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LOCAL SPECTRAL PROPERTIES OF CONSTANT
COEFFICIENT DIFFERENTIAL OPERATORS IN L*(RY)

ERNST ALBRECHT and WERNER J. RICKER

Herrn Heinz Konig zu seinem sechzigsten Geburtstag gewidmet

INTRODUCTION

Let N> 1 and A, denote the Laplace operator in LP(RV), 1 < p < co. Then
A, is selfadjoint and so, via the spectral theorem, admits a functional calculus based
on the bounded measurable functions defined on C. For p # 2, A, is formally self-
adjoint in the sense that the dual operator to A, is A, where p= + g=* = 1. There
arises the question of whether A is also a scalar type spectral operator if p # 2?
In fact, the same question can be asked for any constant coefficient differential
operator in LP(R”). One of the aims of this note is to answer this question (in the
negative); see Section 2. The idea is to consider such differential operators as unbound-
ed Fourier multiplier operators; it then follows that if the operator is spectral it
is necessarily of scalar type. Accordingly, it admits an L®-functional calculus all
of whose elements are necessarily p-multipliers. Then multiplier theorems for L?(RV)
produce the desired contradiction (not only for differential operators but also for
more general Fourier multiplier operators).

This negative answer suggests an alternative question, namely whether there
exist such differential operators which are (unbounded) decomposable operators
in the sense of C. Foias? Operators in this class are not required to split the under-
lying space in such a strong way as that required by spectral operators. In Section 3
it is shown that all constant coefficient elliptic operators in L?(R¥) are decomposable;
we use the fact that such operators admit a sufficiently rich functional calculus. An
example is given of a (non-elliptic) differential operator which is not decomposable
for every p # 2.

In the first section we establish the basic notations, facts, and definitions con-
cerning spectral and related operators needed in the main text. In particular, a Fuglede
type theorem (which is used in § 2 and may be of independent interest) is estabtlished;
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sc2 Theorem 1.2 and its corollaries. For ease of reading, the proofs of these results
are placed in an appendix at the end of the paper.

1. AFUGLEDE TYPE THEOREM FOR QUASISPECTRAL OPERATORS

Let & be a Bunach space and () the Banach algebra of all bounded linear
operators on . The sct of all closed linear operators with domain and range con-
tained in .2 is denoted by (.#). If S, T are linear mappings with domains of definition
D(S) < & and D(T) € &, respectively, and values in @, then we write S < T if
DSy & D(T) and Tx = Sx, for all x € D(S). A point = € C is in the resolvent set
p(S)of S e (.F)if z-- S is bijective. By definition. the point co is in o(S) if and only
if D(S) :=.4. The spectrum a(S) :== C\ p(S) is then a compact subset of the one
point compactification C := C ¢ { oo} of the complex plane. For a closed subset
Fof C, we write . ¢ F') for the set of all those x € 4 for which there exists an analytic
“-valued function f: C\\ F -» . such that (z — S)f(z)=x on C\ F. Sec the mono-
graphs {5], [9], [28] for the theory of these spectral manifolds.

Let % denote the o-algebra of Borel subsets in C. The notion of a spectral mea-
sure P: A - LX) of class I' (where I' is a total subspace of the dual spacc 4™
of .#) is standard [7]. Given x € and y € I', the C-valued measure E — (P(E)x, 7>

lis denoted by {Px, 7>. An operator S € 6(¥) is called quasispectral of class I' (sce
3} for bounded operators), if there exists a spectral measure of class I', say P, such

that. for every closed sct | < 6,
(h SPENC) = PENC)SPENC) and o{SPENC)T) < E.

Here S,P(E 0 C)F is the closed operator with domain D{S P(E n C)¥) := D(S) n
APENC)E defined by (SP(ENCE)x:= Sx, for all xe D(S;P(E nC)ME).
In this case P is called a resolution of the identity of class I' for S. By (1) we have
PK)E < D(SY and S P(K)IE ¢ L(P(K)Z) for every compact set K< C. If,
instead of (1), we have

{2} P(E})S € SP(E) and a(S;P(E)LZ") c E, for every Borel set E < C,

then S will be called a prespectrel operator of class I' [T). Here E is the closure of
Ein C. A prespectral operator of class 2 is spectral in the sense of N. Dunford [9).
It is known, even in the bounded case, that the dual of a spactral operator need not
be spectral.

L1 LemyvA. If T e GLE) is) a spectral operator, then the dual operator
T cG@) is prespectral of class K. In particular, if & is reflexive, then T# is spectral.
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If S e¥(¥) is a quasispectral operator with a resolution of the identity P of
class I' then, for any bounded Borel measurable function /: C - C, define

oy(f) 1= Sf(z) dP().

C

Then &4(f) is a scalar type prespectral operator with a resolution of the identity of
class I' given by

3) P.(E):= P(f~YE)), for E€%;

(see [7]. Proposition 5.8). The mapping f+> @g(f) defines a continuous unital homo-

morphism from the Banach algebra of all bounded Borel measurable functions
to L(X).

1.2, THEOREM. Let & and ¥ be Banach spaces and A € C(4) (resp. B € €©(¥))
be a quasispectral operator with resolution P, (resp. Pg) of the identity of class
Iy (resp. I'y).

@) If T:% - ¥ is a bounded linear operator satisfying TA < BT, then for all
bounded continuous functions f:C—- C we have

“) To(f)= (I’B(f )T
(b) If, in addition, T*(I'y) = T',, then
5) TP,(E) = Py(E)T, for all E€ 4,

and (4) holds for all bounded Borel measurable functions on C.

This theorem generalizes Trditev 2.6 and Izrek 2.9 (iiy) in [18], formulated for
bounded operators. From the special case £ =%, A=8B, I'y=TIp, and T =1
{the identity operator in ') in the theorem, we cbtain the following

1.3. CorROLLARY. The resolution of the identity of class I' of a quasispectral
operator of class I is uniquely determined.

Let S €e€(&) be a quasispectral operator of class I’ with resolution Pg of
the identity of class I'. For a Borel measurable function f: C — C define (with
D) :={zeC; zj < n}),

o Vo

D(@4(f)) := {x €4 ; lim Sy f(2)dPg(z)x exists}
¢
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and, for x € D(®4(f)),

@s(f)x = th s oy EIPR.
(o}

Then S, : = Pg(id) is called the scalar part of S where *id’’ is the identity function
on C. With these notations and definitions we obtain the following result from
Theorem 1.2. Part (b) is the generalization of Putnam [26] of the original Fuglede
theorem [16].

1.4. CorROLLARY. (a) With the hypothesis of Theorem 1.2 (b) we have

TP (1) < P5(/)T,

Jor all Borel measurable functions f: C - C.

(b) If & and ¥ are Hilbert spaces, A and B are normal operators (possibly
unbounded ) in & and ¥, respectively, and T :& — % is an operator as in Theo-
rem 1.2 (a), then TA® < B*T, where * denotes the Hilbert space adjoint.

1.5. COROLLARY. Suppose that, in the setting of Theorem 1.2 the operator T
is injective, A is a spectral operator and B is a scalar type spectral operator. Then
the operator A is actually of scalar type and o{®(f)) < o(®y(f)), for all Borel
measurable functions f:C~ C.

An example of U. Fixman [14] shows that the class of quasispectral operators
is strictly larger than the class of prespectral operators; there are situations when
both classes of operators ceincide.

1.6. PROPOSITION. Everv gquasispectral operator T on a weakly sequentially
complete Banach space & is spectral.

2. NON-SPECTRALITY OF DIFFERENTIAL AND MULTIPLIER OPERATORS

Let G be a locally compact abelian group, let I' denote the dual group of
and write pu for the Haar measure of I'. Suppose that 1 < p < 2. Then the Fourier
transform % (also denoted by -) is a continuous injective linear mapping
F . L2(G) - LYT) where p~* 4+ ¢~ = 1. For a Borel measurable function ¢:I' - C

define

D,(0) := (f€L7©G) ; of € LG}
and

T3f:= FYNof), for every fe Do)
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This defines a closed linear operator 77 with domain D,;(<p). As usual, ¢ will be called
a p-multiplier for G if D,(¢) = L?(G), that is, if T2 € #(L*(G)). The space of all
p-multipliers for G is denoted by .#,(G).

For 1 € g < oo let M7 denote the multiplication operator in LY(I') given by
Mg := gg, for every g in the domain D(MQ) := {h € LYT'); ¢h eL"(F)} of MJ.
Then MJ is a scalar type spectral operator with resolution of the identity Q, given
by Q,(E) := M;',E,q,, E e #; its functional calculus is specified via the spectral
integral

¢y<w)=8¢dgq,= M.y,

C

for every Borel measurable function ¢ on C. Since FT5 < MZF (for 1<p<2,
p~' 4+ g~! = 1), the following result is a consequence of Theorem 1.2, Corollary
1.5 and [9], Theorem XVIL2.10. For the statement concerning spectra we have
used the fact that the u-essential range of any m e .# (G) coincides with the
spectrum of MZ € #(L%I)) and is a subset of the spectrum of T% € L(LP(G)).

2.1. PROPOSITION. Let 1 <p <2 and A< TZ. If A is a spectral operator
in LP(G), then A is necessarily of scalar type and the resolution of the identity P,
of A is given by

P(E) = FQJUE)F = T;Ec o> Jor every E€ A.

Moreover, for every bounded Borel measurable function y on C we have
y

&0 = S¢<z) dP,() = FBMY)F = TE., € L(LAG)
C

and there is some constant K, > 0 (independent of ) such that

©) 1T oll <KWl

LoP )’

In particular, o @ € M (G). In addition, the spectrum of Ty ., € L(LYG)) is the
p-essential range of o € LT, ).

The above proposition provides various means for establishing the non-spec-
trality of T2, 1 < p < 2. Indeed, it suffices to show that either, ‘
(i) there is a  such that the spectrum of T, » € Z(L7(G)) properly contains
the p-essential range of Yo € L2(I", u), or
(ii) the estimates (6) lead to a contradiction, or
(iit) there exists s such that i o ¢ is not a p-multiplier for G.
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Our main interest is in the case when G == RY. For an application of (i) we
refer to § 3. To exploit (i) it is often possibie to use a result of Hérmander [19],
Theorem 1.14, stating thot if fe RN, R) and there exists a sequsnce of real
numbers ¢, -»co such that each function p,,(\) U(p(lf,, f(x), x eRY, is a p-mul-
tiplier and sup’ T,, L < oo, then flx) =2, + L 2;x;, x € RV, for suitable x; ¢ R,
nEN ; ’
jo
0 < j <N We give an ‘mmediate application.

2.2, PROPOSITION. Lot 1 < p <2 and ¢ € RN, C) be a non-constant func-
tion. Then 17 is not a spectral operator in LP(RY).

Proof. Suppose that 77 is a spectral operator in LP(R™). Consider the bounded
continuous functions ¥, n,. <,: C—~ C given by ¢,(z) i=exp(inz?), g,(c) i=
o= expliin - Re(z)), and ¢,(2) 1= explin- Im(z)), for - e€C. Then Proposition 2.1
(cf. (6)) implies that ¥, < @, 1,2 ¢, &, @ € M, (RY), foreachn € N, and sup; Ty .,," <

nEN
< oo, sup]T,] oq,, < oo, «nd sup; Iu ¢ . < cc. Hérmander’s result now implies
nEN
that tlu functlons 0.2, Re(o) and Im(p) must be affine. This contradicts ¢ baing
non-constant. %]

For example, if 0 # » ¢ RV is fixed and ¢ (x) : = exp(ix, })), x € RY, then
the operator Tf;y, which is the translation opzrator by amount y in LP(RV), cannot
be spectral. This gives an alternative proof (in the special case G = R¥) of the fact
that translation operators in L?(G) are rarely spectral operators [17].

Recall that if Q:RY.»T is a polynomial and D; = m-i};)«-- , 1€j €N

Xy
then the differential operator Q,(D) given by Q. D) := Q(D)f, for every fe
G INQ,D)Y) = {h e L"(RY): O(D)r € Le(RM)}, where Q(D)f is defined in the distri-
butional sense, comcxdcs with Tf. Hzncz, Proposition 2.2 implies the following

2.3. COROLLARY. Let 1 < p < 2 and Q :RY — C be a non-constant polynomial.
Then the differential op2rator Q (D) is not a spzctral opzrator in LP(RV).

We remark that a similar argument as in the proof of Proposition 2.2 shows,
whenever ¢: RY - C is a function for which there exists ¥: C — R such that y»¢ ©
CEHRY, R) and o ¢ is not afline, that 77 is not a spactral operator for any
T<p<2

We now indicate how (iii) can be applied in showing non-spzctrality of T3 .

2.4. PROPOSITION. Lef @ RN - R be a Boral mzasurable function and suppose
there exists u € RV such that ¢ is continuous in a nzighbourhood U of u and, for
some non-zero v € RY, e function tvws o{u + t) is strictly monotonic in a
neighbourhiood of 0. Thea av restriction A < TS, 1 < p < 2, coasidered in Lp(RY),
is « spectral operator.
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. Proof. Choose a neighbourhood ¥ of u and ¢ > 0 such that }p(x)| < ¢, for
every x. € V. Then y, defined by ¥(z) := sign(Re(z)) - min{c, |Re(2)|}, z €C, is
bounded, continuous and satisfies Yo = ¢ on V. Assume that A is spectral.
Then Proposition 2.1 and [9], Theorem XVII.2:10, imply that T, ., = @) =

= Sl,b(z)dPA(z) is a scalar type spectral operator in ,Q(LI’(RN)). Hence, we may re-
C
place ¢ by o ¢ and so assume that ¢ € 4 ,(RN) and A = TZ. By means of an affine
transformation [19], Theorem 1.13, it may also be assumed that ¥ = 0 and v =
= (1,0,...,0).
Let p € €°(RV) be identically 1 in a neighbourhood of 0 and with support small
«wnough 30 that pp € €. (RY). Fix an arbitrary bounded continuous function  on C.
Proposition 2.1 implies that @,() = Ty ., € L(L?(RV)), that is, Y o ¢ € A ,(RV).
In addition, ¢ ¢ ¢ is continuous on supp(p) and, by (6), we have

175wl < ITITY ol < KN TR - A oo g »
where P is the resolution of the identity of T;. It follows from a result of de Leeuw
6] (see especially the proof given in [20]) that the restricton p-(i o q)) R x {0} =
= p-(Yop), where p = pR % {0} and § = @R x {0}, is an element of ./, (R)
with the norm (in #(LP(R))) of the corresponding multiplier operator not exceeding
K Toi 1yl Lo Here Q is the essential range of ¢ and we have used the fact that

P(E) =0 if and only if ¢~1(E) is a null set in RY. Moreover, p is identically 1
and ¢ is strictly monotonic in some neighbourhood W of 0.
Fix any interval I = [a,b] < W with a < b and define

Z = {feL2(R);supp(f) < I}.

‘Since ./ is reflexive (being a closed subspace of L7(R)), the restriction 7' of T : to
% is spectral of scalar type; this follows from [9], Theorem XVII.2.5, by considering
the continuous homomorphism @ : €(Q) - L(X) given by &) := TE l,

PRVEL N

¥ € 6(Q). Let Q be the resolution of the identity of 77 and 7:& — L%(I) be the restric-
tion of & from L?(R) to Z. It follows from Proposition 1.2 and Corollary 1.5 that

QE = F Y yzod|I-f), feZ, Eca.

Let ¢ < a, < b, < b and choose a Borel set £ < I, := [a,, b,] such that y, is not
a p-multiplier for R (see for example (221, p. 111). Since ¢ @ ‘[ is continuous and strictly
monotonic we have E = (3\)-Y@(E)). Fix a e ((’°°(R) with supp(e) = I and
o = 1 in a neighbourhood of Il. Then 72 may be considered as a continuous linear
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operator from L?(R) to #&. It follows that JO(P(E)DT? = T{E belongs to #(L”(R)),
where J: & - LP(R) is the canonical injection. This contradicts y . ¢ -#,(R).

Proposition 2.4 can be used to show the non-spectrality of certain familiar
operators. For example the Riesz transforms in RY, N > 2, corresponding to the
multipliers x = x; - xi~% x # 0, for 1 < j <N, are not spectral whenever 1 < p < 2.

The same is true of the operators T, f:: corresponding to ¢, (x) = .x%, x ¢ RY, for

o > 0. The opzrator T 51 is just the infinitesimal generator of the Poisson semigroup..

For 4 > --1, the Bochner-Riesz mean y, of order 4 dzfined by y,(x) := (1 -~ x}?)*-
* x5(x) for x € RN (wherc B is the closed unit ball of R¥), is an element of . (RV)

for all 1 <p < oo whenever 2/ > n — 1. Proposition 2.4 shows that T/ is non-

P

-spectral whenever 1 < p < 2.

Proposition 2.4 has extensions to other groups. For example, by considering
the real and the imaginary parts of the functions 7+ @(x + fe;, z) and £+ ¢(x,
=+ (€' - ), t € R, where x e R, z € TM and ¢; (resp. f;) is the j™® (resp. k'™
coordinate direction in RY (resp. T*), a similar argument as that for the proof of
Proposition 2.4 can be combined with Jodeit’s proof [20] of the de Leeuw theorem
and {22], p. 111, to establish the following result.

2.5. PROPOSITION. Let G := RN X ZM and suppose that ¢: T -» Cis a Borel
measurable function which is non-constant and of class 4 on some open subset of I' =
= RY x T™. Then no restriction A= TE, 1 < p < 2, is a spectral operator in LP(G).

For p > 2 the Fourier transform of an L?-function on G need not be a func-
tion on I'. Accordingly, 7% cannot be defined as above. For the sake of simplicity
we restrict ourselves to the case G = RY (or G = RV ZM). For any 1< p < o0,
let % ,(G) denote the set of those Borel measurable functions @:I' -» C with the
property that po ¢ # (G) whenever p € €2(I). Let Z2,< 17(G) be the subspace
defined by

P, = {[€LPG); supp(f) is compact},
wheref'is considered in the sznse of distributions. If f ¢ &, , then there exists pe 42(I')
which is 1 in a neighbourhood of supp(]‘). Since ¢ € %,(G) it follows that g :==
::::,97"1(;)(,0/”'):‘77"1((/)]?) € L?(G) is independent of p (where & ~! has to be taken in
the sense of tempered distributions). The operator S, defined by S, f: =% ‘f‘(gqf ), for
f&%,, is closable; its closure is denoted by S7. For 1 < p <2, we have $7::T7%.
Since SJ is densely defined. the dual operator (S5)* exists: it satisfies ($5)%c Tg
wlienever 2 € p < oo (where p~* + g~ = 1). The reflexivity of L?(G) implies in
this case that S7 is spectral if and only if (S5)* is spectral in L9(G). By considering
A 1= (S5)* it follows that the analogues of the statements 2.1 - 2.5 are also valid
Jor the operators S5, ¢ € U (G), whenever 2 < p < oc.
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We conclude this section with some remarks. It has been shown that Q(D)
is not a spectral operator in LP(RY), 1 < p < oo, p # 2, whenever Q:R¥ - C is

a non-constant polynomial. For the special case Q(D) = D; = ~i 2 , 1<j <N,
3

we refer to [12]. We also mention a result of B. S. Mitjagin [24], [25], (obtained by
means of an extension of C. Fefferman’s negative solution [13] of he multiplier
problem for the unit ball) stating that if Q(D, x) is an elliptic differential operator
on 72(Q) for an open set Q< RV (or certain N-dimensional differentiable manifolds)
having a semi-bounded selfadjoint extension in L2(Q) (with resolution of the identity
P)then, for N>2, the family Q P((—o0, 1))Qk, t € R, K& Q compact, is unbound-
ed in L?(Q). Here Oy is the operator of multiplication with y.. Consequently, it is
unlikely that such operators can be spectral in L?(Q) (for bounded domains this
follows from Mitjagin’s result, Theorem 1.2 and Corollary 1.5).

On LYG) (resp. L®(G)) with G = R¥ x ZM no non-trivial spectral (resp. quasi-
-spectral) operators exist. To see this, we observe that the values of the corresponding
resolution of the identity would be translation invarant (by Theorem 1.2 with
A = Band T running through all translations) and hence, would be multiplier opera-
tors. However, the only idempotent multipliers in #(G) = #_(G) are 0 and 1.

The results of this section show that translation invariant spectral operators
in LA(G), p # 2, seem to be rather scarce. Nevertheless, since I' = R¥ x TM admits
Littlewood-Paley decompositions, it follows (from [10], Proposition 1.2.9, for
example) that given any compact set K = C, there exists ¢ € J,(G), 1 < p < oo,
such that 77 is a scalar type spectral operator with o(72) = K.

3. DECOMPOSABILITY AND FUNCTIONAL CALCULUS FOR CONSTANT
COEFFICIENT ELLIPTIC OPERATORS ON LP(RY)

Let ¢ be in % ,(RY), in which case S% is defined for 1 < p < co and let o7 ,()
be the set of all (equivalence classes of) Borel measurable functions ¢ on C with
oty € A (RV), where ¢, and ¢, are identified whenever ¢, oy =@, almost every-
where in R¥. Then &/ (y) oy := {poyy; @ € ,(¥)} is a closed full subalgebra of

A (R"). Endowed with the norm |loll, 1= [l@eyi, gN), @ €, (), the algebra
p
4 (Y) is a Banach algebra and the mapping defined by

(7) ¢p: Jyp('l/) - c’?(LP(IL{N))’ Q= Tg oy

is a continuous unital homomorphism. The question arises, how rich is this algebra

& (¥) and how is @, related to Sy ?
[n general there is no adequate solution to this problem. Already for Y e 4 (R¥)

he operator S, = T, may not be decomposable in the sense of C. Foias [15] (see
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[4], [11] for some examples). This shows that the functional calculus (7) for $7
may be very poor. However, for elliptic differential operators (D) on RY wiih
constant cocfficients, the situation turns out to be satisfactory. Here

W) = Y alt, eRY,

jz;<m
is a polynomial with complex coefficients whose principal part

Y’l)(‘:) == z Czé:as ‘; ERN:

'z} =i

has no zero in RV {0].
Consider the set <% of all functions ¢ € ¢*(C) satisfying (with z = x - iy)

P

c -

SR (z)l < Q.
2 !

P )
Cx oy

) . 1 ' .iil(ll','lg)
Pk L <o cosuptl + oz
2wk aloa! zeC

Endowed with this norm <7, is a Banach algebra. Let %% be the closed subalgebra:
of all ¢ €.7F having continuous extensions at co. Then 7% and %, have the
following two properties.

{A) For every finite open cover {Ul, cees Up} of C there are ¢, ..., ¢, i
A, such that supp(e,) < U for Il < j<randg, + ... + ¢, = L on C.
(B) For every ¢ €.7% and every 7 € C\ supp(o) the function ¢, given by

PA2) 1= () = 2)hy, (), 2 €C, is in AL

SUED(o)

3.1. THEOREM. Let K < N and W : RX - C be an elliptic polynomial of Jegrec
#in. Consider W as being defined on all of RY (te. ¥ is constant with respect to the
variables &; for K <j < N). Let k > Nj2. Then, for every ¢ €d%,, the finction
@o>¥isin A (RN and the howomorphism @ — T7,_, =: (@) from 75, 10 LURY))
is continuous with the following properties.

@) For all ¢ € 7% with compact support

D(@)¥ (D) = ¥, (DYP(0) = P(¢-idc).

(b) There exists a sequence (p,)2., of functions in S7% with compact supports
such that im ®(p,)f = f, for all f € LP(RY). Moreover,

1#->00
D{¥ (D)) = D, :== {f € LA(RY) ; lim ®{p, - idc)f exists in LP(RV)}
n—=co

and

w (DY = lim ®(p, - idc)f; for all { € D(¥ (D).

R0
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Proof. We shall need the perturbed polynomials ¥, , n € N, given by

Yln(é) = E nldl_mczéu, g’ (S RN, e N,

|zl <m

where ¢,, la] < m, are the coefficients of ¥. Notice, that ¥, = ¥ and that all the
polynomials ¥, , n € N, have the same principal part ¥,. Since ¥, has no zero in
R¥\ {0} and the lower order coefficients of ¥, tend to 0, for 7 — oo, there are
constants, ¢, C, M > 0 (independent of ») such that

®) g™ < (PO < Cigt, for all & e R with &) > M.

Let ¢ be an arbitrary function in &,. By means of induction, for § € NJ
we have Di(g o ¥,) = 0if £, # 0 for some j > K and for 0 # f§ € Nf we have

20,

Dip=w )= B Ala(0-" 7 (0

L & ~
ERA X 1('_’;' =

for some polynomials pa(,'l') 2, Of degree not exceeding (x, + a,)m — |f| and depending

only on ¥ and n. Moreover, the coefficients of p(,"l)‘ x,» s functions of »n, are bounded.

Since ¢ € %, it follows (see (8)), for |&] > M = M(K) and all » e N, that

alf,-a,_,-

C,‘] 4 Hm.k

an(a, )
g (2y--ay

2w &)

2,

2

<

ox 19
for some constant C’ > 0. Hence, for all ¢ ¢ RN and 8 e NY,

IS DA o ¥ )EN < C+ 1@l

for some constant C”” > 0. By the Mihlin muitiplier theorem (cf. [27], p. 96) @ o ¥,
is a p-multiplier on R¥ and

H(/) o T,,H p (RN) S C()”(p”m,k
“p

where Cy > 0 depends only on p, N, and ¥. Putting n = 1 it follows that
@: 7% PLP(RY)) is a continuous unital homomorphism. (a) is now obvious. To

prove (b), fix any p € 62(C) with p(0)=1 and define p,(z) := p(n~™2) for z € C and
n €N. Then

i ! = | [} = oy I 1 o | {
”Q(pn)ll ”pn THle(RN) Hén(p P”)Il.fﬂp(RN) < x]p Tnllhﬂ (RN) < CO!\F’Hm,k}



96 ERNST ALBRECHT and WERNER J. RICKER

for all # € N, where d, is the dilation oparator dzfined by (8, f)(¢) : = fn"1¢). Since,
for all ¢ e 4P(RY), we have

0.2 ONEPE) = p(nPENP(E) ~ @(¢)  for 1 — o0

in the topology of #(RY) (the Schwartz space of rapidly decreasing functions) we
see that T .- fin LA(RY} for f in a dense subset and thus T; ., — lin the strong
operator topology. Obviously D, D(¥ (D)) since ¥ (D) is closed and &(p,-id¢) =
= W D)®(p,) by (a). Conversely, if /€ D(¥,(D)), then ®(p,)f — f for n -»co and,
by (@), ¥, (DYP(p,)f = (p,)¥ (D)f — ¥,(D)f This shows that D, = D{(¥ (D)). F]

If Te?(&) and ¥ is a closed subspace of #, then @ is invariant for T if
T(D(T)r¥)=%. The operator T # with D(T'E?/) =DT)n¥ and (T¥)y := Tv
for y ¢ IXT #) is an element of ¥(#). Recall that T is decomposable in the sense
of C. Foias if, for every finite open cover Uy, ..., U, of C.there are closed invariant
subspaces £y, ..., &, for T such that (T ¥ <= U;, for j=1,....r, and & =
=45+ ...+&,; see{15], [5] for the theory of bounded decomposable operators and
[28] for unbounded decomposable operators. An operator T € %(&) has the Ljubic-
-Macaev property [23] if, for evary compact set F = C, the manifold £ (F) is closed in
& and if, for every locally finite opzn cover (U,)2; of C by bounded opzn scts, the
space .#" is the closed linear span of Z(U,), n € N. In the case of bounded operators
this class is strictly larger than the class of decomposable operators (see [2] for an
exampie). In the unbounded case these two classes are no longer comparable. For
example, the operator T in the Banach spacz %,(C) on all bounded coatinuous func-
tions on C, defined by D(T) := {f € €,(C); sgg':f(z)’ < oo} and (Tf)(2) := zf(2),

for f e IXT), z €C, is decomposable in the sense of Foias but does not have the
Ljubic-Macaev property.

3.2. LEMMA. Let A € 6(¥) and B € 6(¥) be decomposable operators and
suppose that J € L(&, ¥) is an injective operator satisfying JA < BJ. Then o{A) %
< o(B).

Proof. Let 7. e C\\6(B) and fix open sets U, W < C with 7. e W, U no(B) =
= {) and W < U. From the definition of & (F) and #4(F) it follows that J£ (F)<
< Y F). for all closed F < C. Hence, using the fact that & = ¥ (a(B)) and [28],
Lemma 1V.4.20, we obtain J.£ 4(U) € #(U) n #5(6(B)) = ¥(0) = {0}. It follows

that ¥ = & (U) + Z (C\W) = Z,(C\W)=Z and thus o(4) = (4 £ (C\ W) S
< C\.W (cf. [28], Proposition 1V.3.8.). S

3.3. CoroLLARY. Let 1 < p < 2. Suppose ¢ is a Borel measurable function
on the dual group I of a locally compact abelian group G and A < T} is decompo-

sable in L?(G). Then 6(4) = (essrange(o))~ where the closure is taken in C.
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Proof. We use the facts that F4 < MJF (where & : L(G) — LUI') is the
¥ourier transform, p=* 4+ ¢~ = 1) and M (the operator of multiplication with ¢
on L)) is spectral and hence decomposable Since o(MJ) = (ess range((p))' the
statement follows from Lemma 3.2. -

3.4. COROLLARY. Let 1 < p<oco and ¢ €U, (RN). If St is decomposable,
then o(Sh) < (essrange(p))~ where the closure is in C.

Proof. Only the case p > 2 remains to be proved. Since S’ is densely defined
the dual operator (S5)* exists and is decomposable by Proposition 1V.5.6 in [28].
But, (S5y* < T (with p~* + g~1 = 1) and so the statement follows from Corol-
lary 3.3.

So, if ¢ € % ,(R™) is any bounded function which is not in .# (RY), then S
cannot be decomposable (and hence not spzctral). For example, the function

) &) :=( —-& ~ ... =&k + D7 for & =(&y,...,¢y) €RY,

is known not to bz a p-multiplier on R¥ for p # 2, [21]. Hence, S} cannot be decom-

posable for p # 2. This result of Kenig and Tomas can also be used to prove the
following

F]

3.5. . :CcLLARY. Let N > 2 and ¥Y(&):=¢&, —¢€3 — ... — &%, for £ eRN.
Then the differential operator

¥, (D) =

-0
.Xl Ox3 OXfr
is not decomposable in LP(RN) whenever p # 2.

Proof. If (i — ¥ ,(D))~* would exist in L (L?(RV)), then (by restriction to #(RV))
it can be seen that (i — ¥ (D))~ would have to coincide with S? (¢ as in (9)). But,
@ ¢ 4, (RN) and hence, i € (¥ (D)) \ (essrange(p))~. Corollary 3.4. implies that
¥ (D) cannot be decomposable. %

Thus, for N > 2, not all linear partial differential operators with constant
coefficients are decomposable in LP(RN) if p # 2.

3.6. THEOREM. Let K < N and ¥ : RX - C be an elliptic polynomial of degree
m > 1. Considering ¥ as being defined on all of RN (cf. Theorem 3.1) the operator
Y (D) is decomposable in LP(RN) and has the Ljubic-Macaev property. Moreover,

() o(¥ (D)) = P(RV)y {co} = supp(P), where & is the functional calculus
of Theorem 3.1, and

~20]2
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(b) for all closed F < C we have
LARY),, p(F) = 6(F) := (M{kex(@(0) ; ¢ & By, supp(¢) 0 F = O}.

Proof. To simplify the notation, write & := LP(R") and T := ¥ (D). Since
9%, is quasi-admissible in the sense of [28], Definition IV.9.2, the operator T = ¥ (D)
is decomposable by Theorem 3.1 and [28], Corollary 1V.9.8. Corollary 3.3 implics
the first equality in (a). In particular, the decomposability of ¥,(D) implies that
the spaces ¥ (F) are closed invariant subspaces for T with o(T ¥ (F)) & Fno(T)
(see the proof of Lemma IV.4.19 in [28]). By the proof of Theorem 1V.9.6 in [28],
the mapping Fr> &(F) is a spectral capacity for T and o(T6(F)) < F, for all
closed F <C. In particular, this proves §(F) € X p(F). Since @(@)Z(F) &z Z4(F)
and 9(@)(LP(RY)) c &(supp(e)) it follows, for all x e Z,(F) and ¢ € #% with
supp(e) N F = O, that

D(@)x € X (F) n &(supp(@)) € X(F) n & r(supp(e)) =
= ¥ (F 0 supp(e)) = % (@) = {0},

where we used Lemma IV.4.20, Corollary IV.4.17, and Proposition IV.3.6 in [28].

Hence, % 1(F) = &(F) holds for all closed subsets of C.

Since Z'(6(T)) = 2 we have &(¢) = 0 for all ¢ € B, with supp(e) n a(T) = O.
Hence, @ vanishes on C\ (7). Conversely, if F < C is a closed set such that
®(¢) = 0 for all ¢ € #* with supp(p) no(T) = O, then X = &(F) = Z(F) and
o(T) = o(T ¥ (F)) = F. This establishes (a).

The Ijubic-Macaev property for T follows from Theorem 3.1 and [1], Satz
II1.2.17. For the sake of completeness we include the argument. Let (U,)3., be a
locally finite cover of C by tounded open sets. For a given n € N there is some
r & N such that (with p, as in the proof of Theorem 3.1) supp(p,) < UV ... v U,.
By property (A) there arc ¢y, ..., ¢, € B% such that supp(p) s U; (1 <j<r)
and ¢, + ... + ¢,=1 in a neighbourhood of supp(p,). If x €% is given, then

o) = ¥ Uo)x € 3, 6T) = Y, 22T

J-:1
Hence, x = lim ®(p,)x is contzined in the closed linear span of Z(U;), j & N. &
1~>00
In R? every polynomial of positive degree is elliptic. Since constant multi-
ples of the identity operator are decomposable, we obtain the following

3.7. CorROLLARY. Every linear differential operator with constant coefficients
is decomposable in LP(R), 1 < p < co, and has the Ljubic-Macaev property.
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4. APPENDIX: PROOFS OF THE STATEMENTS IN SECTION 1

Proof of Lemma 1.1. Since T|P(E)%, for E € 8, is densely defined the dual
operators (T|P(E)Z)* exist and can be identified with T*#P*(E)Z* (after noting
that P*(E)%* is isomorphic with (P(E)Z)*. The argument then proceeds analogously
to the case when T is bounded ([8], p. 250).

For the proof of Theorem 1.2 we need the following

4.1. LEMMA. Let S € €(X) be a quasispectral operator of class I and let P: B —
— L(X) be a resolution of the identity of class I for S.

(@) P(U)S = P(U)SP(U) for every bounded open set U < C.

(b) For a bounded open set U < C define Sy € L(P(U)X) by Syx := P(U)Sx
Jor all x €eX. Then o(Sy) < U.

(c) For every closed set F < C we have P(F)X = Z(F) where F is the closure
of FinC.

Proof. (a) follows from (1).

(b) Since U is bounded we have P(U)X < P(U)% < D(S) and therefore
co € p(S|P(U)Z). Fix z € C\U and let x € P(U)Z. By (1) we have z & p(S\P(O)%).
Choose y € P(U)Z with (z — S)y = x. Then (a) implies that

(z ~ SYPU)y = P(U)z — S)P(U)y = P(U)z — S)y = P(U)x = x
and hence, z — S is surjective. If now x € P(U)Z satisfies Syx = 0, then
z — S)f(U)x = (z - SPO)P(U)x = PO)z — S)POP(U)x =
= PU)z — S)P(U)x = PEUYz — S)P(U)x + (z — Sp)x = P@U)z — S)P(U)x,

where 0U denotes the boundary of U. Because z € p(S]P(aU)fX Ythereis v = P(0U)v €
e POU)Z with (z — S)P(OU)v = (z — S)P(U)x. Since P@U)» — P(U)x € PONE
and z e p(S]P(U)Q”), this implies P(U)x = P(0U)v and thus x = P(U)x = 0.
Therefore, z — Sy is also injective.

(© If x e P(F)Z, then f(z) := (z — SIP(F))~*x, for every ze C\|F, is an
analytic Z-valued function on C\ F (vanishing at oo if F is bounded) satisfying
JC\F) < D(S) and (z — S)f(z)=x on C\F. Hence, P(F)% < Z4(F). Conver-
sely, suppose that x eZ'g(F). Then (z — S)f(z) = x on C\ F for some analytic
%-valued function f on C\\F with f{(C\ F)D(S). Let U be a bounded open set
with U < C\\ F and define the analytic function

h(z) = {P(U)f(z), for zeC\ F
"G - SpPU)x, for zeC\T.
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By means of (a) and (b) it follows that /1 is well-defined. Since S is bounded / vani-
shes at co and so Liouville’s theorem implies that & = 0. Accordingly, P(U)x =
=2 - Sp)z — Sp)"P(U)x = 0, for every z e C\.U. Now C\\ F is a countable
union of increasing bounded open sets U, in C with U, € C\ F. For all v eT,
it follows that

SPICNB)x, y) = imKP(G)x, ) = 0
and hence P(C\ F)x = 0, that is, x = P(F)x e P(F)¥. a

Proof of Theorem 1.2. (a). Fix a bounded continuous function f:C -» C.
By (3) and Lemma 1.1 it follows, for all closed sets F < C, that

fq,A(f,(F) = & (f "M(F)) and Yo r.(E) =Yg fTHED.

From the definition of the spaces & (F) we have
(i0) Ty f(F) = TELfHEN) = TW(fHFN) = TW, ,(F))-
A B

Since ¢,(f) and @4(f) admit continuous functional calculi based on the continuous
functions on C via the formulae g > @ ,(g = f) and g+ Gy(gef), it follows (cf. [3],
Remark 1(b)) that @ ,(f) and ®,(f) are normal equivalent operators. By the proof
of Theorem 1 in [3], Equation (10) implies (4).

(b) For all bounded continuous functions f on C, (4) implies that
D L)X, Ty = L Pp(f)Tx, y), for every x e and y € [y, and hence

S 1O dPLG., T = Sf(z) dPYDTY, 7.
C

Then (5) follows from the Riesz representation theorem and the totality of I'y.
It is clear that (5) implies (4) for all bounded Borel measurable functions on C. {4

Proof of Corollary 1.5. We have to show that the operator 4 coincides with
its scalar part @ ,(id), where “id"’ denotes the identity function on C. Since B is
of scalar type Corollary 1.4 implies that 7@ ,(id) € ®4id)T = BT. Since P, (D)€<
< D{4) n D(@ ,(id)), where D(n) is as in § 1, we obtain

TAP,(D(n)) == BT P (D(n)) = TP ,(id)P ,(D(}).

Thus, AP (D(n)) = & ,(id)P (D)), for all n € N. Hence, for x € D(4), we have
Ax = lim P (D(u)Ax = lim AP (D(m))x = lim & ,{id)P,(D(m))x. Since & (1d) is

H=00 00 n-+20

closced this implies A € @ (id). In the same way one obtains @ (id) € 4 and
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hence 4 = @,(id). Moreover, Theorem 1.2 implies 0 = PyxC\o(B)T =
= TP, (C\.6(B)) and hence, P(o(B)) = 1. This shows that

(11) o(4) < o(B).

If f is a bounded Borel measurable function on C, then @ ,(f) and ®4(f) are again
spectral of scalar type (see (91, Theorem XVIT1.2.10) and satisfy 7@ ,(f) = @4(f/)T (by
Theorem 1.2). Therefore, inclusion (11) also holds for @ (/) and @4(f) instead of A4
and B.

Proof of Proposition 1.6. Lst P be a resolution of the identity of class I' for
T, where I is a total subspace of Z*. Extend P to the set # of all Borel sets in C

by P(E):= P(EnC), for £ %B. Then the mapping & : %(C) — L&) given by

(12) o(f) := Sf(z) dP(z), for € %(T),
c
is a continuous unital homomorphism. Since 2 is weakly sequentially complete

there exists a unique speciral measure Q : B — Z(&), which is g-additive in the weak
and hence in the strong operator topology and satisfies

(13) o(f) := S f(2)dQ(z), for all fe %(C).

[}

(See Theorem XVII.2.5 in [9].) Evaluating (12) and (13) at x €% and y €T, it
follows from the Riesz representation theorem and the totality of I' that P = Q
and hence, .P(E)= Q(E), for all E € #. Thus, P is actually s-additive in the strong
opcrator topology. In particular, this implies that D(T) is dense in & and so T*
exists.

In order to prove that T is a spectral operator it remains to show that T satis-
fies condition (2).

Define P*: B — £(Z*) by P*E):= P(E)*, E<€ %. Then P* js a spectral
measure of class Z' on Z'*. We show that P(E*)Z* < D(T*) holds for all bounded
E e 2. Let U be an open bounded set containing E. For all x e D(T) and x* e &'*
we have, by Lemma 4.1 (a), that

(Tx, PHE)x®Y = (Tx, PHU)PHE)*> = (P(U)TP(U)P(U)x, PHE)*).

Then Lemma 4.1 (b) implies that P*(E)x* € D(T#). Since P* is a spectral measure
of class & the set A := {P*(E)x*; x* €4, E € # bounded} is weak*-dense in Z*
and therefore. total. Fix an arbitrary compact set K = C, a bounded E .4, and
vectors x € D(T), x* e&*. Let (H,), be an increasing sequence of compact
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sets with union CN\ XK. By (1), we have P(K)TP(H,) = P(K)P(H,)TP(H,) = 0 for
all # ¢ N and thus,

0 — [“n <P(K)IP([1”}.\, P:::(E).\.:I:> = hm <P([{").\', T:::P:::(K)P:C:(L')x:j:> .

1~ 00 B=00
= (PIC\RK)x, THPHE)PHEN®Y = {PKYT{1 — P(K))x, PHENXSD.
Hence, using (1) again, it follows that
{PR)Tx, PHE)NX"Y = {(PIK)TP(K)x, PHE)x™) = (TP(K)x, PE)X),

Since the Borel measures {Pt-)Tx, PHE)X™) and {(P{-)x, T*PHE)x™) coincide
on all compact sets they coincide on #. It follows that P(E)T = TP{F) for all bound-
ed sets Fe #. If Eis now a2 unbounded Borel set, then £ is the union of an increas-
ing scquence of bounded Borel sets E, = C. it follows, for all x e D{T), that
PE)X w2 lim P(E)x and lim TP(E)x = lim PIEYTx = P(E)Tx. Since T is a
=00 n=->30 F1 =30
closed operator, this shows that P(E)x e D(T) and TP(E)x = P(E)T~. Hence,
PE)T < TP(E). For : cCN\E the operator R := PENz— T PIE)L) = PUENE
belongs to L{P(E)Y) and satisfies R=(z— T P{E)A)2 Thercfoie, condition {2)
is satisfied for 7. ' 1
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