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CERTAIN FULL GROUP C*-ALGEBRAS WITHOUT
PROPER PROJECTIONS

RONGHUI JI and STEEN PEDERSEN

The basic problem studied in the present paper is when the full group C*-al-
gebra C*(G) of a discrete torsion free group does not have a proper projection. This
problem was originally motivated as an approach [4] to the Kadison conjecture[ 18]
which states that “there is no proper projection in the reduced group C¥*-algebra
C¥(F,),”" where F, is the free group of two generators. Even though the Kadison
conjecture was finally settled by Pimsner and Voiculescu [17], the question of when
a group C*-algebra, full or reduced, has a proper projection has been an interesting
one ever since.

In [5] Cuntz introduced a notion of K-amenability of a given group. It turns
out that the group F, being not amenable is actually K-amenable. Combining this
result with Choi’s construction [3] of a faithful tracial state on C*(F,), one sees that
C#(F,) has no proper projection implies C*(F,) has no proper projection. In general,
a consequence of the Baum-Connes conjecture [2] is the so-called generalized Kadi-
son conjecture, that is, “There is no proper projection in the reduced C*-algebra
C#G) for any torsion free, countable, and discrete group G’°. It has been proved
for a large class of groups that the Baum-Connes conjecture holds {2; 15]. Moreover,
those groups are olso K-amenable. One might be tempted to conclude that for those
groups, there is no proper projection in their full group C*-algebras either. But
after a moment’s thought, one will find that this is not that obvious due to the fact
we do not know if the full group C*-algebra possesses a faithful tracial state.

In the present article, inspired by the method of Choi [3] and a consiruction
of the authors of [11], we define so-called C-groups and MC-groups. We can build
up a large class of torsion free groups with these properties from smaller ones. It
will be shown in Section 1 that C-groups and MC-groups have no proper projections
in their full group C*-algebras. Therefore, any discrete groups of torsion or of
Kazdan’s property T are neither C-groups nor MC-groups. We will also remark at
the end of Scction 1 that if we weaken the definitions of C-groups and MC-groups
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to define C'-groups and MC'-groups respectively, we can actually show that C'-groups
and MC’-groups are the same by applying the Voiculescu’s non-commutative Wevl-
-von Neumann theorem [23). This is suggested by the referce. In Section 2, we start
with free abelian groups using free product and amalgamated free product to bhuild
up the C-groups. The main theorem is Theorem 5 which states that any free product
of finitely generated free abelian groups with isomorphic subgroups amalgamated is
a C-group. In Scction 3, we study MC-groups. The main result there is Theorem 6:
the restricted Wreath product of two amenabie MC-groups is again an MC-greup.
Section 4 is a by-pass to the generalized Kadison conjecture for torsion free nil-
potent groups. For these groups the gencralized Kadison conjecture can also be
proved by proving the Baum-Connes conjecture using the Pimsner-Voiculescu exact
sequence {16]. But we proceed to] give a purely analytical proof based on the werk
of Anderson and Paschke [1]. In Scctien 5, we observe that using inductive limits,
one can obtain more groups from smaller groups which satisfy the above projec-
tionless property. At the end we conclude this paper by presenting a concrete exim-
ple of a finitely generated torsion free K-amenabie group which is neither a C-group
nor an MC-group.

We are very grateful to Larry Brown for his many enlightening comients und
suggestions, and for helping‘u‘sr-withh many details of this project. We would ulso
like to thank Jerry Kaminker for his verv supportive comments and suggesticns
and especially for bringing our attention to the paper [11]. Finally, we would like to
thank the referee who suggested the weaker version of our definitions of C-groups
and MC-groups, and pointed out to us the question we asked in the discussion of
Definition 2 is true for groups with the weaker properties. (See the observation 2fier
Remark 3 of Section 1.)

Throughout this paper all groups are assumed to be countable and discrete.

1. THE BASIC CONSTRUCTIONS

Let 5% be an infinite dimensional Hilbert space, G be a countable discrete
group, and D(G, 5) be the space of all unitary representations of G on 3¢. We endow
D(G, #) with the topology defined by the following: A net{n;};c4 converges to @
in D(G, o) if {r3(g)} 1.4 converges to =(g) in norm for each g in . It can be easily
verified that D(G, 2¢) equipped with this topology is Hausdorff. Moreover, D(G, ) is
homeomorphic to D(G, #') if # and 5 both have the same dimension. Therefore,
in the sequel, we will simply write D(G) when there is no danger of confusion.

‘The basic problem about the space D(G) we are going to study is a kind of
“connectedness.”

DreFmITION 1. (Cf. [11]). An element in D(G) is maxime! if it extends to a faithful
representation of the full group C#*-algebra C*(G).
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REMARKS 1. Since G is countable and J# is infinite dimensional, D(G) always.
has & maximal element.

DEFINITION 2. We say that G is a C-group if for any infinite dimensional Hilbert
space # and any n in D(G, #),there is a Hilbert spare 2#’ containing 2, and a 7’ in
D(G, '), such that 7’ l.yf = 7 and there is a path {n;} in D(G, #’) connecting
n’ and 1 the trivial representation of G on #”'. We say that G is an MC-group if
there is a Hilbert space 2 such that D(G, &) contains a maximal element which is
connected to 1,; on & by a path {=,} in D(G, #).

A group G being a C-group is equivalent to the following property that for
any representation n of G on an infinite dimensional Hilbert space J#, there is a
representation ©° of G so that = @ ' is connected to 1, @ 1 in D(G, # @ ).
We would like to thank M.-D. Choi for pointing this out te us. Obviously, a C-group
is an MC-group. But we do not know if the converse is true.

The following construction is a variation cf that in [11]. The only useful fact
is Proposition 1 which can te obtained wittcut using the more general statement
(sce Lemma 1 below).

Definition 3. For any x in C*(G), let f, : D(G, #) — L () be the evaluation
at x. Let C(D) = {f.| x € C*(G)}. We define 2 normed s-algebra structure on C(D)
as follows:

@) fEn) = n(x)*,
(i) (fx + M) = n(x) + 2n(y)
(i) £, - fu(m) = n(x) - 7(y) = fu(m) - f(70)

(i) I = sup @I = sup [ln(x)].
zeD(G,#) w€D(G, )

Since D(G, o) always has a maximal element, (iv) becomes [|f;[ly = |x]/.
LemMMA 1. C(D) is a C*-algebra. Moreover, C(D} is isomorphic to C*(G).

Proof. Since for x in C*(G), [Ix{|=1f.lly, the map ¢: x +>f, is a *-preserving
isomorphism from C*(G) onto C(D).

ReMARK 2. From the above lemma we do not gain anything. However, the
notion C(D) suggests that each f, is actvally a continucus function.

ProprositioN 1. For any x in C*(G), the function f, in C(D) is continvous in
the operator norm.

Proof. Let {m} be a net converging to # in D(G). Since C*(G) is generated by
a unitary group Ug = {U, € C*G) ’g € G} [14], we find that the element x can be
approximated by finite linear combinations of elements in U;. Now for any ¢ > 0,.



242 RONGHUT 31 and STEEN PLDERSEN

there 15 a finitc sum L AU, in C¥(G), where the Ags are complex numbers, such
that x - Y, 4.U, " < ¢ Therefore,

Jdms) - A = mdx) = v <

< mx = VALY + 2 (VAU — A3 ALY+ w4, X

£y

<2x - VAU + Y Agm(U) - "(U) <

N

2%+ YA, (U) - =(UY

Therefore, lim * f(r,) —~ fi(n) < 2¢. This shows the desired continuity.
n-+30
TuroreM 1. If G is an MC-group oy a C-group, then there is no proper projec-
tion in C*(G).

Proof. We need only to prove the theorem for G being an MC-group. Let =
be @ maximal element in D(G, #) so that there is a path {r,]) in D(G, #),
with =, = 7 and 7, == 1. Suppose P is a projection in C¥(G). Then m,(P) = 0 or 1.
We may assume 7(P) = 0, for otherwise, take 1 — P for P in the following argu-
ment.Now fp is in C(I)). By the previous proposition fp(r,) = =,(P) is a 'norm con-
tinuous path of projections with 7p(P) =: 0. This can happen onaly if 7, (P) = 0
for all 7 in [0, 1]. Since m, is maximal, P = 0. This shows P iy a trivial projection.

ReMARK 3. The idea of this theorzm originated from Cohen [4]. The proof
we give here is similar to that of Choi {3}.

We say that ¢ is a C'-group (resp. MC'-group) if the corresponding “path
connectedness’” of 1, and =’ in the definition of a C-group (resp. MC-group) is
replaced by “in the same connccted componzat”

OmservaTioN. C-groups and MI'-zroups are the same.

Procf. One direction is obvious. W2 only prove that an MU -group 15 2
{'-group. Before showing this, we remark that Theorem 1 is still truz for MC'-and
C-sroups. This can be proved by a similar argument. '

Suppose # is & maximal eizment in B(G, #7) waich is in the samz connecte:d
componcnt of 1,. Let ¢ bein D{G, ). We show that ¢ ® = is in the same
connected component of IG in DG, &7 @ 36 Infact, sincs w15 fuithful on CHG)
and there is 2o projer projasiion in J%(5), the image of = contzins no compact
oparators. Thocrefore, Tiore are no connast oprators in the fmanss of ¢ @ o and
of w ® . 3y Voizlas»i's noa-con nutative Weylvon Neumann Thoorem 7 @ =
and ¢ © = cre approvimately equivalont. Conscquently, @« and e @~ arc
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in the same connccted component. Therefore, o @ = and 1, are in the same con-
nected component of D(G, s @ ). This chows the observation.

2. THE C-GROUPS

THEOREM 2. If G is a C-group (or an MC-group), then its subgroups are
C-groups (or MC-groups respectively).

We only give the proof for G being a C-group. When G is an MC-group, the
corresponding theorem can be proved similarly.

LEMMA 2. (Cf. [6]). Let A be a C*-subalgebra of the C#-algebra B, and let n
be a representation of A on J. Then there is a representation n' of B on A’ such
that #' contuins A and (v’ iA) ' H = n. Moreover, ker(n' ZA) < kerm.

Proof. The first part of the lemma can be found in [6], and the second part is
obvious.

Lemma 3. (Cf. [19)). Let H be a subgroup of G. Then C*(H) is naturally con-
tained in C*(G). (Recall all groups considered are countable and discrete.)

Proof of Theorem 2. Let n be a representation of C*(H). Then by Lemma 1,
there is a 7’ in D(G, #') such that (n' C*(H)) | # = = and ker(n' |C*(H)) < kerm.
Since G is a C-group, there is a %'’ containing #”', and a path {n;} in D(G, #")
such that nj | #" = n' and ny = 15 on #".

On the other hand, (n;|C*(H))! # = n. Therefore, restricting {n}} to
the subgroup f{, gives us the desired path. This proves the theorem.

PROPOSITION 2. Let G be a free abelian group. Then G is a C-group.

[os]
Proof. G is isomorphic to @ Zx;, where {.\‘,-}}?"1 is a set of free generators of G.
i1

Let n be a representation of G on 4, and let M, be the von Neumann algebra gene-
rated by the image of n. The unitary group U, of M, is con ected, hence there is a
path «} connccting n(x;) and 1 in U, for each i. Let n,(x;) = u}, then since the x;’s
are free generators, m, extends to a representation of G for each 1 in [0, 1], and {x,}
is in fact a continuous family in D(G, ) with ny = 1, and n; = 7.

THEOREM 3. If G and H are C-groups, so is the free product G+H of G and H.

Proof. Let m be a representation of G=H on #. Then =!G and n H are
representations of G and H, so there is #' containing J#, and paths {c,} and {y,}
in D(G, #')y and D(H, #') respsctively, such that ¢, 3 = 7 '! G,a9=1g, 71:.7? =
= m, M and y, = 1,. Let ¢, +y, be the representation of G+H obtained by extend-
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ing ¢, and 7,. Then {g,+y,} is a path in D(G « H, ') so that g, %7, # ==
and w5 = lgers.

Rivark 4. This theorem extends Theorem 8 of [4] and Theorem 1 of [3].
THEOREM 4. Let (7 be a C-group and H be a subgroup. Then the amalgamated

free product G =, G is also a C-group.’

Proof. Denote G, = Gy = G, and fl, = H, = I{. Let ¢ be the identity iso-
morphism of G, onto ¢,, which carries #/; onto F,. Then G, g Gy s G =y G
Let = be in D(G, »p G, #) p =7 Gand y=7n G,.let in DG, *u Ga,
H @ H#) be defined by

P [p(gl) 0

] for g, in G,
0 (el

and

n'g = [:'(gﬂ) 0 ] for g, in G,.
0 ploHg.

Then one checks that if /. is in K, , then

2 = "i'l'(’lvﬁ G ] . [T!(f'-'x) 0 ] (i)
(i i ¢ (o (i) 4] () (o)

since /i; and o(/,) sre identified in Gy = H Goand 7 =p on G G, T hercfore,

7' extends to a representeton of G = m, Go. Let = be defined as feliows:

mdg) = ='(g) for g in G,
and

mil@s) = Uir'(g)U, for g in G,

cos-" ¢ sin '~t]

|

B ” ) .
where U, =: - = |. One can casily check that for any 7, < Hy,
—sin-" ¢ cos- -t
i “ 2
J Z 2

n(fy) — mo(h)), so that =) extends to a representation of G =g, (i, for cach

t in [0,1i. Moreover, &7} is o continwous path in D{G. =y G,, # & #). Now

’

and

7
221 == 3T

p(g) 0

T8 = [
o 0 valg)

] for g, in G,
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and

plc~(g)) © ] for g, in G.
0 (g2) | i

mo(ge) = [
Since ¢ is a C-group, there is a Hilbert space ' containing J# @ #, and a path {oc,}
in D(G, #") such that o ' K@D H =m, ] G, and o, = l¢;1 on #'. Now we define
a path {&}} in D(G, g Gy, H') by

ai(gr) = alg) for g in G,
and

2(gs) = o,(67(gy)) for g in G,.

Since for hy € H,, ai(hy) = a0 (1)) = (6 (), cach a; extends to an ele-
mentin D(G, =y Gy, #"). We then have o] A @ H =njand o) = 1G,#y G, on .
. O

The desired path in D{G, *1 Gy, ')y for the original representaticn n in
D(G, *n, Gy, J) can be obtained by connecting the paths constructed ztove.
This shows G *, G is a C-group.

COROLLARY 1. W th the hypothesis in Theorem 4. The amalgamated free produc
GagGuey Gy, sy G is a C-group.

The proof of this corollary can be made in one of two ways. One way is to
repeat the procedure of that for Theorem 4. The other is to use induction and
Theorem 2, while observing that G * , G = ; G is a subgroup of

(G #4 G) (G #5 G) = G %44 G # G %4 G.

THEOREM 5. Let {G}1., be a finite collection of finitely generated free abelian
groups, {Hi}f’.l be corresponding isomorphic subgroups. Suppose there exist iso'-
mogphisms  py;: Hy = H;, such that pipy = py for all i, j & k. Then the
amalgamated free product Gy K, Gy * Hy «+ - *H G is a C-group.

To prove this theorem, we need a lemma, which is a simple exercise in abelian
group theory.

LemMA 4. Let Gy, H; and p;; be as in Theorem S for i, j = 1,...,n. Then
n
there are decompositions H; = @ Zxt for some {xi}F., in G; so that p, takes
Jj=1
) i n i . . . .
xbto X5, and G, = @ Zy! @ N, with njyy = x5 for some integers ni and for
j—=1

i=1,...,nj=1,...,m
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m &
Proof of the Theorem. Let G; = ® Zy;® N;, so that H; = @ Zwnyl),
71 it

and p,: H; - Hy via py,;: niyl - nfy5. Let

m
G=@ I, N, ON, & ...8N,.
ko1

Then the G;’s can e considered as subgroups of G in the following way
ol R .
Gy > @ Zin}ooon7 Y o )®N;, i=1,2,...,a
k1

"

Then I, = & Z(n} ...nJ'x,)) = H for all i. Moreover, p;; becomes the identity
P | ’

map. Therefore, G, ry Goovpr, ooo®y G, is a subgroup of G =, Gxy ... 343G

here G appears n times. Combining Corollary 1 and Theorem 2 completes the
proof of Theorem 3.

3. THE MC-GROUPS

ProrosiTiON 3. let G and H be MC-groups, und let H be amenable. ¥ien
G @ His also an MC-group.

Proof. Since H is amenable, C*(G ® H) = C*(G) ®min C*(H) [12; 20]. Let
= and ¢ be maximal elements of D(G, #) and D(H, #) respectively. Let {x } and
{o,} be the corresponding paths for = and ¢. Then {z, ®¢,} is a path in
IXCOH, #&H), sothat 7y ® g, = n ® 0 and 71, ® 64 = lgen. Moreover,
= ® o is faithful [20]. This shows G @ H is an MC-group.

PROPOSITION 4. Lot G be an MC-group, and ¢ de a periodic automorphism of G.
Then the semidireet product G 3, Z is also an MC-group.

Proof. Let = in IXG, 3) be a maximal element such that there is a path -f::,}
in D(G, #) with =m; == = and =, = 1. Since C*G >, Z) = C*G) ., Z, the
regular representation of C¥(G) <, Z defined by

[oe]
ReNEN ) = Y, zlo. (b(NER — ),
§i 00
where yisin £Y(Z, C*(GVand ¢ is in £%(Z, ##), extends to a representation of C*(G) .
27, Z for each ¢ in [0, i]. Moreover, R, is faithful [14]. Clearly, the induced represen-
tation R, of G >, Z is R(g)i(n) = n (.. (2)E(n) forgin G, and R()i(n) = i(n--1)
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for ¢ corresponding to the generator of Z. Since {¢_ ,(g)} for a fixed g is a finite
set, we see that ! R(g) is actually certirvevslin rarm. Ncw R, is maximal in
D(G %, Z, (2L, #)) and R, is the representation pulled back from the regular
representation 4 of Z on ¢%Z, #) = (%Z) @ s#. Choose a path {o,} in
D(Z, ¢*(Z)) which connects A to 1z, we then have a path {¢, ® 1} in D(G %, Z,
¢¥Z, #)) connecting R, to ](;>.¢z. Now combining the two paths {R,} and
{o' ® 1} gives a desired path in D(G %, Z, £%(Z, K)).

REMARK 5. The above proof does not build up a large class of amenable
groups. For instance, we cannot even obtain a similar result for all finitely generated
torsion ‘free nilpotent groups. However, the method of the proof can help us to
build up a new class of groups.

DEeFINITION 4. (Cf. [21]). Let G and N be two groups. The restricted Wreath

product G wr N is the semidirect product (& G,) X, N, where G, = G, for each
neN

nin N and a(n) acts on @ G, ~ G’ as an automorphism defined by oz(n)({gm}) =
neN

= {gm-n}men, for each n in N. In other words, «(n) translates the coordinates of
an clement in G'.

THEOREM 6. If G and N are amenable MC-groups, so is G wr N.

The proof of this theorem is based on the following construction.
Let # be a Hilbert space of infinite dimension, and #° = # @ C. Let {N,}{,
be increasing finite subsets of N so that | N; = N. Let V; = ® #9 be the alge-

ne Ni
braic tensor product of the vector spaces {#) = #°'n € N,} over C. We view ¥,

to be contained in V; for i< j as follows. Let ¢ = ® (v,, 4,)in ¥;, then
neN :

i

o0
v®( ® (0,1))isin V. Let # = \_J V; equipped with the inner product defined
ne N\ N. i1
Jj i

by

wn>)l" + ;'an),

oTwd =@ (vs, ) | ® (w,, B = TT K,
neNi neNi neNi

for v and w in V,. It is clear that the inner product is well defined. We still denote
#' for the completion of #’ under the norm defined by the above inner product,

DEFINITION 5. #’ obtained by the above construction is called the restricted
infinite tensor product of .

Proof of Theorem 6. Let {x,} be a path in D(G, ), such that 7, is maximal
and n, = 1; on 4. Extending 7, to 4 @ C in the obvious way, we see that (0,1}
is an invariant vector for all {n(g) l 1 €[0,1] and g € G}. For each 7 in [0, 1], let
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=, be the representation of G = @ G, on #', tie restricted infinite tensor product
neN

of 4, defined first by
‘- '((mu,n .\)( O ( CR) /'n’) @ (u,(g,,)(l") /n)
neE N neN,

on ¥, then oxtend to # 7. it is clear that xhis a unitdr) repre <entation of ¢ on #',
for each ¢. Morcover, ”“’1 is a continvous path in G, #7), and =] extends to a
faithtul reprcscntalion of CHG ). This can be seen by an inductive argument
on the subalgebra CHGY). where G} = {{g,}.on = & € G if g, # e then a & N;).
Since G is contained it §', C*(G!)is naturally contained in C* (G ). and C(G) is
the inductive limit of {C*(G])}®;. Note also that since G is amenable, the
tensor products involved are unique.

Now let » be in £4{N, C*(G')) and ¢ be in AN, H#'). The regular represents-
tion p, of AN, C*{(G'y is given by p(1)i(n) = }_‘,'7:;(:4"-1(_1'(s),))(';:(s “Ta)). And

f extends to a faithful representation of CHG') X, N = C*G >, N) since =
is faithful and N is amenable.

. . . e if m#k
Let (g, s)) G x, N, where g} = {gm}meN with g, = { .

g if = /c,
for a fixed & in N, and let 3o & € 72N, CH(G)) so that yg,, 1(s) = {0 l_ff § # S
& W88

Then the corresponding unitary representation of G X, N is given by
ﬁz(gl:ﬂ());:(”) =7 Pc()'g..s-“.n)i;"(i?) =
s 3% o (v s (N(EGs i) =
SEN;
= (7,1 ({gunfme »NE(sT ) =
w7 {g,,,,;'l}meN)(é(so_ 1i2))

Since G’ x, N is generated by those (gl., s3) described above, we need only to check

ihe norm continuity of p{g’. ) for thosz (g/., $). In fact, if E6) = & (¢, A1), we
n N

consider it to be in V; for some sufficienily large j> 7 so that kn € N; and 551V,
« N;. Then
P2 @) = mllg, 1 Fme ME(ET))

stla aer
o “t(lé,,,,, l}meN( ® (l,i’ ia 20 n))

me N

= ® (nlg,,- Dy ", i ”) =

me 1\

. s, . 1
= Q; (l.n? 4 /'mo )C ("'(g)(l'&m ")’ :(.)1 ”)’

m(;Nj

ki
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‘Therefore,

1PVes, IE) = P (Ve a(Ele =

= Y, (g, tmemEse ) — 71 ({81 }memE(ss M)l =
ne

=Y 1I (<v,,:’ TS e T () — e (5 ) <

nzeNmeN
m¢1\n

e

< lmle) — m (@)% 1€ 5.

This shows the desired continuity of p, on C*(G’) X, N. This continuity automa-
tically gives the continuity of p, on G' x, N.

Now arguing as the last paragraph in the proof of Theorem 6, we complete
the proof.

4. THE NILPOTENT GROUP

It seems to us that the conditions (C) and (MC) for a group G is sometimes too
strong to be obtained. For instance, the 2-step nilpotent groups already creates a
difficulty for us to determine if they are C-groups or MC-groups. Therefore, a weaker
version of the conditions (C) and (MC) is cxpected.

Inspired by the work of Anderson and Paschke [1], we are able to prove the
generalized Kadison conjecture for any torsion free nilpotent groups without appeal-
ing the property (C) or (MC). For these groups, the Baum-Connes conjecture
can also be proved, by the Pimsner-Voiculescu sequence [16], so that the gneralized
Kadison conjecture follows to be true. However, the method we employed here is
purely analytic, and is in the same spirit as Theorem 1. Moreover, more structure
of the group C#-algebras of these nilpotent groups can be seen through the course
w¢ are pursuing. :

The following theorem is due to Anderson and Paschke for 2-step nilpotent.
groups [1]. We believe it is also known to them in general cases. However we will
present a proof here for our purpose.

THroreEM 7. Let 0 - C -~ G - N — 0 be a central extension of groups. Sup-
pose N is amenable. Then C*(G) is a continuous field of C*-algebras over the Pon-
trjugin dual é of C.

Proof. Let t bz a character on C, t, be the maximal ideal of C(é) att, and [_
be the ideal of C*(G) generated by ¢.. Then the quotient C*-algebra C*(G)/I, is
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isomorphic to the twisted group C#-algebra CHN, 7 -~ a), where ¢ is the normalized
2-cocycle determined by the groups extension [9: 22]. Let 7, be the quotient map
from C*(G) onto C*.V, =, v<qg). We will show

LEMMA 5. (CE. [I]). 1) For any x &€ CHG), _w(x)" is continuous in <.
) x omax wx) .
el

Proof of the Lemmu. To prove 1), we argue ¢s in [1], but with some necessary
changes. We need only to prove that for fixed x in C%(G), 0, = {/ eC () < r}
is open for cach » > 0: and 7, = {i & c 7,(x) | < ¢} s closed for eack # > -
In fact, for &> 0. W iz (0) < r we let &y in T, . be such that  z; (1) >

?

Z'x k,-,n .~ & Suppose /1720 =y AgUg, + 8., where Ag, €1 . and whore
i

19, < e Let M > 0besuch that 2 — Ay < e M, then Agi(2) - Agiy) <l

for i::1,2,...,1. (Note: Cisa compact metrizable space.) Now defire 7, to

be a function in C(C) satisfving

I i p—7y 2e'M L
‘I ‘,p ':"; ‘ and  sup z(p) = L.

0 if p -2y =20 B

x(p) = {

Then

! i [ -
=N + Vo AgUg + Y (1 — x)Aglg  — 2 >

i1 ,'

i i

4

; :
lx + }‘n x:;Agi‘L‘vgi l - 38 >
it A
>inf x 44,7 - %=
j.ef.

= ‘mAx)! — 3z, for any 4, such that 2 — /; < ¢ 2M.

Therefore, if & was chosen so that "7:;,0('.\')',2 + 3¢ < r then "m{x) < ¢ forall /i

Csuchthat 72— /2, < &/ 2M. This shows O, in Cis open. To show T is closed, we
define a family of representations of C*G). Let s: N -- G be the normalized cross.
section (which defines the 2-cocycle) for the quotient map ¢: ¢ - N, and let gl :

=5 g{g) for g in G. For each 7 in C, 7 defines a representation of C on C. The induced.
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representation [10; 13]ind%t: G —£%(N) is defined as ind& ©(g)}(&)(n) = t(s(n)-g - s({s(n)-
- gD Hé(gln), here & is in £2(N). Clearly if g is in C, then indZz(g) = t(g). Hence,
it factors through a representation n. of C*(N, teo) on £3(N). 1t is well-known that
n, is faithful [9; 22]. Now one observes that ind@z(x) is continuous in the strong
.operator topology for each x in C*(G). Since the set of operators of norm < r
is strong operator closed, T, is closed. The second assertion (ii) in the lemma now

«can be proved exactly the same way as that for Theorem 1, part C) in [1].
Theorem 7 can now be proved by a straightforward verification.

COROLLARY 2. Let 0 - C-» G~ N — 0 be a central extension of groups. Sup-
pose N is amenable and C is torsion free. If N satisfies the generalized Kadison conjec-
ture, so does G.

Proof: Let p be a projection in C*(G), and 1, be the trivial character of C.
“Then n,()(p) is either O or 1. We may assume Tt,o( p)==0 as argued in the proof of Theo-

rem 1. By Theorem 8, ||z (p)|| is continuous. Since Cis connected and im(plll=1

or 0, we conclude ||z (p)lj = O for all 7 in C. But since [Ipll = max |z (p)| = 0O,
we must have p = 0. This shows the corollary.

THEOREM 8. A torsion free nilpotent group satisfies the generalized Kadison
conjecture.

Proof. Let C be the center of G. It is well known that G/C is also torsion free
Therefore, the theorem follows from an induction on the length of upper central
series of G.

5. THE INDUCTIVE LIMITS AND AN EXAMPIE

! Pz P . .
let Ay, — A, —> A, —> ... be a sysicm of C¥-algebras, such that ¢)'s
arc injective x-homomorphisms. It is well-known that if cach A4, has no proper
- . . . . o . . ~ e (p
projection, neither does A = lim 4,,, the induciive limit of {4,, ¢,}.Let G, —>
n—00
l,’\l

iR

—> Gy —> ... be a system of groups, such that ¢.’s are injective homowmor-
phisms. If each C*(G;) (resp. CH(G))) has 10 proper projection, neither does
lim C¥(G,) = C*(lim G,) (resp. im C¥(G,) = C¥iim G ,)). Onc may use this fact to

e 20 n—co n-co Re>30
build up a larger class of groups whoss full group C#-algebras have no proper
projection. This class includes all locally nilpotent torsion free groups, and all free
groups. .

As we indicated in the beginning of § 4, the conditions (C) and (MC) are strong
propertics of a given group. Any group of torsion or of Kazdan’s property (T) satisfy
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neither the property (C) nor (MC). We now produce an example of a finitely gene-
rated K-amenable torsion free group of no such properties.

iet G be the universal group gencrated by u and v, so that # ard ¢ satisfy the

relation we == v*u. Then an easy spectral argument shows that G is not a C-group

ror an MC-group, while G is still a finitely generated torsion free group. In fuct,
G is an HNN group and is K-amenable [15].

16.

17.
18.
19.

20.
. WEINSTEIN, M., Examples of groups, Polygonal Publishing House, New Jersey, 1977.
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