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_ A RIESZ DECOMPOSITION PROPERTY
AND IDEAL STRUCTURE OF MULTIPLIER ALGEBRAS

SHUANG ZBANG

INTRODUCTION

In this paper, we prove a Riesz decomposition property of the local semigroups
consisting of Murray-von Neumann cquivalence classes of projections in a C*-al-
gebra o with the FS property (or equivalently, of real rank zero [12]) in the
associated multiplier algebra M(s&/) and in the corona algebra M(s7)/</. Isolating
of this property makes it possible to generalize some known results for separable
AF algebras concerning the structure of projections and closed ideals of the asso-
ciated multiplier and corona algebras to a much larger class of C*-algebras, i.e.,
the class of C*-algebras of real rank zero.

We first fix some notations and state some related facts. Let ./ be a C*-algebra
and p, ¢ two projections in &. Throughout, we say that ¢ and ¢ are equivalent,
denoted by p ~ ¢, if there exists a partial isometry ¢ in &/ such that ¢¢* = p and
v¥v = q. We denote the set of all equivalence classes of projections by D(e?) and
denote the element in D(&/) with representative projection r by [r]. The notation
’[p] < [¢) means that p is equivalent to a subprojection of ¢, while ’[p] < [g]
means that p is equivalent to a proper subprojection of ¢. Gbviously, <’ defines
a natural (partial) order on D(s/). A local addition is defined on D(s?) as fol-
lows: For two projcctions p and g in &7, [p] + [g] is defined if and only if there
arc projections p’ and ¢’ in & such that p' ~p, ¢’ ~ ¢ and p'q’ =0, and
[P] + [g] is defined to be [p’ + g¢'] whenever such p’ and ¢’ exist. Then D(%) is an
abelian local semigroup.

A subset £ of D(«) is said to be an ideal of D(s7) if [q] <[p,] + [pa] + ...
...+ [p,] for some [p;] in F implies that [¢] is in .£. Gbviously, an ideal is closed
under the local addition. If # and # are two ideals of D(s7), then in a natural
way with respect to the local addition on D(s?) we define the ‘sum’ f + # of
& and £ to be the union of all elements in 4 U _# and all possible sums of them.
Clearly, # + # is again an ideal of D(«f) provided D(«) has the Riesz decomposi-
tion property in the following sense: If x, y and z are three elements in D{«/) such
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that ¥ < » + z, then there exist elements x; and x, in D(s7) such that x = x, +
+ X3, X; € ¥ and x, =z 1t is well known that D(«7) has the Riesz decomposition
property if «7 is an AL algebra (see [20], for example). It is easily verificd that the
set of all ideals of D(~7) forms a lattice with respect to the addition """ and the
mntersection "N as long as D(«f) has the Riesz decomposition property.

A C=-algebra /7 is said to have the ‘S’ property, or briefly to have FS, it the
set of all self-adjoint clements with finite spectrum is norm dense in the sct of all
self-adjoint elements of 7. It is known that ¥S is equivalent to real rank zero
and to the "HP’ property: Every hereditary C*-subalgebra of &/ has an approxi-
mate identity consisting of projections ([3, 2.7] and [30]). The class of C=-alge-
bras with I'S containg a number of interesting subclasses. Trivial exampies include
AV algebras, von Neumann algzsbras, AW#-algebras and the Calkin algebra. Non-
trivial exapmlies include Bunce-Deddens algebras ({2] and {7]). Recently, more C*-
algebras have been proved to have the FS property. For example, all purely infi-
nite simple C#-algebras have FS ([34] and [37, Part 1]): in particular, the Cuntz
algebras €, (2 € n € o), the Cuntz-Krieger algebras ¢,, if A is an irreducible
matrix, and the corona algebras of many C#-algebras have S. Many multiplier
algebras have FS ([12] and [37, Part 1 and V). The irrational rotation C*-algebras
corresponding to a dense subset of irrational numbers have FS ({14]). Moreover,
this class is closed under the inductive limit and strong Morita equivalence ([12D).

In § 1 we shall prove the Riesz decomposition property for C#-algebras with
F'S and associated multiplier and corona aligebras {Theorem 1.1). In §2, we shall
prove somsa consequcnc:s of thz Riesz decomposition property. One consequencs
is that if lc',,, is a fixed increasing szquzntial approximate identity of 7 consisting
of projections, then evcry projection in M(=7) is equivalent to a diagonal projec-
tion with the form: \\ ri, waere [r]] < {e; — e;_;] for all i, Another consequence

1s that the closed mcal Lat ice of A(.7) is isomornhic to the idzal lattice of D{M (),
which generalizes a reeent result of G. AL Elliott [23] for separable A algebras
by a differant proof. We also prov: that evaery closed idzal of M{«Z) is the closed
fincar span of its projections.

in § 3, we prove that if «7 is a g-uaital C#-algebra with FS8, then the genera-
lized Calkin algehra M{Z/ @ #)' & ® & is simplz if and only if 7 is either
clementary or &7 i3 si-anle and every nonzzro projaction of «7 is infinite {in other
words, &7 is puecly infinite and simple), where 7 is the C*-algebra consisting of all
compact opzrators on @ scparable Hilbzrt space. This result proves to be important
for the further investization on the structurc of M(sZ ® ) in our sudszquent
papars ([37, Part, I, IL, £, IV]). In addizion, we shall consider the ideal structure
of M(<7) for czrtain C“-alzebras wita FS by mazans of states on K,(o7).

The main body of (is paper is ons of four independent parts of the author’s
Ph. D. thesis. Th: aunthor since cly thanks Professor Lawrancz G. Brown for
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his supervision. He is very grateful to L. G. Brown and G. K. Pedersen for show-
ing him their manuscript of [12], in which their Theorem (2.6) and Corollary (3.3)
form a foundation of the author’s recent papers [35]—[38]. He also wishes to thank
the referee and Professor Ronald G. Douglas for their very helpful suggestions and
corrections.

1. A RIESZ DECOMPOSITION PROPERTY

1.1. TREOREM. If s/ is a C*-algebra with FS, then D(s?) has the Riesz decom-
position property. If sf is a g-unital C*-algebra with ¥S, then D{M(2£)] has the Riesz
decomposition property. If, in addition, every projection in M(H)/sf is the image
of a projection of M(sZ) (in particular if K (f) = 0 [32, §2]), then D[M(L)/s/]
has the same property.

We will carry out the proof of Theorem 1.1 using the following lemmas and
corollarics. From now on, we denote the hereditary C*-subalgebra of 7 generated
by an element x of M(&Z) by her(x).

1.2, SPLITTING LemMA. If of is @ C*-algebra with ¥S, and if p and q are
projections in s, then there are projections e and f in <7 such that [f1 < [p],
[e} <[l —pland g = e + f Here 1 is the identity of M(s/).

b* ¢
1=p+ (1 —p) then a = pgp, b = pg(1 —p) and ¢ = (1 — p)g(1 — p). Hence
a—a = bb*, ¢c—¢* = b*b and ab + bc = b. By the spectral mapping theorem,

@l < 1 implies

. a b .. .
Proof. If we write q = ( ) as the decomposition of g with respect to

¥
bl = b = |la--a? < 0sup t—12 = 1/4,
<t
and hence [|h]| = ilpg(1 — p)il < 1/2. If |jg(1 — p)|| <1, then [lg — gpgl < 1.
It is well-known that this implies [¢] < {p] (the partial isometry used here is
v = (gpq)~Y*qp)). Set f=¢q and e =0, as desired. If 'g(1 — p)|l =1, set
x = ¢g(1 — p)q. Then {jx]| = 1. Since her(q) has FS, we can find a positive element
h in her(q) with finite spectrum such that ‘v — h| < § < 1/6. Write

n
h =Y t;e;, where {#;} is a finite set of positive numbers and {e;} is a set of
il

mutt.nal]y orthogonal projections in g&Z¢. Choose ¢ suchthat 1/2 +d <e < 1—-26

(such & exists since 0 < 1/6). Set e = Y. e;. Then e < g and
{iit,>¢)
J

tphll = ph?p|® 2 (ol Y

{jit.>¢}

7

1e;1p![''* > £lpepli? = £lpel,

o
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and so

el < () ph < (L)l ol = x), + [pxi] <
< (Ualih — xl 4 [pg(l ~ p)gil <
<)o+ b l< (ig)d +12) < 1.

Then ¢ —ell —ple ='epe. = pe <l Hencz lel g T —ph Lei f = ¢ — ¢a
Then

= = S S fx = I < — b+ Y fe < da<]

‘

{i:wj<c3

and so [/ < [pl. Thus 4y == ¢ + fis as desired.

1.3. CoruLLARY. Suppose that <7 is @ CH-algobra with FS. If py, p., aitd g
are projections iin <7 suoh that ¢ < py + py and p.p. = 0, then there are projections
e und fin <f such that {e] < [pd, {f1<[p-] and g = ¢ + f.

Proof. Lemma 1.2 applies to her(p;, + p.) < 7.

The peoof of the following lemma was due G. A. Elliot ([23]) for separable
AL algebras. The Riesz decomposition property for D{(s7) in Corollary 1.2 ailows
us to extend his result 1o g-unital C*-algebras with FS property by the scme proof.
Since Elliott’s proof in [237 is perhaps too brief, we give more details here for
the reader’s convenience.

1.4, Lesiaa, If o/ is a a-unital CH-aleebre iy FS, and Py, P, aiad Q are
projections in M(Z) suck that Q < Py -~ P, cad PPy = Q, then there ure projections
0, and Qs in M{) such that [0)) < [P). [0.] € [Pl and Q = Q, + Q.

Proof. Since (P, < PYM{Z) Py + Po) = M{(P; + PAA(P, - PpY), ve can
assume that Py + P, = 1. First, her(P;). hee{Py), her(Q) and her(i -+ &) ¢l have
increasing approximate identities consisting of increasing sequences of projections
({11, 3.34] and {32, 1.20), say {p (1)} <= ReelPy), {p(2)} < her{Py), (4.} « her()
and {g,} <= her{l — Q), respectively. Set e, == p (1) + pA2) and f, = 4, + 4
for each n. Then {¢,} and {/,} arc approximate identitics of «Z. By the proof of
{21, 2.4] (change notation if nceessary), there is a unitary # in A7) such that

Uit e S ufut e, < L L e, S ufut K e St L L.

Hat

M
Since HQZ!":: = }:! u(‘jn =y _:)u:;: and Z’(‘!n =~ G- l)ui: < (Z{;/;J”::; - 4’") - (()if - wgi;:'- luz'z)
not
(where gy = 0 and f, = 0), then by Coroliary 1.3 therc is a partial isometry ¢, in o/

such that v0#% = w(g, -~ ¢, u" end v¥e, = r, + &, for some projections r, <
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[e00]
< ufu® — e, and r, < e, — uf,_w*. Set Y v, =v. Then veM(«), vv*=
n=1

co
= Qu* and v¥v = Y. (r, + ). By construction, r, + 1y, < €41 — € =
n:1

= [pe1(1) = pa(D)] + [pye2(2)— p,(2)] for all n > 0. Applying Corollary 1.3 again,
we find partial isometries w, in & and some projections r,(1) < p,+1(1) — p, (D)
"u‘d ’11(2) pu+1(2) pu(z) SUlCh that “'nwli: = rn + rl’H-l and W,?W" = rn(l) + ",,(2)

[o0) [o2]
for each n. Set w =¥, w,. Then w e M(), ww* = Y (r, + riyq) and why=
r-:0

n=0

= ¥ [r()) + 1), where 1, = 0.

n v

Set 0 = E r(1) and Q3= ¥ r,(2). Then Qi< P, and Qi< 1 - P,.

n n=:0

Set Q) = wFewQwHv¥u and Q, = w*rwQp¥tr¥u, as desired.

1.5. COROLLARY. Assume that <Z is a c-uaital C*-algebra with FS, and every
projection in M(o2)[sf lifts. If py, Py and q are three projections in M(sf)|sd such
that pp, = 0 and g < p, + p,, then there are projections §, and G, in M(s4)! s/
such that [q.] < [pi], [ga] < [p) and ¢ =g + ;.

Proof. By [32, 2.5], there are three projections P, , P, and Q in M (<) such that
PP, =0, Q<P + P, z(P) = py, n(Py) = p, and 7(Q) = g. Then Lemma 1.4
applies.

We have finished the proof of Theorem 1.1. The following easy corollary gene-
ralizes a well known result for AF algebras.

1.6. CORCLLARY. If «Z is a C*#-algebra with ¥S aid cancellation, then Ky («)
has the Riesz interpolation property in the following sense:

a; < b (i, j=1,2) in Ky() = a; < ¢ < b; for some ¢ & Ko(s7).

Here x < yifand only if y — x # 0. (See [24, §21.)

Proof. Since «7 has FS, &7 has an approximate identity consisting of projec-
tions. Formally, K (#7) = Ko(«)* — Ky(7)*+ by [4, 5.5.5 and 6.3.1). Since & has
canccllation, Ky () + = D(«Z ® ). This means that K;(.e7) is directed in the termi-
nology of Fuchs who initiated the study of Riesz groups [24, § 2]. Then the Riesz
decomposition property and the Riesz interpolation property arc equivaient for
directed partially ordered groups ({24, 2.3]). Now Theorem 1.1 aplies.
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2. APPLICATIONS

2.1. COROLLARY. If o7 is a c-unital (non-unital] C*-algebra with ¥S, and if
{e,,} is a fixed approximate identity of & consisting of an increasing sequence of pro-
Jections (e, = 0), then every projection Q in M(S) is equivalent to a diagonal

-

[oe]
Jorm: Dg == Y, p;, where { Py is @ sequence of projections in & such that
j1

P < ¢ — ey for all j. Moreover, Q is in M(~Z)\.oZ if and only |if p. is non-
zero for infinitely many j's.

Proof. The proof consists of two steps. First, by the same argument as 'n

[ee]
21, 2.4] we can find a unitary V in M(s/) such that YQV* = Y, g;, where g, isa
il

projection in (e, — ¢u, Jl(em - €3 for cach i> 1 (here 5 = 0). Then
use the Ricsz decompotsition property of (Cm; — a,;,,_l)y” (e,;,'_ — € l) for eachi > 1,
we can construct a partial isometry W in M(-7) such that WVQOV=W™* has the
diagonal form as desired. The reader is referred to the proof of {38, 4.1] for
more details.

¥f o7 15 a separable AF algebra, the proof of G. A. Elliott in [21, 3.1] viclds that
every closed ideal of A4{<7) is generated by its projections. Using the idea of G. A.
Elliot in |21, 3.1] and combining Theorem 1.1, we can go further to reach ihe
following stronger conclusion, which reduces the study of closed ideals of A(7)
to the comparison of projections with diagonal! forms. Here we give the constroc-
tion in detail for the purpose of future reference in a subsequent paper [33].

2.2. TueoreM. If </ is « o-unital C*-algebra with FS and {e,} is a jived
increasing sequential approximate ideniity of &7 consisting of projections, then every
closed ideal 5 of M{(<Z) is the closed lincar span of projections with the form:

©0
N pis where [p] < {e; - e,_q] for each i > 1.
Fo:d

Proof. We can assume that .£ is not contained in &/. Let X be any positive
element in &\ «7 and ¢ be any positive number. Set X; = X*2, By [32, 1.6] we can
assume that

oo
o ,.,Z:L [(l T Umn)All(emn_l - (’m"_?) + (@mn_l - 9mn» ,)Xl(l = emn)]

is an element in «/ 05, where ¢q = 0. Let # — Xy —/A. Then H is in #. We can
choose {e,,,n} such that "h' is small cnough, and so "H® — X < 2. Set f, =
=l O for each i > 1. Then
oo . "I r oo Pl -ed
H? = H[X LA H| 3 f,,,S_H]H + HLELf,,,M_E] 1.

¢ is easy to sec that the above three sums converge in the strict topology.
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(2]
Set H "——H[Z_/;,,M]H, which of course is in 4. By computation,

Hy = x,, where x, is a positive clement of her(e,,, — ém n.# for each
In-3

n 1

n > 1. Choose a positive element h, in her(x,) with finite spectrum such that

flx, — h,|l < g/2"* for cach n > 1. Then Z (x, — N,) is an element in & N.J,

oo 1
and hence L h, is in £. Tt is obvious that Ho - Yy, ‘< g/12. Set h,
no1 K n=:1 .:
N

n .
= Y., pui» Where 1, > 0 are numbers and {pai} is a set of mutually orthogonal

subprojections of e, o O for each n > 1. Set ;= sup{t,;:1<i< N,
and n > 1}. Choose an integer N, > 1 such that u/N, < ¢/24, and then set
Z ¥ p,; for each 1 < j < Ny. It is easily verified that the

{ G-y, s Jll_}
N,y N0

{P;} is a set of mutually orthogonal projections in £, since .# js hereditary and

N, o 0

Pjg[ . -]Z Z tm'pm‘< zhn f0r2<]<N0
(G—=Dulim {i«g——])“- <t o« jﬂ} n-:1

N ni> N

0 0

It also follows that || ¥ 4, S; 1+ Da

P ,' < ¢f/12, and hence
RE RS Je= N

—

‘y N, . f
0 + Dp e
?Ho—y_('_]‘_)‘—})'+1'<""
i ! J !l
. Jj-t Ny ! 6
Since r, == Y Pui S lmy — m for n > 1, we can apply the
o) j o
{l:-—No “ <!m.< ;;;}

Riesz decomposition property to write r, as a finite sum ¥, p; of projections satisfy-
ing [p] < [e; — e;_,] for each my,_, < i < my,. Then P; has the required form.
Similarly, we can find two linear combinations of projections with the required

form in .# close to H[ Y. f,,,ml_l] Hand H[ ¥ ﬁ”s,,, . ] H in norm, respectively. Then
n.=1 - n-1 -

the sum L, of these three linear combinations of projections in £ satisfies
[[F1* — L, <¢/2, and hence |X — L, < |X — H? +||H> — L, <c.

The third consequence of the Riész decomposition property is that the lat-
tice of ideals of D[M(s#)] is isomorphic to the lattice of closed ideals of M(s7)..
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This generalizes the recent result of G. A. Elliott [23] for separable AF algebras.
With the aid of Theorem 1.1, G. A. Elliott’s proof for separable AF algebras works
for g-unital C*-algebras with FS. We give the following different proof which seems
to be simpler.

2.3, TaeorEM. Jf 7 is a g-unital C*-aigebra with FS, then r/’c) lattice of ideals
of BDIAI(Y) is isomorplic 1o the lattice of closed ideals of A{<d).

Piroof. Define twe maps as* G. A. Elliot did in [23]: D{-) is & map rom the
luttice of closed ideals of A7(~7) 1o the lattice of ideals of D[/ (73], where for
any closed idecl 5 of M(+7), Di.¥) is defined to be the sct of equivalence classes
of projections in &, f( -} is a map from the lattice of ideals of D[A{(~/}} to the
lattice of closed ideals of (<), where I{.&) is defined to be the closed ideal of
M(+7) penerated by projections in Af{«) with [P} in &. We shall prove that
D(-) and (-) are mutual inverses. For any closed ideal 5 of Af(<7), & == IID{.S 1 by
Theorem 2.2, It is clear that & < DI ¥). We need only to show D{I(¥)] «: &¥.

Let [P} bz any clement in DII{Z)). Bv definition, there are projections P; and
elements X; and Y, in 37(«7) such that }“ X,PY, — P ge<iand[P]lc?,
1 <7< n Working in M(7)® A, = {( & A7), we identify M(s7) with
MV B ey,, Pwith P& ey, and P, with P; @ ey, . By a slight variation of the stan-
dard argament which appeared in 15, 1.5], we can find a purtial isometry U in

M7 & M) such that 0% = PR e, and U500 = 5 P & e;. Sincc we

have proved the Riesz decomposition property. we can go furthcl to reach our
goal.

Since «7 has FS, o/ @ M, has FS ([12]). By Theorem 1.1 we find a partial

and Wa e Sﬂ (QQ caz)?

fgr-%

isometry W in M(o? @ M,) such that #WW* =

j=

where O; € P; (1 €7 n). Let Wy = UW. Then W, is pam.sl .so;mtu in

M(s7 & M) such that WFEW, = ‘Z Q;Re; and WWE =P ey. Set W=

= Wo(0; ® e;)V:. Then W, is a partial isometry in M(+/) & ¢ such that

WWE=R < PQe, and WHW, = VHO; € eV < P, @ eu (I<i<ga).

Hence [R] < [P in D{M{)] (1 < i< ). It is easily seen that RiR; < 0 if
i#j and ‘) R; =P ®c.. Thus '\?‘ [R,] == [P}in D(M (7). Since & is an ideul of

1 1

(7)) and [Pje, (Rle ¥ (1 i < n). Therefore {P] ¢ &.

q

There is a connection between the idea! struciure of D{A(/)) and e idea
structure M(<7) even if «/ is a C#-algebra not necessarily with FS. Using an argu-
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ment similar to the proof of Theorem 2.3, we immediately conclude the fol-
lowing:

2.4. PROPCSITION. If s/ is any C*-algebra, then there is an injective additive
mapping from the set of ideals of DIM(sf ® H)lto the ideal lattice of M(of @H).

In M(s7 ® A), some projections generate proper closed ideals but some pro-
jections do not. A natural question is: for which projections P in M(s/ ® &) is
the closed ideal generated by P proper? Let us point out the following matters con-
ccrning this question. We denote the ideal of D[M(27 ® A')] generated by [P] by
D{[P)). 1t is easy to see that D([P]) = {[Q] € D[M(s«7 @ #)]: [Q] <m[P] for some
m e N}.

2.5. DEFINITION. An element [P] e D[M{s/ ® )] is said to have degree
n#eNifa[P] > [1]and (n — 1)[P] 2 [1]. The degree of [P] is denoted by d([P]) = n.
We say that [P] has infinite degree, denoted by d([P]) = oo, if such n does not
exist.,

, 2.6. PorosiTionN. If s7 is a C*-algebra and P is a projection in M(sf ® ),
then n[P] = [1) if and only if n[P] = 1.

Proof. 1t suffices to show that [1] <:[Q] if and only if O ~ 1. A proof of this
fact by using K-theory can be found in [17, 3.6], and another direct proof without
using K-theory was given in [391.

2.7. PropeSITION. If &7 is any C#-algebra, then

(2) d([P]) = oo if and only if the closed ideal F(PY gencrated by P is not equal
to M(Z @ A). Consequently, if there is a projection P in M(sZ @ A) but not in
o @ A with d([P]) = oo, then F(P) strictly contains s7 ® 3, and hence M(sZ @
® ) ® A is not simple.

(b) If d([1 ® ey1]) = co and <7 is nonunital, then the ideal generated by
1 @ ey, is a proper ideal of M(sZ ® A') containing M(s7) @ A

Consequently, if M(of ® K)[sd @ A is simple, then every element in D[M(s7 ®
® H)] not in D[A @ '] has a finite degree.

Proof. (a) By the definition of the degree of [P], d([P]) = co if and only if
11¢ D([P)) if and only if D([P]) is a proper ideal of D[M(=/ ® #')]. Proposition 2.4
applies.

(b) Since 7 is nonunital, 1,® ¢;; € M(F ® )\ ® A . Since d(1 ® ey;) =
= co, by (a) the ideal ¢ = I{D([l ® ¢,,])) is not cqual to M(s/ ® ). Clearly, all
matrix units {1 ® e;;} are in ¢, since 1 ® e;=(1®e¢ )Nl ®e;)and [1 ®e,] =
= [l @ ¢;;] It follows that M (&) ® A is a subset of ¢.
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3. IDEALS OF M(s7) AND V() s

3.1. PROPOSITION. If «Z is a C*-algebra, then

(a) There is an injective mapping ¢ from the ideal lattice of < to the ideal lattice
of M(eZ & X) such that F @ X is an essential ideal (sec[1]) of o(F) and
O F)E 7 @ X for any ideal F of .

(b) There is an injective mapping w from the ideal lattice of <7 to the ideal lattice
of M(sZ @ X)od @ 4. Consequently, if M(<# @ XY.oF @A is simple, then 7
must be simple. If <7 is -unital, then the above ¢ and  are lattice isomorphisis
(not necessarily onto).

proo, (a) Define 3(5) = M @0, 5 KN ) for each ideal .# of </, where
MA RN, FH)= M QN (S @Y. It is easily seen that for any
two ideals & and ¢ of 7, o(F 0 F) = o(F)nw(f). If & # ¢ arc twe ideals of 7
then either there cxiqt% xin £\ ¢ or there exists x in ¢ \\#. Correspondingly,
gither x @ 1 is in oS )N o(£) or x @ 1 isin o £) \ @(5). If 7 is g-unital, then
o{F) -+ o(5) (see [11, 3.48, 3.491). Hence, ¢ is a lattice isomorphism.

(b) Detine Y1) = o/ ® A" + o(S5) for each ideal of /. Then ¢ == w=1y, as
desired, where « is the canonical map from Wi/ ® &) to the quotient algebra.

The following lerrina is another useful consequence of the Ricsz decomposi-
tion property:

3.2, Lemva. If o7 is « o-unital simple non-elementory CH-algebra with FS,
and if p and g are nonzcro projections in &, then jor eny integer i = 1 there exists a
nonzers subprojection v of q such that 27[ry < [p].

Proof. First, using the same argument as in the proof for Theorem 2.3, where
& ¥ H
the Riesz decompositior. property is the key neint, we can write p == \ q“ here

all ¢; are nonzero projections and such that [g,] < [¢). Considering ¢, mstead of p,
we can assume that p < ¢.

Since 7 is o-unitel, simple and non-clementary, «/ does not have a minimgl
projection. let p; be a subprojection of p such that 0 < p; < p. Using the proof
for Thecorem 2.3 again, we can write p — p, into a direct sum of nonzero subpre-
jections such that each of the summands is ecuivalent to & subprojection of p,.
Hence, we can find a nenzero subprojection py; ¢f p; and a nonzero subproicction
P of p — p, such that p,y ~ p.. Repeating the samc argument » times. we can
find a nonzero projecticn r in &/ as desired.

The following theorcm proves to be important for studying the strocture of
M(«/ ® o) from various viewpoints in our subsequent papers ({35, [36] and [37]).

3.3. Tuvorem. If 7 is a o-unitel C*-algebra with TS, then M(oA7 K
fed ® K is simple if and only if either 7 is elemeniary or o7 is simple and every non-
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cero projection in &7 is infinite (in other words, o is purely infinite). Moreover, every
projection in M(sf ® H') not in o ® A is equivalent to the identity of M(sf ® A')
in case M(f ® )| ® A is simple.

Proof. If of is elementary, then M(&/ ® #)/Z ® ¢ is the Calkin algebra.
We can assume that &/ is non-elementary and every nonzero projection of 7 is
infinite. Let 2 be any projection in M(&/ ® ') but not in «/ ® #. By Proposi-
tion 2.1, P ~ Y} p; @ e;;, where p; is a nonzero projection in & for i > 1. Fix
i1
4 nonzero projection g in &7. Since p; is infinite for each i > 1, by a standard argu-
ment for infinite projections in a simple C*-algebra (see [15, 1.5] or [3, 3.12.1)),
for each 7> 1 we can find a subprojection r; of p; such that r; ~ gq. Set
o] co
Q=) r;®e;. Then Q is a projection in M(o/ @ ) such that YVa®ei~0Q
i1

i=1

and [@Q] < [P]. On the other hand, Y, 9 ®e; is equivalent to the identity by
i-:1

{10, 2.5). Thus, the identity of M(&Z ® ') is equivalent to a subprojection of P. It
follows from Proposition 2.6 that P is equivalent to the identity. By Theo-
rem 2.3, M(of ®@ )/ ® A is simple.

Now we prove the converse. By Proposition 3.1 we see that o must be simple
if M( ® A)| o ® A is simple. If o7 is non-elementary, and if there exists a non-
zero finite projection p, in o/, we show that M(«/ ® A}/ ® A is not simple.
By Lemma 3.2, there is a nonzero projection p; in p,sfp, such that 2[p;] < [p,].
By Lemma 3.2 again, there is a nonzero projection p, in p,s7p, such that

24p,] < [p], and hence 2%[p,] + [p1] < [pol-

Repeating by induction, for any »# > 2 we can find a nonzsro projection p, in
Dy.19P,_, such that

n-1
2'[p,] < [pu—1l, and hence 27p,] + Y 277 pi] < [po}
n 1

Set Q = Y p; @ e;;. Then Q is a projection of M(«/ ® ) but not in o/ @ 7.
i
We show that the closed ideal of M(sf ® ') generated by Q is proper, and the con-

clusion will follow.

If the closed ideal generated by Q@ is M(&/ ® ), then [I] = m[Q] for
some m > 1 by Proposition 2.6 and Proposition 2.7. let e,y = €41 vy +

(o]
+ Cokrgmksz F oo F Chgrarymurry fOr k= 0.Set @y = Y p, @ ex. Then 0O, is
ket
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a representative of m[Q], and hence Qy ~ 1.1t is easily verified that if i, > #, > m..
we have

ats

oy dd

- C:—:nl b y

[ Y]~ § mlal< ¥ 200 <)
¢ )

km

n
where «7 is naturally identified with &/ ® e,,. Set f, = Ve fora>l
PR |

By [10, 2.8] there is a scquence {f,} of projcctions of 7 @ .# such that
fo~fforn > 1 and {f,} constitudes an approximate identity of =7 & .4~ con-

i
sisting of projections. Set p’ == V) p, ® ¢, Then there is an », > ! such that
s

'a - ﬁ,o)p';é is small cnough. It follows from [21, 2.1] that there exists a
unitary U in M(«/ @ #) such that Up'U® < fo,- It follows that I~ 1~ f <
:7270
< Ul — pYU#. Thus, {p,]< N ompp] for some my > m + 1. Bat
koimia

l'ii'o

Y, m[p] < [py), which contradicts the hypothesis that p, is a nonzero finite
[N |

projection of /.

3.4. REMARKS. (i) A C*-algebra <7 s said to be purely infinite if for any
nonzero positive element » in o there exists an infinite projection in (ve7:)~
([15] and [33}). In [34] and [37, Part I}, the author has proved that if «7 is a
simple C*-algebra, then 7 is purely infinite if and only if &/ has FS and every
nonzero projeciion in 7 is infinite. Moreover, a g-unital purely infinite simple
C#-algebra is either unital or stable. Many examples of purely infinite simple
C#-algebras can be found in [15], {37, Part I]. By the way, Theorem 3.3 pro-
vides a positive anwer for the conjecture {39, 6.18}.

(ii) H. Lin proved ([28]) that A(sf & ))&/ ® # is simple if 7 is g-
-unital and satisfies an apparently different purely infinite condition. Recently,
it was proved ({29 that these and some other apparently different purely
infinite conditions on a simple C*-algebra are all equivalent. Thus, combining
[28] and [29], we have another proof for the direction ’if’ in Theorem 3.3.

(iii) Very recently, M. Rordam has proved ([31]) the direction “only if”
of Theorem 3.3 without assuming that «7 has FS. He gives 2 new proof for
both directions via comparison of positive diagonal eclements rather than
comparison of diagonal projections.

For the remaining part of this paper, we will take a look at the relation
between the state space of Ky (&) and the ciosed ideals of M(s?).
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Let o/ be a simple C*-algebra with FS. If [p,] in D[&Z ® #'] is a fixed
nonzero element, we denote by S([p,]) the state space of Ky() with respect to

the order unit [py]. S(p,]) is a compact convex subset of the product RP®%
which is non-empty if and only if & is stably finite ([20, Chapter 4]} and [4,
6.8]). It turns out that the structure of S([p,]) is closely related to the struc-
ture of closed ideals of M(&/).

If o7 is a g-unital C*-algebra with FS, for each 7 in S({p,]), a mapping %
from the sct of all projections in M(sZ) to R+ U {co} is defined as follows: For

any projection P in M(s/), by [32, 1.2] we can write P = Y| p; for some mu-
i==1
tually orthogonal projections p; in &, where the sum converges in the strict topology.
Then we define Z(P) = ¥ ©(p)) €[0, ool. It is casily verified that #(P) = ¥ (p,) is
i1 it}
independent of {p;} and satisfies:

() WP + Q) = ©(P) + 7(Q) whenever PQ = 0 and

(i) 7(P) < ©(Q) if [P] < [0).

For each 1 in S{[p,)), let #, be the closed ideal of M(s#) generated (as a C*#-algebra)
by the set of projections {P € M(«): I(P) < +oo}.

If o7 is a separable nonunital matroid algebra, G. A. Elliott proved ([21, § 3])
that M(/)/e7 is simple if o is finite (since the unique £, is equal to M(s#)), and
M(<7)/< has a unique nontrivial closed ideal ¢ if < is infinite (since the unique #,
is strictly between .o/ and M(s#)). H. Lin considered the closed ideals of M(2)/<7 if
57 is a simple separable nonunital AF algebra. He proved ([27]) that M (s¢)/.oZ is simple
if and only if &/ has a continuous scale, i.e., i(t) = 7(1) is bounded and continuous
on S([p,]). Assuming that there are only finitely many extremal traces on &7, he
proved ([27]) that the closed ideal lattice of M(s#)/</ is isomorphic to the lattice of
subsets of those extremal traces on &7 such that 7(1) = +co. We shall consider the
ideal structure of M (=) for certain non-AF algebras by means of states.

With the aid of Theorem 2.2, we need only consider projections of M(o#) with
diagonal form. In this way, the Ricsz decomposition property vyields simpler argu-
ments for technical points. The following theorem includes a slight generalization
of [27, 1.2].

3.5. THEOREM. Suppose that of is a c-unital, simple, stably finite and non-ele-
mentary C*-algebra with FS. Then the following hold :

) Fo= MY F.isaclosedideal of M(of) strictly containing of. If, in addi-

€SP, ]
tion, & has cancellation, then ¢, is the smallest closed ideal of M(sZ) strictly con-
taining o4, i.e., the intersection of all closed ideals of M(sf) strictly containing <f.
(i1) In case of has cancellation, M(sf)|sZ is simple if and only if T(P) < co
Jor every projection P in M(f) and each © in S({p,}) (this condition is equivalent in
Lin’s terminology to o/ has a continuous scale”, see [27]).
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(iii) In case t is any state in S((p,)), <7 is a proper closed ideal of #.. If, in
addition, T(1) = +oo, then §, is a proper closed ideal of M(s7) strictly con-
taining 7, consequently, M(s7 ® #) 7 & A is always non-simple.

Proof. First, there exist nonzero states on Ky(«7) since =7 is stably finite. Hence
S([pe)) is not empty.

(i) Let {e,} be an approximate identity of .7 consisting of an increasing sequ-
ence of projections. For each » > 1 applying Lemma 3.2 to p, and f, = ¢, -
— ¢,_1, W& can choose projections r, < f, such that 27[r,] < [p,]). Then z(r,) <

(2]
< 27%(py) — 27" for n > 1. Set P = % r,. Then it is routine to show that P is a
n 1

projection in M(«7)".s/. Moreover, T(P) < +co for all = in S([p,]). Henee, £,
strictly contains 7. If, in addition, <7 has cancellation, then S({p,]) has tke pro-
perty: For any two projections p, g in &7 @ 3%, [p] <lq] if 1(p) < t(q) ([4] or [6]).
Now we can apply Lin's argument in [27, 2]. Here we give an outline as follows.

If # is any closed ideal of M(«¥) strictly containing 7, we show that

0
Fo < F. Let Py« N 1, be any projection of # such that r; < f; for alli > 1. Fix
. B,

=0 g
a projection P = %) p; in #\7. Choosc ;7 co such that 3% p. # O for

PG i,
H 'j 1
n .

~ . Jw y
cach j > 1. Since S([p,]) is compact, we have 0; == inf 1( 2 D; \1 >0 for
LSRN B 4
EAE

cach j > 1. Recursively, we can choose #2; /' oo such that

I’Sj q
sup T % F; ',
resSln) s B 4 1

< O,

;  foreachj > 1.

Hence, there is a partial isometry ¢; in 7 for each j > 1 such that

. .
J o &
v = % p and vy <% p
i nj_l 2 mj 1
> S - 3
Define ¥ = $° ¢;. Then V is a partial isometry A4(s7) such that VV® = Ny
i i

K¢
o0
and V¥V < V) p, = P. Since J is heredicary, V¥V is in § and so is V™. Since
i1
rzo—-l .
e Fand N oredd, Py e f. Hence, 5o < F. (i) clearly follows from (i).
i=1



A RIESZ DECOMDMOSITION PROPERTY 223

(iii) If 7(1) = +oo, the identity of M(«/) is not in #,. If 1 € #_, by the proof

m
of Theorem 2.3, we would write 1 = }] P;, where {P;} is aset of mutually ortho-
i=1
gonal projections in #_. It would follow that 7(1) = Z (P,) < + oo. This is a
i=1

contradiction.

3.6. PrOPOSITION, Assume that of is a o-unital simple non-elementary C*-al-
gebra with ¥S. If o7 has a quasitrace T such that T(1) = +oo and [p] < [q] whenever
(p) < t(q), where p and q are projections in s, then any projection P in M(sf) not
in ¢ is equivalent to the identity of M(<Z).

Proof. Since P is not in #,, then T(P) = +oo. Bv [32, 1.2], we can write

o0
P =Y p;, where {p,.} is a set of mutually orthogonal projections of &/. There
i

"1
exists 1, > 1 such that r( S b ) > 1(fy). Then we can find a partial isometry v,
{=:1

"1
in &/ such that vyoff = f; and vfv, = f; < Y, p;. There exists m; > 2 such that

i=1

Il1
T( Y pi— f;) < ©(fin, — f1)- We can find a partial isometry v, in &/ such that
i1

n
1

va0f = gy < fin, — fy and vfv, = Y p; — fi. Proceeding in this way we can
i—1

find a sequence of partial isometries {v;} in &7 with mutually orthogonal initial

©o -] ¥
projections and mutually orthogonal final projections such that ( Y, v,.)(z l‘i) =1
\ioa i=1

[e.] q (=] o]
and ( ) vi) ()_J v,-> = P. It is routine to check that Y] v; is a partial iso-
i1 i1 =1

metry in M(s/).
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