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STABILITY OF INVOLUTORY x-ANTIAUTOMORPHISMS
IN UHF ALGEBRAS '

P. J. STACEY

1. INTRODUCTION

In [4] Connes introduced the concept of stability for a periodic automorphism
o of a C*-algebra A4: an automorphism « of order n is said to be stable if any uni-
tary u satisfying woa(u) ... o"~2(u) = 1 is of the form v*a(v) with v unitary. For a
periodic antiautomorphism ¢ the analogous concept is obtained by requiring the
automorphism @ o * to be stable; in particular an involutory #-antiautomorphism @
is said to be stable if each unitary u satisfying ®#(u) = u is of the form v®(v) for
some unitary v. Stability of involutory x-antiautomorphisms is closely related to
questions of conjugacy; perhaps the simplest such connection (given in Proposition
1.2 of [9]) is that, for a stable involutory s-antiautomorphism &, the antiautomor.
phisms @ and (Adu) - @ are conjugate for each unitary u satisfying ¢(u) = u. Other,
more complicated, conjugacy theorems from [9] and [20] rely implicitly on this
notion of stability, but need not do so explicitly since, as remarked by Giordano
in Lemma.1.1 of [9], every involutory x-antiautomorphism ¢ on a von Neumann
algebra is stable. This is true because whenever u is a unitary with ®(u) = u we
can find a square root v of » in the von Neumann algebra generated by # and then
u = t* = vP(v). This argument cannot be applied in other C*-algebras (because
some unitaries with spectrum S! may not have square roots in the C*-algebra
they generate) and the purpose of the present paper is [to provide an alternative
approach to stability, valid in a class of C*#-algebras which includes all UHF algebras
with infinitely many 2X2 matrix factors.

The approach to stability taken here is based on Connes’ original argument
in Corollary 2.6 of [4]. The appropriate analogy for involutory antiautomorphisms
is to show that the two projections e;; and e,, (where these denote the obvious matrix
units) are equivalent in the real algebra in M,(4) determined by the involutory
x-antiautomorphism
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We will demonstrate this result using methods from K-theory. Using the fact (Pro-
position 2.2) that M,({a € A: d(a) = a*}) is isomorphic to a crossed product
A, Ly for o = @ -= and results about the K-theory of crossed products, such as a
real version of the Pimsncr-Voiculescu exact sequence, we will show (in Theorem
4.2) that the K-theory complexification map is injective for a certain class of C*-al-
gebras. Then using an appropriate cancellation theorem (Theorem 5.2) we will
deduce (in Theorem 6.4) the equivalence of e); and ey, from the equality of the
real K, classes [e),] and [¢,]. Finally, we will conclude the paper with an applica-
tion to the existence of @-invariant matrix subalgebras in a UHF algebra with infi-
nitely many 2x2 matrix factors (Theorem 7.4).

This paper was written while I was visiting the School of Mathematics at the
University of Leeds and 1 am most grateful to Christopher Lance and his collea-
gues for their kind hospitality. I am also grateful to Professor J. Cuntz for a helpful
elaboration of the real version of §4 in [5].

2. ELEMENTARY RESULTS ON REAL CROSSED PRODUCTS

If « is areal-linear action of a locally compact group G on a real (or complex)
C#-algebra A, then the real crossed product A x, G is defined exactly as for the com-
plex case (described in 7.6 of [15]). The action « extends to a complex linear action
(still denoted o) of G on the complexification A€ of A and thus gives rise to a
complex crossed product 4€x, G. The following result, which is closely related to
the von Neumann algebra results given in Proposition 1.13 of [10] and Proposition
1.1 of [19], describes the relationship between 4 X, G and A€x, G.

ProposiTiON 2.1. Let A be a real C*-algebra with complexification AS, let ¥
be the associated involutory =-antiautomorphism of A€ (defined by ¥(a + ib) =
= a* + ib* for a, b € A) and let o denote both the action of a locally compact group
G on A and the complexified action on AC. Then W extends to an involutory =-anti-

automorphism ['Z of ASx, G, for which the associated real algebra {x € ASX%, G :
FP(x) = X*} is s-isomorphic to the real crossed product Ax, G.

Proof. Define ¥ on the linear space K(G, A€) of continuous functions from
G to A€ with compact supports by

(Pf) = Ad(®) =2, [¥(f(g~H)],

where 4 is the modular function on G. Routine computations show that ¥ is an
involutory s-antiautomorphism of K(G, A€), that ¥ is isometric in the L,(G, AS)

norm and hence extends to L,(G, A€) and finally that ¥ extends to an involutory
+-antiautomorphism of A€x, G with the required properties.
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The next proposition, which shows how the 2x2 matrix algebra over a real
C*-algebra R can be viewed as a crossed product of a Z, action on its complexifi-
cation A, is the key observation underlying Theorem 4.2 (which gives conditions
for the complexification map Ky (R) — Kg(4) to be injective).

PROPOSITION 2.2. Let @ be an involutory =-antiautomorphism of a unital C*-al-
gebra A, let « = ®ox and let R = {a € A: §(a) = a*}.

(i) There is a real-linear x-isomorphism from the complexification A (=A®grC)
of A onto A @® A under which &(a, b) = (b, a) and ¥(a, b) = (D(b), O(a)), where
Y is the antiautomorphism of A® associated with the real algebra A.

(ii) There is a real-linear *-isomorphism from A€ x, Z, onto My(A) under which

the dual action & is given by & = Ad ((1) (1)) and the antiautomorphism ¥ of Pro-

~ / \
position 2.1 is given by ‘1’(” b) = ((D(d) ()

¢ d o(c) o))
(iii) There is a real-linear *-isomorphism from A X, Z, onto M,(R) under which
«= Ad( 0 1).
—1 0

Proof. (i) The mapping taking a + ib to (a, «(a)) + i(b, a(b)) for each a,
b € A4 is an appropriate isomorphism.

(i) The mapping taking (a, b)d, + (¢, d)d, to aey + cey + deyy + bey,
where ,, 8, denote the appropriate Kronecker delta functions in L,(Z,, A°), is
easily checked to be a #-isomorphism from A€Xx, Z, onto M,(A4). The formulae
for & and ¥ follow from their effects on the generators of A%x, Z,, which are
given by &[(a, b)5) = (a, b)3,, &) = —5,, ¥l(a, b)5) = (B(), B(@))3, and
P = 6% = 6.

(iii) From Proposition 2.1 and parts (i) and (ii) above, 4 x, Z, is *-isomorphic
to the real algebra in M,(A) associated with the involutory =-antiautomorphism

defined by '
i,(a b) =(¢(d) @D(b))'
¢ d o) @

= (a b\ _[Ba) &)
PP l(c d)‘(a)(b) <1><d))

“Then

‘where f is the x-isomorphism of M,(4) defined by

g - Adl 1+ l—i)
2(l—i 1+i)
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It then follows immediately that f is a s-isomorphism from the real algebra asso-
ciated with ¥ onto M,(R). From (ii) the dual action is therefore given by

ol 2w

Although Proposition 2.2 tells us that the K-theory of R is the same as that
of A X, Z,, the K-theory of 4 is more closely linked to that of A%, Zthan A, Z,.
The next two propositions provide a link between 4 X, Z and 4 », Z, ; this link is
not as close as in the complex case where, as described in 10.3.3 of [1], AX, Z is
isomorphic to the mapping torus of & on 4 X, Z,, but it will nevertheless be sufficient
for our purposes.

as required.

PropesiTicN 2.3, Let A be a unital real C*-algebra with complexification AC,
let ¥ be the associated involutory s-antiautomorphism of A€ and let % be a Z, action
on both A and A€. Then Ax, Z is x-isomorphic to

My = {feC(0,1], ACx,Z,): f(1) = &(f(0)), f(t) = (Pa)(L -- 1))
for each 0 <t <1},

where % denotes the Z, action on A® X, Z, which is dual to .

Proof. By 10.3.3 of [1], A€>:, Z is =-isomorphic to the mapping torus
M = {feC(0,1], A°X,Z,): f(1) = 3(f(0)}.
Then, by Proposition 2.1, 4 X, Z is %-isomorphic to
My = {feM: V()= [},

where ¥ is used to denote both the antiautomorphism of 4 x, Z defined in Propo-

sition 2.1 and the corresponding antiautomorphism of M. The map W js determined
as an antiautomorphism by the equations

Y(x8,) = ¥(x)d,

which describe its effect on the generators of ACx, Z. Since the map I' defined by

(Lf)(8) = (PR - 1)
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is clearly a %-antiautomorphism of M, it suffices to show that, under the isomor-

phism of 10.3.3 of [1], it has the same effect as ¥ on the generators of A€ %, Z. Now
the isomorphism from A€x, Z onto M takes xJ, € L,(Z, AC) to the constant func-
tion with value x8, € L,(Z,, A€) and takes &, € L,(Z, A%) to the function
[t ¢ei™, . However

(I'xe)(t) = (P&)(x8;) = P(x6g) = (%),
and
(I = (P =18) = — Pleini=15,) = — eit=15F = e~} = [3(1)
so that I' and ¥ do indeed have the same effect on the generators of ACx,Z, as
required.

PROPOSITION 2.4. Let & be an involutory =-antiautomorphism of a unital C*-al-
gebra A, let o = ®ox and let R = {a € A: &(a) = a* } Then there exists a ideal
S in AX,Z such that F is =-isomorphic to Cy((0, 1), My(A4)) and (Ax,Z)]F is
s-isomorphic to My(R) @ (R ® #), where # denotes the algebra of quaternions.

Proof. By Propositions 2.3 and 2.2 (ii), 4%, Z is =-isomorphic to

My = {feC(0, 1], My(4)):f(1) = &(f0), f1) = (P&)(f(1 — 1))

for each 0 <t < 1},
where

and

<
)

g,(a'b) o(d) B(b)
c d @(c) P(a)

for each a, b, ¢, d in A. Let # be the ideal in 4%, Z corresponding to the kernel
of the *-homomorphism f+—(f(0), f(1/2)) on M, . Since each element of M, is
determined by its values on [0, 1/2], it is easily seen that # is #-isomorphic to
C((0, 1), My(4)). 1t is also clear that (4 X, Z)/.# is %-isomorphic to

{x € My(A) : x = P(x*)} @ {x € My(A) : x = (Fa)(x*)}.

By Proposition 2.2 (iii), the first summand is #-isomorphic to M,(R). The second
summand is the real algebra associated with the involutory =-antiautomorphism

a b) o ( 2@ o)
(c d ( - 9(c) @(a) )



62 P. J. STACEY

of My(A). This antiautomorphism can be identified with P@ P4 on 4 ® M(C),

where
(pﬂ)(a b)= ( d ~b)'
¢ d —C a

Since the real algebra associated with @, is s-isomorphic to the algebra .# of qua-
ternions, the second summand is s-isomorphic to R ® #, as required.

3. A PIMSNER-VOICULESCU EXACT SEQUENCE
FOR REAL C?-ALGEBRAS

In this section we will show that Cuntz’s refinement [7] of the proof given by
Pimsner and Voiculescu in [16] carries over to produce an exact sequence for crossed
products of real C*-algebrus. The result is considerably weaker than the complex
one (since real Bott periodicity is of order 8 rather than 2) but it is sufficient to obtain
useful information about Ky(A43:,Z), where x is the action discussed in Pro-
position 2.4,

Throughout this section O, will denote the C*-algebra generated by two iso-
metries S;, S, (on an infinite dimensional Hilbert space) satisfying SES, == SiS, = 1
and §,8F + S,S¥ = 1. It was shown in [6] that O, is an infinite simple C*-algebra
which does not depend on the choice of the isometries S; and S, satisfying the given
relations, I" will denote the involutory z-antiautomorphism of O, specified on the
generators S;, S, by I'(S;) == S$¥.: the associated real algebra is the real C*-algebra
generated by S, and S,

Let A4 be a real C*-algebra with complexification 4€ and let x be a Z-action
on both 4 and AC. Following [7], & will denote the C*-subalgebra of (A%, Z) ® O,
generated by {x3, ® 1,0, ® S, :x € A¢} and & will denote the C#*-subalgebra
of (A%, Z) ® O, generated by & and @(&), where ¢ is the x-homomorphism front
& into (A€x, Z) ® O, specified by

(/)(.\’(S“ 9] 1) B .\'50 @ 1
and

Q@ S1) = 5, ®(SISF + 5,5:5%)

for each x € AC. Furthermore, also following [7], : & — & will be the s-homomor-
phism defined for each x € ¢ by

B(x) = (3, ® S)x(6g @ So)%,

# will be the closed ideal in & generated by {#(xd, ® 1): x € A€} and 4 will be
the closed ideal in & generated by {f()):y € 6}. Note that, as remarked in [7],
& is the C*-subalgebra of (4€x,Z) ® O, generated by & and B(&).
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LEMMA 3.1. Let A be a real C¥%-algebra with complexification AC, let ¥ be
the associated involutory s-antiautomorphism of AC, let o be a Z action on both A

and AC and let ¥ be the involutory x-antiautomorphism of Ax,Z defined in Propo-
sition 2.1. Then ¥ @ T on (A€x « L)® O, restricts to involutory x-antiautomorphisms
of the subalgebras &, &, F and 5.

Proof. The effect of ¥ ® I' on the appropriate generators is given by
(P @ N(xd, ® 1) = P(¥)0, @ 1
(TR0 ®S) =0, ® S)*
(¥ ® NG, ® 5) = o, ® S,)*
(¥ @ MNP(x3, @ 1) = PIP(X)3, ® 1)
(¥ ® NBG) = B¥ ® ()

for each x € A€ and y € &.

PROPOSITION 3.2, Let A, a, f3, ‘P, I, & and & be as in Lemma 3.1 and let the real

algebras associated with the restrictions of YRIto&and & be S&r and &Er. Then
there exists a diagram

00— AR ®rA—>ER—>A X, Z—0

b

0—> AR ®rER—> ér —> AX,Z—>0

which is commutative with exact rows, where A g denotes the algebra of compact oper-
ators on a separable real Hilbert space, j denotes the inclusion from &g into &g and
k denotes the mapping x v+ x5, ® 1 from A into &x.

Furthermore, the K-theoretic map from X, (&r) into K 4(&R) arising from the
second row can be identified with f,,.

Proof. This is a simple adaptation of the proof of Proposition 1.1 of [7]. The
major points are as follows. From Proposition .1 of [7] there exists a #-isomorphism
from £ onto A ® AC defined by

(0, ® 51)iﬁ(x‘50 ® )0 @ S)* €; ®x
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for cach x € AC and a =-isomorphism from .# onto # ® & given by
(61 ® SBOIE ® S)* e; ®y

for each 1» & &, where (c’ij)5_j>ﬁ is a set of matrix units in 3. In the first case ‘I~’® r
corresponds to Tr ® ¥ and in the second case to Tr ® (¥7 ® ), where Tr is the
involutory s-antiautomorphism of #" defined by Tr(e;,) = ¢;;; hence the asso-
ciated real algebras are #-isomorphic to #'r ®r A and #'r ®r Er-

The =-isomorphism from & 5 onto A€, Z defined in Proposition 1.1 of {7]
takes (xd, ® 1) + £ to xJ, and (J; ® S,) + F to 4, for each x € AS, from which
it foliows that ¥ @ I' on ¢ gives rise to ¥ on AC X, Z. Similarly 7 ® I on &
also gives rise to ¥ on AC ¢, Z and so, by Proposition 2.1, the associated real
algebra is s-isomorphic to 4 x, Z.

PROPOSITION 3.3. Let i1 A -~ &g be defined by k(x) = X6y @ L. Then the homo-
morpiisiin kg 1 Ky(@) - KulSRr) & injective.

Proof. The argument that &k, : K,(4) — K () is injective is identical to that
in Proposition 1.2 of [7]. To obtain the result for other K, let C(SY),, = {f ¢ C(8) :
5ty = fit) for each 1 & St} and, following the notation of §4 of [5], let CN(iR)
denote the kernel of the evaluation map at 1 on C(8Y),,. Then, for each real C*-al-
gebra B. K,(C(SY).. ®r B) is isomorphic to K(B) @ K,(C3(iR) ®g B) and, by the
remark at the end of \§ 4 of [5], K,,(Cg(iR) ®r B) is isomorphic to K,..,(B). The
map id ® kb, from K, (CSY,. ®rA) to K (C(8Y).. ®r &r) corresponds to the
map k, @ k,, from K, (4) @ K,-,(4) into K, (6r) ® K,_,(6r) and it therefore fol-
lows that k., is injective on K,(A4) for each » < 1. The result for »>1 can be obtzined
by periodicity or from a consideration of K, (C(S', R) ®g B).

PROPOSITION 3.4. The homomosrphism ¢ @ from &g to ]Wg((:’a) defined by

(0 @) (x)=( ) ‘0)
0 Jj(v)

is homotopic to j @ j in the topology of pointwise norin convergence in My(&'r).

Proof. As in Proposition 1.3 of [7]let W= Y, §,5;S7S} € 0,. As noted in
1.4 of [6] the summands of W form part of a self-adjoint system of 434 matrix
units in O, ; for definiteness we will take the set defined by
ey = SISYR, ey = SiSTST, ey = SiSTSY, ey = SiSi%
(’21 = Slszsfg, 822 =3 SISES.?:S;::, €oy = SISQS;:.:S;S:, (.’24 = 5152 3:2,
€5 = S2SIS]::::25 €39 =3 525155::5;;, €33 = SESES;E:S§<! €3 = S5y 3,

ey = S3ST®, ey = SISISY. ey = SISYSH, ey = SiSH*.
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Then W = e + €5 + €40 + €49 let X = ¢, + €5 — €53 + €y and, for
0 <t € nf2, let u, be the element of M,(0,) defined by

Uit = @) + €355It + €,5C08 1 + €3,C0821 COSI — €330 2f Sint + ey,
ul = — eysin 2t
Uit = —eysin2t Cost + eg5in2t sint
P = ey + €y - €3,C0821 + €.

Thz elements u, (0 < t < n/2) form a continuous path of unitaries in M,(0,)

with
" ( w 0 a 1 O)
o 0 X) i ( 0 1 '

1t was shown in Proposition 1.3 of [7] that each of d, @ e1;, Jy ® €3, I ® €32
and J, ® e, belong to & (and in fact to cf”R). Similarly,

So ® ez = 0, ® S,(1 — 8,57)S¥ € x
and
Sy ® ey = B(6y ® S1Sik) € €r.

Hence 6, ® u, eMg(éA”R) for each ¢ and so d, ® u, is homotopic to the identity
in My(ér).
As in Proposition 1.3 of {7] we define homomorphisms ¢,: §r -~ My(&R) by

@(x0y ® 1) = diag(xd, ® 1, x6p ® 1)
and

00, ® S) = (6 ® u)diag(d, ® S,, 6, ® Sy)

for x € 4. Then {¢,:0 < ¢ < =/2} is a continuous path of homomorphisms from
&g to M,(&g) with

?o(x0, @ 1) = (¢ @) (xd, @ 1),

Po(0; @ §y) = diag(d; @ WSy, 6, @ XS,) = (¢ )6, @ S,
(%80 ® 1) = (j @ j)(x6p @ 1),
?1(0, @ Sp) = (j ®j)(6, ® Sy)

for euch x € A. Thus @y = ¢ @ j and ¢, = j @ j, as required.

§ — 2012
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COROLLARY. Let j: &g — é?‘g and @: &R — &r be as defined above. Then j,=o,
on K 4(Er).

THEOREM 3.5. Let o be an automorphism of a unital real C¥-algebra A. Then
there exists an exact sequence

Ko(4) 5 Ko(d) - Ko(A 3, Z) - K (A) L K (4) ~ KA X, Z)—... - K (A::, £}

| |

Ki(d %, Z) ~ Ky(4) S Ky(d) « Ky(A X, Z) = Ky(d) & Ko(d) = ... « Kild)

where each map 8 is giver by id - azl.

Proof. As in the proof of Theorem 1.5 of [7] the exact sequences of Propo-
sition 3.2 give rise to the following long exact sequences.

. = K(A4) - Ky(6r) ~ Ky{d 3, Z) > Ko(d) - Ko(6r) » Kol X Z) - ...

ﬂ,& PN P ﬁ:sx ~ r,
L o Kiler) =3 KER) - KalAX0Z) > Ko(6r) —> Ko(6r) — Ko(AX,Z) = ...

Furthermore, defining & = Ad(S, ® 1) on Or, the proof of Proposition 1.4 of [7]
applies without change to vield 8, = ¢ — ;Y. on Ky (&), from which it follows
by the corollary above that f, == j. —x5%.. The argument in Proposition 1.4 of
[7] also vields this formula on K, (¢£'R), but we will instead use an argument similar
to that used in Propositior 3.3 to obtain the formula on K, (&) for all n.

If we replace 4 by 4 ®g C(SY),, waere C(SY, ={f e C(SY):f* = f=id*; and
¢ by 69 id then égis replaced by ¢'r @r C(SY)., én by &R ®rC(SY).., & by
o®id, f by § ®id, j by j®id and % by & ® id. Hence (f ® id)., = (§ & id}.. —
- {2 ®id)z4; ®id)., onKyi¢r). However, as in the proof of Proposition 3.3, for any
homomorphism y: &g > R {» ®@1id), on K (&r @r C(SY)..) corresponds t0 7.8 e
on K, (6m) ® K,_.{¢r). Trerefore, by successive applications of this technique and
periodicity, B == j. — 5. on KX (4g) for all n

Finaily the homologicel algebra used in the proof of Theorera 1.5 of [7] shows
that the verticul maps &, and j, in the diagrem above are both isomorphisms. icenti-
fying K.(4) with Ku(dr) via kb, and defining 0 = kY3 '8.k.., the top line of the
diagram combined with real Bott pericdicity gives the required result.

Ruvarx. An alternative, somewhat shorter, proof of Theorem 3.5 can b obte-
ined by adapting Propositicns 5.5 and 5.6 of [5] to the real context, bearing in mind
the comment at the end of & 4 of (3] about the real versions of the results in that see-
tion. However sucl: a proof rclies on the beavy machinery of Kasparov's (i¢nl)

KK-theory [14] and we have preferred g simpler if somewhat fonger anproach.
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4. THE COMPLEXIFICATION AND REALIFICATION MAPS IN K-THEORY

Let @ be an involutory =-antiautomorphism of a C¥-algebra A and let

R = {ae A: ®(a) = a*}. The embedding of R in 4 and the map r + is l—)( ’ s)

-5 F
from A into ME(R) give rise to the K-theoretic complexification map c: Ko(R) -~ Kq(4)
and realification map r: Ko(4) — Ko(R). As described in Theorem II1.2.7 of [13]
(which covers the commutative case but carries over to the current situation),
the composite’ maps are given byrec = 2idand cer = id + «,, wherea = @ o =,
If X,(R) contains no non-zero 2-torsion elements then the equation r o ¢=2id implies
that ¢ is injective; if u,=id and X,(A4) contains no non-zero 2-torsion elements
then, similarly; the equation ¢ oy = id + a, implies that r is injective. If o, # id
then, as illustrated by the involutory =-antiautomorphism (a, b) ~ (b, a) on A = C?
(for which r: Z? — Z is given by r(a, b) = a + b), the realification map need not be
injective even if K (4) is torsion free. It may also be the case, as illustrated by
@ = id on 4 = Cy(R?, C) (for which, by Theorem J1I.5.19 of [13], ¢: Z, — Z and
for which a, = —id) that Ky(4) is torsion free but ¢ is not injective. Nevertheless,
we will prove, using Proposition 2.4 and Theorem 3.5, that if K,(4) contains no
non-zero 2-torsion elements, K;(4) = 0 and =z, = id then both r and ¢ are injective.
The first step is to note a K-theoretical consequence of Proposition 2.4.

PROPOSITICN 4.1. Let @ be an involutory =-antiautomorphism of a unital C*-alge-
bra A, let « =®ox and let R= {acA: 9(a) =a*}. Then there exists an
exact sequence !

Ki(4) = Ko(4 3, Z) - Ko(R) @ Ko(R ® #) - Ko(A).
Proof. By Proposition 2.4 there exists an exact sequence
0 - Co((0, 1), Mp(AY) » AX, Z -+ My(R) D (R ®#) — 0.
The long exact sequence of K-theory obtained from this sequence includes the terms
K (Co(0, 1), M{A)) — Ky(A>, Z) -> Ky(Bip(R) ® Ky(R ® H#) —
- K _J(Ci3, 1), Mu(A)).

Yrom Theorem 8.2.2 of [1}, K (Cy(0, 1), 47,(A4)) is isomorphic to K (M.(4)) and
K , is defined using Bott periodicity so that K_(C(0, 1), Mo(4)) is iscmorphic
to Ky(#s(4)). The result then follews frem the stability of K, and K.

TihOREM 4.2. Let @ be an involutory s-antiautomorphism of a unital C*-al-
gebra A such that Ky(4) =0, let « = @ox, It R={aeA: ®u) = a*} and let
o, == id on Ky(4).
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(i) There exists an exact sequence
0 = Ky(4) 2 Ky(R) @ Ko(R ® #) 5 Ky(A).

(i) If in addition Ky(A) has no non-zero 2-torsion elements then the complexifi-
cation map c¢: K\(R) — K(4) and the realification map r: Ko(A) - Ky(R) are both
injective.

Proof. (i) This is an immediate consequence of Theorem 3.5 and Proposition 4.1.

(ii) 1If K,(4) has no 2-torsion elements and a,= id then it follows from the
equation ceor = id + a, that r is injective. From the exact sequence in (i), any 2-
-torsion element in K (R) & K (R ® #°) must lie in the kernel of n and hence in
the image of 0. However, since 0 is an isomorphism, there are no non-zero 2-torsion
elements in the image of 0. Hznce Ky(R) has no 2-torsion elements and then, from
the equation r < ¢ = 2id, it follows that the complexification map ¢ is injective.

5. A CANCELLATION THEOREM FOR REAL K-THEORY

If e, f are proj:ctions in a real or complex unital C#-algebra A for which
[e]l = [fTin K,(4) then there exists a projection x in some matrix algebra over 4

such that the matrices
( ¢ 0) and f 0)
0 x 0 x

ar¢ equivalent. In order to deduce that e is equivalent to f a cancellation theorem is
required. The foundations for such theorems in C#-algebras were laid in [17], where
the topological stable range tst{4) of A was defined. The simplest situation occurs
when tsr(A4) = 1 (i.e. when the invertible elements in 4 are dense). However the
property of having topological stable rank one does not transfer to real structures
in A, as is illustrated by the real algebra C([0, i], R) in C([0, 1], C). Since [0, 1] is one
dimensional it follows from Proposition 1.7 of [17] that tsr(C([0, 1], C)) = 1; how-
ever the function ¢+ 2r--1 cannot bz approximated by invertible elements in
Ci[0, 1], R) and so ts={C{[0, 1],R)) # 1. Nzvartheless, there is a connection between the
topological stable rank of a real algebra and its complexification, given by the
following proposition.

PROPOSITION 5.1. Let @ be an involutory s-antiautomorphism in a unital C*-al-
gebra A, let o == @os aud Jet R = {a e A : ®la) = a*}. If ts1(4) < k then tsr(R) <
< 2k + L.
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Proof. The proof uses a number of results from [17] which, although proved
for complex algebras, remain true, with the same proofs, for real C*-algebras. We
will refer to such results as the ‘real versions’ of the corresponding theorems
from [17].

By the real version of Theorem 7.1 of [17], tsr(4 %, Z) < k + 1. However,
by Proposition 2.4, there is an ideal I in A x, Z with quotient M,(R) and hence,
by the real version of Theorem 4.3 of [17], tsr(Mo(R)) < k& + 1. The real version of
Theorem 6.1 of [17] then yields tsr(R) < 2k + 1, as required.

Proposition 5.1 enables the following version of the cancellation theorem of
{2} to be proved.

THEOREM 5.2. Let A be a simple unital stably finite C*-algebra for which there is
a constant k < oo such that tst(pM,(A)p) < k for all n and all projections p in
M, (A). Let @ be an involutory =-antiautomorphism of A and let R={a€ A: ®(a) =a*}.
If X (R) contains arbitrarily small positive elements, then R has cancellation.

Proof. Let n be a natural number and let p be a projection in M (R). Then,
applying Proposition 5.1 to the real algebra pM,(R)p in pM,(A)p, tst(pM (R)p) <
< 2k + 1 and hence, by the real version of Theorem 2.3 of [17], the Bass stable
rank Bst(pM ,(R)p) of pM,(R)p satisfies Bsr(pM,(R)p) < 2k + 1.

It is clear that R is a simple unital stably finite real C*-algebra and hence it
obeys the conditions of Theorem A.1 in [2]. However the proof of that theorem

(which is just the proof of Theorem 2.2 of [18]) applies to real as well as complex
algebras, giving the required result.

6. STABILITY OF INVOLUTORY #-ANTIAUTOMORPHISMS

We are now in a position to establish the stability of each involutory =-antiauto-
morphism in certain C*-algebras. As outlined in the introduction, the method is to

adapt to antiautomorphisms the technique used by Connes in the proof of Corol-
lary 2.6 of [4].

LeMMA 6.1. Let @ be an involutory =-antiautomorphism of a unital C*-algebra
A and let u be a unitary in A satisfying ®(u) = u. Then the map ¥ defined by

'}’=[Ad((l) 0)]o(cp ® Tr),

uj

where Tt is the transpose map on MyC), is an involutory =-antiautomorphism of
M(A). :
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Proof. Clearly ¥ is a s-antiautomorphism. It is involutory since, for each a, b,

¢, de€A,
Tz(a b)zw"‘x 0)((15((1) @(c))(l 0\)=
¢ d YO w)\ o) o(d)JI0 u*

P

oy ((D('a) (D(c)u*) _{1 0/ a b®(u) 1oy
u®(h) ud(dyu* (0 u )(dj(l-":‘)c ‘b(z:f‘)d@(u)) (0 u'”-’)—

__( a bd (i \) a b)
u@(u<)e  u@(uF)deu* (c d ) '

Lemma 6.2, Let ® be an imvolutory s-antiautomorphism of a unital C*-algebra
A, let u be a unitary in A satisfving ®(u) = u and let ¥ be the involutory =-antiauto-
morphism of My(A) defined in Lemma 6.1. If the projections ey; and ey are equiva-
lent in the real algebra {x € My(A): W(x) = X"} then there exists a unitary v in A sucit
that u = r®(r).

Proof. A simple calculation shows that if yp* = ¢,; and y*y = ey, (Where e,
and ey, denote the obvious matrix units in M,(4)), then » must be of the form

()

where v is a unitary in 4. The condition ¥(y) = p* corresponds to the equation
uP(x) = x* s0, setting ¢ = X%, u = ¢®d(v), as required.

LEMMA 6.3. Let @ be an involutory s-antiautomorphisin of a UHF algebra A
with infinitely many 2X2 matrix factors and let R = {a € A : ®(a) = a*}. Then
K,(R) contains arbitrarily smail positive elements i.e. for each u > 0, in K,(R) there
exists v > 0 in Ky(R) with 2¢ < u.

Proof. Tt is shown at the end of Chapter 6 of [8] that K,(4) is isomorphic to
the subgroup G(n) = {4/b:acZ, b €N, b n} of Q for some “generalized natural
number”’ n which, by hypothesis, will contain a “factor’” 2%, The identity of A4 cor-
responds to 1 € G(n) and, since @ = is unital, it follows that (b =), = id on K,(4).
As shown in Corollary 9.2 of [8], K;(4) = 0 and hence, by Theorem 4.2 (ii), the
compiexification maps ¢: K,(R) — Ky(4) and 7:iK,(4) — K,(R) are injective.
From the equation ¢=r = 21id and the hypothesis that 4 contains infinitely many
23¢2 matrix factors, cor (and hence ¢) is surjective. Thus ¢ is an isomorphism from
K¢ R) onto K(4) and so K,(R) is isomorphic to G(#). Then, as for ¢, the realification
map r is an isomorphism from K,(4) onto K,(R). Since r is positive (and can be
identified with a map a — «a on G(n) for some z € Q*+) the positive cone of Ky(R)
can be identified with G(n) n Q+, which immediately yields the required result.
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REMARK. It is possible that Lemma 6.3 holds even if A does not have infinitely
many 2 x 2 matrix factors. The difficulty is to show that possibilities such as G(3*) with
positive cone {a + (2b/3%):a, b, d € N y {0}} cannot occur for Ky(R); they are not
eliminated by the positivity of r and ¢ and the equations roc = 2id, cor = 21id.

THEOREM 6.4. Let @ be an involutory x-antiautomorphism of a UHF algebra A
with infinitely many 2X2 matrix factors and let u be a unitary in A with ®(u) = u.
Then there exists a unitary v in A such that u = v®(v).

Proof. Let B = M,(A), let ¥ be the involutory %-antiautomorphism of B defined
in Lemma 6.1 and let R = {6 € B: ¥(b) = b*}. Then B is a UHF algebra (with
infinitely many 2x 2 matrix factors) and, as in the proof of Lemma 6.3, the con-
ditions of Theorem 4.2 (ii) apply to ¥ on B. Heuce the projections e,, and ey, have
equal classes in Ky(R).

The algebra B is a simple unital stably finite C*-algebra for which tst(p M, (B)p) =1
for all # and all projections p in M, (B) (by Proposition 3.5 of [17]). By Lemma
6.3, K,(R) contains arbitrarily small positive elements and so, by Theorem 5.2, R
has cancellation. -

From the previous two paragraphs it follows that e,, and e,, are equivalent
in the real algebra R and the result then follows by Lemma 6.2.

REMARK. It is clear from the proof of Theorem 6.4 that it applies to all algebras
for which M,(4) satisfies the conditions of Theorems 4.2 (ii) and 5.2 (for every
involutory =-antiautomorphism ¥ of M,(4)).

7. INVARIANT MATRIX ALGEBRAS IN UHF ALGEBRAS

In this section we will apply Theorem 6.4 to construct @-invariant matrix
subalgebras for an involutory =-antiautomorphism & on a UHF algebra 4 with
infinitely .many 2% 2 matrix factors. The proofs use techniques adapted from [11]
and [12].

PropoSITION 7.1. Let @ be an involutory s-antiautomorphism of a UHF algebra
A= (_-J?,,and let e}; be a set of matrix units for A,. Then, for each n € N, there
exists a unitary t such that ®(ef;) = te}it* and such that t*@(t) € Ay, where Aj
denotes the relative commutant of A, in A.

Proof. This is essentially the same as the proof of Lemma 7.7 of [8]. Since
@, = id on K,y(4) it follows by cancellation that there exists a partial isometry v
in A such that &(ef;) = vv* and e, = v*p. Let r = ¥ ®(ef)ve};. Then, for each
matrix unit e;,

tejit™ = P(efJov*P(ef,)” = P(ehefsel)) = P(ely).

It follows that #* = 1 and then, from finiteness, t%¢ = 1 as well.
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For each matrix unit e};,

B(eEY e D) = PUEYDEL)D(E) = PteitF) = (]

u ’
$0 that 7®(t) € A%, as required.

LEMMA 7.2. Let @ be an involutory =-antiautomorphism of ¢ UHF «lzebra

A = A, let t be a unitary given by Proposition 1.1 and let A;; contain a set f;;
of 232 matrix units. Then AS contains a projection { and a unitary v such that t*d( =

= v¥(l - f)e.

Proof. Let 3 == Adt* = &. By Proposition 7.1 y leaves A \ and hence the UHI’
algebra A4S, z=lobally invariant. Then, since 7, 1d on K,( A fu) is cq'uw.vnt
to f1; and hence to 1 — f;; in A% let [ —ju and let s eA,, satisfy (f) < w™,
1 — f = s%. Then

(PUFYPLSHWINDP(E YD) = P(EH)D(sH)P()P(L) ==
o= PIssTET) = DUr(f ™) = f,
so that (1 - £)®(*)P(s*)r =: 0. Hence, letting v = % 4+ @(rH)D(s%)1,

e (L - e e (- f)s* = ss¥ss™ = o(f) = t5O(f)t,
as required.

THrorReM 7.3, Let & be an involutory s-antiautomorphism of the UHF algebra

A= UA,, , let ef; be a set of matrix units in A, and suppose that the relative conmmytant
A% of A, in A contains a set of 232 matrix units. Then there exists a unitary 4 ir
A with ®(u) = u such that d(ef;) = ueu* for each matrix unit e in A, .

Proof. Let ¢t be as in Proposition 7.1, let ¢, f, 7 be as in Lemma 7.2 and let
u == teif + d(tesf). Clearly ®(u) = u. To see that @(ef;) = weu™ notice that the
following calculation shows that r*u € AS:

15U = oOf + R Q)P = vf + Hot)FR().

Hence Adu = Adr on A4,.
To check that « is unitary note that

P(17f) = P10 — 1o¥(1 - f)) =

= Q(tr* — O(f)re®) = P(te=)(t - f).
Hence

W = ((Wee?) + SO =
=1 - &(f) + @(fuesy () = 1 - &(f) + (f) =

From finiteness we also have w*u = 1, as required.
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THEOREM 7.4. Let @ be an involutory s-antiautomorphism of a UHF algebra
A= U‘Z with infinitely many 2> 2 matrix fuctors. Then A posscsses an increasing
sequence B, of ®-invariant subalgebras such that B, is x-isomorphic to A, and such
that B, has a set of matrix units f7; with ®(f1}) = f%; for each i, j, n.

Proof. We apply Theorem 7.3 and 6.4 inductively. Notice first that, choosing
u such that ®(u) = u and P(e};) = wel;u* and then choosing v, such that u =d(v))e,,
we can-define f}; = ve};tf and obtain

P(f1) = PF)P(c])P() =
= P uel i d(vy) = [} .

Hence we can let B, be the algebra spanned by the matrix units /7.

To parform the inductive step, firstly choose inductively a self-adjoint set of
matrix units e/} in 4, .; to be of the form efe;i where ¢, is a self-adjoint set of
matrix units in 4, and e;¢ is a set in 45N A4,,,. Assume that B, € B, & ... € B,
have been constructed, together with unitaries ¢, € B;_, such that B, is spanned
by the matrix units f/; = w,elwy, where w, =v,...v;. Foreach r let C, = w, A}
so that, by construction, C, = B, for I € r < nand w,e/"w¥ is a set of matrix units in
C,i1 N CS. Applying Theorems 7.3 and 6.4 to the UHF algebra B = C: =

N

= IC, 0 C5) there exists a unitary v,,, in BS such that

SR ; N Vot iRk K
<P(l1)"€;;'w,,) = (p(U"+1)b,,+1lt nesr{’“ n Ulri-lq)(l‘n +l)
i.c. such that

.k — [
Q(Wn-flerswn-ﬂ) - “n+lesr Wt -

Let B,,, be the algebra spanned by the matrix units f{*! = w, el wi,, =
= Wyplnerewiy, . Clearly B,., is =-isomorphic to A,., and, since v,,, € BS,
B,.; 2 B,. Also

norn % — rn % , I —
45(w,,+lepqe,.s wn+1) - ¢(Wn+lers "n+1)(b(“ n+lepq“ n+1) -

(since v,4, € BE)

i

— K v plt R
- wn+1€sr, wn-!-lé(H ue[lt]“ n )

— 1 m, & Sy R PR — 1y WA
- Hn+1€-\‘l‘ w,,Hw,,c,,,,M n = wn+1(sr‘q/7“ n+1 = uu+1(qp()sr Whets

as required.
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