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MINIMUM INDEX FOR SUBFACTORS AND ENTROPY

FUMIO HIAI

INTRODUCTION

Jones [12] constructed the index theory for pairs of a type 1I, factor
and a subfactor of it using the coupling constant and Umegaki’s conditional
expectation [27). Pimsner and Popa [22] developed the entropy H(M;N) of
a finite von Neumann algebra M relative to a subalgebra N of it, which
was defined by Connes and Stermer [7] for finite dimensional algebras.
When M is a type 1I, factor and N is a subfactor of it, Pimsner and Popa
exactly estimated H(M}N) in terms of Jones’ index. The general relation
between H(M |N) and Jones’ index [M: N] is given by H(M | N) <log{M: N],
and several characterizations for the equality H(M[N) = log]M : N} were
established in [22] as a consequence of the exact estimate of H(M}N).
The complete computation of the entropy in the finite "dimensional case
is also contained in [22].

On the other hand, Kosaki [16] extended Jones’ index theory to that for con-
ditional expectations between arbitrary factors based on Connes’ spatial theory
5] and Haagerup’s theory on operator valued weights [8]. For von Neumann alge-
bras M 2 N, let &(M, N) denote the set of all faithful normal conditional expec-
tations from M onto N. When M = N are factors, Kosaki’s index of E € §(M, N)
is defined by Index £ = E-(1) where £~ is the operator valued weight from N’
to M’ determined by the equation of spatial derivatives d(p-E)/dy = de/d(y-£~%)
with faithful normal semifinite weights ¢ on N and ¥ on M'. In [16], the analysis
analogous to that in [12] was done and, among other things, the following restric-
tion on index values was obtained: Index E € {4 cos¥(n/n): n > 3} y[4, ool

In [9], given a pair of factors M 2 N, we uniquely characterized E, € &(M, N)
whose index is the minimum of {Index £: £ € 6(M, N)}. In particular, when
M = N are type II; factors, it follows from this characterization that Umegaki’s
conditional expectation M — N has the minimum index if and only if the equality
H(M | N) = log [M: N] holds.
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The first aim of this paper is to discuss general properties of the minimum
index for a pair of a factor and one of its subfactors. The sccond aim is to intro-
duce the entropy of Pimsner and Popa's type for arbitrary von Neumann uloebras
and to establish the relation between the entropy and the minimum index.

in Section 1 of this paper, we collect several preliminary results concerning
the correspondence 4 > £ for £ € (M, N). These may be of interest by them-
selves. In Section 2, ve present several properties of the minimum index [37: 11, =
= min{index £: E e ¢ (M. N )) (=cc if &(37, \y=0) for o pair of fuctors
A2 AL Inoparticuler, we obtain the formules of the minimum indices for tensor
procucts and for cressed products. Some similar results have been independeniy
obtained by Longo [I87 whose methed is different from ours.

In Section 3, taking account of Pimsner and Popa's estimate of FJ{MW N),
we introcuce the entropy K (M ) of a von Neumann algebra A/ relative to & von
Ncamann subalgebra Vof it and a faithful normal state © on M, wherc E ¢ (M. N)
with respect to ¢ exists. More precisely, A(,(M N) is defined as the minus sign of
the Jra.umn entropy of ¢« N'nM and @ (£~ N nA). The relative entropy
of normal positive furctionals was first studied by Umegaki [28] on semilinite von
Neumann algebras and was extended by ArakiTi}, [2] to the case on gereral von Neu-

mann ajgebras. Section 3 contains some basic properties of the entropy A (M ).

In Scction 4, we ostablish decomposition theorems for the entropy I3 ),
which reduce the computalion of KO(}M N) to the case of factors. Similar reduc-
tion theorems for Pimsner and Popa’s entropy were obtained by Kawakami and
Yoshida [13], [14]. Furthermore we present the estimate of K (A N) mn terms of
Kosaki's index, which is completely analogous to that of (A N) for type 1,
factors [22]. 1t follows as a corollary that our entropy coihcides with Pimsner and
Popi’s one when M is a type L, factor and ¢ is the trace. When K (37 N) < co. the
cond tions of atomicness of Z(M) (= M’ 1 M), Z(N)iand N1 A are shown to
be ecuivalent.

In Section S, for von Neumann algebras M 2 L = N, we cstablish the ine-
quality ]\Q(:d Ny < K M L)+ KL N) in full generality together with the
examication of the equeality. Also we show that KM &)= K (M L) holds unde
some assumptions. Bu: another fundamental inequality KAM N} = KL N)
remains open ' ‘

E~mahy. in Section 6, we establish the relationship between the minimum index
and the entropy for a puir of factors 3 2 N with [M: N]y < ce. For £ ¢ 4{M, N),
we use the notation K (M V) mstezﬂd of K, (M N) because of the indepen-
dence of ¢ with ¢ £ == . Then we show that KE(M N) < logfif: N}, for any
E ¢ 6(a. N), and morcover that £ has the minimum index if and only if the
equality K (3 N} = log[17: N], holds. The szt of all values K (M N, E o 7137, N,
15 derermined. Also the cheinrale {3 N, = [a: L}, [L: N], for factors Ml -2 L. 52 N
is characterized by means of the entropy.
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1. AUXILIARY RESULTS

In this paper, von Neumann algebras are always assumed to be o-finite. Let
M be a von Neumann algebra on a Hilbert space # and N be a von Neumann sub-
algebra of M. Let P(M, N) denote the set of all faithful normal semifinite operator

valued weights from M, to N+, where N, is the extended positive part of N
{see [8]). Let P(M) = P(M, C), the set of all faithful normal semifinite weights
on M. Also we denote by &(M, N) the set of all faithful normal conditional expec-
tations from M onto N, and let &(M) = &(M, C), the set of all faithful normal sta-
tes on M. The bijective correspondence T € P(M, N)—> T-1 € P(N’, M) is uni-
quely determined by the following equation of spatial derivatives:

d(poT . d(/)
dlﬁ dyoT 2

with any ¢ € P(N) and € P(M’) (see [8, Theorem 6.13] and [24, 12.11]).

If £ € §(M, N), then E-Y(1) € Z(M)] where Z(M) is the center of M. When
M = N is a pair of a facior and one of its subfactors, Kosaki’s index [16] of E € §(M, N)
is defined by Index £ = E-'(1). Note {16, Theorem 2.2] that Index E is deter-
mined independently {of the choice of &, and for any isomorphism « of M,
Index(oo Eox ) of aoEon =t € &(a(M), a(N)) is equal to Index E.

In this section, we collect several auxiliary results concerning the correspon-
dence £ € &(M, N)— E-* e P(N', M’), which will be used in later sections.

Given 7 € P(M, N), let (N’ n M)y denote the centralizer of T, i.e.

(NaM)r ={xeNnM:el(x) = x, t R},

where o = 67| N’ n M for any ¢ € P(N) (sec [8]). In particular, the centralizer

of o ¢ P(M) is denoted by M,. It is known [3, Corollaire 3.10] that if E € §(M, N)
and x € M, then x € (N' n M), if and only if E(xy) = E(yx) for all y € M. Hence
we casily see that Z(M) < (N'n M)y and Z(N) < (N' n M);.

For a projection e in M or M’, let z;(e) denote the central support in Z(M)
of e.

Lemma 1.1, Let ¢ € P(M) and € P(M'). If a is a stricily positive self-
adjoint operator affiliated with M, , then

1/2 172
_da'Peall -y de Ly de

oy da-Veya-12’

where a**pa'’? = @(aV/?- al'?).

7 — 2244
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Proof. For the case a > 1, taking a sequence {a,} of invertible elements in
(M), with a, 1 a, we have a)*pa)® © al?pa'/* by [19, Proposition 4.2], so that

12,5 71/2 1/2.51/2
(11/2 fj___(aa_ 01/2 = danl (:Q(I,z‘f ~ daj‘(pa /2
n

[z} I
dy diy dy

by [5, Proposition 8§ and Corollary 15]. On the other hand, because [5, Theorem 9

mplies
do V¢ 7 d —it
el X (__(p =x, X€EM,,
dyr dv

we have a*(do/dy)all* + a¥/(dejdy)a’2 Hence da'/2pa'/?/dy = a¥/*(de/di)a’2. For
the general case, using the spectral decomposition of a, we can take commuting
positive selfadjoint operators b, ¢ > 1 affiliated with M, such that a = be~. Since
b and c are affiliated with the centralizer of ¢~1/2pc-1/2, (see [19, Theorem 4.6]), the
above case shows
_da'patl? deTPpc P L A0 _ e depc R

= 2
dy dy Ty dy

2

Hence the first equality is obtained. Next we see by [5, Theorem 9] that a is afili-
ated with A7, as well. Therefore, the second equality follows from the first together
with [5, Theorem 9] by interchanging ¢ and . %

PROPOSITION 1.2. Let T € P(M, N). If ais a strictly positive selfadjoint operator
affiliated with (N’ 0 M)y, thenlaV/*Ta'/? € P(M, N) and (a’/*Ta'/?) -1 = q-32T~1q~ 12
where a'2TaY? = T(a¥2-a'2).

Proof. Since T has a unique normal extension to a map M, - N, , it is
easy to check that ¢'/2TaV* € P(M, N). For ¢ € P(N) and € P(M°), because
(N'n M)y & My and (V0N M)y = (N' 0 M), € (V') 11 by {8, Theorem 6.13],
we have by Lemma 1.1

a

dy dy dyeT-1

1 2
d(poallzTa /2 N dat/ (ipiT)all2 _ g do 1

do do

b
a“/""(yoT 1)0—1/z cha—llzT 1a 1/2

as desired. %
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LEMMA 1.3. Let ¢ € P(M), ¢ € P(M"), and e be a nonzero projection in M,.
Define ¢, € P(M ) by ¢, = ¢ ] M, and Y€ P(M,) by y(xe) = Y(xzy(e)),x € M, .
Then

do. _ do dye _ 4y
dyse h

dl// eX - d(pe d‘P e

Proof. Note that y¢ js well defined because x € M’z (e) > xe € M'e is an
isomorphism. By definition of the spatial derivative, it is easy to see that dg /dy,=
=(de/dy) 1]).%" for every central projection p in M. So we may assume z,,(¢) = 1.
Then the lemma can be proved in such a way as mentioned in [24, p. 99].

Let E € (M, N) and e be a nonzero projection in (N’ n M);. Then E(e) e
is well defined as a positive selfadjoint operator affiliated with (N’ n M);, because:
E(e) € Z(N) and the support of E(e) contains e. So define

E (x) = E(x)E(e}) e, xeM,.
Since E (¢) = e, we have E, € §(M,_, N,).
The next proposition extending [16, Proposition 4.2] will be very useful.
ProposITION 1.4. If E € §(M, N) and e is a nonzero projection in (N' N M)g,.
then E;* € P(N], M]) is given by
E;'(x) = EME(@©x)e, x €(N)), .
Moreover if E is the conditional expectation with respect to ¢ € (M), then E,
is that with respect to ¢ }Me.

Proof. Let ¢ € P(N) and yy € P(M’). Define ¢ € P(N,) by @(xe) = ¢(xzy(e)),
x €N,, and y° e P(M;) by vyéxe) = Y(xz,(e), x e M, . Also let (poE), =
= @poE|M, and (YoE™1), = YyoE-*|N,. Then (poE), € P(M,) and (yoEY), €
€ P(N;) because e € M,.g and e € My.z—1 by [8, Theorem 6.13]. Since

PU(E(x)) = @(E(x)E(e) ~'zple)) =

= @(E(E(e)~Y2xE(e)~1?), xe(M,),,
we get

0*oE, = (E(e)-2e)(qoE)(E(e)-1).

Now define T'(x) = E-*(E(e)x)e for x e N,. Then T € &(N;, M]) is easily seen.
Since

WoEN(x) = Y(E~H(X)zp(e)) =

= YAE(x)e), xEW)s,
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we get

(E()e)=E ) (E(e) %) =
w2 (E(@)V2e)h (£ eI Ele)e) = Y°<T.

Furthermore, we have by Lemma 1.3

d@E), _ deoE _ do _ bt
dye Y ler  GYET |y deETY),

Because E(¢) € Z(V) o (N n M), it follows that E(e)e belongs to the centrali-
zers of both (p-FE), and (¥-£-1),. Therefore Lemma 1.i shows

L2 o (pley iy ML (o) 12y =
diye dir©
B S (g ey = SO
‘ d(y=£Y), qyeT

so that E, % == 7. The last assertion is immediatz.

ProrosiTioN 1.5, Let E € 65(M, N).
(1) If e is a nonzero projection in N with z,{(¢) = 1 and if i’e = E M,, then
Z?e eé(M,, N,) and ﬁ}l & P(N'e, M'e) is given by
E;Yxe) = E-Y{(xzy(e))e. x €& N'..
() If e is a nonzero projection in M’ with z,(e) = 1 aad if Ee{xe) = E(x)e
for x & M, then E° ¢ &{Me, Ne) and (EY~* e P(N], M) is E=* N.

-~

Proef. (1) Clearly E, e (M., N.}). We can take ¢ € P(N) with ¢ € N,,. Because
o0F N = 6P, we get e € M,.x as well. Also o, = ¢ (N.eP(N,) and 9oL, =
reo LM, . For iy @ PIM), define ¢° € P(A'¢) by ¢¥(xe) = ¥i{(x), x ¢ ', and
{a}ffrﬁ”"'l)" € P(N'e) by (i(eE)(xe) = o E-Yxz,{e)), x € N,. Morcover, defining
Tixe) == E-Yxzy(e)e for x e N, we easily check that T e P(N'e, M'e) and
s E 1) e heT. Hence Lemma 1.3 shows

dpeE, _ dpeE|  _ dg _ _do,
dge af ey QYeETH dyeor

so that E;t= T.
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(2) It is easily scen that sz € &(Me, Ne) and E-* | N, € P(N,, M/). Note
that zy(e) = 1 implics zy(e) = 1. For ¢ € P(N), define ¢° € P(Ne) by ¢°(xe) =
= @(x), X € N, , and (@-£)* CP(Me) bty (poE)(xe) = @oE(x), x € M. . Since

@ (E(x)) = @(E(x)) = (poE)(xe), xeM,,

we have @oE¢=(poE)". Next take iy € P(M') with ¢ € (M), . Because GT:E—I '] M =
= g? by [8, Theorem 4.7], we also get ¢ € chs"' Hence Lemma 1.3 shows

dgeoEe dopoFE do do
ES) - — = .- . - e
dy, W e dYeEt [ dYo(EH|N)
since YoE~* ! N, = ,o(E~* | N;). Therefore (E9)~' = E~1| N,. %

LEMMA 1.6. Let M; 2 N, be von Neumann algebras on a Hilbert space 3
Jor i =1, 2. If ¢, € P(M,) and ; € P(M7), then

d@ ® o) _ dopy o do.
diy, @ W) dyy  di,

Proof. In the following proof, we use the usual notations in the spatial theory
(see [5, 24]). Let o = #, @ Hy, ¢ = ¢, ® ¢, and Y = Y, @ ¥,. Let g (resp. gq;)
be the positive quadratic form on £ (resp. 5#;) corresponding to ¢ and ¥ (resp. ¢:
and ). Define 4 = (do,/d,) ® (d,/dy,) and g, = |42 for &eD(AY?),
Since A = (do,/dy))V? ® (dp,/dy,)Y? and D(g,) = D(#;, ;) n D{(de,/dy)V?)
is a core of (do,/dy)V2, it follows that the algebraic tensor product
D(g,) © D(q,) is a core of AY2 If &, € D (#;, ), then & ® &, € DA, ) and

R¥(¢,, ® &) = RY(E) ® RY(&,). Hence, for every ¢ = Y &1 ® &p; in D(g) O
i1
© D(g,), we have

1) = W o(RE; ® LRV ® &) =

ik 1

PR MEDRE I PA RV UG YRV HEgp)*) =

() () e () e -0

I
NS

jr

- 5(a) e
Jk -1 dl/ll
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Therefore D(q) = D(4Y?) and G(&) = ¢ ,(£) for all ¢ € D(4Y?), where 4 is the closure
of g. This shows that de/dy < A. Interchanging the roles of ¢ (resp. ;) and ¥
(resp. ¥)), we also get dy/de <(dy,/dp,) & (d¥./de,)=A "1 Thus do'dy—-4, £3

ProrpositioN 1.7. If E, €6 (M;, N for i=12, then (E; ® E,) * =
—E @ E;L
Proof. For ¢, € P(N)Yand ¥; € P(M]), by Lemma 1.6 we have

d(e @ ¢g):(F, @E‘z} _ d(((f’r‘_El)V@’(.‘;"z:Eﬂ))‘ - _d_‘f’lf_[';k__ ® _ﬂ‘f’ﬂoEﬂ

d(¥n @ ¥s) d(¥, @ ¥o) dy, diry
des. de, d(o, ® @)
= @ S
dyn, E7' dUpeEst d(Y: @ Yo)(ETT ® ETY
as desired. 3

When M; 2 N, i = 1, 2, are pairs of a factor and one of its subfactors,
the above proposition shows that

Index(E, G E,) = (Index E,)(IndexE,), E;e6(M;,N).

Lemma 1.8, Let ¢ € P(M) and ¢y € P(N'). If cp N and W M’ are semifinite,
then
de < 'd(go )

Proof. Let ¥, =y ' Then S#, < #, and D(#, W) = D(#, ). For

y

every & & D(#, ), since RVy(F) = RYE) H . we have

PRYHRME) < (@ NURVUODRY(E)?).

Hence D(q;) = D(q) and ¢,() < ¢(&) for all & € B(q), where ¢, (resp. g¢) is the clo-
sure of positive quadratic form corresponding to ¢ and ¥, (resp. ¢ N and ¥). This
shows the desired inequaltiy. 73

PROPOSITION 1.9. Suppose N’ is a-finite (this is the case when S is separablc).
If B e &(M, N) and E-*(1) is a positive selfadjoint operator, then:

(1) E-Yx) 2 x for all x e N,

QY E(X) = E-Y (1)~ for ol xe M ..

Proof. (1) If ¢ € 6(N) und ¢ € §(N'), then we have by Lemma 1.8

do=k < d{o-E N) do

R A - Py

A my S dy v
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implying (|//[EM’)°E‘1 =y by [5, Proposition 8]. By assumptions, we can choose
Yo € E(N') such that Yo(E~Y(1)) < co. For every x € N, and w e(N');, we
get

(@ + n7Y)Ex) 2 (0 +n7)x), n21,
50 that w(£-1(x)) > w(x). This shows E~1(x) > x.

(2) By (1), E~*(1) > 1 and so E~1(1) ' € Z(M). For ¢ €6(M) and y e (M),
since

VETX) = PIREH (D) =
= Y(E-()'PXE-W(1)MY), xeMl,
we have by Lemmas 1.8 and 1.1

dolv) o de do
dYeE-t ~ dWeE-1| M) dE-W1)VRYE-ULN

_ JET) T ReE DY

dy ’
mplying (¢ ' N)oE > ET(1)"V23E-}(1)-Y% Eence, if x € M,, then ¢(E(x)) >
2 e(E-Y1)"1x) for all ¢ € §(M), so that E(x) > E-1(1) x. %

ProvposiTiON 1.10. If M = L. 2 N are factors, then Index(E ]L) < Index E
Jor every E € &(M, N).

Proof. Suppose Index E < co. Taking ¢ € #(N) and ¥ € (L") under the
standard representation of M, we have by Lemma 1.8

dpoE  _ d(poE | L) _ d(po(ElL) .
d(y | M) dy dy

Hence (¥ | M')sE~' > yo(E|L)~", so that IndexE > Index(E|L). %

2. PROPERTIES OF MINIMUN INDEX

Throughout this section, let M 2 N be a pair of a factor and one of its sub-
factors. As noted in [9], if Index E < co for some E € &(M, N), then N' nM is
nite dimcnsional and Index F < co for all F € &(M, N). Concerning minimizing
Index E for E € (M, N), the next theorem was established in [9].
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Tueorem 2.1, Suppose IndexE < oo for some E € &(M, N).
(1) There exists a unigue E, € §(M, N) such that

Index £, = min{Index £: I € £(M, N)}.

{2) The following conditions for E € &(M, N) are eguivalent :
(i) £ = E,,
(i) £ N'NMoand E7 N'OM are traces and

E- N'aM = (Index E)E' N' 0 M;

(iii) E“Y'N' "M = (Index E)E N'r M;
(iv) £, N2 M is a trace and for minimal central projections ey, ..., e,
in N' M with 2 e; =: I,

r( VIndexEvE e I<ign
He) = (—laae—xé I SESE

The characterization by condition (iv) is readily seen from the proof in [9].
while it is not explicitly stated there. This characterizaion has been also given by
Longo [18]. If N' n M £ C in Theorem 2.1, then Index E of E € &(M, N) admits
all the values in [Index F, , oo) (see [9]).

Now let us define the minimum index {[M: N], for a pair M = N as follows:

DEerINITION 2.2. [M: N], = min{Index E: E € (M, N)} if IndexE < co for
some E € (M, N) and [M: N], = co otherwise {i.e. 6(M, N) = © or Index £ = ¢o
for all E € §(M, N)).

In the sequel of this section, we present general properties of the minimum
index.

ProposiTiON 2.3. [M:N], =[N M.

Proof. Suppose [M: N}, = Index E, < oo with E, € 6(M, N), and let Ej:=
= (Index E,)"1E;2. Then Ejeé&(N', M') and E;' = (IndexEy)E,. Hence
Theorem 2.1(2) shows

E;VIN 0 M = E5VN' oM = (Index E)E N' n M,

so that [N': M), = Index E; == Index E,. The desired equality follows from sym-
metry between A 2 Nand N' = M. e

ProPOSITION 2.4. If M and N are factors with M 2 M =2 N2 N, ther
[M:N), < [M:N],.
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Proof. 1t suffices to show [L: N], < [M: N], and [AM: L], < [M: N], for any
factor L with M = L o N. Proposition 1.10 implies the first inequailty. The second
follows from the first and Proposition 2.3.

For factors M = L 2 N, it is clear that [M: N], < [M: L},[L: N],. The fol-
lowing two propositions are concerned with the case when the equality holds.

PROPOSITION 2.5. If L is a factor with M =2 L 2 Nand[M: N}, = Index Ej<co
where E, € §(M, N), then the following conditions are equivalent :

(i) (M: Ny =1[M: L], [L: N]y;

(ii) there exists F € §(M, L) such that EqoF = E,;

oE

(1) o1 (L) =L, t €R, for ¢ € §(N) (independently of the choice of ¢).

Proof. (i)=>(ii). By Proposition 2.4, [M: L],=Index F<oo with F e (M, L)
and [L:N]; =1IndexG < oo with G edé&(L, N). Since GoFedé(M,N) and
Index (GoF) = (Index F)(Index G) = [M: N],, we get GoF = E, by Theorem 2.1(1).
Hence G = E, | L and 50 EgoF = E,.

(ii) = (i). Letting G = E, | L, we have

[M: N]y = Index(GoF) = (Index F){IndexG) > [M: L), [L: N},.

(ii) <> (iii) follows immediately from [25]. %

PrOPOSITION 2.6. If L is a factor with M 2 L 2 N and NNnM = (N'nL)v
v(L'n M), then [M:N], = [M: L]}[L: N],.

Proof. By Proposition 2.4, we may assume that [M: L}, = Index F < co and
[L: N)y == IndexG < oo where Fed&(M,L) and Ge&(L,N). If xeL'nM
and y e N'nL, then we have by Theorem 2.1 (2).
(GoF)Xxy) = F-Yx)G(y) = (Index F)(Index G)GoF(xy).
Hence
(GoF)='| N’ n M = (Index F)(Index G)G-F | N' n M,

implying the desired equality.

The next proposition has been independently obtained in {18].

ProOPOSITION 3.7.1f M; 2 N;, i = 1, 2, are pairs of a factors and one of its
subfactors, then

[My ® My: Ny ® Nyly = [M,: Ny1o[M,: Ny, .

Proof. Because the assumption of Proposition 2.6 is satisfied for M, ® M, 2.
2N, ® M, 2 Ny ® N,, Proposition 2.6 implies

My @ My: Ny ® Nply = [My, ® My: Ny @ Mulo[Ny @ My: Ny ® Nyl
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It is known [3, Lemme 2.3] that each £ € &(M, ® M,, N, @ M,) is written as
I = E, ®idy, with E; € 6(M,. N,). Hence [M, ® M,: N, ® M), — [M,:N],
and analogously [N, @ M, N, ® Ny}, = [M,: N, as desired. 7

In the next thcorem, we consider the minimum index for crossed products.
Let G be a locally compact abelian group and « be an action of G on A7 such that
a N)y= Nforall g € G. Let A7, G and V3¢, G denote the crossed products of W
by 2 and of A by 2 A, respectively. Then A/, G 2 Nx,G canonically. Also
fet M and N*® be the fixed point subalgebras of z and o« A, respectively. Here we
suppose the second axiom of countability for G. which guarantees that the von
Neumann algebras appearing in the following are o-finite.

THeoreM 2.8, Let G and % be as above.

(M M¥,G and N2, G are factors, then [M>,G: N3, G, ~ [M:N).

(2) Suppose « N is dominant. If M® and N® are fuctors (equivalently so are
AL Gand M, G), ther [M*: N?), = [M: N],.

Piroof. (1) Lettinz 37 = 332, G and N = N33, G, we have
M = (M @ BUAG)CA®), N = (N ® B(LYG))reMw),

where p (resp. ) is the right (resp. left) regular representation of G on L*G).
Suppose [M: N}, = Index E < co with £ cé&(M, N). For each ge(, since
a £t € (M, N) and Index(u,cE-a3?) = IndexE, we get a0t E
by Theorem 2.1 (1). Hence E commutes with %, so that £ ® id commutes with
a4 ® Ad(p) where idnidB(L»,(G)). Thus E€46(M, N) can be defined by E~E®

® id M. Then E(n LN = 7 (E(x)) for all x € M. By [29, 2.5.3] based 6n [16,
Corollary 3.4], we can choose a finite basis {a;,...,a ,,} in M for E, ic.

X a, F(a¥x) = x for all - € M. Because
‘» 7 z(a NE(7 (a3 )m ()1 ® A(g)) =

s, (}i asE(”i’::-\‘))('ﬂ ® A(g) =
i

= 7,()(l ® ig)), xei geq,
it follows that {z(a,), ..., 7,(a,)} is a basis for E. Hence we obtain (see [4], [29])

Index 7 = x (z a.af )— Index E,

implying []Tl: :\”]@ < [M:N),.
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Next let the action & of Gon M be the dual action of o. Then & | ¥ is the
dual co-action of a' N LettmgM M>< G and N N>< G, we have

M~ M® BILXG), N

114

N ® B(LG)).

By the above argument applied to A = N and @ we obtain [M: N], <
< [1\2’: ]V]o. Furthermore

[3: N, = [M ® B(LXG)): N ® B(LHG)]y = [M: N],

by Proposition 2.7. Thus [1\7:17]0 =[M: Nl,.
(2) Since a| N is dominant, we see by [24, Proposition 20.12] that so
is o and

Mx,G ~ M*® B(L¥G)), NX,G =~ N*® B(L¥G)).

Hence the desired equality follows from M. @

3. DEFINITION OF ENTROPY

Let M be afinite von Neumann algebra with a faithful normal trace 7, (1) = 1,
and N be a von Neumann subalgebra of M. The entropy H(M l N) of M relative to
N developed by Pimsner and Popa [22] is defined as follows:

(*) H(M {N) = S(UF)’ Z {T(’?EN(xi)) - T('Ixi)},

where (1) = --tlogt on [0, o0), Ey is the conditional expectation M — N with
respect to 7 [27], and the supremum is taken over all finite families (xy,..., x,)
of x; € M, with ¥ x;=1. This entropy was previously used by Connes and Stormer
[7] in the case of M being finite dimensional. When A/ is a type II, factor and N is
a subfactor of it, Pimsner and Popa [22, Theorem 4.4] exactly estimated H(M \ N)
in terms of Jones’ index as follows: If N’ n M has a nonatomic part, then H(M]N)—
= oo. If N'n M is atomic and {f,} is a set of atoms in N' N M with Y= 1,
then

(++) H(M | N) = Z «(flog __V_f.__
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As a consequence of this cstimate, they obtained scveral characterizations for the
equality JI(M - N) = log[M: N]. Here H(M'N) < logiM: N] holds in general.
As stated in [9], for a pair M2N, H(M ¥) = log [M: N] holds if and only if
Ey has the minimum index, that is, Jones’ index [M: N] is equal to the minimum
index [M: N],.

Now, in particular, assume [M: N] < co and choose minimal projections
Jisooos fuin N'o M with Y, f, = 1. Then, since

(M2 Np = Index(Ey)y = t(f)ENHR)
by {16, Proposition 4.2], equation (x=x) is written as

Hence, in this case, ~-/I{(M N) is nothing but the relative entropy of (z(f;)... ..
«(f,) and (EZMA), - . RS-

From now on, let M be a von Neumann algebra with a fixed ¢ € (M), and
N be a von Neumann subalgebra of M such that £ € 6(M, N) with respect to ¢
exists (1.c. a9(N) = N, t ¢ R, [25]). Taking account of the above remarks, we intro-
duce the entropy K (M N) of M relative to ¢ and N as follows:

DEFINITION 3.1. Let @ = N'nAM and &= ¢@-(E71 V' nM). Here &
is a faithful normal weight on N’ n M thanks to E-Y(N' AM))SZ)
but not necessarily bounded (possibly not semifinitc). So we define the relative
entropy S(®, w) of w and @ by

S(@, w) = inf{S(w', w): 0 €(N'AM);, o <o}

with Araki’s relative entropy S(w’, w) [1], [2]). (Note that the notation S (e, ')
is sometimes used instead of S(w’, w).) Define l\’",(M: V) = - S(0, w).

Note [8, Proposition 2.3 and Lemma 2.6] that @ is semifinite if and only if
SO 1$ E‘l;N’ nM. Also E-' N'nM is semifinitc whenever so is T:N’ s M
for some T € P(N', M') (see [8, Theorem 6.6]). Moreover, given a von Neumann
subalgebra o7 of N' n M, we denote by S (w, w) the relative entropy of o &
and @& ..o/ in the above sensc.

Although Et depends on the representing Hilbert space # for M, we have
the following:

PROPOSITION 3.2. K (M V) is determined independently of the choice of # .
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Proof. Let us show that K,(M|N) = K_, 1 (2(M) a(N)) for any isomorphism
% of M. To do this, it suffices to prove

(oEoa =) 72 'a(N' n M) = aoE Y ™! o(N' n M).
In fact, if the above holds, then

K(MIN) = —S(@, w) = —S(@a~", woat) =

= K, (M) | (N),

where w and @ are as in Dezfinition 3.1. We may separately consider an amplifica-
tion, an induction and a spatial isomorphism. First let o be an amplification,
ie. i xeEM>x®1eM®1 where 1 is the identity operator on a Hilbert
space . Then aeEoa~! = E® idc, so that (xoEox1)~! = E-!® idp(y, by
Proposition 1.7. Hence

(@oEa) (x @ 1) = E-Yx) ® 1 = (2-E-Yox~Y)(x ® 1)

for every x e (N' n M), . Next let @ be an induction, i.e. «:x € M > xe € Me
where e is a projection in M’ with z,,(e) = zy(e) = 1. Since (xoEox~1)(xe) = E(x)e
for x € M, we get (aoEox=")~' = E~'| N by Proposition 1.5 (2), so that

(@eEon~) Y xe) = E-Yxe) = (@£ Toxt 1) (xe)

for every x e (N' n M), . Finally, when = is a spatial isomorphism, it is easy to
check (oFoa 1)~ = gofi~lox -1,

In the sequel of this section, we establish some basic properties of the cntropy

I(’-,’,(M: N). The next theorem gives a convenient expression for the computation
of K,(M|N).

Turorem 3.3. (1) If £ ! N'n M is not semifinite, then K (M [ N) = oco.

) If E? [ N’ 0 M is semifinite, then there exists a unique positive selfad-
Joint operator ki affiliated with (N’ 0 M), such that & = W2hY:, In this case,
h>1 (ie. @3> w) and

K, (M |N) = o(logh).
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Proof. (2) Suppose E-1 ,N'n M is semifinite. By virtue of [8, Theorems 6.6
and 6.13], we have

£t
o? = of = g2, —-a_,, teR.

Hence the unique existence of 4 stated follows from [19, Theorem 5.12]. Now let ¢
be the spectral projection of /i corresponding to (0,1). Suppose ¢ # 0 and take
E,e6(M,,N,). Then

@le) = w(E~Ye)) > w(E~YE(e)e)e) = w(E;Ye))

by Proposition 1.4. Because [16, Lemma 3.1] holds without the assumption of fac-
torness, we get E, () >» ¢ and hence @(e) > w(e). This is a contradiction since

co

wle) == w(he) < w(e). Therefore » > 1. Let h = S/’.dc,-. be the spectral decomposi-
1

tion of 4, and 7 be the abelian von Neumann subalgebra of N’ n M generated by

4. For each o’ € (N’ n M),; with w’ < ®, using the monotonicity of relative entropy

(see [15], [26]) and the expression of relative entropy in the abelian case (see [11]).

we have

(.L)(C’;) d ( )

S(w’, w) 2 Sy, ) = Slo
dw'(e;)

> Slog dor(e,) -dwfe;) = Slog/’.‘ldw(e,l) = —w(logh).
CO C’

n

Furthermore, letting w, = A wh}/® with A, = S/ﬁde,1 +n(l —~e) for n > 1, we

1
get w, €(N' nM);: and v, < @. Because the abelian von Neumann subalgebra
o, (S(N'n M),) generated by 4, is sufficient for {o, ®,} in the sense of [10), we
have by [10, Theorem 4.1] (see also [21, Theoerm 4})

(b ) = S, (@,,0) = ~o(logh,)
as the above computation. Since w(logh,) — w(logh) as n — co, we obtain

K, (M| N) = o(logh) = ¢(logh).
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(1) When & is not semifinite, there is a projection e in N’ n M with ¢ # 1
such that w is semifinite on (N’ n M), and @(x) = oo for every nonzero positive
element x-in (N' n M),_.. Here e € (N' n M), is readily verified because @eof=wm,
t €R. Note N;n M, =(N'0M),, and let E e6M,, N), w, = ¢ |(N' nM),
and @, = @o(£;* | (N' n M),). Then Proposition 1.4 shows @, < & |(N' n M),
so that @, is semifinite. Hence, applying (2) proved above to E,, we have
©, € @,, 50 that ® < @ on (N' N M),. Now let o, = ewe + n(l — )w(l — ¢)
for n » 1. Then.

w,=0+n-1D)1 -euw(l ~¢) <o
thanks to e € (N’ 0 M),, . Therefore, using [2, Theorem 3.6}, we obtain
(TR S(@,0) < S(e,,0) = S(,, ene) + S(w,,(1 — ol ~ ) <
< S(r(l — w(l - €), (1 — )l — ) = -w(l — e)logn.
This implies S(@,w) = —oco and so K, (M|N) = co. i

COROLLARY 3.4. K (M|N)> 0, and K(M|N) =0 if and only if M = N.

Proof. Theorem 3.3 implies K, (M |N) > 0. Suppose K, (M |N) = 0. Then
h =1 in Theorem 3.2 (2), so that @(E-1(1)) = 1. Let ey be the projection in N’
defined in [16). Then @(E~%(ey)) = 1 by [16, Lemma 3.1]. Therefore ey =1,
implying M = N. The converse is obvious. %

ProrosiTiON 3.5. If' ey, ..., e, are projections in N'nM with ¥, e; = 1, then
n E-Y(e.
K,J,(M] N) <Y, ole)log PEHe)) < logp(E—(1))
i1 ple)
with convention logoo = oco.

Proof. Let o be the subalgebra of N’ 0 M generated by e,,..
o e(N' N M), with @ < &, we have

.»e,. For each

S(w', w) > S (0, w) = Za)(e log — ((e)) >

- o,

¢ i

showing the first inequality, The second is immediate from the concavity of logt.
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PROPUSITICN 3.6. For i =1, 2, let M; be a von Newmann algebra with ¢, ¢
€ &(M;), and N; be a von Neumann subalgebra of M, such that E; ¢ &(M;, N)
with respect to ¢ exists. If E7Y NinM,;, i =1, 2, are semifinite, then

Koep(My @ My Ny ® Ny) = K, (My Ny + Ko (My Ny,

Proof. Let M~ M\ @ Mg, N=N,®N,, 0 = ¢, @y, and E == E, & E,.
Note that E is the corditional expectation M -» N with respect to ¢o. Morcover

N'nM = (N, M) ® (N0 M),

(N MY, 2 (N0 Mg, ® (Vi Mo,

since afe:af‘i@af’ﬂ, t = R. As in Definition 3.1, we define @; and @, corresponding
to w; and E; for i = 1, 2, as well as w and @. From the semifiniteness of £, ¥/ 7
N M, using Proposition 1.7, we sce that £71, N’ n M is also semifinite and is the
tensor product of E,! V/ndf, and £;1 NinM,. Therefore & = @, & 0s.
Let /1; be the positive seifadjoint operator affiliated with (V] n A7;)x, such that
@; = 0w . Because iy @ hy is affiliated with (V' 0 M), and & = (b, & i)V
co{f, ® ho)t Theorem 3.3 (2) implies

KM V= odog(h @ hy)) = @ (login) + gy(logh,) =

126
(]

e Ko (A W) = K (My Ny

4. DECOMPOSITION THHORDMS FOR ENTROPY

In this section, lot A7 2 N and ¢ e £(47) be given as in Section 3 so that

E e S(M, N) with respect to ¢ exists. Let w = ¢ N nMand @ = @=(E- N' 0 Al
We cstablish some decomposition theorems for the cniropy K, (A N). Simular
resulis for Pimsner and Popa’s entropy (=) were given by Kawakami and Yoshida
{14]. Furtheemore we estimate K (34 i ), as equation (=) in Szction 3, in terms of
Kosaki's index. '

First notc that if 7, is an atomic von Neumann algebra and o < (L), then
L, is atomic. In fact, because an atomic L is a direct sum of type I factors, ic suffices
to show the case T, = B In this case, lot ¢ = do/dtr, a trace class operator,

where tris the usual tracz on B447). Then, since L, coincides with {xeB(Jf Yiaixa e
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= x, t € R}, the atomicness of L,, is easily scen. Also L,, is clearly finite. Thus we
know that (N’ n M), is finite and atomic whenever N’ n M is atomic.

TueorREM 4.1. Suppose Z(M) is afomic.
(1) If {p;} is the set of all atoms in Z(M), then

KM |N) =Y, oEP)) + Y, o(p) K, (Mp; | Np)),

i

where @, = @(p)~¢ ' Mp;. In particular if N is a factor, then @(nE(p)) =
= go(p,) in the above.

(2) If E=* | N' 0 M is semifinite ( particularly if K (M | N) < oo), then N' n M
is atomic and (N' N M), is finite atomic.

Proof. (1) For each i, let E; = E, € §(Mp;, Np), o; = ¢; '(N' 0 M)p;
and @; = @£ (N’ n M)p;). By Proposition 1.4, we get

@;(x) = @(E~YE(p)) X)) = ¢(p;) '@ (E(p))x)

for every x € (N n M)p,). . Hence it is readily verified that @ is semifinite if and
only if so is each @;. So we may assume by Theorem 3.3 (1) that ¢ is semifinite. Let
h; = hE(p;)p; where /i is as in Theorem 3.3 (2). Because ((N'n M)l’i)Ei =(N'n

0 M)gp; thanks to £(p;) € Z(N), h; is affiliated with (N' n M)p,)s,. Furthermore
D;(x) = @(p)) ~to(M2E(p)xhY?) =
= w,(hEE(p)xhMY) = @ (hY2xhY?)

for every x e ((N' n M)p,), . Hence Theorem 3.3 (2) implies

Ko(Mp; | Npp) = @(logh) = ¢(p)""¢(plog(hE(p)) =
= o(p) " {o(plogh) + @(plog E(p))} =

= o(p)Ho(plogh) — e(E(QPN},

so that
e(plogh) = eMEWP) + ¢(p)K, (Mp; | Np)).

g -~ 2234
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This sums up to the desired equation. When N is a factor, E(p;) is equal to the scalar
o(p), so that o(nE(p)) = ne(p).

(2) Because N’ 0 M is atomic if and only if so is each (N’ a M)p;, we may
assume from the proof of (1) that M is a factor. In this case, suppose @ = £ 1N’ 2
N M is semifinite. For » > 1, let ¢, be the spectral projection of /i corresponding
to [1, n}. If f,, ..., f, are nonzero projections in (N’ n M), with NV fise,. then
we get by Proposition 1.4

Fo < BB = ETMEGI < E7( o

so that 1 < E"Y/), 1 £ k < m, and hence m € E-Y(e,) < n. This shows that
e (N’ 0 M)ge, is finite dimeasional. Since ¢, 71, we deduce that (N' 2 M), is
atomic. Therefore Z(.V) included in Z((N' n M),) is atomic. Now let ¢ be any atom
in Z(N) and ¢, = ¢,4. Then M, and N,,“ are factors and Index E,," < EYe,) < co,

so that N,;n "M,y = (N0 M), is finite dimensional. Since ¢, ¢, we deduce that
(N’ 0 M)q is atomic. Thus N’ 7 M is atomic. )

THEORLM 4.2. Suppose M is a factor.

(1) If N'n M has a nonatomic part, then KM N) == co.

(If N'nM isatomic and {f,} is a set of atoms in (N’ QM) with
Y fu= 1, then My 2 Nf:.- are factors and

KM )= N ollogmad? o 5 ol log e
oAM N) = X o(f) 87y 2 o(fi) °8 -~ (E(T)

The same holds when {ﬂ} is the set of all atoms in Z((N' 2 M)p).
(3) If Z(N) is atomic and {q;} is the s>t of all atoms in Z(N), then

K (M N) = Yonelg) + 3, @)K, (Mg, I Ny,

i
where @; = o(g;) 7o M,,j .

Proof. (1) is a corollary of Theorem 4.1 (2).
(2) Suppose N’ M is atomic and let {f,} be a set of atoms in (N’ 2 M),
with ¥ f; = 1. The factorness of Ny, follows from Z(N) € Z((N" n M)g). Hence

Index Ey, is defined. If -7 N0 M is not semifinite, then we get, for some k,
E-Yf) = oo and also Index Ey = oo by Proposition 1.4. These together with Theo-

rem 3.3 (1) imply the desired equation. Now assume that £71 N’ 1 M is semifinite.
Taking a faithful normal semifinite trace T on N’ N M, by [8, Theorem 6.6] we
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obtain T e P(N’, M") such that T|{N'0M = ¢. Then T~'eP(M, N) and
T-1|N'nM is semifinite by (8, Theorem 6.6]. Let 7 = ¢@o(T~? | N'nM). For

every unitary « in N' n M, we have by [5, Proposition 8 and Theorem 9]

—1y dooT -1
dogouT u u—(po T y

dy
o -1
= u- Ei.p_T, “"'v: — _,___(,i,(po —_—
de, dyreuTu®*

where ¢ € P(N), ¢ € P(M') and uTu* = T(u*-u). Hence uTu* = (uTu®)"1,
But, since uTu* [N'NM =T N nM, we get uTu* = T by [8, Theorem 6.6].
Hence uT-'u* = T2, so that utu* = 7. This shows that t is a faithful normal semi-
finitc trace on N'nM. So let a = dd/dT where & = E£7! 1 N'anM, and b =
= d%/dt. Then a is affiliated with (N’ n M), thanks to (N’ nM); = (N' 0N M)g,
and b is affiliated with Z(N'nM). Since EV N'nM = a*Ta?|N' 0 M,
we get E7' = gY*Ta'®. Hence E = a Y*T-'a"Y* by Proposition 1.2, so that
o = a Y?taY2 Therefore

o= (allsz/z).[(allzb1/2) = (ab‘“)(o(ah”'z).
This shows that /i in Theorem 3.3 (2) is equal to a2b.
Let a = Y, ae; be the spectral decomposition of a with distinct numbers o;
and projections e; € (N’ n M),. Since
6f = ¢® = a-it.g", 4eR,
we have (N'n M), =(N'nM)n{e}, so that {e} < Z((N' nM),). Because
each atom in Z((N' n M),) is a sum of elements of {£,}, we deduce that a is affi-

liated with {,}"". Since Z(N' n M) = Z((N’' n M),), b is also affiliated with (/Y.
Thus /1 = ah can be written as h = Y. Bifi with positive numbers f, . Since

E7N) = o017 = Be(f),
we get B = E-Y(f)/o(f,). Furthermore it follows from Proposition 1.4 that

]ndCfok = E"YE(f)f) = o(2E(f)fhM?) =

= Bup(E(ffD) = Buo(E(f)).
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Therefore

KM N) = oiog Z (flogfy, =

= % oUog S = 5 o fotog e
ollog —mm= = X olfilog ey

The second assertions is also shown from the above proof.

(3) Because A” 3 M is atomic if and only if so is each (N’ n M)g;, we may
assume in view of (l) that N'n Af is atomic. For cach j, we take a partition
g =¥ fi of g; into utems £ in (N 0 Af);. Applying (2) to E; =- I;'gj and ¢;

thanks to (\(, I = (N0 Mg, we have

, . _ Ei\fiy
Ko (Mg Ny =3 g filog 50
! ! / L @; f ir.-)
Morcover
E; ) = E7N(E(g)) = E7Nfi)
as scalars. Therefore

o E Y fi) . , -
3, o(fyliog - - = ne(g) + @g)K, (M, No).
3 1% (fﬂ\) 4 J 4
The application of (2) to a partition 3/, =: 1 shows that the left-hand side of the
above sums up to K,(3 N). Thus we obtain the desired equation. i
THroreM 4.3, Suppose N is a factor.
(Y If N' 0 M has a nonatomic part, then K (M N) = cc.
(2) If N’ o M is atomic and { f}.J is a set 6f atoms in (N° 0 M) with L f
then M £ 2 1\}[ are factors and

o(E~Y N

K ,(M Ny =% o(f)og -
“ % o)

Index £y, = o(E7(f)f)-

The same Lolds vhen {f.} is the set of all atoins in Z(N' 0 M)p).

Proof. (1) It sufficos by Theorem 4.1 (2) to show that if K, (W «~) < co, then
Z(M) is atomic. For cach nonzero projection p in Z(M), as in the proof of
Theorem 4.1 (1), we huve

o(ploghy = 5ol{p) + qo(gz)l('(,p(;"yip Np) = qo(p),
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where ¢, = @(p) ¢ { Mp. ¥ Z(M) has a nonatomic part with support p, # 0,
then for each n > | there are projections p,,..., p, in Z(M) with o(p,) = o(p,)/n,
so that

n

KM | N) > Y, o(plogh) >
i 1

i

> ny (.ﬂﬁl) = @(pyllog n - oo,
n

as desired.

(2) The proof is almost the same as that of Theorem 4.2 (2). So we only give
a sketch. The factorness of M follows from Z(M) < Z((N' n M);). We take
T € P(M, N) such that t = T | N’ n M is tracial. If E-1[ N’ n M is not semifinite,
then the cquation for K, (M j N) is seen as before. Assuming the semifiniteness of
E-! ] N' 0o M, we sce that 7 = (po(T*lt V' n M) is tracial. Let a = dp/dT and
b = d1/dr. Since @oE~! = @oa'/*Ta/?, we get E-' = a'2Ta? by [8, Lemma 4.8],
so that E = a Y*Ta Y2, implying w = a~Y21q" 12, Therefore /i = a%h. Arguing as
before, we can write &1 = Y B fi. Then @(E7(f)) = fro(fi) and so the equation
for K.,(M[N)is obtained. Furthermore we have

' (index E;)fi = E7. ()i = 9(DE " (filfe
implying the equation for ]ndefok.

CoroLLARY 4.4, If K (M ‘N)<oo, then the following conditions are equivalent :

(i) Z(M) is atomic;

(ii) Z(N) is atomic;

(i) N' n M is atomic;

vy (N' n M) is atomic.

Proof. () = (iii) is Theorem 4.1 (2).

(ii) = (iii). Suppose Z(N)is atomic and let {g;} be the set of all atoms in Z(N).
For each j, lct w; = @;|(N' 01 M)q; and &; = @;o(E7*|(N' n M)g;) where
©; = o(q) ¢ ]qu. Using Proposition 1.4, we have for every x € (N n M)g)),

(I),'(X) = (Pj(E—l(E(qj)x)qj) <
< 9(g) 7a(x) = 9lg) T w(xhI2),

This implies h; < @(q;) ~*hq; where k; is taken by Theorem 3.3 (2) for o; and @;.
Hence

K(pj(qu‘ qu) = (Pj(lOghj) <
< @(g) ~* o(q;logle(g) M) <

< og) {nelg) + elogh)} < oo,
so that (N’ n M)g; is atomic by Theorem 4.3 (1). Thus N’ n M is atomic.
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(iit) = (iv)-is alrcady mentioned before Theorem 4.1. (iv) = (i) and (iv) =»(ii)

arc immediate from Z(M), Z(N)S Z{(N' n M)g). 0

When Z(M) is aiomic, Theorems 4.1 and 4.2 conclude that the calculation of
KC,(M. V) is reduced to the case of M 2 NV being factors. Here let M be a finite von
Neumann algebra with a faithful normal trace 7, 7(1) = 1, and H(M N) be Pimsner
and Popa's entropy (=) in Section 3. According to [14, Theorems 1.2 and 1.3}, the
same reduction theorom as Theorem 4.1 (1) holds for H(M N) when N is a factor,
and also (1) and (3) of Theorem 4.2 holds for /(M ~N) when M is a factor. Further-
more, in particular when M is 2 type 11, factor and N is its subfactor, the estimate
of K M N) given in (1) and (2) of Theorem 4.2 coincides with that of (M A)
in [22, Theorem 4.4]. Thus we deduce the foliowing:

CoroLLARY 4.5. Let M be a type U, von Neumann algebra with a faithful normal
normalized trace t, and N be a von Neumann subalgebra of M. If either M or N is
e factor, then K (M N') is equal to Pimsner and Popa's entropy H(31 N).

The following cxemple shows that our entropy K (A7 N) contains von Ncu-
mann’s entropy with multiple 2 as a special case.

ExampLe 4.6. Let ¢ € &(B(#)) and a = do/dtr. Then ¢~ € P(B(#’)) and
let @ == de /dtr. With the canornical | € £(C), we get
-1 -1
&:dw =(d'lA g
di do

If we write @ = )] «.f; with positive numbers %, and rank onc projections f;,
% f = 1, then by Thcorem 4.2 (2).
4

MY

K (B(7) C) = }J o flog L— o(F)

=2 ‘?\J nay, = 2tr(ya).

in particular, let M. be the » X#a matrix algebra with the normalized trace t. Then
KM ;C) = 2 logn. On the other hand, for the enwropy (=), H(M C) = logn
(sce {7]). Thus Corollary 4.5 doss not hold when A4 is tinitc dimensional. In fact,
{22, Theorem 4.4] dozs not hold in the finite dimensional case, while the theorems
in this section remain true.

S FURTHER PROPERTIES OF ENTROI'Y

When A1 is a finite von Neumann algebra, we can readily check, as stated
in {22], the following prosertics of Pimsner and Popa's entropy from its definition
{=): For each von Neumenn subalgebras ¥V < L < M,
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(1) H(M I NY < H(M | L) + H(L | N),

(2) H(M | N) > H(M | L),

(3) H(M | N) > H(L'N).

In this section, let M =2 L 2 N be von Neumann algebras with ¢ € §(M),

and assume that there exist £ € &(M, N) and F e (M, L) with respect to (p In
this case, G = E, L is the conditional expectation L — N wnth respect to ¢ | L,

and E = GoF. Then the entropies K, (M N), K,(M'L)and Km(L N (= K, L(L’ V))
are defined. So it is natural to ask whether the same properties as (1) — (3) .hold
for these entropies. But it is not at all easy to show them. In the following, we prove
the property (1) in full generality and (2) under some assumptions. However the
property (3) remains open and seems difficult to prove (even when M 2 L2 N
are factors).

Besides w and @, let w, = ¢ iL’ nM, o, = ¢o(F’1{L' NM), wy= (p;N’ nL,
and @, = @o(G~* | N' nL). Moreover, when & (resp. @,, @) is semifinite, let
I (resp. Iy, hy) be the positive selfadjoint operator affiliated with (N’ n M), (resp,
(L'0M)y. (N'nL)g) such that & = hwhY? (resp. @, = hYPwhl? @, =
= h3"?w.h¥*) (see Theorem 3.3).

THeoREM 5.1 (1) K,(M | N) < K (M |L) + K,(L | N).
(2) If K,(M ’L) and K,p(LlN) are finite, then the following conditions are
equivalent :
() K (M| N) = KM |L) + KL |N);
(ii) /1 is affiliated with (N'0L) v (L' M);
(iii) h = hh,.

Proof. (1) We may assume that K, (M |L) and X, (L]N) are finite. Then
K ML) = p(logh,) and K(L|N) = (p(logh.,) by Theorem 3.3 (2). Let & = (N’ n
nL)v(L AM) (=N nM). Since F-1{L'nM and G™*|N'nL are semi-
flmte we can choose nets x; 1 | in (L’ n M), and ¥t 1 in (N' nL), such that
F}(x;) and G~Y(y;) are bounded Then x;y; € o7, , x;y; 11, and

E7 ) = FTHGMx)) = F(PG 1 (ypx®) <
< NG TOMIE DI,

so that £-'{.s/ is semifinite and hence so is E~| N’ n M. Letting w, = ¢ | o
(= o | f)yand dy=AE~ | o) (= & ), we get S(@, w) > S(@q, w,) by Definition
3.1 and the monotonicity of relative entropy. For every t € R, because ¢?(L) =
=L, 6%N)=N and o¢? = o? \ NaM, we get o®(L'nM)=L nM and
o?(N'nL) = N'nL. Therefore o%(f) = o and also a‘:"(d) = of since o° =
= ¢“,, so that we have

a%=af’!d=a“’,‘d=a’"°, te R.
t - -t
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Hence there is a unique positive selfadjoint operator #, affiliated with 7, such
(]
that @, = h}2wehi/® Here hy > 1 because @, > w, follows from @& > w. So we
can obtain S(wy, 09} = —@(loghy) as in the proof of Theorem 3.3 (2).
Next let us prove hy = ki, If x € (L' 0 M), then

E(xy) = G(F() = G(F(x)) = E()x), »y €M,
and if x e (N’ n L), then
E(xy) = G(xF(y)) = G(F(3)x) = E(3x), yeM.

Thanks to 5/,,,0 = (N0 M).ns/, these show that (L'nM), ..d(.,o and
(N'nL)s & &, . Heuce hhy is affiliated with /o, For each ae(L' 0 M),
and each b € (N' n L), , since ¢=G~1(hy**bhz 1) is a positive selfadjoint operator
affiliated with Z(L) and since F(a) € Z(L), we have

@o(h T hs Yabhy VERTVR) = @(F~NG~ Xhy YVPhy Y 2abhs VPhT 1)) =

= p(F Y(hi a%ca*h] V?)) = oy(@*2ca'l?) = p(M*act’?) =

= @(CMPF(a)cM?) = @(F (@) *cF(a)?)= (G ~(hy VEF(a)bh; *%)) = wa( F(a)b) = wy(ab).
This shows /iy = /nh,. Therefore
KM N)= —S(@, w) < -S(@, ) =
= g(loghy) = o(logh, + loghy) = K(M |L) + KL N).

(2) The semifiniteness of ¢ follows from assumption and the proof of (1).
Since g9(¥) == o, 1 € R, as shown above, there exists the conditional ¢xpectation
E, with respect to w. First let us prove E_(h) = hy (= Iyhy). If x e (N' 0 M),
and y € &/, then

W(E (X)) = o(xy) = 0(px) = o(YE ,(x)).

This shows £ ((N' n M).) < oZ,,, so that E_(h) is affiliated with oy - Taking
h, € ((N'nM),). with &, T h, we have for every y € o7,

wo(E (W' 2yE _(B)Y?) = lim w,()*2E (h,)pV?) =

= lim (Y 2k, M%) = @(R12h'%) = @y(y) = wo(hiyhy),
n—-00
so that E_(h) = h,. Yence (i) <> (iii) is shown. Also (iii) = (i) is immediate
from the proof of (1).
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(i) = (ii). Condition (i) implies

w(E(logh)) = w(logh) = w(logh,) = w(log E_,(h)) < co.

Because £ (logh) < log E(h) follows from the operator concavity of log?, we get
E (logh) = logE_(h). Since

{A+ 07— (h+ ),

0

log

we have

E (log h)

S{(l + )7t - E ((h 4+ 1)7H)}de,
0

and also

log E (h) = S {0+ 0 — E (h + 1) }de.

Furthermore the operator convexity of -1 (1 > 0) implies that E_ (A + )7 >
2E(h + )~ for every r > 0. Noting the strong operator continuity of E_((h+
+ 1)) and E (h +1)7' in t > 0, we obtain E_((h + 1)~Y) = E(h + )~ for
all 1> 0. For each 0 <« § < ¢,

E (h +1t =0)7(h + )™ = E,, ( (h+1--0) f;: (h + ’)_‘)

_Efh+ 1t -6 ~ Eh+ D)7 _
d

E_(h V-t-v_t_) __~7Ed(h +1 - gS)

= d(h+t——5)‘1(- S

)Ed(h + 1)1 =

=E/h+1t~8)E(h+ 1)

Letting 6 | O in the above, we deduce that E_((f1 + 1)~2) = E_(h + ¢t)~2 for all
t> 0. Now let a = (h + 1)~'. Then E (a%) = E(a?)"? = E_(a)?, so that

E(Efa) - a)’) = E @) — Egla) =0,

implying E_,(a) = a. This shows (ii).
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Tueerem 5.2 K (M N) > K (M L) holds in each of the following cases:
(a) either Z(M) or Z(N) is atomic, and E~1(1) is bounded,
(b) M is afuctor and G=1" N' q L is semifinite.

Proof. Case (a). Since E-)(1) is bounded, H (M N) < cc. Hence it fol-
lows from Corollary 4.4 that Z(M), Z(N) and N’ n M are all atomic. If {p,} is
the set of all atoms in Z{M), then by Theorem 4.1 (1)

K81 Ny =Y, 0E(p) + 3, o(pdK,(Mp; Npy),
KM L) = L e(F(p) + 3 qo(p)f’ (Mp; Lp),

where ; = o(p) ¢’ . Mp;. By the operator concavity of 5, we have
nE(p;) = n(G(F(p) = G(nF(p)),

so that o(nE(p)) = o(mF(p)). Hence it suffices to show that KO(Mp,-f Np) =
> K, (Mp; Lp,) for all i. Here E;'(p;) is bounded by Proposition 1.4. Thus we
can assume that A7 is a factor.

Because Z(L) < (' n M), = (N n M), (sce the proof of Theorem 5.1

(1)), it follows that Z(L) is atomic. if 1qj} is the set of all atoms in Z(L.), then.by
Theorem 4.2 (3).

KM 1) = Yae) + 3, 0@)Ko (M, La),
i i ’

g

where ¢; = o(q;) o '[W‘Ji' For cach j, we take o pastition g; = V] f;; of ¢; into
atoms fj, in (N’ 0 M), Since EJI_](f}k) < E7Yf;) by Proposition 1.4, we have
using Theorem 4.2(2) twice

R0 1) = ¥, 3 olfiog £ oUW 5
j ok (flfi
Eg ().
>3 log - 2%
> PR g
<N . . - b.q—.l ( f'l;)
= }; nolq;) + },4 @(g)) % @ fi)log - <,9j,-(f;-1,‘) -

= 2, 10(@) + Je(@R oMy | No).
J J
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Hence it suffices to show that K(,j(qu ‘qu)ZKoj(M,,j ' L,,j) for all j. Here Eq_jl(qj)
is bounded. Thus we can assume that L, as well as M, is a factor.

Now suppose M 2 L are factors and E-Y(1) = F~Y(1)G1(]) < cc where
E-Y1), F~3(1) and G-'(1) are all scalars. let @ = E'(1)"'® and &, =
=FY (1) '®,. Since

o(x) = E7M(D)TTFHG(v) =
= ET()IG()F(x) = @y (x), xel nM,
o =0 : L'nM as well as o, = wj L' n M. By [2, Thecorem 3.6], we have
K(,,(M'; N)y= —S(E‘*(Nw, w) =logE(1) - S(o, w),

K(MLy = --S(F'(Na, , @) = log F(1) -- S(@, , o).

Let E = G-'(1)~'G~? | N'nM. Then £ e 6(N'n M, L' n M). Since
BUER) = F(1)7G (1) PG () =
= ET(1)E-(x) = o(x), xeN nM,

we get @ = @oF and hence @oE = &, that is, E is the conditional expectation
with respect to @. Define o’ = weE. Applying Proposition 1.9 (1) to G under the
standard representation of M, we get E(x) > G 1)'x for xe(N'nM),, so
that o’ > G~1(1)"*w. Therefore

S(w',w) € S(G(Dw,w) = logG(1)

by [2, Theorem 3.6}. Furthermore it follows from [20, Theorem 5] (see also [10,
Theorem 3.2]) that

S(w, ) = S(@, ,w,) + S(w', w).
‘Combining the above equalities and inequality altogether, we obtain
K, (M|N) = log E-)(1) -- S(&,, @) - S(go',_ w) >
> log (1) — logG~Y(1) ~ S(@,, w;) = K(M|L).
Case (b). We may suppose K, (M |N) < co. Then Z(N) and N'nM are

atomic by Corollary 4.4, and hence Z(L) is atomic. Arguing as in Case (a) and
noting the semifinitencss of G;* } (N' n L)g for any atom g in Z(L), we can assume
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further that L is a factor. Here let p be the support of the semifinite part of /-1 L' p
A M. Since E-' ' N' n M is semifinite, there is a net x; v Lin (N o M)y ‘»\nh
E-Yx)) = F'"(G"‘(‘.\'R-)) < oo. Then the support p;, of G x)e(l ~M)
is contained in p and p, 1. Hence F 1L’ 0N M is semifinitc together with
G- N'nL. Thus we can choose, in view of Theorem 3.3 (2), sequences {p,}
and {g,} of projections in (L' n M), and (N’ nL),, respectively, such that pn Tl
g, 7 1, F7(p,) < coand G~Yg,) < oo. Letting e, = p,gq,, we gete, (N 7 M),

and e, T 1 (here ¢,#0 may be assumed). For each n, there exists F, & n(Mé . Ie B

as well as E, = E, , with respect to ¢, = ¢(e) "¢ lM"n’ and
£7Me,) < E7He,) = F(p,)GY(g,) < co.
Thus it follows from the case (a) that
Ko (Mo 'Ne) > Ko (Mo 'Lo), n3> L.

Partitioning each e, — ¢,_, into atoms in (N’ 1 M),, we choose a sct {j}‘,

of atoms in (N' n M), with V' f, = 1 such that ¢, = Y}, f; for all » where /; =
ﬂEI

c I, < .... Then Theorem 4.2 (2) implies

2

KMo, 1N0) = 5, i fog == U ECU.
(ton fl.)

Ef).
( k -
oty 13, U=y

Here ¢(e,) 1 1. For each k, when n — co with k €1,, we have

= loge(e,) +

P(f) < @,(f) < E; W) = ETNEE)) T ET (A

Therefore

K(M \') " »—l(f;() -
N) =¥ o(f)log — 0 —hm]\g,(M N)

(p & n—oo

Next let us obtain the complete expression of F;le P((Leﬂ)’, M:."). Tt is readily
verified that M, = (M,,n)(,n, L, = (L,,")p” and F, = F,,”!Men. Hence, using Proposi-
tions 1.5 (1) and 1.4 , we have for every x € L),

FyYexe,) = Frl(papdes) = B (poxp)e, =

= FY(F(p)p,xpoYe, = ¢(8)F 2 (p,xpy)e,.
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Moreover
((Le") n Mell)’?ﬂ = (LI)M n Arp")/"p"em =
= pL" 0 M)ppye, = e, (L’ O M)ge,.
Partitioning each p, — p,_, into atoms in (L' n M),, we choose a set {gk}

of atoms in (L' n M), with ¥, g, = 1 such that p, = V] g, for all n where J,
ke

B

e Jyc .... Then {gg,:keJ,} is a set of atoms in e L' nM)e, with
Y. &9, = e,. Hence Theorem 4.2 (2) implies
KET

Kw,,(Mc |L )= Z go,,(gkq,,)log F (gkq") =
(l7rx(g’kqn)

Z (p(g, g,)log — 2 {8

= logg(e,) +
(P(en) keJ (D(gkqn)

For each k, when n - co with k € J,, we have o(g,q,) * #(g) and from the above
expression of £, 1

(p(g.’an) < F,T l(gkqn = Flvl'l(ev:gken) =
= @(p)F(g) ' F~Xg)
as scalars. Thus we obtain

K(M!L) = %, o log -8
o Plaios o(g)
k

< liminf K, (M, |L.) <

H—CO

< lim K, (M., 1N ) = K, (M|N). 7
n—oo
When £-1| N’ n M is semifinite (particularly when K, (M| N) < o0), F7YL' n

nM is semxﬁmte as shown in Case (b), but it is not known whether so is
G~ 1'1\1‘ ni.

6. MINIMUM INDEX AND ENTROPY

Throughout this section, let M2 N be a pair of a factor and one of its
subfactors such that [AM: N], = IndexE, < co where E, € §(M, N). For each
Ecé&(M, N), because E\N’ nM and E-1} N’ n M are scalar-valued, the entropy
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K, (M N) is independent of the choice of ¢ € &(M) with ¢<E = . So we use the
notation K (M N) instead of K, (M N). In fact, KM N)~= - S(d, ) where

w=E NOMand @=E N 0M.
Proposition 3.5 shows that K (M " N) < logIndex E for every E & 6(M, N).

Furthermore we huve the following:
PROPOSITION €.1. K (M N) < log[M: N}, for every E € 6(M, N).
Proof. Lett = l:‘,)[ N’ 0 M. By Theorem 2.1(2), tis a trace and £;1 V' & M=
w=F1 N2\

=[M: N]yz. For cach Fedb(M, N), let w=E. N'nM,
and a = dwjdt. Since £ N' 2 M = at?£ya? N'aOM, we get E —~ o'PE 0, se

that E-' - ¢-Y2E; '¢~1? by Proposition 1.2. Hence

o = [M: NJya Y*1a=1* = [M: N)yawa~

Therefore we have by Theorem 3.3 (2)
K (M N) = o(log([M: Nlya=%) = logIM: N}, - 2w(loga) =

= log[M: N], + 2t(ya) < log[M: N],,

because 1(na) < yr(a) = 0.
ProrosiTiON 6.2. If E € 6(M, N). then

KM N) + S(@, w) — logIndex E,

. I ..
KM N) + , WO w * < logindex E,

“

where @ = E N'n M and @ = (Index E)-1E-1 N oM.

Proof. By definition,
KM N)= - -S((Index E)w., w) = logIndex E -- S(®, o).
Moreover it is known [10, Theorem 3.1] that
Lo~ 0!'? < 285(0, w). 72}
The next theorem gives new characterizations, besides those in Theorem 2.1
(2), for £ € &(M, N) having the minimum index.
THEOREM 6.3. The following conditions for E € £(M, N} are cguivaleri:

(i) Index E = [M: N],, i.e. E=E,;
(i) Kg(M N) = log[M: Nl,;
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(iii) Ky (M ! N) = logindex E;
(iv) for every nonzero projection e in N' N M,
Index E, = E(e)*IndexE;
(v) for every nonzero projections e,,...,e,in N'nM with ¥, e; =1,
n Index E,
E(e)log ———i = logIndex £.
i§:1 (e:)log E(e)?

Proof. In the proof of Proposition 6.1, E = Ejifand only if w = 1 (i.e.a= 1).
This is equivalent to t(na) = 0. Hence (i) < (ii). Also (i) <« (iii) is immediate from
Proposition 6.2. If £ = F, and e is a nonzero projection in N’ n M, then
4

IndexE, = E(e)E~(¢) = E(e)*Index E

by [16, Proposition 4.2} and Theorem 2.1 (2). Thus (i) = (iv). (iv) => (v) is obvious.
Finally (v) = (iii) follows from Theorem 4.2 (2). %

THEOREM 6.4. If N'nM # C, then

{K(M|N): E € §(M, N)} = (log, log[M: N]],
where
o = [M: N]ymin{Ey(e): e is a nonzero projection in N’ n M} =
= min{[M,: N}, e is a nonzero projection in N' 0 M}.

Proof. For Ee&(M, N), let a = dw/dt where @ = Ef N'nM and 7 =

= Ey | N0 M. Then
KE(M[ N) = log[M: N}, + 21(na)

by the proof of Proposition 6.1. Taking the spectral decomposition a = ¥} we;

of a, since ¥, o;t(e;) = 1(a) = 1, we have

0 > w(na) = E nu)t(e)) =
=Y, %;1(eplog(e;) + Z not(e)) >

> Y, aszle)logle;) = logp,
where
B = min{t(e): e is a nonzero projection in N’ nM}.

Here a varies over all strictly positive elements in N'n M with ©(e@) = 1. Since
N' nM # C, it is easy to see that the equality 1(5¢) = logff does not occur in
the above. Hence it follows that t(na) admits all values in (logf, 0]. Therefore
we obtain

{Ke(M | N): E € §(M, N)} = (loga, log[M: N]]
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with z == [47: N],£°. Morcover

% = [M: N]ymin Ey{e)* = minIndex(£y), = min[A,: N},
I3 4 e

where the minimums are taken over nonzero projections e in N’ ~ A7, 3

CoroLLARY 6.5 The following conditions are equivalent :

(i) inf{K (M N):Eecé(M, NY} =0:

(ii) there exists a projection e in N' 0 M such that M, = N _.

Proof. When N’ r M == C, each of the conditions (i) and (i) is equivalent
to A7 — N. When V' 2 M # C. (1) « (i) follows from Theorem 6.4. i

In fact, becausc of the restriction of index values, the above conditions hold
if the infimum in (i} is less than log 2.

THEOREM 6.6. Let L be a factor with M = L 2 N. If [M: L], = Index F <
< oc and [L: N}, =: IndexG < co where F e 6(M, L) and G € §(1., N, thea the
Jollowing conditions are equivalent :

() [M: N])g =[M: L [L: N]y. ie. £, = G-F;

(i) KoM NY= KM L)+ K L N).

Proof. Let E =: G<F and h, Iy, h, be as in Theorem 5.1. Then 7, == [3: L],
and hy == {L: N]y1 Dy assumption.

(i) => (ii). Since Index E := (Index F)(Index G) = [A: N],., we have [ = [A1:
: N]y1 by Theorem 2.1 (2). Hence (ii) holds by Theorem 5.1 (2).

(i) = (i). Theorem 35.1(2) implies /i = Mnhy = [ L1,[L: N],1, so that
(1) holds by Theorem 2.1 (2). 3

Under the assumption of Theorem 6.6, it seems that the equivalent equalitics
(1) and (i) do not hold in general, while we have no explicit example. But we remark
the following: Let &' € My =M < M, = M,< ... be the tower of factors with
E,ed{M,, M, }). »n > 1, oblained by repating the basic construction [16] from
E,. Then it is immediate that [M: M, _ ], = Index E, = [M: N}, for all n> 1.
In particular, when A7 is a type I, factor and Jones’ index [M: N]is equal to [A: N},
it is known [23, Theorem 3.1] that H(M,, N) = (n + I)H(AM N), equivalently [47,:
TNy = [MoNF Y for all n 2 ). According to [17], these equalities of minimum
indices can be extended to the general case of basic constructions.

We end the paper with an example illustrating the relation between the
minimum index and the entropy.

ExAaMPLE 6.7. Let R be the hyperfinite type II, factor with the normalized
trace T and R, be Jones' subfactor [12] of R with 7 = [R: R;]* < 1/4. Take ¢ > 0
with 7(1 - ¢) = 4. According to [22], there cxist a projection f in R R with
(f) =1t and an isomorphism 0: R, -+ R,_, such that R, = Yol xa Rf}
and R nR = Cf + C(l - f). Let 7’ be the normalized trace on R;. Since

1= [R;: (R g = [R: RJ(f)'(f),
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we get T(f) = 1 — t. Hence [9, Theorem 2 (1)] shows

[R: R;]y = [R: RJ{(x(f ) (MY + (2(l - (L - [)He}e =
= 4 < [R: R}},

and E; € &(R, R,) having the minimum index 4 is given by E,

all’E Rlal/2 where
QO - Of +

Eg, is the conditional expectation with respect to 7 and a
+ t(l - f)). We have

{Index £: E € (R, R))} = [4, co),
{(K{R|R,): E € (R, R} = (0, log4].

Also note [22, Corollary 5.3] that Pimsner and Popa’s entropy H(R IRA) is equel
to 2(nt + (1 — 1)) < log4.

Notes added in proof. (1) For general von Neumann algebras M = N and
¢ € (M), Connes [6] introduced the entropy H,p(M]N) of M relative to N and
¢, which extends the entropy (*) in Section 3. The relation between Connes’
entropy and the minimum index is discussed in [30].

(2) It is proved by Longo [31] that the chain rule of the minimum index (i.e.
he cquality (i) of Theorem 6.6) holds in general.

This research was supported in part by Grant-in-Aid fot Scientific Research.
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