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THE BEREZIN TRANSFORM AND HA-PLITZ OPERATORS

JAAK PEETRE

By quantization one usually intends a procedure which to functions (‘“'sym-
bols™”) on a suitable manifold (Poisson, symplectic etc.) assigns linear operators
in Hilbert space. Quantization is of interest not only in physics (quantum theory)
but also in connection with pseudodifferential operators. One then speaks of ope-
rator calculi.

An approach to quantization of Kihler manifolds was suggested in the 70’s
by the late F. A. Berezin, who apparently was a very independent mind. Berezin
is othcrwise known as the father of “super mathematics” (see [8]). He died in an
accident in 1980. His main papers on quantization are [4—6]. They contain a wealth
of ideas which seem still to be largely unexplored. See also the survey {7], unfortu-
nately written in peculiar, next to unintelligible English; it is amazing that such
an unfinished product could have been accepted by an otherwise respectable (?)
journal. A complete list of Berezin’s publications can be found in the book [8]. A
critique of Berezin’s view can be found in e.g. [36] (cf. Section 6 of the present paper).
The determination of all admissible values of “Planck’s constant” in the case of
symmetric domains begun in [6] was completed in [17]). An extension of these results
to infinite dimension is given in [29]. See also [23], [24], [12]. Berezin quantization is
furthermore mentioned in [38], [39], where in particular a Jordan theoretic formu-
ation is given.

Even if Berezin’s ideas on quantization should not be of real interest for phy-
sics, they undoubtedly have found a permanent place in “Ha-plitz” (Hankel +
s+ Toeplitz) theory, an acronym invented by N. XK. Nikol’skii. In particular, the
so-called Berezin transform is of vital interest there, and appears explicitly or impli-
citly in many recent papers (see e.g. [2], [3], [21], [11], [12], [13—15], [41—43], [30]).
This has instigated us to write the present paper, which to a large extent is expository.
We thus review those aspects of Berezin quantization which are of particular inte-
rest from the Ha-plitz point of view. However, this is by no means a fully objective
presentation of the matter. I give rather a picture which is consciously distorted to
fit my own personal prejudices. Throughout some directions for further work are
pointed out. The possible physical aspects of the theory will be payed noattention to. k‘
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We begin in Section 1 by recalling briefly the salient facts about Hermitean line
bundles over a complex manifold.

Then we go on in Scctions 2—3 by summarizing, in a form convenient for
our purposes, what we believe to be the essential contents of [4—6]. A novelty is
perhaps the systematic use of the language of line bundles. Berezin himself works
with scalar functions, not sections of line bundles, which makes some parts of his
work look somewhat artificial. In the context of Hankel forms line bundies were
used in [25].

In Secction 4 we discuss some of the most important examples of manifolds
quantizable in the present sense. In particular, it turns out that symmetric domains
can be quantized.

In Section 5, following [5], [7], we express the Berezin transform in some of
these cases in terms of the Laplacian. This allows us to extend to the case of the
ball a result on (big) Hankel operators with non-analytic symbols previously proved
in [2] for the disc.

In Section 6 we mention some alternative avenues to quéentization, including
A. Unterberger's vast program of quantization of symmetric spaces (sec e.8.
[31-37]).

Section 7 is devoted to some concluding observations.

Acknowledgement. My thanks are due to Jonathan Arazy, Jan Boman and
Mikael Passare for several helpful suggestions and remarks.

1. THE LANGUAGE OF LINE BUNDLES

Le: Q be a complex manifold. As is weil-known a (holomorphic) Hermitean
line bundle % over Q can be defined by the following data:

1) An open covering {U,},&; of Q.

2) A family of transition functions {g_},. e, each function g_. being holo-
morphic and nonvanishing in U, n U, (if # ©) satisfying the cocycle condition:

88y = & MUy 0 Uy n U, (f # D).

3) A family of metric coefficients {e,},=r, each e, being a positive smooth
(C=, real analytic) function on U,, satisfying

1=~2
2’

e, =g, 7%, in U, a U (if #0)

Here and in the sequel 7 stunds for a suitable index set, fixed throughout the discus-
(sion.)
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We denote by Q the same set with the opposite complex structure. Then the

family of conjugates g, defines an Hermitean line bundle » over Q (the covering
{U.}ae; and the family {e,},e; of metric coefficients are the same).

The fiber %, of % over a point z € Q can be defined to consist of all families
X = {x,},,eh of complex numbers such that

8, (DX, =x, forael.
Here 7. denotes the set of indices « such that z € U,}) It follows that
Exalzea(z) = [A’a']2€a'(2) forae I: .

Thus we can define the norm {|x||, of x €., as the positive square root of the last
expression. The corresponding inner product is denoted (x, y)..

RemArK. The bundle, and the metric do not change if we replace the &, Y
gm, = 1,8tz and e, by &, = |t,|"%e,, where {ta} is a family of nonvanishing
holomorphic functions. Then x = {x,},e,_has to be replaced by X = {£,(2)x,}se |-

In addition, one can of course also replace the given covering {U,},e; by a finer
one.

A holomorphic section f of x is given by a family of functions {f,},c;, each
function f, being holomorphic in U,, such that

fa = gaa'fa’ in Ua n Ua’ (lf # 0)

We denote further by f the corresponding section of % given by the family of conju-

gates {fa}ael .
Let 1 be a given positive measure on Q satisfying certain assumptions?. We
denote by (R, u, x) the Hilbert space of holomorphic sections with the norm

A1 =S @) EduC2).

Q

The corresponding inner product will be denoted (f, g),. Further we let #*(Q, u, x)
be the space consisting of the conjugates of all elements of 5#2(Q, u, x); these are
thus anti-holomorphic sections of » (or holomorphic sections of ).

1) For most purposes it suffices to assume that 4 has a smooth positive density.
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RiMARK. The space . # %, g, %) and its metric do not change if we replace
du by the measure dji = ydu and, at the same time, each ¢, by e, = y~¢,. Here x
is some fixed positive smooth furction on Q. For this we have only to record the
formula

(v z)P =y 2)x?: for xex.,

expressing the change of mictric on the bundle level. We refer to such a change of
the set up as a gauge transformation (cf. [2), [21]). Perhaps, in retrospect, conturmal
would have been more appropriate.

Concluding the section, fet us also recall why line bundles, and in particviar
vector spaces of sections, arc of interest in {algebraic) geometry. Namely, thev give
all maps of the given manifold @ into a projective space P (N = one minus the
dimension of the vector space).

EXAMPLE. A conic in P2 is given (in inhomogencous coordinates) by an equation
of the type

AxE + 2Bxy + Cy* + 2Dx + 2Ey + F = 0.

In particular, the space of all conics is a P°. Fixing a point (x, 1) consider the set of
all conic through it. It is a hyperplane in P5 Thus we obtain a map of the planc
into the dual projective space P (Veronese map; ¢f. e.g. [18], p. 178—179). More
generally, the (holomorphic) sections of any holomorphic line bundle over & pro-
jective space PV of any dimension may be represented by homogeneous polynomigls
of suitable degree.

2. THE BEREZIN TRANSFORM IN HERMITEAN LINE BUNDLES

Maintain the scenario of Section 1 (@, 2, u etc.). Consider a linear opzrator
from the Hilbert space $#3(Q, u, x) into itself. Then there exists for ecach - e
a family {e,c/pw}ae,w of sections of the space 35’%0, 1ty ®) such that

1)) T08) = (fy L) if weU,.
It is clear that
(2) “(’rﬂ[}"dﬁlw == &Zﬂw in Uﬁ N Uﬂ' .

Each «7,, again is given by a family «7,,(-) of holomorphic functions. Thus we have
in toto a doubly indexed family {7, (w, z)} of functions on the product £ . 2,
each function Ay,(w, z) being holomorphic in the first argument and anti-holomor-
phic in the second argumer.t. This family plays the role of the kernel of the operator 7.
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It is clear that we now have the transformation rule
(3) gﬂﬁ,gu,w,,la» =&y, i (Ug n Up) X (U N Up).

In terms of &7, we can write the preceding ““producing™ formula in a perhaps more
familiar Tooking form as

@) (TF)yn) = S S 02 yalots N2)enp(2).
1Y
Q2

Herc {¢,} is a partition of unity such that supp¢, < U,.
Let us apply these considerations to the case when 7T is the identity operator

on the space #'4(Q, u, ). Then we get a family {4} of anti-holomorphic sections
such that

19 L0 = (f, Hp)y iFw € Up
satisfying
(21 gﬂﬂ,g'n,%ﬂ., =Hy, inUzn Ug.

There is a corresponding doubly indexed family {# 0w, 2)} satisfying
3 Gy = A pu 0 (Up 0 Up) X (U, 01 Uy,

which obviously plays the role of the reproducing kernel. Formula (4) has the fol-
lowing counterpart:

~

4" Js(w) =§ 2 P2 A pow, ) (2)ey(2)d (D
2

ac

We notice that

H 500, 2) = (H oo H gy -
In particular, it follows that
H a2, W) = A v, 2).
It is natural to set

:%;?Mr def

A, = AQGw, ).
H g )
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Since the fibers are one dimensional vector spaces, this division makes sense. In
other words, we also have

A2y = T2

Notice that A(w, z) is a globally defined function on Q x Q which is analytic in the
first argument and anti-analytic in the second argumznt. We will refer to it as the
Berezin “covariant’ symbo! of the operator T. As it is uniquely determined by its
restriction to the “diagonal” in Q X @, we may likewise refer to A(z) = A(z, z)
as the Berezin “‘covariant” symbo!. It contains thus all essential information about
T. Below we will see ample iliustrations of this.
First let us however put into play an auxiliary quantity, already encountered
in [21], [25]. Namely, let us set
o) & S S for 2z €el,.

€2)H (2, 2) )
Again, 1t is easy to verify that this gives a globally defined function on Q. The mea-
sure

diz) = w Y z)dp(2)

is called the Berezin invariant measure.

RiMARK. Similarly, dv(z) = w(z)du(z) is called the “associated” measure
in {217, {25]. Really, for our present purposes it would have been more convenient
to work with w~(z), not w(z). However, we did not want to depart here to much
from already established notation. Sometimes w(z) has the interpretation of “dis-
tance from z to the boundary™.

Consider the composition T = T, =T, of two operators. We let &7, , 42,
A, correspond to T, (k = 1, 2), our goal being to express the Berezin symbol 4
of T in terms of the Berezin symbols 4; and 4, of 7, and 75"

Let {¢,} be the previous partition of unity. Then, using (1) and (4), we can
write

(Tf)a(z) = (T;L(Tzf))p(“") = (T2f, d!ﬂw)u =

~

= S Y 0,(NTaf) (0L 15,0, De,(Au(0) =

vel
o

]

- S Y. 00U ot aglv, ey (O

yel

= (f,s 3 9S00, C)ey(C)dﬂ(C)) :
2’ ! #
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Comparison with (1) shows that o/, equals the last (vector valued) integral. Thus
division with % p,, yields

hw S Z (PV(C) "&2%‘%/7;'511137("1’ C)‘%iﬂ/(w’_c_)
%ﬂw 3 vel '%/‘y;'%/ﬂw%ﬂy(hy’ C):[r;(C7 C)

eY(C)vny}vy(C’ C)dl*l(c)

or
N O e T LS L R
A(w, z) QSE,(PY(% Ayt (G O) 1w, ) Ay(E, 2)di(Q).

‘We notice that

J(W z C) d;f ‘%ﬁyz(C, f):%/g},(w, C)
T e (G D)

is independent of «, f3, y (see (3')). As ¥ ¢, = 1, we therefore conclude that
rver

AQ, 2) = SJ(w, 2, OAd(w, DAL, DdiQ)

Q

— compare with the formula for matrix multiplication! — or, with z = w,

A(z) = Rf(z, DA, DAL DAKY),
Q
where
ey

Jz, 0O Iz, 2, ) =2
R N A Vo T

Thus we may write symbolically

| A = Ber(4, - 4y)

b

where Ber stands for the Berezin transform, i.e. quite generally

Ber F(z) = S J(z, OF(z, Odi(t)
Q
and

E@, 0) = F(, 2).
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I+ will be convenient to usc also the alternative notation
Ay = Ay = Ber (A4, - 4,).

Then the above formuia can be written simply es

We conclude thus that the covariant symbols thus form an asseciative algebra, which
we in the following denote by 4 (Berezin algebra).

There is a second way how the Berezin transform enters. Let us observe that
the “reproducing” family { x 222 ¢, foreach = € Q spans a one dimensional suhspace
H, of A4Q, u, »). Let P. denote orthogonal projection in #XQ, u, %) onto &,
That is, explicitly:

_(, /f ) -

(5) P.f == (/ ) ~ N, for fe#AQ, u, x).

I now a linear operator 7' in that space can be written in the form

(6) T = RA‘(;)p;dz(Lj)

2

for some function A then we say that A is the Berezin “contravariant™ syinbol of T.
Thus, a given operator may have two “‘symbols™ ), What is then the relation 4 and
A? It turns out that, indeed, the answer can be stated in terms of the Berezin trans-
form Ber. Using (5) we can write (6) as

( o (fo Ao
Tf = \ A /{f «d1
s 5 ) 3040 S )
or
‘ w “ (fs ';z/‘"") o o
(Tf)Az) = S/i(s) Vool —T= -2V A (2 DA =
73 et s H )y ’ )
Q%

(fSAu)Y‘Ws)[ “*)Kg) for % e 1..
P YEY] H A8 Q) u

2) Why Berezin picks the words *‘covariant” and *‘contravariant” is a mystery to us .
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1t follows that

TNaL2) _(

o Az, OA AL, 2)
A BRSNS A 2 S
H o:(2) E ©

! di(z) =

A(z) = .
z H a2 DH (8 0)

o

_ SJ(z, DAO)d(),
Q

that is, as predicted

|4 = Ber(d)]

RemARK (Berezin-Toeplitz operators). Formula (6) can be given yet another
interpretation. Let P denote orthogonal projection onto s#2%(, u, %) in the space
L*(Q, p, x), the space of square integrable (not necessarily having any regularity
properties whatsoever) sections of the bundle ». Explicitly, in our previous notation:

(®) (Bf)p() = (fs # ){w),‘=8 Y, 0D H po(w, 2)fu(2)ea(2)du(z)  for f € LAQ, p, x).

ae !
n

Using the measure u instead of 1, we can rewrite (7) as

(THu(2) =SA°(¢> Y, 0,0 .z DSDeDAuD)  for f &A@, p, ).

yel

Comparing with (8) it follows that

T=P:M;,
where M stands for the operation of multiplication by the function A. In other
words, the operator in (6) may be viewed as a kind of Toeplitz operator, a truncated
multiplication operator.

Finally, let us that the operator 7" is given by a formula like (1) or (1") but
with a family {Jg gw} OF {7 3.(w, )} where we have given up the requirement of anti-
holomorphicity in the variable z. How to restore this? We may define a ‘“‘symbol”
A in an analogous way as we defined 'the Berezin (covariant) symbol 4. Again
the answer is in terms of the Berezin transform. Using our previous partition of
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unity {¢,},¢;, we can write

(Tf)ﬂ(w) = g E (Pa(z)ﬁ/)a(w: Z)fm(z)ea(z)du(z) =
Jael
2

= S Y o ADF g0, O A e LDdp() =
veld
n

= (fS Y 0,0F 5, o%.,;e.,(e:)du(«:)) .
vel "

It follows that

. KL 2D 5 (w, O ~, .
A Yy Z) = . — ”Y______i_f_‘ gty | 'y ‘%f s d {) =
(w, ) \y}e,lqi,(é) H a9, 2)H (L, 0) (O, De (A, (L, Odp()

Q

~ SJov, 2 Odw, QdY); AG) = Sf(z, DA, D),
n (94

that is,

4 = Bex(A)] .

These three framed formulae constitute the main findings of this section.

3. QUANTIZATION OF KAHLER MANIFOLDS

In the previous section we have explained how to assign to a Hermitean linc
bundle # on a complex manifold Q and a positive measure p a structure of associa-
tive algebra for functions on 2, the algebra % (sec the first framed formula in that
section). From Berezin’s point of view quantization is about deformation of this
structure. The question is thus to select a family line bundles ¢ = %, depending on a
positive parameter 2 (““Planck’s constant™) and to pass to the limit (4 — 0). Opti-
mally, one then expects to recover in the limit a given Poisson or symplectic struc-
ture on Q (“correspondence principle”). Thus, quantization is also about deforma-
tion of line bundles.

From now on, we assume that @ comes equipped with a Kédhler structure. Qut
of the many available of the many available definitions of a Kihler metric we select
the following one: @ is an Hermitean manifold such that its metric (an Hermitean
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form on the tangent bundle of Q) can locally be written ds® = }) g:;dz'dz/ with
&P . . . . .

8ij = P is a real valued smooth function (“K&hler potential”’). If we introduce
2,0z

the alternating differential form ¢ = 1Y, g;,dz A dZ/, then this requirement can be

condensed into the equivalent condition do = 0; ¢ is then known as the “Kéhler

form”. Thus a Kihler manifold carries automatically also {a symplectic structure.

The Kihler potential is of course not unique: we can add to & any plurihar-
monic function, that is, a function of the type ¢ + ¢ where ¢ is holomorphic.
More precisely, we thus have the following data on our manifold Q:

1) An open covering {U,},e; of Q.

2) A family {z, = (z2, ..., z;:)}aE ; of corresponding local coordinates (n =
= dim Q).

3) A family {®,},¢; of real valued smooth functions satisfying the following
compatibility condition:

(1) (Da—@a':(p'-"(p'

where ¢,, is holomorphic.
How to get a line bundle from these data?
We observe that the ¢_, are not unique: we can add to them arbitrary purely

imaginary numbers. Adding up two relations of the type (1) we obtain

b, — D, =0

a ao

P L P I L

. a
4 ax aa

From this we conclude that the ¢, do not give quite an (““additive”) cocycle:

2 Pugr F Pyrgr = Pr + 1K

'
with k..~ € R. However, we deduce the cocycle relation
kiarrarr = Kagrgrr + Kogra = Kagrgr = 0.

Thus we obtain an element in the cohomology group H*(Q, R).

REMARK. It is easy to see that this cohomology class coincides with the one
defined by the Kéhler form o. One has just to adapt the usual proof of de Rham’s
theorem (sec e.g. [18]).

We now make the basic assumption (“‘quantization condition™) that there is
a number 7 > 0 (Planck’s constant) such that the above cohomology class is /
times an clement in H*(Q, Z). This is a strong requirement.
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ExampLE. For instance, if @ is compact then it follows by the above remark
that Q can be imbedded in a projective space PV for & sufficiently big (Koidura’s
theorem; see again {18]). It Qis a plane domain (# = 1) bounded by finitely many
smooth curves then /3, R) = 0so0 any /7 and any metric will do. A natural choice
is the “"Poincaré metric™, which is an Hermitean metric of constant negative curva-
ture whose existence follows from the uniformization theorem. (Cf. infra Sec-
tion 0).

Let the above *‘integer valued” cohomology class be defined by a family of
integers k.., . Then we can write with suitable numbers L

(3) k:z'z" = hi‘:xz'a” + I:'z" - 111" + ]13’ .

Upon replacing the given functions ¢, by ¢ . -+ ilyy we can without loss of
generality assume that (3) holds with /., = 0, i.e. that

(3’) k::':" = hi‘ ax'a’’ -

Thus we obtain our Hermitean line bundle ¢ = x, if we put

2r

(Cf. Scction 1.) Furthermore, we have a nateral choice for the measure u, namely
the Kiihler-Liouville measure: g = const-¢ A ... A 6. Thus the Hilbert space

n times

SE(Q, s, ») formally makes sense.

Remark. If we replace the ¢, by P+ Uy Uy where the u, are holomor-

1 1( .
Uy, R e
n e 4 z

1
WL 1 .
phic, then g_, gets replaced by ¢ h agzz,e” and e, gets replaced by e,e .
Therefore we get essent’ally the same bundie (an element 1of X = {xa}ze, the
—--.u
fiber of » over = € Q corresponds under this change to {x,e " z},e,).

However #(Q, u, »} may “degencrate™ in some way or other. (A priori it may
consist of the zero scction oaly). To avoid such pathology in Berezin [5] (the “flat”
case when the metric is given by a single globally dzfined Kihler potential @) a
number of assumptions labeled A--D are imposed. Here we shall concentrate on
(the analogue) of hypothesis A, the remaining three are to some extent of 4 more
technical nature. More precisely, it is (in our case) question of the following:

1
':@1(-7) I
Az, z) = const- e31(z) = const -e” |:
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where {1}, is the reproducing family associated with the space #(2, 1, %) (see
Section 1). In other words, using the function w (see again Section 1) and choosing

the constant in the definition of the Kihler-Liouville mzasure g (a different choice
for each /1) we are requiring that

=1

REMARK. Tt is of interest to note that a similar assumption appears also in
the theory of Hankel forins. 1t is known as Hypothesis (V) (“V” for Swedish
“villkor’” (= ““condition™)). There also a “‘weak™ form of it, Hypothesis (weak-V),
connected with “weak factorization”, occurs (see [21], in particular Appendix 1).
Thus, we may ask what weak factorization does mean for quantization,

Having made such assumptions Berezin [5] can then rigorously establish the
“correspondence principle”. Let us briefly recall what this is about.

We recall (see Section 2) that corresponding to any holomorphic line bundle %
there is a commutative algebra of symbols 4, the corresponding multiplication being
denoted by %. In our present case (viz. the for the bunldle %,) we write, in order

to indicate the /i-dependence, &, and #, respectively. In suitable assumptions it
can then be proved that

4) Al *p Az — Al N A2 (for h - 0),
1 1
) 7 (Ay %, Ay — Ay %, A) - [4y, 4, (for /i - 0),

where in the first formula the dot - serves to indicate ordinary multiplication of
functions and in the last formula [, ]; stands for the Poisson bracket. That is, in
the limit we recover indeed the symplectic (Kédhlerian) structure.

A better interpretation of these relations goes as follows. Consider families
A% = {A(h, )} labeled by the parameter 4, running through all “admissible” values
{cf. infra Section 4), and cousisting of functions (symbols) depending on h, with
A(h,-) € B, for each fixed admissible /1, and admitting an asymptotic expansion

of the type
A(h, 2) ~ AQ, 2) + hB() + 2C(2) + ...
The set of all such families 4* forms a associative algebra #* if we set
(AF = AH(h, =) = A)(h, -) =, Ax(h, ).
Then a more exact version of (4) reads

4) (AT * AF)(h, 2) = A0, 2)" 4,0, z) + o(1)

12 —~ 2012
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and, similarly, a better version of (5), reads
/ | S . gu 1
(5 = (AT = A5 — A« A7) (h, 2) = —- [41, 4,)(0, 2) + o(1).
1 i

See [5], p. 1136 for more details. Berezin does not discuss higher order terms, but
this might be of some interest. (This is a question of vital importance in the theory
of pseudodifferential operators and to which Unterberger, in his approach to quan-
tization, pays a great importance (cf. Section 6).)

4. EXAMPLES OF QUANTIZED MANIFOLDS

It is high time that we give some more concrete examples to the theory
developed in the previous two sections.

ExAMPLE 1. Q = C” with the canonical flat Hermitean structure, i.e. C* comes
with the Hermitean form 2'z1 + ... + z°Z". As (local) coordinates we can take
any lincar coordinates obtained from the “identical” ones upon application of an
arbitrary unitary transformation. In other words, we can let the index set 7 be the
unitary group U(n), all the U,’s being equal to C* as sets. Notice that in all of these
coordinates we can use one and the same Kihler potential, namely

¢ = log(zzt + ... + 2°Z").

The spaces #3(Q, p, »#,) are then all canonically isomorphic and reduce to the
famous Fock space.® (The latter consists of all entire functions square integrable
with respect to a Gaussian measure.) This is a unique situation where evervbody
agrees vpon what quantization is (quantization of a flat symplectic manifold). Let
us remark that covariant and contravariant symbols in this case are intimately iinked
to the Wick and anti-Wick calculus respectively (cf. [9], [10]). This is, historically
speaking, the origin of the entire theory.

ExamprE 1'. It is also of interest to consider [5], {7] quotients of a vector space,
€” modulo a discrete subgroup. Typical examples are the quantized cyclinder
and the quantized torus. This connects our subject with the theory of theta functions
(cf. [20], [26]).

ExavipLe 2, @ = D = the unit disk in the complex plane C. In this case therc
is a canonical choice for the Kibler metric and the Kahler potential, namely the
Poincaré metric

6)) ds? = -2

9 Perhops “Segal spece” might have been more appropriate.
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corresponding to the potential
) &(z) = —log(1 — 22).

The Kihler-Liouville measure obviously coincides with the Poincaré measure. We
can take the index set I to consist of one single element. Again no worry about
coverings! But this makes the definition of 'a special choice of (local) coordinate so a
slightly more sophisticated approach is the following, similar to the one in the flat
case (Example 1). The corresponding automorphism group is the projective group
G = PSU(], 1) of all conformal maps of D onto itself. Its elements are fractional
az + b

linear transformations ¢ of the form ¢&(z) =

(where {a|> — |b]? = 1. How-

ever, as this group is not simply connected, it is better to work with its universal
cover G. The elements of G are ordered pairs = (¢, 1), the first member £ being a
transformation ¢ = ¢(z) in G and the second one a determination ! = /(z) of the

analytic function ]ogVé_,L(—_)(= log(bz + @)). We can now take as I the set G.
z

If Zl, ;2 are any two members, of G, then the corresponding transition function is

v

precisely this determination of log l—/~;_(—z). for & = &,¢7% It is easy to identify the

Hilbert space A#(Q, p, x) == H#*Q, u, »,) in this case. It is just the Drzhbashyan (or

weighted Bergman) space: its elements can be identified as holomorphic functions
1

square integrable with respect to the density ( —}Z— - 1) 1 - Ez).’i - (with respect

to normalized Euclidean area measure on D, /i = //2n). Thus, onc could a priori

think that only numbers / with < 1 were “admissible”. However, if one interprets

the integral defining the norm in a generalized sense (analytic continuation of the
1 . . .

parameter 5 ; this is the method of Marcel Riesz), one sees that any /s > 0 will
!

do. Thus in this case the set of all admissible values of Planck’s constant is the full
interval (0, co).

EXAMPLE, 3. @ = S® = P! = Riemenn sphere. This is the dual symmetric
space (the compact version of the hyperbolic space in Example 2). We know already
what the holomorphic line bundles on P* are (sce Example in Section 1), and a
natural Kéhler structure is obtained by inducing the Euciidean metric in the stan-
dard imbedding of 8% in R3. The transition to P* is obtained by the standard stereo-
graphic transformation. The metric and the potential are obtained formally just
by changing sign in the formulae (1) and (2):

9 ds? — dzdé_
1+ zz)*
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(27 @(z) = log(l + zz).

Using the “inhomogeneous™ parameter z we can then realize holomorphic sections
as polvnomials in z. More pracisely, the requirement of “admissibility” on Planck’s

constant /7 is now that the number l/); should be a positive integer, 1 /ﬁ =1,2,3,...,
and the Hilbert space J#(Q, p, %,) can be identified with the space of polynomials
of degree less or equal to this integer with the metric

1

1 e R
i =(«;.— + I)S SE +2E) T dxdyz
?
C

It is thus in particular finite dimensional of dimension —,l— + 1. (By Liouville’s
)

thcorem such an iantegral can bz convergent only if f is a polynomial). In Berezins
own treatment [5], [7] this author is obliged to work with the affine line, the projec-
tive line P! with one point removed, that is, the plane C. This makes the presen-
tation look somewhat artificial.

It is clear that the considerations of the above Examples 2 and 3 generalize
to arbitrary Hermitean symmetric spaces, that is, both to symmetric domains (**Car-
tan domains™) and their compact counterparts. The problem of admissibility of
Planck’s constant in this case was taken up by Berezin in {6] and then solved com-
pletely by Gindikin [17], in fact in the more general context of homogeneous Siegel
domains. It is - in the case of symmetric domains — essentially question of deci-
ding which powers of the Bergman kernel are positive definite. Tn {38}, [39] one finds
a formulation of the result in terms of Jordan thzoretic invariants. The same ques-
tion is also encountered in the thzory of group rzpresentations (sez e.g. [28]) and
then the range of admissible values is known as ths Wallach set. See further [23], [24],
[16].

5. EXPRESSING THE BEREZIN TRANSFORM
IN TERMS OF THE LAPLACIAN

In the casz of a symmaztric domain (space) it is clear that the Berezin transform
intertwines with the group actions. Therefore, by general principles, we expect it
to be a function of “Laplace operators”. At least in the rank one case, it was shown
by Berezin [6] (see also [7]) at the hand of concrete examples that this was indeed
the case. As we have one little point to add, let us briefly review 'these results. Thus
we rcturn to the examples of the previous section.
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1
—(z,w)
ExampLE 1. The reproducing kernel in Fock space equals e” where (-,-)
cquals the standard Hermitean inner product in C”, the corresponding metric being
denoted by |.]. Therefore the “Berezin kernel” J (see Section 2) equals the “Gauss-

-Weierstrass kernel” e=%2-»* That is, we can symbolicelly write
(1) Ber, = e,

where A is the standard Laplace operator in C".

ExAMPLE 2. A generalization of the formula (1) to the case of the disk D can
be found in [S], [7]: Ber, can in this case be expressed as an infinite product of
the “invariant Laplacian™, again written \,

a2
c

A=( - e

The proof depends on the formula

) -1
Ber, = (1 - ——AT-\ Ber .,

_l__—____.
Fn—-1)

... 1 1 . . .
where /' corresponds to the transition ;_— —> 7 + 1. Tt is convenient to write here
] ?

1 .. . .
o= i 2. (This is the parameter often used in a Hankel context. To /2 > 0 then
1

corresponds o > - 2.) Iterating one finds, as a generalization of (1),

Me+O[[@+1+k
(2) BC]'" — k==1 k=:1

oo

l b
11} Hi(a+-~+k iA)
k=1 2

with A = V— A - 71 . Invoking Euler’s gamma function, especially the well-
-known approximation

I'(x + a) ~ x*I'(x), x - oo,

in turn an easy consequence of Stirling’s formula, one can write this equivalently as

3 12
ll‘(a +—2< + iA)
© i e




182 JAAK PEETRE

Using further the convexity proparties of the gamma function it follows that
G 0 < Ber, <c <,

in the sense of self-adjoint operators in Hilbert space. This was proved in [2]. where
(3) was cstablished independently without knowledge of Berezin's work. (Berezin
himszIf [5] proves that, in very general assumptions,

_Ber < 1,

that is, the operator Ber is a contraction).

Formula (4) has an application to big Toeplitz operators with non-analytic
symbols [2], which we now briefly recall. Denoting the operation of multiplication
by a function B by My and letting P denote the “"Dzhrbashyan projection”, we define
{sce [1]. [2], [3]) the big Hankel operator with symbol B as the commutator Hy =
= [P, My]. As is shown i {2], there are essentially three types of symbols: [” ana-
lytic symbols, 2° antianalytic symbols, 3° symbols which “vanish at the boundary”.
That is, more precisely, the space of big Hankel operators of Hilbert-Schmidt class
splits up into a direct sum of three spaces corresponding to symbols of each of these
three types. Let us confine attention to symbols of the last (third) type only. Then
ong can prove, with practically “no” assumptions, that

!5 s, = 2B, — {Bex(B).}),

where | -|us. stands for the Hilbert-Schmidt norm of an operator and ' - ¥, for the
“invariant” norm of a function (cf. Section 1). Thus if a formula such as (4) holds
true onc can always draw the conclusion that the Hilbert-Schimidt norm of the
big Hankel operator Hyg is equivalent to the invariant norm of its symbol B. In other
words the last component in the orthogonal expansion can be identified with the
Hilbert space L@, 1). If Q = D such a conclusion, thus, was made in {2].

ExampLE 2'. Formula (2) can be extended to the case of the unit ball in C* {6},
p. 377. As in the case of the disk (Example 2) the result can also be expressed, by
the same token, in terms of gamma factors. Namely, we have the result

o

lr(a+-'2i+ 1 +iA)

39 Ber, =

b

I'a+ DIz +nr+1)

where this time —;— =a+n+1, A= V—- A - (—'22—)“ In particular, the in-
1

equalities (4) are valid in this case. Therefore, we can draw the conclusion that
the theorem for big Hankel operators over a disk described in the last paragraph
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extends to the case of the ball. Thus, it seems to be of utmost importance to find a
concrete expression the Berezin transform in terms of “Laplace operators” also in the
case symmetric domains of higher rank.

6. OTHER APPROACHES TO QUANTIZATION

First, there is something known as ‘“‘geometric quantization” associated with
the names Soriau, Kirillov, Kostant, Sternberg etc., sce e.g. the book [40]. In default
of sufficient knowledge of this topic we must refrain from a detailed comparison
of this subject with what is set out in the present paper.

Let us, however, say a few words about A. Unterberger’s quantization program
(see [31 —37] and other works quoted there; the basic underlying idea can however
be found already in [7], p. 169). Roughly speaking, it is question of the fol-
lowing. Consider any (Riemannian) symmetric space Q (that we have a complex
manifold is at present not essential anymore) and let W be a unitary representation
of the group G = Aut(Q) in some Hilbert space #. Then we can associate with any

1/2 1/2
function (symbol) 4 defined on Q a linear operator W(4) on 5 given by the formula

W(11£12) = S W(s:)lliz(z)dl(z).
2

Here s. stands for the symmetry about the point z € Q, an element of G. This may
be conceived as a generalization of the well-known Weyl calculus, to which it
reduces in the case G = C” (see Example 1 in Section 5). In this case the relation

1/2 .
between the three kinds of symbols 4, 4 and A is expressed by the formulae

—%iTAuz 1/2 -=hA

A=c¢ A, Ad=¢e A.

|

. . , L2 . . .
This explains the strange notation 4 for this “intermediate” symbol. Comparing
with (1) in Section 5 we thus see that the Weyl calculus in a way sits “half way”
between the two Berezin calculi. That much about the “flat” case. In other cases

this relationship is not so simple. See e.g. [35], the case Q = D, [37], the case of
a Lie ball.

Leaving Unterberger’s theory, let us now mention two entirely different direc-
tions in which the theory in the case of disk or a ball can, potentially, be extended.
One possibility consists of taking strictly pseudo-convex domains €. In fact,

this is already in passing mentioned by Berezin in [5], p. 1141. Hypothesis A is not
1

fulfilled in general so his idea is to use directly powers X" " of the Bergman kernel 57
of Q to define the required Hilbert spaces. For a related approach in a Hankel
context, see [22].
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Second, sticking to the case of one complex dimesion (n = 1), we may instead
consider, as a generalization of the unit disk, multiply connected plane domains (or,
more generally, bounded “open” Riemann surfaces) @, the boundary consisting
of finitcly many smooth curves. Representing Q as a quotient of the disk D, by
virtue of the uniformization theorem, and pulling back the Poincaré metric on D
to Q, we obtain an Hermitcan metric ds = |dz'/w(-) of constant negative curvature
on Q. We then obtain using the recipe of Section 3 Hilbert spaces of holomorphic
functions corresponding to the conformally invariant integral norm

]
1= 5tf(z‘)ff(w(:))*dxd.r,

Q

. . 1 . ..
with as before z = - - 2. (In the context of automorphic forms, this is known as
h

the Peterson metric.) The study Hankel forms over such a space was hegun
in [19]. In particular, it is conceivable that one should have an analogue of the cor-
respondence principle (see Section 3) in this case, although hypothesis A is not
fulfilled (unless @ is simply connected, genus zero). The case of genus one (an “"an-
nulus™) should be susceptible to a very explicit treatment, as then all relevant data
cain be expressed in terms of elliptic functions (cf. [27]). We intend to return to this
situation in a future pubiication.

7. CONTENTIONS

Concluding, let us summarize some of the points made in the preceding com-
pilation as follows.

1° Hermitean line bundles are of interest in connection with Berezin quanti-
zation, as well as in a Ha-plitz context.

2° A quantization procedure can be based on the use of Kihler structures.
This, optimally, leads to a *‘correspondence principle”, the ultimate test for the
whole theory.

3° The Berezin transform is an interesting object of study, irrespective of the
present context. In particular, one has the problem of expressing it in terms of
“Laplace opcrators”.
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