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THE F. AND M. RIESZ THEOREM FOR C*-ALGEBRAS

RUY EXEL

INTRODUCTION

‘The F. and M. Riesz theorem [10] states that every analytic measure on the
circle group is absolutely continuous with respect to the Haar measure. This result
is among the deepest facts of classical harmonic analysis and is the basis for much
of the work that has been done in this field since its publication in 1916.

A rich environment where the ideas of classical harmonic analysis have been
applied is the theory of operator algebras and, in special, the theory of non-self-
adjoint algebras. A paper by Arveson [1] for example contains a generalization of
the inner-outer factorization theorem for analytic functions as well as Jensen’s
inequality to the context of certain operator algebras called sub-diagonal algebras.

1In the present paper we take another step in this direction proving an exten-
sion of the F. and M. Riesz theorem to C*-algebras containing a special kind of
non-selfadjoint subalgebras which we call analytic subalgebras. Analytic sub-
algebras are the C*-counterparts of Arveson’s sub-diagonal algebras.

Generalizations of the F. and M. Riesz theorem appear quite often in the lite-
rature. The reader will find related results in [6] and [7]. We believe nevertheless
that ours is the first such result in a non-commutative context.

Our desire to search for a generalized F. and M. Riesz theorem grew out of
our interest in the theory of C*-algebras of right ordered groups which, as much as
Arveson’s theory of sub-diagonal algebras, presents a wide area where ideas of
Classical Harmonic Analysis can be searched for.

The precise problem that motivated the present work came up in connection
with our previous work on Hankel matrices over right ordered goups [4] and is
described as follows.

Let @ be a discrete right ordered group and denote by C#(G) its reduced C*-al-
gebra. Let CHP(G) (resp. H(G)) be the norm closed (resp. ultra-weakly closed)
algebra of operators on £,(G) generated by {/(g): g > e} where / is the left regular
representation of G. Note of course that CH{®(G) and H(G) are non-selfadjoint
algebras.



352 RUY EXLL

Is it true that
dist(a, HY(G)) = dist(a, CHZ(G))

for all @ in C¥G)?

Although perhaps somewhat techniccl this turns out to be a dzep question.
When G is the group of integers the answer is yes and it says that if f is a continuous
complex valued function on the unit disk then its distance to the classical Huardy
space ™ equals the distance from f'to the disk algebra A(D). This fact is at the sume
time the key ingredient of the proof of Sarason's theorem on the closedness of
H>* + C {11}

For the case of amenable groups the answer is also yes ([4], Theorem 14) and
one can use it to generalize Sarason’s theorem : CH(G) + HP(G) is closed.

We do not know whether the above distance formula holds for an arbitrary
right ordered group. Nevertheless the methods introduced in the present work
apply to give quite a clear picture of the general situation. If one denotes by I)z)
(resp. d(2)) the distance of a + z to HP(G) (resp. to CHP(G)) where z 1s a complex
number, we shall prove that d = D except possibly on a convex open subset of
the complex plane where d is constant and attains its minimum,

This paper is organized as follows. In the first part we develop the necessury
generalizations of absolute continuity and singularity for states (and, more generally
lincar functionals) on C*-algzbras and their relationship to representation theory
After this is accomplished we present a non-commutative version of the Lebesgue
decomposition theorem for measures. The results in this first part are not new and
were first obtained by Henle [8]. In the second part we introduce the notion of anilytic
subalgebras and prove our main result, the F. and M. Riesz theorem for C#-al-
gebras. In the third and final part we present the application discussed above.

Parts of this work were communicated at the Harmonic Analysis Seminar
Université de Paris-Sud, Centre D’Orsay on April 1987. The author wishes to
express his thanks to Prof. Miriam Dzchamps for the oportunity to address thi
seminar.

1. LEBESGUE DECOMPOSITION

In this first part we shall be concerned with non-commutative generalizations
of some aspects of measure theory which will lead us to a theorem on decomposition
of linear functionals on C*-algebras resembling the Lebesgue decomposition theo-
rem for measures. See also [8]. For this purpose we must first define absolute conti-
nuity and singularity for a pair of linear functionals on a given C#*-algebra. W¢
shall do so based on the following observation: given two finite measures g and v
on 4 space X, a necessary and sufficient condition for v to be absolutely continuous
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with respect to u is that integration with respect to v gives a normal linear func-
tional on L®(X, p).

Let A be a unital C*-algebra. It is well known that the enveloping von Neu-
mann algebra A’ of A is naturally isomorphic to the second dual of 4 and more-
over that every continuous linear functional ¢ on A has a unique normal extension
@'’ to A" with the same norm ([9], 3.7.8).

Whenever ¢ is a continuous linear functional on A4 we let |¢| be its absolute
value ([2], 12.2.8) and (n,, H,, ¢,) be the GNS representation of A constructed
from |g|. Given such a ¢ we denote by 4, the weak closure of the range of m,.
By the universal property of 4" ([9], 3.7.7) there exists exactly one normal epimor-
phism n/ from A’ to A, extending 7,,.

Since 7, is normal, its kernel is a weakly closed ideal of A" so there exists a
unique central idempotent e, in A" such that

Ker(ny) = (1 —e,)4".

One may easily veiify that ¢"'(x) = ¢"'(xe,) for all x in 4".
The restriction of 7, to e, A" is then an isomorphism onto 4; whose inverse
we denote by p,. It follows that n,p, is the identity on 4, while

Py (X) = €,X

for all x in A4"'.

1. ProroSITION. If ¢ and \ are continuous linear functionals on A then the
Jollowing are equivalent.

)e,<ey;

i) " =0 on (1 — e,)A"”;

iii) There exists a normal linear functional ¢ on A;,' such that on, = @;

iv) m, is equivalent to a subrepresentation of the direct sum of infinitely many
copies of m,.

If ¢ is positive then (i) through (iv) are equivalent to

v) o"(1 —e,) = 0.

Proof. To prove that (i) implies (ii) let x be in A"". Then ¢
(1 — ey)x) = ¢"((1 — ey)xe,) = ¢"(0) = 0.

Next assume (ii) and define ¢ on A, by = ¢"'py . Itis clear that % is normal.

We have for all ¢ in 4 "

Bry(a) = ¢"pymy(a) = ¢"pym,(a) = 9" (ae,) = ¢"(@) = ().

So (iii) follows. \v

@
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If ¢ is as in (iii) then there exists a square summable sequence (,) of elements
in H,, such that

o 12
;ip;(.\‘) = Z <xé’ns ;:n> Vx EAC’ .

n=1

The vector ¢ = (7,) is then in the space H,;, the direct sum of infinitely many
copies of H,, and we have for all ain 4

[pi(a) = o (ny(a)) = § {ngla)e,, &y = (m(@), &

n=1
where nj; is the direct sum of infinitely many copies of n,, . Therefore r, is equivalent
to a subrepresentation of =y, .

To prove that (iv) implies (i) let ¥ be the subspace of Hy corresponding to the
subrepresentation m,. Then

mg(l —e)) =15 (1 —e)V =0;

therefore 1 — e, is in Ker(n;) so 1 — e, < 1 — ¢, proving e, < ¢,.
Now assume that ¢ is positive. Given that ¢''(1 — e;) = 0 we have for all
xin A"

19" (1 = ). < ¢"(L = e, ()2 = 0

proving that (v) implies (ii). The converse is clear. ‘2

2, DeriNiTioN. If the equivalent conditions of Proposition 1 are satisfied
we say that ¢ is absolutely continuous with respect to  and write © < .

Note that by (iii) tha set of all ¢’s which are absolutely continuous with respect
to ¥ is in correspoadence with the predual of A, a fact that is somewhat rclated
to the Radon-Nikodym theorem. A deeper relation will be provided by Theorem 4
bzlow. Bzforz that we nzzd th: following rasult (comparz [S], p. 219).

3. LemMa. Let W be avon Neumann algebra of operators on a Hilbert space H.
Suppose there is avector  in H whose associated vector state is a faithful tracz.on W.
Then

a) every normal state on W is a vector state,

b) every norinal linear functional on W is of the form o{x) = {(x{({), y) where {
and y are vectors in H and

¢) the weal and c-weak topologies coincide on W.
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Proof. 1t is clear that (a) implies (b) (by polar decomposition [2], 12.2.4) and
{c) so it is enough to prove (a).

Let t be defined for all a in W by (@) = <{a&, &).

Given a normal state ¢ on W we have that forallx > Oin W

(X)) =0=¢x) =0

since 7 is faithful by hypothesis. Therefore by the (non-commutative) Radon-Nikce
dym theorem (see [9], 5.3.11 and 5.3.12, [3] and [12]) there exists a (possibly unbound-
£d) positive operator 4 affiliated with W such that

@(x) = t(hx)

for all x > 0 in W. The meaning of 1(4x) above should perhaps be better explained.
Let p, be the spectral projection of /i corresponding to the interval jn — 1, n). Then
K = N'p isin W, . For all x in W, we dzfine

w(hx) = ¥, w(koky).

n=1

Observe that

o) = «(il) = 3, (3) = ¥, 1Ol

n=1

o0
therefore, since the vectors k,(¢) are mutually orthogonal, the series Y k(&) is

f=l

summable. Let n be its sum. We then have forall x > Oin W

<.\'(I]), 77> = Z Z <an(é), km(é:)> = Z Z T(kInan) =

n n n

=Y, t(k,xk,) = 1(hx) = ¢(x).

n

%
Our next result describes the linear functionals which are absolutely conti-
muous with respect to a trace.

4. THEOREM. Let t be a positive trace on A. Then for every continuous linear
Junctional ¢ on A the following are equivalent :

i) @ is absolutely continuous with respect to 1;

ii) m, is equivalent to a subrepresentation on 1_;

iii) there is a vector { in H_ such that for all a in A

lol(@) = <r La)i, O.
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In this case there cxists another vector i in H_ such that

p(a) = (@)l nd
for all ain A.
Proof. Clearly (iii) implies (ii) and (ii) implies (i) so it is enough to prove that (i)
implies (iii). Define 7 on A2’ by
T(x) = ¥ <o
Then it is clear that 7 is a normal trace on 4,’. Observe that 7 is faithful because if x
is in A7 and T(x*x) = O then for all 2 and & in 4
Lxmfa),, 7)o = \Hr(b)"xn (@) = Un (@) (b)*x); <

< A (@ by B (@) Rt = 0

-~

whence x = 0. Let ¢ be as in (L.iii). If we now use Lemma 3 we are able to
find { in A, such that

a) = @i(n(a)) = <{7(a)<, .
The last part follows from the polar decomposition applied to ¢”'. 24
We now study the notion of mutual singularity of linear functionals.

5. ProposiTioN. Let ¢ and \ be continuous linear functionals on A. Then the

Jfollowing are equivalent :
i) eyeq = 0;

ii) " = 0 on e,A”;

iil) ¥ = 0 one,4";

iv) m, and =, are disjoint representations of A (cf. [2],5.2.2.).

If ¢ (resp. ) is positive then the conditions above are again equivalent to

v) ¢"(ey) =0 (resp. Y'(e;) = 0).

Proof. For all xin 4"
0" (ey%) = 0"(ey¥e,)

so (i) implies (ii). To prove the converse of this implication let ¢"" = ule™} be the
polar decomposition of ¢". Then for all x and y in A"

(T Ty (X)E,, Ty = 10" (Yreyx) = o' (u'yTe,x) = ¢"(euy*x) = 0.

So mj(e,) = 0 hence ¢, < 1 — e, proving (i).
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We next prove that (i) implies (iv). For this consider the representation
n=mn,® m, of A. Letf, and f,, be the projections in the commutator n(A4)" of n(4)
corresponding to 7, and n, respectively.

According to ([2], 5.2.1) we must prove that the central supports of f, and f,
in n(4) are mutually orthogonal.

Observe that

n(e,) = Tyle,) ® myle,) = 1 0 =,

and similarly that n"'(¢,) = f,,. Therefore both f, and f, belong to the center of
n(AY. This says that f, and f, are respectively identical to their central supports
which are then mutually orthogonal.

The proof that (iv) implies (i) goes as follows. Given that n, and n, are dis-
joint, if we let = = n, @ 7, with corresponding projections f, and f;,, we have that
the central supports of f, and f, are orthogonal. But since f, + f, = 1 it follows
that £, and f, coincide, respectively, with their central supports hence f, and f,
belong to n(A4)" =n''(4""). We may therefore find an orthogonal pair of projections
E, and E; in 4’ which are mapped by "’ to f, and f,, respectively (note that lifting
of mutually orthogonal projections through an epimorphism of von Neumann
algebras is always possible). In other words we have

m(E,) =1, m(E,) =0,
mw(E,) =0, my(E,) = L.

Therefore n,(1 — E,) =0s0 1 — E,€(1 — ¢,)4" hence ¢, < E,.

Sjmilarly e, < E, . Therefore e, and e, are mutually orthogonal.

The remaining implications are of easy verification and are left to the
reader.

6. DeFINITION. If the conditions above are satisfied we say that ¢ and ¢
are mutually singular and write ¢ 1 ¥.

Our next result is a non-commutative analogue of the Lebesgue decomposition
theorem for measures. It was first obtained by Henle in [8].

7. PROPOSITION. Let ¢ and  be continuous linear functionals on.A. Then ¢
can be uniquely decompased as a sum

@ =0, + ¢,

where ¢, <€ Y and ¢, L .
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Moreover if ©" = ujp'|, 0F = u, @F and ©F = u, @y are the corresponding
polar decompositions we have

1) 00 =0, + 0, U, =uey, u,=u(l —e),

i) {ol = 0. + 90

i) 0 = 0.1

V) @, = 0l,.

Proof. Yor all a in A define ¢ (a) = ¢"(aey) and ¢,(a) = ¢"(a(l — e,)).

Clearly ¢ = ¢, + @,. It is also clear that ¢ vanishes on (1 — e;)4" and

that ¢3; vanishes on e, 4" s0 0, < ¥ and ¢, L v.If 0 = @, + ¢, is another such
decomiposition then for all @ in 4

oy(a) = @j(ae,) = oy(ae;) + oi(aey) = ¢ (acy) = @,(a).

Thus ¢, == ¢, and consequently ¢, = ¢, proving the uniqueness of the decompo-
sitiorn.

Fact (i) follows from ([2], 12.2.4) and clearly (ii) follows from (i). Finally
(iil) and (iv) are consequences of the uniqueness of the decomposition together
with (i). %

8. PROPOSITION. If ¢, 0y, 0, ¥ and y denote continuous linear functionals on
A we have:

a) If @, and ¢, are absolutely continuous {resp. singular) with respect to
thes: so is any linear combination of ¢, and @, .

b)Y Ifo < yand v Lytheno L y.

S If 0K o<y then ¢ <€ .

Proof. Yollows from Propositions 1 and S.

Now consider a pair of mutually singular states ¢, and @, and put ¥ = ¢, +
+ @,. Let (=, H, %) bz tha GNS representation of A4 associated to ¥. Because each
¢,; < w there arg nositive operators P; in =(4)" such that

oia) = (Pir(a)s, O

for all ¢ in 4.

9. LEmva. P, = ":“‘«"%) Jor i = 1,2, Hence P; is a central projection in
7{AY = A:;. Ifj =3 —iand ¢; is given by (1.iii) then ¢(P)) = 0.

Proof. Let Q; = n"(e;). Then Q; is a central projection in n(4”) and for
all ¢ in 4

Qir(@)E, & = (n"(e;,0)¢, & = 9" (e,0) = ¢/'(a) = ¢ia).
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From the uniqueness of P; as defined above it follows that 0, = P;. Note
that @; is given by

?,(x) = {Px(S), &5
for all x in A4, hence
Pi(P) = (m"(ep)m""(e0 ), &) = 0

because ¢, e, = 0. %
LI )

7%

10. LemMMA. Let 1 be a positive trace on A. Suppose ¢ is a state on A which is
absolutely continuous with respect to t. If there exists a vector { in H, such that

(@, £ = 1(a)
for all ain A then { is a cyclic vector for w,, .

Proof. Let V; be the cyclic subspace of H,, generated by {. It is then clear
that =,|V; is equivalent to ,.

Since ¢ is absolutely continuous with respect to t it follows by Theorem 4
that 7, is equivalent to a subrepresentation of m,. So H, contains a subspace V,
which is covariantly isomorphic to H,. If we identify H, and V, we may write
n,lVl ~ 7,. So there exists an isometry u from H, to V; lying in the commutator
of .. But this commutator is aati-isomorphic to 4. by (a very special case of) the
Tomita-Takesaki theory hence it is a finite von Neumann algebra. Therefore u
must be a unitary operator. This shows that V; is equal to H,. In particular we have
¥, = H, which is what we wanted to prove. %

2. THE F. and M. RIESZ THEOREM

Let A be a unital C*-algebra equipped with a positive normalized trace r.
A subalgebra B of 4 is called analytic if B contains the unit of 4, B + B*¥ is dense
in 4 and the restriction of 7 to B is multiplicative.

Although in some pathological examples B may be a selfadjoint subalgebra
of A we are mostly interested in the case where B is not. The basic example of this
situation (which the reader should keep in the back of his mind) is the following:
A is the algebra of continuous functions on the unit circle, t is the trace correspond-
ing to the Haar measure on the circle and B is the disc algebra, that is, the sub-
algebra of A consisting of all functions that admit an analytic extension to the unit
disc. Since, in this case, B + B* contains the trigonometric polynomials it is clear
that B + B* is dense in 4. Using the Cauchy integral formula one sees that the
trace of an element of B equals the value of its analytic extension at the origin from
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which one can easily verify that 7 is maltiplicative on B. It is through this exampie
that our main results relate to the classical F. and M. Riesz theorem

From now on we fix a unital C*-algebra A where a positive normalized trace
is defined and let B be a fixed analytic subalgebra of A4.

since T B is multipicative, its kernel, which we denote by B, , is an ideal of B
hence a subalgebra of 4. Clearly B = B, + C1.

Let (=, H, &) denote the GNS representation of 4 associated with ¢ and let

Observe that if x ¢ B and 3 € B, then
X)L m(3)E) = () = 0)x) = 0.
So H* and H- arc orthogonal subspaces of H. Since B + Bi =B +~ B¥
is dense in A it follows that H = H* @ H-.

11. DeriNITION. A consinuous linear functional @ on A is called analytic if ¢
vanishes on B,.

The following is the main result of this paper. Compare [6] as well as [7
for similar results on (commutative) function algebras.

12. THEOREM. Let ¢ be a continuous linear functional on 4 and let ¢ == o, +
+ ¢, be the Lebesgue decomposition of ¢ with respect to <. If ¢ is analyiic tien
so are ¢, and ¢,. Moreover @, (1) = 0.

Proof. Let ¢y = 1< "@} + '@, =1 + ¢, and form the GNS represcanta-
tion (n, H, &) associated with . Let V' be the lincar subspace of /7 given by

V = 1(B,):

It is clear that V is invariant under B,. By elementary Hilbert space techniques
here exists a unique vector # in ¥ which is closest to &. The vector & -- i is then
orthogonal to V.

Claim 1. ¢ —ni > 1.

Since t < i there exists a unique operator P in the commutator of = such
that 0 < P <1 and

tla) = {Pria)s, &5

for all a in A.
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For every vector { of the form { = n(b)¢ where b is in B, we have
& — CiIF = (1P — DI = KPE — ), £ = =Pr(l — b)E, n(1 —b)E) =
=7((1 = by*(1 — b)) =71 — b — b* + b*b) =1 + 7(b¥b) > 1

since (b)) = t(b*) = 0.

The set of all such {’s is dense in ¥'so ||& — (|| > 1forall {in V. This proves
our claim.

Let ¢ = [I&—nl.

Claim 2. {n(a}¢ —n), & —y)y = c*t(a) VacA.

Since ¢ — i is orthogonal to ¥ and since for all b in B, we have that
(b} ¢ — ) is in V it follows that

(n@)& —m), £ — ) = 0 = c*1(b)

for all b € B,. By taking adjoints we conciude that the above equality holds
also for all b€ Bf. On the other hand

(D& —m), & —n> = & = (D).

This proves claim (2) since A4 is as the closure of B, + BF + CI.

Since !o,] < ¢ there exists a positive operator S commuting with the range
of m such that

lp,i(a) = {Sn(a)s, &>
for all ¢ in A.

Claim 3. S(¢ — n) = 0.

By (8.a& b) v + |o,| is singular with respect to j@,l. Since y is the sum
of T + |p,! and |p,| we may use Lemma 9 to conclude that S is a central projection
in 7(A4)’ and that 7(S) = 0 (see (l.iii) for a definition of 7).

It is clear that 7 is given for every x in n(4)" by

I(x) = " x(E —n), & —n).
So
0=71(S)=c2(SE—m, & —n> =cHSE—n)}

proving claim (3).
Let O be the unique positive operator in the commutator of & such that

lp.l(@) = <@nla)s, &5

for all @ in A. Also let ¢"" = u|¢p"’| be the polar decomposition of ¢".



362 RUY LXEL

Recall that #” denotes the unique normal extension of = to A”".

Claim 4. {Qn(b)(¢ — 5), =" W*)¢) = 0 for all b in B,.
Write 5 = lim n(b,)¢ where (b,) is a sequence in B,. Then for all b in B, we
have

0 = limo(b(1- -b,)) = lim'e" (ub(1 — b,)) = im('py'| + '¢5N(ub(l -1,)) =
= Iim{Q="(ub(1 — b)), &) + Hm(Sr""(ub(1 — b)), &) =
= Or(B)E — 1), 7"'(WH)E> + (Srb)E—n), 7' =
= {Qr(b)(¢€ —n), 7(@¥)E).

This completes the proof of ciaim (4).

It is clear that P 4- QO + S = 1 and we know by Lemma 9 that both § :md
P 4 Q are central projections in n(A)’. Also from Lemma 9 it follows that i
+ Q = =n"'(¢,). This gives a decomposition of r in the direct sum of two cyclic sub-
rcprcscntatlons 7, and &, corresponding, respectively, to P 4+ Q and S. Let £, =
= (P + QYH so f, is tie space of =, .

A cyclic vector for =, is clearly &, = (P + Q). Observe that S(F—5) = ¢
implies that & - is in #7, .

Cluim 5. There exists a unitary operator U on H;, commuting with =, such
that

CPag, = o — .

The vector state associated to £, is clearly T + ‘o, which is abselutely con-
tinuous with respect to 7.

Since {myadi—-7), 5 —n> = ¢>z{a) for all @ in 4 we may apply Lemm2 10
to conciude that ¢~¥& — ) is eyelic for =;. This implies in particular that =, is
cquivalent to x,.

Another application of Lemma 10 proves that PY% is also o cyclic recter
for =, since

1/2e

~{a)PYVE,, P = t(w)

for all « in A.

Put together, these last two facts imply that the cyclic rcprc%entc*‘iovs
{7y, ¢"HE -- ) and (7,, PE3E.) are equivalent in the sense that the equiviiince
preserves the prescribed C)chc vectors. This proves claim (5).

Claim 6. &, 1s in the closure of UPYXV + CJ).

The key fact to prove this last claim is that (i, , P¥3,) isequivalent to (., 2.) as
cyclic representations. This of course follows from ciaim (5).
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Let HY and Hy be given by

Hf = mB)P7E; = m(B, + CHPY,
Hy = m(BYPYE, .

From the observation above we may conclude that H; is the orthogonal
direct sum of Hy and Hy .
For all b in B, we have

= {a(b)s, UPYVE) = ¢ Xn(b)S, ¢ — > =0

since m(b)¢ isin V and ¢ — n is orthogonal to V. We then conclude that U*¢, is ortho-
gonal to Hy so U*¢, is in Hy . We may then write

U#¢, = limmy(2, + b,)P2¢;
where the 4,’s are complex numbers and the b,’s are in B,. So
& = lim UPY2z, (2, + b,)é, = im UPY2n(J, + b))¢

proving claim (6).

Claim 7. ¢, and ¢, are analytic.
Let ¢, = u,l¢;] be the polar decomposition of ¢, . We know from Pro-
position 7 that u, = we,. Write
¢, = Um UPY3r(2, - b,)E
as above. For all b in B, we have
Pab) = o (h) = lo|(,0) = {Cn"(uIr(B)S, & = KOn(b)ey, n""(W3)é) =
= Iim{Qn(b)UP¥*n(}, + b)E, n"'(uf)E) =
= ¢t lim{ Qr(b(Z, + bINE ~ ). 7' (@)E =
= ¢~ lim{Qn(b(4, + BINE —- i), 7' (eu¥)E) =

= ¢~ im{Qn" (e yn(b(%, + BNE — ), 7" (W*)EH.
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Recall that n''(e,) = P + Q so Oz (¢,) = Q. The above then equals

¢~ himd{@n(b(/, + bIE — ), 7" (W*)ED

which is zero by claim (4).
This proves that ¢, is analytic and therefore that ¢, is analytic too.

Clainmt 8. ¢ (1) = 0.
Let ¢ = u,.¢, be the polar decomposition of ¢, . Write 5 = lim=(b,)<
with &, in B, and note that by claim (7)

== limo.(b,) = limoJ(b,) = lim @, (uh) = 1im{Sr"(ub,)l, &) =

= Iim {Sr""(u)m(b,)E. &> = S (u ), &)
By claim (3) we have S(i) = S(¢) so

0 = {Sa" (S, & = ‘07 () = 0 (1) = @,(1).
i3

A group G is said to be right ordered if G is equipped with a lincar order which
is invariant under multiplication on the right by elements of G.

Given a discrete group G we let Ci(G) be either the reduced or the full C*-ul-
gebra of G. The canonical trace on C§,(G) will be denoted by 7.

To each group element g there corresponds, in a canonical way, a unitary
element U, in C;,(G) in suck a way that the map g € G+ U, € C;)(G) is a repre-
sentation of G. For further references to the theory of group C*-algebras the reader
should consuit [9].

I3. COROLLARY. Let G be a discrete right ordered group and let o be a conti-
nuous lincar functional on CH(G). Write the Lebesgue decomposition of o with res-
pect to T as @ = @, + @, If o(U,) =0 for all g > e (e denoting the identity ele-
ment of G) then

i) 0 U, = 0,(U,) = 0 for all g > e and

i) @ (1) = 0.

" Proof. Let B be the (non-sclfadjoint) subalgebra of Ci(G) generated by
1C,:g2 > e} and apply Theorem 12. o

Concluding this section we should mention an example to show that the clas-
sicul version of the F. and M. Riesz theorem does not apply in fuil generality (that
is, one cannot conclude that ¢ is absolutely continuous in the theorem above).
Consider the direct sum of two copies of the group of all integers with lexico-
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graphic order. The C*-algebra of this group is the algebra of continuous functions
on the 2-torus. On this algebra consider the linear functional ¢ given by

o(f) = Sf(z, 1)z dz

where z denotes the first torus variable and dz is the Haar measure on the circle.

The reader may easily verify that ¢ is analytic and singular thus contradicting
what should be expected from the classical F. and M. Riesz theorem applied to
this case.

3. A DISTANCE FORMULA

In this final section we shall present an application of Theorem 12 above.

Fix throughout a C*-algebra 4, positive normalized trace t on 4 and an analytic

subalgebra B of A. Denote by B, the kernel of 't!B and by n the GNS representa-
tion of A associated with .

Let &/ be the von Neumann algebra generated by the range of n. Also let %,

be the ultra-weak closure of #(B,). For a fixed a in 4 let for every complex number z

d(z) = dist{a + z, By)
and
D(z2) = dist(n(a) + z, By).

We propose to prove the following

14. TueoriMm. There exist a (possibly empty)} convex open subset Q of the
complex plune such that:
) Qc {zeC:lz] < 2|al},
ii) for z € Q, D(z) < d(z) = inf{d(w): w € C},
iii) for z ¢ Q, D(z) = d(2).

The proof will be presented in a number of steps. Initially observe that for b
in By and a in A one has

dist(n(a), %) < dist(n(a), n(By)) < '|m(a) — n(b)l] < fla — bl

so it is clear that dist(rn(a), %4,) < dist(e, B,).

A standard use of the Hahn-Banach extension theorem provides a continuous
incar functional ¢ on 4 of norm one which vanishes on B, and such that ¢(e) =
= dist(a, By). Let ¢ = @, + @, be its Lebesgue decomposition with respect to <
as in Proposition 7. Applying Theorem 12 we conclude that ¢, and ¢, both vanish
on B, and moreover that ¢, (1) = 0.

1 - 1776
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15. LEmMA. (@,(a) = ['o lidist(a, B,).

Proof. Let e be positive and choose b in Bysuchthatjia — b < dist(a, B,) + .
We have

dist(a, By) = ‘ola), < 0,(a) + @4a), = ofa — b). + !p(a — b) <
<, la—bl +le, a—b. <
< 0, (dist(a, By)) + &) + [ o, (dist(a, B)) + ¢) = dist(a, B,) + «.
It follows that '@, dist(a, By) < ,p,(a). Since the converse inequality is
obviously true, the lemma is proved. %
16. LewvMa. If ¢, # 0 then dist(a, B,) = dist(n(a), #,).

Proof. Given that ¢, # 0 let = "¢,l ~2p, so that y is absolutely continuous
with respect to 7, has norm one, vanishes on B, and satisfies {(a) = dist{a. By).
In other words, we may have taken ¢ to be absolutely continuous at the start. The-
refore by Proposition 1 there exists a normal linear functional  on </ with norm

one such that Yy = . Lt follows that y(#4,) = 0so for all x in 4, we have

i) — xi, = Y(nla) — X); = [Y(n(@), = (Y@ = dist(a, B,)

whence dist(r(a), 4,) = dist(a, B,) concluding the proof.
Denote for every complex number z, a. = a + z.

17. Lemma. If 120 > 2lal; then
| dist(a. , B,) = dist(n(a.). 4,).

Proof. Let ¢ be a norm one continuous linear functional on A, vanishing on
B,, such that jp(a.); = dist(a.. By). In view of the last lemma it clearly suffices to
show that ¢, # 0. Suppose this is not the case so that ¢, =1 and ‘¢, (a), -
= dist(a. , By). Recall that by Theorem 12 we have ¢,(1) = 0 so
diSt(a:# B()) = :(Pa(”:)l = !(pa(a)l < “(I“.
On the other hand

dist(a., B)) = dist(e + z, B,)) > dist(z, B,) —dist(a, By) = iz' — "ai.

Comparing the last two inequalities we conclude that =z < 2 a contradict-
ing the hypothesis. 1

Observe that we have just proven that for a sufficiently large z one has d{z) =
== D(z). Otherwise we have the following



‘YHE F. and M, RIESZ THEOREM 367

18. LEMMA. Suppose d(z) # D(2). Then d attains its minimum at z.

Proof. Choose ¢ as in the proof above. By Lemma 16 we must have ¢, = 0,
Observe that for every complex number jt and for every b in B,

d(z) = dist(a + z, By) = |@p(¢ + 2)l = l@.la +p — b < ||la+ p— bl

Taking the infimum for b in B, we get d(z) < dist(a + pu, B,) = d(p). 7]
Collecting our previous results we may now prove Theorem 14.

Proof of Theorem 14. Let k = inf{d(w) : we C} and Q = {w e C: D(w) < k}.
It is clear that Q is open and convex (even if it is empty). For z in © we have
D(z) < k € d(z) so Lemma 18 gives d(z) = k and Lemma 17 gives |z] < 2| afl.
For z not in © we must have d(z) = D(z) since otherwise Lemma 18
would imply that D(z) < d(z) = k which would say that z e Q. %

Unfortunately we have not been able to find an example to show that @ may
be non-empty. One could therefore conjecture that Q is always empty, a fact which
can be rephased as dist(a, B)) = dist(n(a), %,) for every ain 4. This would certainly
be a much nicer result since it would imply Sarason’s theorem as mentioned in the
ntroduction.

Concluding let us study the case of right ordered groups. If G is such a group
et 4 be its left regular representation on /,(G). Denote by CHP(G) (resp. H(G))
the norm closed (resp. ultra-weakly closed) algebra of operators on /,(G) generated
by {/(g):g > e}. As an immediate consequence of Theorem 14 we have the fol-
lowing:

19. COROLLARY. For every a in the reduced group C*-algebra of G we have
dist(a + z, CHP(G)) = dist(a + z, HP(G))

except possibly for z in a convex open subset Q < {we C:|w| < 2||a|} where
dist(a + z, CH$(G)) attains its minimum.

Partially supported by CNPqy, Brazil.
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