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SCATTERING FOR DISSIPATIVE HYPERBOLIC
SYSTEMS OF NONCONSTANT DEFICIT

GEORGI VODEVY

0. INTRODUCTION

In this paper we study the scattering theory for hyperbolic systems with dis-
sipative boundary conditions. We consider the problem

(9= 3 4099, = BJutc, 0 =0 in R x 0,
j=1

©.1)
A(x)u(t, x) =0 -on Rf x 0Q,

u(0, x) = f(x) in Q,
where Q < R*, n > 2, is an open domain with bounded complement and smooth
boundary 0Q2; A;(x) e CY{Q; HomC%), j =1,...,n are Hermitian d x d

matrices for each x € 2, B(x) € C(Q; HomC%) and A(x) € C{(0Q; Hom C%). The
system (0.1) is a short-range perturbation of the system

(6, - }3 A?Oxj)u(t, x) =0 in R, x R%,
0.2) i=1 '

u(0, x) = f(x) in R"

where A%, j=1,...,n, are constant Hermitian d x d matrices.

Let
AO(&) = Z A?éj: {.-: = (61’ R ] &n) € R"\\O-
i1
It is well known that the eigenvalues /&), j = 1,...,d, of the matrix A%¢) are

continuous real-valued functions positively homogeneous of degree one. Clearly,
they can be divided into three groups:
(a) nonvanishing in R™\0;
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(b) vanishing in R™\0 without being identicaly zero:

(c) identically zero eigenvalues.

The system (0.2) is said to be of constant deficit (or strongly propagative)
if rank A%(¢) is constant for all ¢ € R™\0, and to be of nonconstant deficit - - other-
wise. Clearly, (0.2) is of nonconstant deficit if and only if there are eigenvalues
(&) of type (b).

The case of strongly propagative systems is relatively well studied (see [S],
[71. [11], [14], [17], [28]). Especially, we wish to mention [7] wherc the scattering for
systems of the form (0.1) is studied under short-range perturbations and coercive
estimates by using a suitable form of Enss’ method.

On the other hand, there are only few works treating systems of ronconstant
deficit and most of them are related to Cauchy probiems in R, x RZ. In [10] and [24}
a system of the form

AR ‘) A% )u(?, ) =0 inR, x R%,

(0.3) ! i
{u(O x)o: f(x) in R",

is considered under shor:-range perturbation of the matrix E(x) and some condi-
tions on the 2;(¢) of type (b). In [24] Tamura proves the completeness of the wave
operators, while in [10] another description of the ranges of the wave operators is
given. In [18] Ralston studied system on R, x R”? under compact perturbation of
the coeficients and the hypothesis that there is only one eigenvalue of the principal

symbol Ai(x)¢; which may vanish in R” x (R"™\0). Then the completeness of the
i

wave operators is established under the assumption that the projections on the
x-space of the null bichuaracteristics corresponding to this eigenvalue escape to
infinity.

In this paper we consider the case when the system (0.2) is of nonconstant
deficit. Moreover, we assume that the solutions to (0.1) are expressed by a con-
traction semigroup V(¢) = e on the Hilbert space H = L¥Q; C%) with gene-

rator G precisely defined in the next section. Let U,(f) = ¢“c be the unperturbed

unitary group on the Hilbert space H, = L%(R”; C“) with generator G, = \ A“"

DIGy) = {feHy: G,f € hh,., where the derivatives are taken in dlstrxbutlon
sense. We are intercsted in the existence of the wave operators ¥.. and W
defined by

(0.9) W_f = lim V(DJU(—1)f for fe Hy) ™ (KerGy)<,

1= Q0



SCATTERING FOR HYPERBOLIC SYSTEMS 279
and

(0.5) Wf = lim Uy(—)J*V(t)f for fe H¢.

e 400

where J: H,-»H is the operator Jf = 1] o, J* is the adjoint to J, and H{ is the
orthogonal complement in A of the space H, spanned by the eigenfunctions of
G with purely imaginary eigenvalues. The main problem is to prove the existence
of W. Onc of the aims of this work is to prove this under the following hypo-
thesis of local energy decay

©0.6) {For any bounded subdomain Q" of Q and any f € H¢

we have lim infljV(¢)f]| 0.

fms b0 LXesedy T

It is worth noticing that the implication “local energy decay = existence of
Wt for all f e Hy” is quite a nontrivial statement even for the wave equation with
dissipative boundary conditions as well as for some simple examples of first order
systems (see [13], {17]). In our case the proof of such a statement becomes much
more complicated in view of the very general assumptions under which we work.
To prove the existence of W we require some natural restrictions on the eigenvalues
2;(&) of type (b), which are the same as those in [10] and [24].

For a complete investigation of the problem concerning the existence of W,
however, it is important to know when the hypothesis (0.6) is fulfilled. For example,.
it is not hard to see that (0.6) holds under te following assumption

There exists a dense subset & of H so that for any

0.7) fed, e CPR"), t 20, we have |pV(t)f|, < C
with C independent of ¢, where ||-]|, denotes the norm
in the Sobolev space H¥Q; C¥).

Although an assumption like this is difficult to be verified, it is known to hold for
semigroups with generators satisfying coercive estimates, as well as for unperturb--
ed group Uy(7). So, one may expect that, while the coercive estimates are typica)
for systems of constant deficit, (0.7) may hold for some class of systems of non-
Constant deficit.

In [18] Ralston showed that for some systems of nonconstant deficit there is
a very close link between the hypothesis (0.6) and the escape to infinity of the

i
projections on the x-space of the null bicharacteristics of ¥y Aj(,\')&x’,. Perhaps such
J= ‘
a link exists for a more gencral class of systems of nonconstant deficit including
exterior problems. We also wish to mention [19] where an uniform decay of local.
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encrgy is obtained for some systems of nonconstant deficit under the assumption
that the projections of all bicharacteristics escape to infinity.

Another purpose of this work is to give some characterization of the ranges of
the wave operators 1 .. in the case of conservative systems, i.c. when V(¢) is an uni-
tary group, without assuming the hypothesis (0.6). Here W, is the operator defined
by letting ¢ - — cc in the definition of W_ . We reduce this problem to the one of
describing of those f'<: H for which Wf. defined by the limit at (0.5, exists.

Below we shall sketch the idea of our proof of the existence of the operator Wy
At first, let us fix our notations. Given two Hilbert spaces Xand Y, Z(X, ¥) denotes
the space of all linear bounded operators acting from X into Y. If ¥ = X we shall
write L(X) instead of (X, X). Moreover, given a set /< R", y(.Z) denotes the
characteristic function: of .#. We also set F(z) = —iz(z + i)~2 Following [7] we
would like to construct bounded ,on H, operators PR* and P} depending on
large parameters R, Af > | and satisfying the following conditions:

{0.8) iAPﬁ"‘(in):'y(no) < C, forall R, M
‘ with C,, independent of R.

0.9) F(—1Gy) = PRt + PE + Lg,y + Ly,

with operators Ly o and L,,, L;, independent of R, satisfying the following

{0.10) fim Ly sy = 0,
Moz 0
©.11) wLrond 1, < C;’H..‘VRNN;Ilf.:HO + Car 1(xI<AR) [y,
for all f'e Hy and all integers N > 1.

Morcover, with some ¢ > 0 which depends on M but is independent of R and ¢,
we have

0.12) (xS 0 + RNUOPR 2y < Crrn(t + R,
and
(0.13) (X < 3t + RNUYPR* oy < Chrn(t + BTN,

forallz > 0, R > 1 and all integers N > 1.

Now the existence of W can easily be derived from the existence of such oper-
ators Pt and Pi§ combined with (0.6) (see {77). So, the main part of this paper isdevot-
¢d to the construction of these operators as well as to the proof of (0.8)—(0.13).
Note that the construction given in [7] can not be applied to the case of noncons-
tant deficit. One of the reasons is the following: if © ¢ CP(R\0), then in the case of
constant deficit we have that the entries of the matrix-valued function (A4%%))
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belong to Cf,‘j(R"), a fact essentially used in [7]; in the case of nonconstant deficit,
however, these entries do not have compact supports. Therefore, we propose another
construction based on an application of suitable pseudodifferential operators. To
prove the above estimates we essentially use the fact that the pseudodifferential
operators of class OPS (R") are bounded on L(R") (see [25]). Here some aditio-
nal difficulties arise when one tries to arrange all the desired properties (0.8) —
(0.13). For example, the operators P¢*" and P} do not take symmetrical part at
(0.12) and (0.13), a fact which effects to the construction of P§" and Pip.

The paper is organized as follows. In Section 1 we introduce our assumptions
and formulate the main results. In Section 2 we discuss the existence of the oper-
ators W_ and W, provided that there exist operators Pt and P} with the properties
described above. In Section 3 we state without proof some standard facts from the
theory of pseudodifferential operators. In Section 4 we construct operators P3" and

in satisfying (0.8)—(0.13).

Acknowledgments. The author would like to thank Vesselin Petkov, Vladimir
Georgiev and Plamen Stefanov for the helpful discussions during the preparation
of this work.

1. ASSUMPTIONS AND RESULTS

Our first assumption is:

.1 There exist constants py, & > 0 and C > 0 so that
' Afx) = A% j=1,...,1, 1B(), < Cx\”" "% for |x| > p,.

The following assumption means that the solutions to (0.1) can be expressed
by a contraction semigroup on an appropriate Hilbert space.

H
The operator y 4 j(x)é‘,\.j + B(x) with domain
jat

(1.2) J {fe C&»(ﬁ; Cd): A(x)f(x) = 0 on 0Q} has an
unique closed extension G in the Hilbert space
H = L*(Q; C4), which is a generator ot a con-
traction semigroup V(t) = €', t > 0.

The work of Rauch [20] shows that this assumption is fulfilled for uniformly cha-

racteristic boundary &Q, 1.e. when rank Z A;(x)v;(x) is constant on each connected
j=1

component of dQ. Here v(x) denotes the unit outward normal vector to 9Q at x.

We refer the reader to [17] and [20] for more details.
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Our first result is

TuroreMm 1.1, Assume (1.1) and (1.2) fulfilled. Then the operator W._ , defined
by (0.4) on the Hilbert space H,, exists and RanW_ < Hy.

Rewmark. Note that cur proof can easily be extended in order to establish the
existence of W._ under more general shori-range perturbations of the matrices
Adix), j=1,...,n

To prove the existence of the operator W we need to impose some restrictions
on the 4;(<) of type (b). 1t is well known that there exists a conic clesed subsct ¥
of R*\0 with Lebesguc measure zero so that /&) have constant multiplicitics on
(R"™N O Z and the ,(&) of type (b) do not vanishin (R"\0)\ X (see [1], Appendix A).
Hence, without loss of generality we can suppose that 2,(&),. .., Al&). 4,.,(¢) 21 0,
1 < & < d, are all different eigenvalues of 4%¢) on (R™N0)NZ. Clearly, the first &
eigenvalues are either of type (a) or of type (b) and are nonvanishing in (R*\0)\.Z..
Now, we write down

(1.3) A = OIS, ¢ RN,

i

with IT(¢) orthogonal projections. We set I7,.,(&) = 1d — ¥ (&) where Id
j 1

stands for the identity o x<d matrix. Tt is well known that IT,(¢) are continuous ma-

trix-valued functions, homogenecus of degree zero. Our next assumption is:

For each 7;(d). 1 < j < k, of type (b) there exists an open
conic neighbourhood Z; of the set {&: 2,(&) = 0}

so that 2;(3), M1;(£) € C=(3;) and

NAdd), # Oforall (e ;.

(1.9)

Now our key result is the following

THEOREM 1.2, Assume (1.1), (1.2), (1.4), (0.6) fulfilled and let fe Hy-. Then
Jor any ¢ > 0 there exists T, > 0 so that

(1.5) sup (JEV() — Up()*HWT)f ', < e

1>0

As an easy consequence of this theorem we cbtain

Tueorem 1.3, Under the same assumptions as in Theorem 1.2, the operator
W, defined by (0.5) on the Hilbert space Hg, exists and Ran W < Hy.
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COROLLARY 1.4. Under the same assumptions as in Theorem 1.2, the scattering
operator S = WW_ is a well defined bounded operator on the Hilbert space Hy.

Theorem 1.3 enables one to describe the range of the wave operator W,
defined by

W.f = lim V(O)*JU)f, feH,.

=400

We refer the reader to [7] for more details.

In what follows in this section we shall assume that the operator G, defined
at (1.2), is antiself-adjoint, i.e. V() is an unitary group. Besides, we shall not assume
the hypothesis (0.6) fulfilled. Note that in this case H¢- coincides with the continuous
space of G. Our aim is to describe the range of W, , the wave operators defined
above. Introduce the sets

S e timinfl]¥ ()2 c4) = O for any bouned subdomain 2’ of }.

1t is easy to see that A, are closed subsets of Hi but it does not follow from the defi-
nition that they are linear spaces. In fact, it turns out that thxs is true. Our main
result for conservative systems is the following

THEOREM 1.5, Assume (1.1), (1.4) fulfilled. Assume also that the operator G
defined at (1.2) is antiself-adjoint. Then RanW, = H, .

REMARK. A little modification of our proof establishes Theorems 1.2 — 1.5
for systems with short-range perturbations of the matrices A ;(x) under the extra
assumption that there exists a dense subset 2 of H so that for some a € C*(R")
‘vanishing in a neighbourhood of R"™\ Q2 and equal to 1 outside another one, we have
fa¥ (), < Cforall fe 2, t 2 0, with C independent of ¢, where ||-}l; denotes
‘the norm in the Sobolev space A'(R"; Cd).

2. BEXISTENCE OF THE OPERATORS W.. AND ¥

In this section we shall prove our main thcorems assuming that there exist
operators PRt and P satisfying (0.8) — (0.13). In fact, for the analysis of W_ (or
W.) this is not necessary. Since our analysis of W_ and W closely follows that
in [7} and [17], we shall only sketch the main points of our proof.
We begin by the proof of Theorem 1.1. The only difficultics which arise here
are caused by the arbitrariness of the 4,(¢) of type (b) The existence of W _ easily
follows from the following
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LemMa 2.1. There exists a family of bounded operators P,, 0 < ¢ < 1, on
H, so that s-limP, = P,, P, being the orthogonal projection onto H,, and for some

LENY)

6, > 0, all fe CPR"; Cd), it} > 1 and all integers N > 1, we have
2Cxl < 5e:t.)Uo(t)Pef”Ho € Co it~

Below we shall sketch the proof of Lemma 2.1. Let # denote the d-dimensional
Fourier transform. Clearly, —iG, = F-14%)% and therefore

@2.1) o(—iGo) = F 1p(ANNF  for all ¢ € C(R).

Moreover, it follows from (1.3) that

@), (A% = Y, 9 ENTQ),

-~

with ¢ as above. It is easy also to see that

k
(2.3) Py = F1Y (07
2

J

Now for £> 0 choose a function 5(¢) € C=(R"), 0 < X§ < 1, such that % = 0 for
I§] < e and X5 = 1for &} > 2e. Let 4;(¢) be of type (b). Then, since, as it was men-
tioned in the previous section, the £,(¢) vanishes on a set of Lebesque measure zero
only and is a continuous function in ¢, there exists a constant C,; > 0 so that

(2.4) mes{¢:I¢l =1, 10! < C, 5} < &&

Denoting by ¥%(¢) the characteristic function of the set {¢:]2,(¢)! = C

€ ":}e we
define P, by

v

2.5) P, =F "118(5)((2. (&) + ;)Xf(é)ﬂ f1(3) -8
a) b

where the sign ¥, (resp. },) means a sum over all indices j for which £;(¢) are of
(a) (&)
k
type (a) (resp. (b)). Clearly, Y, + ) = ¥ . Now, Lemma 2.1 [follows from
{(a) (L) T B |
(2.1) - (2.5) combined with an integration-by-parts argument.
Now we turn to the analysis of W. Choose a function 6(x) € C*(R") such that

0 = 0 for'jx] < po + 1 and 8 = 1 for |xj > p, + 2. We shall compare the solu-
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tions to the perturbed problem with those to the unperturbed one by the following
Duhamel type formula:

j=1

@6) VOO — 0U()f = S Vit — s) (OB(X) + 2 (aij)Ag) Uy(s)fds
1]

and its adjoint

J

[
Q6% VY 0f — QU1 = — SV(t - s)”(oB(x)* + Y (ax,.o)AS’)Uo(s)*fds

which hold for all f € H,. Using (2.6) we shall prove the following

LEMMA 2.2. For any integer m > 1 we have

@n lim |((G — 1)=" — 8(Gy — )=")x(x] > R)l|gn 1 = 0.

R—-+00

Proof. By the resolvent formula

G- 1D)m= —laSe-’t'"—‘V(t) ds,
m!
0
for large R and all f € H,, we obtain

(G — =™ — 6(Go — D="x(Ix] > R)f =

(2.8) = ;:—’—-Se-’t'"-‘(V(t)O — QU;MO)x(Ix] = RYfdr =

o0 (g"’otz)/"m

S o+ S =1, + I,

(R 2) 0
g " Po” /%

where v, = max |4;(¢)| is the maximal speed of propagation of the solutions
1gj<k,1f]=1

to the unperturbed problem. Obviously,

29) Il < Culfla, S e=1tm=1dt = o(R)| s,
(g_”o- 2)/1'111

with o(R) -0 as R — +oco.
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To estimate the norm of I, observe that by a finite-speed-of-propagation argu-
s

ment we have Uy (s)y(x = R)f =0 for x, < o + pp+2 and 0O

=

R , S . .
< ( - —py — 2)/%. Hence, using (2.6) and taking into account the assumption

(1.1), for 0 g ¢t < (f— - pp — 2)/1;,,1, we obtain

(V0 — 000V x > R 4y <\ BEOUp(o)r(x: > RYf u ds <

Cl |

‘R ~t-s, [ o .
b + Py + 2) OS LUo(x > R)f!illﬂ ds <
2 J )

R —I-ef R o O
f p.m’»z) (2— ﬁo"2)lff2111“=0(R)Af“HG

with a new o(R) -»0 as R — + oo. Hence

(f -/7() - 2)'Z‘m
. g 1 ‘ o
(2.10) sl S OR) f == S et tdr < ofR) fim, -
T X

¢

Now (2.7) follows from {2.8) —(2.10) and the proof is complete.

Below we shall sketeh the proof of Theorem 1.2. Recall that F{(z) = —iz{z +
4i)% = -0z + 1) -4z -+ 1) 2 According to a result of Simon (see [23], Sceiion 9,
(Lerama 2), the set {F{--iG)g: g € i} is dense in /1. Hence it suffices to prove

(1.5y for f = F({~iG)y with g e . Now, by Lemma 2.2 and (0.9) — (0.11)

we obtain
HIEVE) = Uy DV~ 1G)g ', <
2.1 S TENE) = UpH0PE0V(sYg s + C PROVSIE i, o+
+ o(R) giy - o{bl} gy + Crli(x < 4RV (),
with o(#) ~ C as 37 -» % co independent of s, ¢, R, g, with o(R) -0 as R — Fc0
Andencendent of s, ¢, g, und Arally with C, independent of s, 7, R and g. By an casy
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computation, using (2.6) together with (0.8), (0.12) and (1.1), one can estimate from
above the first term at the right-hand side of (2.11) by

[[(V ()0 — 0Uo(t))P°“'0V(6)gl‘u + Coli(1 ~ OPROV(s)gll +
2.12)
+ Goli(1 = OU,PFOV(s)glia, < C(R™ + R79)igliu

with C, independent of s, ¢, R and g.
Similarly, using (2.6)* together with (0.8), (0,13) and (i.1), we obtain

IPROV(s)g!'m, < IPROV(s) — Us()O)glar, + [1PRUs()08)H, <
< [(V($)*0 — OU(YIPR* s iy i€ e +
2.13) + [lx(x! < SRYUN(Y PR¥ yaar )y 08 mr, +
+ IPRU(x(1x1 = ORYg &, < Ci(R™Y -+ R™0) gy +
+ Callz(Ix] > 6R)0g| &, »

with C, independent of 5, R and g.

Now (1.5) follows immediately from (2.11) — (2.13) combined with the assump-
tion (0.6). This completes the proof of Theorem 1.2. We refer the reader to [7]
and [17] for the proof of the implication “Thecorem 1.2 => Theorem 1.3”’.

In the rest of this section we shall deal with the proof of Theorem 1.5. We
shall analyse the range of the operator W, . The analysis for W_ is similar. Obvious-
1y, for any bounded subdomain Q' of Q, we have .

.14 T V(01 2grcay = 0 for all /& RanW, .

Hence, RanW, < H, and since W, is an isometry we deduce that RanW,
is a closed linear subset of A, . Thus, assuming RanW, # H, leadstof = f; + f,
for some fe K, with f, eRanW¥ ., f, . RanW, and f, # 0. Now, by (2.14) we
deduce f, € H, and our assumption yields

2.15) (W.g, fy =0 forallgeH,and some f, e H,, f, # 0.

Now, it remains to see that W, defined as a limit at (0.5), exists for all fe H.,
and RanW < Hy. Indeed, if we assume this fulfilled, (2.15) yields (g, Wf:_.)Ha =0

for all g € Hfy. Hence WY, = 0, and since W is an isometry, we conclude f, = 0
which contradicts our assumption.

G .- 2244
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We shall finish our analysis showing that W exists as an operator acting from
H, into H,. To this end, it suffices to prove that (1.5) holds for each f & H . . Let usfix
JEeH, . Since H, < Hi < (KerG)*, we can approximate f in H by functions of
the form ¢( — iG)f with ¢ € C3(R\0). Hence, it suffices to establish (1.5) for ¢( - iG)f.
Now, replacing the function F in the definition of the operator Pg* and P} by ¢,
we obtain new operators Pt and P which again satisfy (0.8)—(0.13) with ¢ in-
stead of F. Then, taking into account that /'€ H*, one can prove (1.5) for ¢(—iG)f
in a similar manner as above. This completes the proof of Theorem 1.5.

Remark. Note that an analysis similar to that akove can not be carried ou
in the case of a contraction semigroup since then, if ¢ € CP(R\0), the operator
¢(—1G) does not make sense as a bounded operator on H commuting with e,

3. SOME PRELIMINARIES

In this section we shall state only frome standard facts from the theory of pseu-
dodifferential operators, which will be important for our analysis in the next sec-
tion. At first, let us recall that a function a(x, £) e C*(R” x R") belongs to the space
Soo(R* x R") of symbols if and only if

@3.D sup'cicta(x, &) = C,p < +oo  foralla, f.
L 24
The collection of the nseudodifferential operators with such symbols will be denoted

by OPS; (R"). According to Theorem 1.3 in Chapter 8 of [25], if a(x, &) satisfies
(3.1), the pseudodifferential operator a(x, D) is bounded on L%R") and

(3.2 laCz, DYy gy, S Co Max {C,.p}-

o= ples,

Now, let us consider an operator s/ defined by the following oscillatory
integral

3.3 (Z0)) = S Sei“—y»ﬁ’b(m—, ¥, OF (e dy

with an amplitude b(x. », £) € C*(R"” x R" x R") satisfying the estimate

(3.4) sup(l + (W) Negeleiblx, 3, &) = Cyp, < + 00

X306

for all multiindeces «, £, 7. It is easy to see that actually &7 € OPS§ ((R") with symbol

alx, &) = e-iwD i),
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and moreover
(3.5) sup|@sdfa(x, &) < €, 4.4 max {Cor gy}
g WY €5y g,

for all multiindeces «, f# with constants ¢, , » and s, , s independent of Cyr 4 .. Now
it follows immediately from (3.2) that &/ is a bounded operator on L%(R") and

(36) Hd”g([ﬂ(k")) < C,’, max {Ca,ﬁ,y}-
tal-+ 1L+ i <s,,

Using (3.6) one can easily prove the following

Lemma 3.1. Let a(x, &) € C°(R" x R") satisfv (3.1). Then for R » 1 and
any integer N we have

lx(lx] < R)a(x, D)*x(ix| > 2R)]| < CyR-N max {C, 4}

i R"
Z(L(RT) jal + gl < 5y

with constants Cy and sy depending only on N and n.

At the end of this section note that if ¢ € CP(R), then o —iGy)=F ~1(A%E)F
is a matrix-valued operator with entries of the class OPSJ(R"). Indeed, an easy

application of the formula

+o0
p(A%Q) = ()~ S ea™Op(1) dt
"o
yields the following
LEMMA 3.2, For any ¢ € CP(R) the entries @, (&) of the matrix ¢(A%(£)) belong
to C°(R") and

Sllpwg‘/’(j(é)l = Cc < + co, lsj = 13‘ s d,
3

Jor all multiindices .

4. THE OPERATORS PQ"* AND PP

This section is devoted to the construction of operators P$"t and P§ satisfying
(0.8)---(0.13). We shall carry out this construction in several steps.

Step 1. Let ¢ > 0 be a small parameter to be chosen later on. For each
&), 1 < j <k, of type (b) we choose homogeneous of degree zero functions y3(¢),
79(¢) € C*(R"™\0), where ¢ = 4 or 0, so that 17;*f=1 on {&: -k 2(8) > 2¢¢1},
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0 Y 4 ~ R a@,’v:
=0 on [¢rhi B <e ) ny = 1—yi —n7: RE=1 on { o L }

27 =0 or € N | R r:'<5 land 7% L0
7 - 1 {3 < ~3 Sops By=londl () < 2~n_7, and 55 :- 0 on
{&:000) » 34:‘{_"} ir fact, the functions 7% are chosen so that 5§74 is identically
equal to 5§ on R™0 for dH ¢ = :z. 0. Now, since the function 7,2} is conti-
nuous, we can find ¢ =:¢" > 0 so that supmy, < supp 7Y < I where X is the

sct introduced in the assus npt,on {1.4).
For 7,(3) of type {a) the SIgn of/,(\ )y does not dep ad on &= R™.0, and then
we set i s: 50 = 7% = 77 =0and 57 = pf =1 where ¢ = signi{).
Introduce the operator H;iﬁ(D) = 7 'HH;],Y(L_’),?, ¢ = -+, 0 where
. k
H;iw(‘;:) = (S ;71 )II( )

J

Similarly, we de’ine the operator HTU(D). Clearly,

@0 (DM (D) = II_(D).

:;3

Step 2. For a Turge purameter A > 1 choose functions 1, l{, e GCF

such that ¥,; =0 ouv mdc the set {z: 1M < .-z < MJ, Yar = 1 on z: 2 M

<12 M 2}, g = 0 outside {M.I(JM)Q,; <3y andwuwion {21230
ad

A

=
£:.-2¢ ..M}. Then we set Wiy = Vir - War an R = gar + g Claory,

4.2) Winfir = ¥is on R, &= 1,0
Step 3. For a small parameter 8, > 0 choose functions g~ € CP*(R), 8Ky <1,
such that ¢g*(z) =1 for 2 € =48, g (z}:=Q for z > ,. and g~ = 1 .- g*

Step 4. Let o(xyc CP(R") be such that ¢{x) =0 for x <1 and oy}~ 1 for
w2 2. For a large parameter R > 1 set ¢ {x) = o(x'R). Cleariy, opix):: 0
for X' < R, oux(x) =1 for x > 2R, and

4.3) sup f3oa(x) <C.R™™  for all @

with C, independent of R.

Siep 5. Choo%e a function 0,(¢) € CP(R") such that &, == § for ¢ <€ 1{(5%v,)
and 0; = 1 for ' =1 (4A72,) where t,, is the maximal speed of propagation of the
unperturbed system. 1t is casy to sec that

“.4) OO AAUD) = PE(AD) on R, o =i, Q.
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Introduce the following matrix-valued functions:

—oune( /X, )0l 1d,
10, ) ¢(¥)q(\ M> (9]

X

0%, &) = ¥ ¢n° (<* NS )ol@n?(é)n,-(f:)
(b) X 1‘7 A(E)]

where o = 4-. In view of the assumption (1.4) we have Q(x, &) € C*(R"xR";
HomCd), j =1, 2. Moreover, the functions Q%x, £) are homogeneous of degree
zero in ¢ for {¢| > 1/(4Mv,,).

Step 6. For a small parameter 8, > 0 define the sets
K = {(x, ¢): there is (x', &) € supp Q5 so that |x — x'| < 8,R
and S_C]<52}$ 0==:i':j;_'17 27

where R is the same as in Step 4. Then we choose functions A9(x, &) € C*(R"xR"}
such that 4f =1 on Kf" hg = 0 outside Kf“, and

4.5 supl&;&f/z“(x, Ol =Cop< +c0
with C, ; independent of R. Now we set 09 = h30%* where Q7*(x, ¢) is the sym-
bol of the formally adjoint operator to Q%(x, D).
Now we are ready to define the operators P3** and Pif. We set
. PUk =% F(=iG)Y3( —iGo), (D)QY(x, DY §fs (— iGo)- o(D),
G=
Pir = Y, F(=iGo Wi (— iGo)IT, o(DYGT 7 "(x, D)Jiu( — iGc)H';’u(D):
G .

PSR = F(—IGO)Wm(—-ICo)Q*(X, D)’u?f{q(—iGo)U;]o(D),

sk = F(— lGo)‘pM( —iGo)Qs " (x, D‘!//M( - XG())ILO(D):

where F is the function introduced in the introduction. Then we set Pg¥ = PO% 4
+ P94, P'R== Pi"s + Pi% . Clearly, when there arc no eigenvalues £,(¢) of type (by
we have PO% = Pioy = 0.

Proof of (0.8). Clearly, Q%x, &) € SY(R" x R”), the space of matrix-valued
symbols of degree zero. Since the madp S° 3 a(x, &) — a*(x, £) € §° is con-
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tinuous (see [9), a“(x, &) being the symbol of the adjoint operator to «(x, D), by
(4.3) and (4.5) we conclude that Q%"(x, ¢) € $¢(R" x R") uniformly in R » 1.
The same is true for Q9(x, ). Now (0.8) follows directly from (3.2).

Taking into account (4.1), (4.2), (4.4) together with the identity

F(=iGy) ¥2 T,.(D) = F(~iGy),

one can easily find that (0.9) holds with Ly = (F(1 —y2))(- iG,) and Ly =
= L;Q,A{ + L}’Q"A{, where

Liac = Y. (FUSHC-iGT, D or ~ Dt ~iGT-o(D),
Litse = Y, (FU30( -G o DYOT*(x, DT ~iGo)T-o(D) +

+ (FYa(=iGo)Q5 *(x, DY —iGo)IT (D).

Here Q07%x, D), j =1, 2, 0 = :{, denote the pseudodifferential operators with
symbols Q7%x, &) == (Ai(x, &) - DEF¥(x, &).
Proof of (0.10). By the spectral calculus we get

Wiz < sggi(F(l —¥IN@)i < CIM
with a constant C independent of M.
Proof of (0.11). Given f & H, we have
L, < Cilfln, 3 103! < 2RGEL- IGoIT.(D)-

{4.6)
“x(lx! > 4R)n2’(fl0) + Clix(ix! < 4R)f“H0~

Now, setting #;=1- 3¢ - 77, j=1,...,k we have
“7 ‘[’K’(_‘iG“)HT;"(D) = Yf(--iGy) — lﬁﬁ{(_iGo)H;")'(D),

Notice that if 2(&) is of type (a), the corresponding 7; and °;are identically zero,
while for 44(¢) of type (b) we have supp 5; < supp 7} < Z;, X; being the set intro-
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duced in (1.4). Hence, by assumption (1.4), Lemma 3.2 and (4.7) we deduce
Fi(—iG)IT_(D) € OPS; o(R"). Now, by Lemma 3.1 we obtain
y

(4.8 [Lkaef e, < CaR-Mifilm, + Cillx(x! < 4R o,

for any integer N > 1 with constants Cy and C, independent of R.
Next, we are going to estimate the norm of Ly ,,. Clearly,

“.9) HLHMHQ(HO) <C Y, 2HQ?'°(—\3 D)H.@(HO)

a== A, f 1,

with C, independent of R. To estimate the norms at the right-hand side of (4.9) we
shall use that

(4.10) O7¥(x, &) = e"PxP2Q%(x, &), j=1,2, 6=+,

1
where D, = —id,, D, = —id, (see [9]). Passing to new coordinates x' = R Zx,

1
& = R, by (4.10) we obtain
4.11) O%¥(x', &) = P Pe0s(x', €Y, j=1,2, 0=,

~ ~ 1

where the functions Q7 (resp. Q7*) are obtained [by replacing x and £ by R¥x’
2

and R™ 2¢', respectively, in Q9 (resp. Q%%). Let / be the Euclidean distance bet-

ween a fixed point (xg, &;) ¢ supp Q}' and supp Q~‘,’ . Then Theorem 7.6.5 in [8] implies

(4.12) 105%(xs, &)l < Cul- Y, supl|ozdf.O3(x’, &)

le+pl< s+ N x,&

for a fixed s > n + 1 and any integer N > 1.
On the other hand, by (4.3) one can easily obtain

ta)

supld%d8.0%(x’, &) < R®sup|dzdbos(x, &)i<
x\& x,&
(4.13)

< CypR T g Cap
for all multiindices o, § with C, ; independent of R. By (4.12) and (4.13) we obtain
(4.14) 107%(xg» €1 < Cyl™Y

with a new Cy independent of R.
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Now let (xq, &) €supp(l — 5‘}(.\"3 &), where the function i;‘j- is defined in
the same manner as Q~’; or Q7§ It is easy to see by the definition of /i that then
1
[ > 8,R* Hence, by (4.14),
4.15)

N

IQ” (xg. Co)i < C\'R k.
Thus we deduce by (4.15) and (4.5),

supi(l — Ajtx. INOF(x, O =

N
= sup) (1= B, ENOFH, &) < CxR™E.
Similarly, using the fact that the operators “PxPe> and ¢ ﬂ commuic, we
obtain
4.16 rang PR -
(4.16) sup C30U(L ~ ASCx, ENQTHN, O < CrapR ®

RNy

for all multindices 2, i with constants Cy , , independent of R. Now, by (3.2)
and (4.16) we deduce

(4.17) PO5%0x. DY waary < CxR ™Y, j=1,2, 6= =,

for z2ny integer N with Cy independent of R.
Now (0.11) follows from (4.8), (4.9) and (4.17).

Proof of (0.12). A first, recall that the operators P and P¥% depend on two
large parameters R, M > | and twe small ones 6y, 6, > 0. We shail show that
9, and J, can be chesen depending on A4 only so that (0.12) holds with some é > 0
which may depend on 37 but is indepedent of R and ¢. Clearly, the estimate (0.12)

is reduced to the following ones:

ip(x’ < ol -+ R))Ef(;(l’)(}’.ib.?f)('iGo)H (DYO3(x, Dy f»(n) <

(4.18) y
<Clt + BT, gk,
BCx) < 802 + RYUINFUIN— 1605 (x, _;i%(HO) <
(4.19)
wf - )'A

Suppose that 6 < 12, To prove the estimates above we shall consider two cases.
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Case 1. 6(t + R) + vt < —{;«.

Clearly, in this case it sufficies to establish (4.18) and (4.19) with terms of the
form CyR-" at the right-hand sides. The finite speed of propagation yields

(x| < 8(t + R)UD) = 1(x| < 8(t + RYUp()y(x] < 82 + R) + v,1).

This together with the identity Q%(x, D)* = Q(x, D)*y(|x] > R) lead to the fol-
lowing estimate from above of the left-hand side of (4.18):

Z(H )

@20 |x{11 < ) Rvsat—iGom,(pigtte. D > B

Now, since
V3( G o(D) = Wfe(—iGo) — Yfe( —iGo)I o(D),
by the assumption (1.4) and Lemma 3.2 we conclude that
03(x, DT o(DYFY3:)( Gy € OPSo(RY)

uniformly with respect to R. Hence, applying Lemma 3.1 leads to the desired esti-
mate for (4.20), (4.19) is proved similarly.

Case 2. 5(t + R) + vt >

w | %

In this casc we need to prove (4.18) and (4.19) with terms Cyz=" at the right-hand
. . 1 .
sides. Setting ¢’ = 5(1 + (6 + v,,,)/ (42— - 5)) we cstimate from above the left-
-hand side of (4.18) by

Ha(ixl < (8" + v, JNEYE(— iG)T, DYOUx, DY x(ix] = 28" + 0,0 |lzcar y +
(42D + lx(xl < §'DUOEYFN =G o D)Q5(x, D)*-
X(Ix| < 2((5’ + vuz)z)”!ﬁ(”n)'

We deal with the first term of (4.21) similarly to the previous case. To estimate the
sccond term, given f e Hy, we write the function

u(t, x) = UdO)EY5)(—iG)T,e(DYQ(x, D)*y (x| < 2(8" + v,)1)f(x)
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as an oscilatory integral:
. i<x~3,0yiif2 (&) 3 (e
u(t, x) =2 2n)=" Y e P (FYS0((9) -
j-1]
ROy, Oy, < 28" + v,)1)f(y)ddy.

We shall estimate the integral above by passing to the polar coordinates ¢ «: pw,
p R, w, = 1. At first, notice that there is ¢, > 0, depending on ¢', so that if
(p, w) € supp¥ipA;(w)ni(w), then aiw) > v, and 1/(Mv,) < p < Miv,. More-
over, for (w, y) in the support of the integrand we have oy, w) < d,.) and i3 <

< 209" 4+ v,)t. Hence, taking ¢’ < ;’ and 8, < t,/(80" + 8n,), for these (i, ¥)

and for xj € d't we obtain
(4.22) x —p,w) k(e > -l:' t.

Now, integrating by parts N times with respect to p and using (4.22) we get
1\'1,'00

£
sup .u(t, X)f <Cpt' ™V by .
X, &0 i1

y g2(0'~é~vm)t Wil (AL ey

- " YN0 f(p)idpdidy <

By ' tey -N'{"f' d
< Gyt JO)dy < CY't 2 fil -
PREHEEERY
Hence
B
(4.23) Pr(xl < 00l x) 'l < eyt sug”!u(t, X)) sCNt"N‘“"f.!fEE”O.
x <

Now (4.18) follows from (4.23) and (4.21) at once.

Next we turn to the proof of (4.19). Choose a function y(x) € C*(R") such that
¥ =1for x; <81, y=20for x >8t+ 1, and {3%(x)i < C, with C, indepen-
dent of ¢. Then we write the opcrator & = y(x)U(O(F¢i)(--iG,)C+(x, D)* in
the form

(4.24) (&) (x) = 2n)-" ‘:’\;)\ Se”f CrS0ar(x, p, E)f()dE dy,
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where ¢f =<{x —y, & + t4;(¢) and

4 = W FWOMOn e ‘Zéj EG; Jout
. N

The assumption (1.4) guarantees that af € C*(R"xR"x R") and with some u > 0,
[V A = n forall & esuppyi(L,(EnHE).

Therefore, for (x, y, &) esuppaf, 6, < 1/2 and &’ < p/12 we have

(4.25) [Vepfl = C(I¥l + 1)

This estimate enables us to integrate by parts with respect to & in the integral at

the right-hand side of (4.24). Indeed, setting L; ="'V 07| "XV 0}, Ve, We
obtain

(@0 = @)= % S Sei<x-y-f%e“"f“f’L;"”af)f(y) dedy
)

for any integer N. Now, taking into account (4.25) one can easily deduce

(4.26) 020501 LI < Cry g V(L + [yl

for all (x, y, £) and all multiindices o, B, y. Hence, by (3.6) and (4.26) we conclude
@.27) [ ey < Cyt™"* %

with an integer s, depending on n only. Since N is arbitrary, (4.27) implies (4.19)
in this case. The proof of (C.12) is complete.

Proof of (0.13). We would like to prove this estimale in a similar manner as
{0.12). To this end, we need the following estimates:

“28) x -y, w) — W)l >Ct, 1<j<k, and C,<p <Gy, C >0,

for x| < 0'¢, Iyl <2(8" + v )t, (p, ¥, w) € supp (oA, (W (T YW)OT ™ (y, pw);
and for each 2,(¢) of type (b),

(4.29) IV {x =y, & — () > Cyl + 1)

for 1x] < 6t, (, &) € supp FarAENRITNOQ ™0, &).



‘298 GLORGE VODEV

Taking §, 0, and §, sufficientiy small, one can easily establish (4.28) ard (£.29).
Then the same techrigue as in the proof of (0.12) is applied. The proof of (0.13) is
complete.

Partially supported by Bulgarien Ministiy of
Science and Education under Grant 521989,
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