if ResVJ' is
G-maximal. On the other hand, for every closed normal subgroup N of G, one can
find a twisting map ty into the unitaries of M(C*(V, A)) such that C*(G, A)

is isomorphic to C*(G, C*(N, A), ty) (see [17] for more details). Therefore,
Theorem 3.1 is equivalent to

3.4. THEOREM. Let (G, A, ty) be a twisted covariant system such that N is open
in G and G/N is FC-hypercentral. Then a closed prime ideal J in C*(G, A, ty) is maxi-
mal, whenever ResJ is a G-maximal ideal in A. If G[N is nilpotent then J is maximal
ifand only if Res J is G-maximal.

When C*(G, A, ty) is separable and G/N is nilpotent, one can show in a similar
way as in the proof of the only if part of (6, Theorem 1.2] that, if C*(G, 4, 1y)
has a T,-primitive ideal space, then every G-primitive ideal in A4 is the restriction
9—c. 1776
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of some primitive ideal in C*(G, A4, 1y). Hence Theorem 3.4 is a generalization
of Theorem 1.2 in [6].

A twisted covariant system (G, A4, 7y) is called quasi-regilar, if every primitive
ideal in C¥G, A, ty) restricts to a G-primitive ideal in 4. Note that quasi-reguiz-ity
holds {17, Corollary 19], whenever the space of G-quasi-orbits in Prim(4)., cquip-
ped with the quotient topology, is second countable or almost Hausdorff. A Guasi-
-regular covariant system (G, 4, 1) is called regular if it has the following pro-
perties:

i) The G-orbit GiP) is locally closed in Prim(A) for every P & Prim(.1).

ii} The canonical map from G/Gp onto G(P) is a homeomorphism for every
P c Prim(A).

Here G denotes the stability group of Pin G. The foilowing proposition is ¢ corse-
quence of {17, Theorem 17], the remark following {17, Theorem 18], and {77, Pro-
position 20}

3.5. ProrosivieN (Green). Let (G, A, 15) be a regular tvwisted coverianr systont
aind P ¢ Prim(4). If we conote by FG the space of oll I € (G, A, Ty) with Resl -~ p¢
and by 5 P the spece of ¢ 'i r cr/((r,p, A, ) with ResI' = P, then 5§ is homweonior-
phic to Sp. If in particiidar A is of type |, tiien Fp is homeomorphic to the ideal
space of a twisted covaiiant Amt@m (G, C, ©y). Here 1y is an isomorpitisinc of N7
onto the onc-dimensione! torus group, GpiN' is isomorphic to Gp'N, and N is
central in G .

3.6. TirOrREM. Let (G, A, tv) be ¢ regulair twisted covarient systenr. Sunpose
that for everv P @ Prinyd), (il; N is e discrete FC-hypercentral group. Then a
closed prime idcul in C*G, 4, ©3) is maximol whenever ResJ is a G-maximal idoal
in A. Particwlary, if every Geprimitive ideal in A is G-maximal, then CHG. A, 7y)
has a Ty primitive ideal space.

Proof. LetJ be a closed prime idee! in C*(G, A4, ty) such that ResJ is G-maxi-
mal. Then ResJ - PC for some primitive ideal P e Prim{4). By the continuity
of the restriciion map and by the G-maximality of PY, .£$ is closed in F(G. 4, T5)-
Hence J is maximal if and only if J is closed in FG. 1t follows from the regularity
condition on (G, 4, ) that G(P) is a closed subset of Prim(4) homeomorphic
10 G{Gp. Thus P is a maximal closed ideal in 4. Now by Theorem 3.2 every prime
clement in S, is a maximal closed ideal in C¥(Gp, 4, ty) and therefore closed
in & p. Hence J is closed in .#§ by Proposition 3.5.

If every G-primitive ideal in 4 is G-maximzl, then Res Q is G-maximal for every
() € Prim (G, A, ty) since (G, A4, ©y) is quasi-regular. Thus every primitive ideal in
C*(G, A, ) is maximal and tae theorem is proved.

The connected locally compact groups with Ty primitive ideal space have been
classified by Moore and Rosenberg [27]. It turns out that an amenable connected
group G has a T primitive ideal space if and only if G contains a compact norma |
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subgroup K such that G/K is a Lie group of type R. But this is equivalent to that G
has polynomial growth. It follows that every connected group with polynomial
growth has a T, primitive ideal space. This is not true for discrete groups because
there are simple examples of polynomially growing discrete groups which are
not FC-hypercentral.

For an arbitrary Lie group G we denote by G, the connected component of
the identity and by K the maximal compact subgroup of the center of G,. Then
Losert [23] has shown that G has polynomial growth if and only if G/G, has poly-
nomial growth and G/K is of type R. Note that for a Lie group G the following con-
ditions are equivalent (see [1] and [8]):

1) G is of type R;

it) Every eigenvalue of Ad(x) has absolute value one for x € G;

iii) The closure of Ad(G)(X) is a minimal closed G-invariant subset in (& for
every X € &, where (5 denotes the Lic algebra of G;

iv) Thereisaflag {0} = V, < ¥V, € ... € ¥, = ® of G-invariant subspaces
V; such that Ad{(G) acts by orthogonal transformations on each V,/V,_; for
1<i<gn

Now let G be a tvpe R Lie group such that G, is nilpotent. Then it follows from
iii) and the bicontinuity of the Kirillov correspondence [5] that the closures of the
C-orbits in G, are minimal G-invariant closed sets. Hence every G-primitive idcal
in C*(G,) is G-maximal. We use this fact to prove the following theorem.

3.7. TrieoreM. Let G be an amenable locally compact group containing a
compact normal subgroup K such that G{K is a type R Lie group and (G|K), is nil-
potent. Then every closed prime ideal in C*(G) is maximal if and only if (GIK)[{G/K),
is F C-hypercentral.

Proof. Suppose first that every closed prime ideal in C*(G) is maximal. Then
clearly every closed prime ideal in C*((G/K)/(G!K);) is maximal too. Hence (G/K)/
J(G/K)q is FC-hypercentral by Corollary 3.2.

Now let (G/K)/(G/K), be FC-hypercentral. We know that C#*(G) is iso-
morphic to a twisted covariance algebra CHG, C*(K), 1x). Since K is discrete,
C*(G, C¥(K), tx) is regular. Furthermore every G-prime ideal in C*(K) is G-maximal,
hence every closed prime ideal in C¥(G, C#(K), t) restricts to a G-maximal ideal in
C*(K). So let J be a closed prime ideal in C*(G, C*(K), 1) and P € Prim(X) such
that ResJ = PC. Then by Proposition 3.5, J is maximal if every prime element in
S pisclosed, where # p denotes the space of all ideals Ie £(Gp, C*(K), t) with Res J=
= P. Agair. by Proposition 3.5 thisis true if every closed primeideal in C*(G}, C, 1)
is maximal, where K’ is a central torus group in Gp and G%/K’ is isomorphic
to (p/K. Now Gp/K is cf type R ty hyrotkesis. Hence, using the equivalent condi-
tion iv) chove, it follows easily that G is of type R too. Thus Gj is a type R Lie
group such that (Gp), is nilpotent and Gp/(Gp)y is FC-hypercentral. Since (Gp), 1S
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separable, every Gp-prime ideal in C*((Gp),) is Gp-primitive. Hence every Gp-prime
ideal is Gp-maximal by the remark preceding this theorem. it is now a consequence
of Theorem 3.1 that every closed prime ideal in C*(G}), and therefore also in
C*(G%p, C, 1), is maximal.

Therc are some interesting corollaries of Theorem 3.7. The first follows from
the description of polynomially growing Lic groups in [23].

3.8. COROLLARY. Let G be a polvaowially growing Lie group swith nilpotent
connected component of the identity G,. Then every closed prime ideal in CHG)Yis
maximal if and only if G'Gy is EC-hypercential.

Proof. Since G has polynomial growth there is a compact subgroup K of G,
such that K is normal in G and G/K is of type R. So we can apply Theorem 3.7 to
get this corollary.

Recall that a locally compact group G is said to be in the class [IN] if G con-
tains a compact G-invariant neighbourhood of the identity. If G e [IN], and if G
denotes the union of all relatively compact conjugacy classes of G, then Gy is an
open normal subgroup of ;. Furthermore therc are normal subgroups V and K
of G with the following properties (sec [16]): K= N< Gg, Nisopenin G, Kis com-
pact, and N/K is a vector group having a basis of G-invariant neighbourhoods of
the identity. It follows that G/K is a type R Lie group. Clearly G/N is F(C-hyper-
central if and only if G/Gy is FC-hypercentral. Hence the following corollary is
also a consequence of Theorem 3.7.

3.9. COROLLARY. Let G be an amenable [IN)-group. Then every closed pirime
ideal in C*(G) is maximal if and only if G/Gg is FC-liypercentral.

We believe that Theorem 3.7 remains to be true without the hypothesis that
(G/K), is nilpotent, but we were not able to prove this. One consequence would
be that every closed prime ideal in the C#-algebra of a polynomially growing Lie
group G is maximal if and only if G/Gyis FC-hypercentral. We finish this paper
with a result about twisted covariance algebras.

3.10. TuroreM. Let (G, A, 1) be a vegulur tristed covariant system such that A
is of type 1, and suppose that P ¢ Prim(A4) satisfies the following conditions :

i) PY is a G-maximal ideal in A;

ii) Gp/N is an amenadle [IN}-group or Gp N is a polynomially growing Lie group
such that (Gp!N), is nilpotent ;

iii) Every closed prime ideal in C*(Gp!N) is maximal,
Then every closed prime ideal I in C*(G, A, ty) with ResI = P¢ is maximal.

Proof. The proof follows from Corollary 3.8 and Corollary 3.9 using the same
arguments as in the proof of Theorem 3.7.
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