STABILITY OF THE INDEX OF A FREDHOLM SYMMETRICAL PAIR

C.-G. AMBROZIE

1. INTRODUCTION

The aim of this work is to prove the stability under small perturbations of the index of a Fredholm symmetrical pair (see Definition 2.1), which is an object of the following form:

$$S: D(S) \subset X/X_0 \to Y/Y_0$$
, $T: D(T) \subset Y/Y_0 \to X/X_0$

are closed linear operators such that

$$R(S) \subset N(T), \quad R(T) \subset N(S)$$

$$\dim N(T)/R(S) < \infty$$
, $\dim N(S)/R(T) < \infty$.

The index of the pair (S,T) is defined by the equality

(1.1)
$$\operatorname{ind}(S,T) := \dim N(S)/R(T) - \dim N(T)/R(S)$$

where R(S), N(S) mean the range and the null-space of S, respectively.

We consider X_0, X, Y_0, Y to be closed linear subspaces of a fixed Banach space. Both spaces and operators may be perturbed, with respect to the gap topology [4].

The main result of the present paper (see Theorem 3.1 below) asserts that the index of such a pair is locally constant (i.e. stable under small perturbations).

In this way, it is possible to give an affirmative answer to a problem raised by E. Albrecht and F.-H. Vasilescu in [1]. It was already known (see [2], Proposition 2.10) that the functions $(S,T) \to \dim N(S)/R(T)$, $(S,T) \to \dim N(T)/R(S)$ (defined on the set of all pairs (S,T) with ST=0, TS=0) are upper semicontinuous; so, the set of Fredholm symmetrical pairs is open (with respect to the gap topology) in that

of symmetrical pairs (see Section 2 for precise definitions). Now we can also state the stability of the index.

The property proved here for pairs generalizes the theorem concerning the stability of the index of a complex of Banach spaces (see [1], [2], [5]), as we shall see in Section 4. We obtain some simplifications in the study of semi-Fredholm complexes (the proof of the present results is quite elementary).

With some exceptions, we follow the notation and the terminology from [2] and [4].

The author wishes to thank F.-H. Vasilescu for suggesting this problem, for reading a preliminary version of this paper and for many helpful remarks concerning the elaboration and writing of the present work.

2. NOTATIONS AND DEFINITIONS

We denote by Λ the field of scalars ($\Lambda = \mathbf{R}$ or \mathbf{C}).

Unlike in [2] or [4], the direct sum of two Banach spaces X and Y, which is denoted by $X \times Y$, will be endowed with the norm ||(x,y)|| = ||x|| + ||y|| for all $x \in X$ and $y \in Y$.

The family of all closed linear subspaces of a Banach space X will be denoted by G(X).

If $Z \in G(X)$ and $x \in X$, then the symbol d(x, Z) stands for the distance from x to Z.

If $Y, Z \in G(X)$, then

$$\delta(Y, Z) := \sup\{d(y, Z) \; ; \; y \in Y, \; ||y|| \leq 1\},$$

$$\hat{\delta}(Y, Z) := \max\{\delta(Y, Z), \delta(Z, Y)\}.$$

The mapping $\hat{\delta}$, which is equivalent to the Pompeiu-Hausdorff metric on the set of all unit balls of the spaces from G(X), defines the gap topology of G(X) [4].

If Y, Z are Banach spaces, then we shall denote by C(Y, Z) the set of all closed linear operators S defined on linear subspaces of Y, with values in Z. The domain of definition of such an S will be designated by D(S).

Consider the Banach spaces \mathcal{X} and \mathcal{Y} and let $X_0, X \in G(\mathcal{X})$ and $Y_0, Y \in G(\mathcal{Y})$ be such that $X_0 \subset X$ and $Y_0 \subset Y$. For every $S \in C(X/X_0, Y/Y_0)$, we define:

 $\gamma(S) :=$ the reduced minimum modulus of S [4];

$$N_0(S) := \{x \in X \; ; \; x + X_0 \in N(S)\};$$

$$R_0(S) := \{ y \in Y ; y + Y_0 \in R(S) \};$$

$$G_0(S) := \{ (x, y) \in X \times Y ; x + X_0 \in D(S), S(x + X_0) = y + Y_0 \};$$

$$D_0(S) := \{ x \in X ; x + X_0 \in D(S) \}.$$

If $\tilde{X}_0, \tilde{X} \in G(\mathcal{X})$, $\tilde{X}_0 \subset \tilde{X}$ and $\tilde{Y}_0, \tilde{Y} \in G(\mathcal{Y})$, $\tilde{Y}_0 \subset \tilde{Y}$ then, for any $\tilde{S} \in C(\tilde{X}/\tilde{X}_0, \tilde{Y}/\tilde{Y}_0)$, we define

$$\delta_0(S, \tilde{S}) := \delta(G_0(S), G_0(\tilde{S})),$$

$$\hat{\delta}_0(S, \tilde{S}) := \max\{\delta_0(S, \tilde{S}), \delta_0(\tilde{S}, S)\}$$
([1], [2]).

2.1. DEFINITION. Let \mathcal{X} and \mathcal{Y} be fixed Banach spaces and let $X_0, X \in G(\mathcal{X})$, $Y_0, Y \in G(\mathcal{Y})$, $X_0 \subset X$, $Y_0 \subset Y$, $S \in C(X/X_0, Y/Y_0)$, $T \in C(Y/Y_0, X/X_0)$, $R(S) \subset N(T)$, $R(T) \subset N(S)$.

A pair of operators (S,T) as before will be called a symmetrical pair. Let $\partial_S(\mathcal{X},\mathcal{Y})$ denote the family of all symmetrical pairs.

The mapping $\hat{\delta}_0$ defines the gap topology on the set

$${S \in C(X/X_0, Y/Y_0) ; X_0, X \in G(X), Y_0, Y \in G(Y), X_0 \subset X, Y_0 \subset Y}.$$

Indeed, for such an S, $G_0(S) \in G(X \times Y) \subset G(\mathcal{X} \times \mathcal{Y})$. For another one, say \tilde{S} , $G_0(\tilde{S}) \in G(\mathcal{X} \times \mathcal{Y})$ and $\hat{\delta}_0(S, \tilde{S})$ is computed in $\mathcal{X} \times \mathcal{Y}$. Therefore, $\hat{\delta}_0$ defines a topology on $\partial_S(\mathcal{X}, \mathcal{Y})$.

We say that $(S,T) \in \partial_S(\mathcal{X},\mathcal{Y})$ is Fredholm if $\dim N(S)/R(T)$, $\dim N(T)/R(S)$ are finite. In this case we define the index of (S,T) by (1.1).

3. A STABILITY RESULT

- 3.1. THEOREM. Let \mathcal{X} , \mathcal{Y} be Banach spaces and let $(S,T) \in \partial_S(\mathcal{X},\mathcal{Y})$ be a Fredholm pair. Then there exists an $\varepsilon > 0$ such that if $(\tilde{S},\tilde{T}) \in \partial_S(\mathcal{X},\mathcal{Y})$, and $\hat{\delta}_0(S,\tilde{S})$, $\hat{\delta}_0(T,\tilde{T}) < \varepsilon$, then:
 - (a) (\tilde{S}, \tilde{T}) is Fredholm;
 - (b) $\begin{cases} \dim N(\tilde{S})/R(\tilde{T}) \leqslant \dim N(S)/R(T), \\ \dim N(\tilde{T})/R(\tilde{S}) \leqslant \dim N(T)/R(S); \end{cases}$
 - (c) $\operatorname{ind}(\tilde{S}, \tilde{T}) = \operatorname{ind}(S, T)$.

Proof. Only for the purpose of the proof, we use the following terminology: if m, n are integers, $m, n \ge 0$, $(S, T) \in \partial_S(\mathcal{X}, \mathcal{Y})$ and $\dim N(S)/R(T) = m$, $\dim N(T)/R(S) = m$

= n, then we call (S, T) an (m, n)-pair on $(\mathcal{X}, \mathcal{Y})$. We have to prove the next assertion, depending on $m, n \ge 0$:

$$(A_{m,n}) \begin{cases} \text{Let } m, \ n \geqslant 0 \text{ be integers. Then for every pair of Banach spaces } \mathcal{E}, \ \mathcal{F} \text{ and for each } (m,n)\text{-pair } (A,B) \text{ on } (\mathcal{E},\mathcal{F}) \text{ there exists an } \varepsilon > 0 \text{ such that for all } (\tilde{A},\tilde{B}) \in \partial_S(\mathcal{E},\mathcal{F}) \text{ with } \hat{\delta}_0(A,\tilde{A}), \ \hat{\delta}_0(B,\tilde{B}) < \varepsilon, \text{ we have:} \\ \text{(a) } (\tilde{A},\tilde{B}) \text{ is Fredholm;} \\ \text{(b) } \begin{cases} \dim N(\tilde{A})/R(\tilde{B}) \leqslant \dim N(A)/R(B), \\ \dim N(\tilde{B})/R(\tilde{A}) \leqslant \dim N(B)/R(A); \end{cases} \\ \text{(c) ind}(\tilde{A},\tilde{B}) = \operatorname{ind}(A,B). \end{cases}$$

In order to prove $(A_{m,n})$, we shall see that

$$(A_{m,n}) \Rightarrow (A_{m,n+1}).$$

Thanks to the symmetry, we shall also have

$$(A_{m,n}) \Rightarrow (A_{m+1,n}).$$

The previous implications enables as to reduce the problem of proving $(A_{m,n})$ for arbitrary m, n to the case m = 0, n = 0. Let us note that $(A_{0,0})$ is true as a consequence of Corollary 2.12 from [2] (see also Remark 3.2). Thus, the theorem will be proved, once we have $(A_{m,n}) \Rightarrow (A_{m,n+1})$. It remains to show this implication.

Let $m, n \ge 0$ be integers and suppose that $(A_{m,n})$ is true.

Let \mathcal{X}, \mathcal{Y} be Banach spaces and let (S, T) be an (m, n + 1)-pair on $(\mathcal{X}, \mathcal{Y})$, $S \in C(X/X_0, Y/Y_0)$, $T \in C(Y/Y_0, X/X_0)$.

Let N be a subspace of Y/Y_0 such that:

$$N(T) = R(S) + N$$
, dim $N = n + 1$, $R(S) \cap N = \{0\}$.

We can choose vectors $n_0 \in N$ and $y_1 \in Y$ such that:

$$n_0 = y_1 + Y_0, ||n_0|| = 1, ||y_1|| \leq 2.$$

Set:

$$Y_1 := \Lambda y_1, \quad \mathcal{E} := \mathcal{X} \times Y_1, \quad \mathcal{F} := \mathcal{Y}.$$

We shall define $(A, B) \in \partial_S(\mathcal{E}, \mathcal{F})$ an (m, n)-pair (therefore $\operatorname{ind}(A, B) = \operatorname{ind}(S, T) + 1$), as follows:

$$D(A) := (D_0(S) \times Y_1)/(X_0 \times \{0\}) \subset (X \times Y_1)/(X_0 \times \{0\}),$$

$$A : D(A) \to Y/Y_0.$$

$$A(x + X_0, \lambda y_1) := S(x + X_0) + \lambda n_0, \quad x \in D_0(S), \ \lambda \in \Lambda;$$

$$D(B) := D(T) \subset Y/Y_0,$$

$$B : D(B) \to (X \times Y_1)/(X_0 \times \{0\}),$$

$$B(y + Y_0) := (T(y + Y_0), 0), \quad y \in D_0(T).$$

It is easy to verify that $(A, B) \in \partial_S(\mathcal{E}, \mathcal{F})$ and $\dim N(A)/R(B) = m$, $\dim N(B)/R(A) = n$.

We assumed $(A_{m,n})$ to be true. Consequentely, there exists an $\varepsilon_0 > 0$ such that:

(3.1)
$$\begin{cases} \text{For every pair } (\tilde{A}, \tilde{B}) \in \partial_{S}(\mathcal{E}, \mathcal{F}) \text{ with } \hat{\delta}_{0}(A, \tilde{A}), \ \hat{\delta}_{0}(B, \tilde{B}) < \varepsilon_{0}, \\ \text{we have (a), (b) and (c) fulfilled.} \end{cases}$$

Let $\varepsilon > 0$ be such that

$$(3.2) 8\varepsilon + 7\varepsilon^{\frac{1}{4}} < \varepsilon_0, \quad 3\varepsilon^{\frac{1}{2}} + \varepsilon^{\frac{1}{4}} < 1.$$

For any $(\tilde{S}, \tilde{T}) \in \partial_S(\mathcal{X}, \mathcal{Y})$ with $\hat{\delta}_0(S, \tilde{S})$, $\hat{\delta}_0(T, \tilde{T}) < \varepsilon$, we shall find $(\tilde{A}, \tilde{B}) \in \partial_S(\mathcal{E}, \mathcal{F})$ such that:

$$\hat{\delta}_0(A, \tilde{A}), \hat{\delta}_0(B, \tilde{B}) < \varepsilon_0,$$

(3.4)
$$\dim N(\tilde{S})/R(\tilde{T}) \leq \dim N(\tilde{A})/R(\tilde{B}),$$
$$\dim N(\tilde{T})/R(\tilde{S}) \leq \dim N(\tilde{B})/R(\tilde{A}) + 1,$$

(3.5)
$$\operatorname{ind}(\tilde{A}, \tilde{B}) = \operatorname{ind}(\tilde{S}, \tilde{T}) + 1.$$

From (3.1) and (3.3), we deduce that (\tilde{A}, \tilde{B}) is Fredholm and $\operatorname{ind}(\tilde{A}, \tilde{B}) = \operatorname{ind}(A, B)$; by (3.4), (\tilde{S}, \tilde{T}) is also Fredholm. We also know that $\operatorname{ind}(A, B) = \operatorname{ind}(S, T) + 1$. This will imply (together with (3.5)) that $\operatorname{ind}(\tilde{S}, \tilde{T}) = \operatorname{ind}(S, T)$. Therefore, $(A_{m,n})$ will follow.

It remains to construct a pair (\tilde{A}, \tilde{B}) depending on (\tilde{S}, \tilde{T}) and satisfying (3.3), (3.4) and (3.5). So let $(\tilde{S}, \tilde{T}) \in \partial_S(\mathcal{X}, \mathcal{Y})$ be with the property

(3.6)
$$\hat{\delta}_0(S,\tilde{S}), \ \hat{\delta}_0(T,\tilde{T}) < \varepsilon.$$

There are two posibilities:

- (A) $d(y_1, N_0(\tilde{T})) \leqslant \hat{\delta}_0(T, \tilde{T})^{\frac{1}{2}};$
- (B) $d(y_1, N_0(\tilde{T})) > \hat{\delta}_0(T, \tilde{T})^{\frac{1}{2}}$.

For each of these cases, we shall give a construction for (\tilde{A}, \tilde{B}) .

Case (A): $d(y_1, N_0(\tilde{T})) \leq \hat{\delta}_0(T, \tilde{T})^{\frac{1}{2}}$. There are $\tilde{y}_1 \in N_0(\tilde{T})$ and $\tilde{v} \in N(\tilde{T})$ such that

(3.7)
$$||y_1 - \tilde{y}_1|| \le 2\delta_0(T, \tilde{T})^{\frac{1}{2}} \cdot \tilde{r} = \tilde{y}_1 + \tilde{Y}_0.$$

Let us define (\tilde{A}, \tilde{B}) as follows:

$$D(\tilde{A}) := (D_0(\tilde{S}) \times Y_1) / (\tilde{X}_0 \times \{0\}) \subset (\tilde{X} \times Y_1) / (\tilde{X}_0 \times \{0\}).$$

$$\tilde{A} : D(\tilde{A}) \longrightarrow \tilde{Y} / \tilde{Y}_0,$$

$$\tilde{A}(\tilde{x} + \tilde{X}_0, \lambda y_1) := \tilde{S}(\tilde{x} + \tilde{X}_0) + \lambda \tilde{v}, \quad \tilde{x} \in D_0(\tilde{S}), \ \lambda \in A;$$

$$D(\tilde{B}) := D(\tilde{T}) \subset \tilde{Y} / \tilde{Y}_0,$$

$$\tilde{B} : D(\tilde{B}) \longrightarrow (\tilde{X} \times Y_1) / (\tilde{X}_0 \times \{0\}),$$

$$\tilde{B}(\tilde{y} + \tilde{Y}_0) := (\tilde{T}(\tilde{y} + \tilde{Y}_0), 0), \quad \tilde{y} \in D_0(\tilde{T}).$$

It is easy to verify that $(\tilde{A}, \tilde{B}) \in \partial_S(\mathcal{E}, \mathcal{F})$. Let us check that (3.3), (3.4), (3.5) are true for (\tilde{A}, \tilde{B}) defined above.

 $\underline{\delta_0(B,\tilde{B})} < \varepsilon_0$: Let $(y,(x,0)) \in G_0(B)$ be such that $||y|| + ||x|| \le 1$. Then $y \in D_0(T)$ and $T(y+Y_0) = x+X_0$, and thus $(y,x) \in G_0(T)$. There exists $(\tilde{y},\tilde{x}) \in G_0(\tilde{T})$ such that $||y-\tilde{y}|| + ||x-\tilde{x}|| < \varepsilon < \varepsilon_0$, by (3.2). Then $(\tilde{y},(\tilde{x},0)) \in G_0(\tilde{B})$ and the assertion follows.

 $\underline{\delta_0(B,B)} < \varepsilon_0$: The estimate follows as above.

 $\underline{\delta_0(A,\tilde{A})} < \underline{\varepsilon_0} \colon \text{ Let } ((x,\lambda y_1),y) \in G_0(A) \text{ be such that } ||x|| + ||\lambda y_1|| + ||y|| \leqslant 1.$ In particular, $|\lambda| \leqslant ||\lambda y_1|| \leqslant 1$. We have $x \in D_0(S)$ and $S(x+X_0) = y+Y_0 - \lambda n_0$. Therefore $(x,y-\lambda y_1) \in G_0(S)$ and $||(x,y-\lambda y_1)|| \leqslant 1$. There exists $(\tilde{x},\tilde{z}) \in G_0(\tilde{S})$ such that $||x-\tilde{x}|| + ||y-\lambda y_1-\tilde{z}|| < \varepsilon$. Then $((\tilde{x},\lambda y_1),\tilde{z}+\lambda \tilde{y}_1) \in G_0(\tilde{A})$ and

$$||x - \tilde{x}|| + ||y - \tilde{z} - \lambda \tilde{y}_1|| \le ||x - \tilde{x}|| + ||y - \tilde{z} - \lambda y_1|| + |\lambda| ||y_1 - \tilde{y}_1|| <$$
$$< \varepsilon + 2\delta_0(T, \tilde{T})^{\frac{1}{2}} |\lambda| \le \varepsilon + 2\varepsilon^{\frac{1}{2}} < \varepsilon_0,$$

by (3.7), (3.6) and (3.2).

 $\frac{\delta_0(\tilde{A}, A) < \varepsilon_0}{\|\tilde{x}\|_{1} + \|\tilde{x}\|_{1}} \leq 1. \text{ In particular, } |\lambda| \leq |\lambda| \|y_1\| \leq 1. \text{ Note that } \|\tilde{x}\| + \|\lambda y_1\| + \|\tilde{y}\| \leq 1. \text{ In particular, } |\lambda| \leq |\lambda| \|y_1\| \leq 1. \text{ Note that } \tilde{x} \in D_0(\tilde{S}) \text{ and } \tilde{S}(\tilde{x} + \tilde{X}_0) = \tilde{y} + \tilde{Y}_0 - \lambda \tilde{v}.$ Hence $(\tilde{x}, \tilde{y} - \lambda \tilde{y}_1) \in G_0(\tilde{S})$ and

$$\begin{aligned} & ||(\tilde{x}, \tilde{y} - \lambda \tilde{y}_1|| \leqslant ||\tilde{x}|| + ||\tilde{y}|| + |\lambda| ||y_1|| + |\lambda| ||\tilde{y}_1 - y_1|| \leqslant \\ & \leqslant 1 + |\lambda| \cdot 2\hat{\delta}_0(T, \tilde{T})^{\frac{1}{2}} \leqslant 1 + |\lambda| \cdot 2\varepsilon^{\frac{1}{2}} \leqslant 1 + 2\varepsilon^{\frac{1}{2}} \leqslant 2. \end{aligned}$$

There exists $(x,y) \in G_0(S)$ such that $||\tilde{x} - x|| + ||\tilde{y} - \lambda \tilde{y}_1 - z|| < 2\varepsilon$. Then $((x, \lambda y_1), z + \lambda y_1) \in G_0(A)$ and

$$\begin{split} \|\tilde{x} - x\| + \|\tilde{y} - \lambda y_1 - z\| & \leqslant \|\tilde{x} - x\| + \|\tilde{y} - \lambda \tilde{y}_1 - z\| + |\lambda| \|y_1 - \tilde{y}_1\| < \\ & < 2\varepsilon + 2\hat{\delta}_0(T, \tilde{T})^{\frac{1}{2}} < 2\varepsilon + 2\varepsilon^{\frac{1}{2}} < \varepsilon_0, \end{split}$$

by (3.7), (3.6) and (3.2).

So we have checked (3.3). Now, we prove (3.4) and (3.5). A brief discussion shows us that

$$1 = \dim R(\tilde{A})/R(\tilde{S}) + \dim N(\tilde{A})/(N(\tilde{S}) \times \{0\})$$

(we can also apply a general result, namely Lemma 2.7 from [5], concerning the finite dimensional extensions).

If dim $R(\tilde{A})/R(\tilde{S}) = 1$ and $N(\tilde{A}) = N(\tilde{S}) \times \{0\}$, then $\tilde{v} \notin R(\tilde{S})$ (because $R(\tilde{A}) \neq R(\tilde{S})$). Note that

$$\dim N(\tilde{S})/R(\tilde{T}) = \dim N(\tilde{A})/R(\tilde{B}) \leq \dim N(A)/R(B) = \dim N(S)/R(T)$$

and

$$\dim N(\tilde{T})/R(\tilde{S}) = \dim N(\tilde{T})/(R(\tilde{S}) + \Lambda \tilde{v}) + 1 =$$

$$= \dim N(\tilde{T})/R(\tilde{A}) + 1 = \dim N(\tilde{B})/R(\tilde{A}) + 1 \leq$$

$$\leq \dim N(B)/R(A) + 1 = \dim N(T)/R(S).$$

Moreover

$$\begin{split} \operatorname{ind}(\tilde{A}, \tilde{B}) &= \dim \operatorname{N}(\tilde{A}) / (\operatorname{R}(\tilde{T}) \times \{0\}) - \dim \operatorname{N}(\tilde{T}) / \operatorname{R}(\tilde{A}) = \\ &= \dim \operatorname{N}(\tilde{S}) / \operatorname{R}(\tilde{T}) - \dim \operatorname{N}(\tilde{T}) / \operatorname{R}(\tilde{A}) = \\ &= \dim \operatorname{N}(\tilde{S}) / \operatorname{R}(\tilde{T}) - \dim \operatorname{N}(\tilde{T}) / (\operatorname{R}(\tilde{S}) + \Lambda \tilde{v}) = \\ &= \operatorname{ind}(\tilde{S}, \tilde{T}) + 1. \end{split}$$

If
$$R(\tilde{A}) = R(\tilde{S})$$
 and $\dim N(\tilde{A})/(N(\tilde{S}) \times \{0\}) = 1$, then $\tilde{v} \in R(\tilde{S})$. We also have $\dim N(\tilde{S})/R(\tilde{T}) \leqslant \dim N(\tilde{A})/R(\tilde{B}) \leqslant \leqslant \dim N(A)/R(B) = \dim N(S)/R(T)$, $\dim N(\tilde{T})/R(\tilde{S}) = \dim N(\tilde{B})/R(\tilde{A}) \leqslant \leqslant \dim N(B)/R(A) \leqslant \dim N(T)/R(S)$

and

$$\begin{split} \operatorname{ind}(\tilde{A}, \tilde{B}) &= \dim \operatorname{N}(\tilde{A})/(\operatorname{R}(\tilde{T}) \times \{0\}) - \dim \operatorname{N}(\tilde{T})/\operatorname{R}(\tilde{S}) = \\ &= \dim \operatorname{N}(\tilde{A})/(\operatorname{N}(\tilde{S}) \times \{0\}) + \dim \operatorname{N}(\tilde{S})/\operatorname{R}(\tilde{T}) - \\ &- \dim \operatorname{N}(\tilde{T})/\operatorname{R}(\tilde{S}) = 1 + \operatorname{ind}(\tilde{S}, \tilde{T}). \end{split}$$

The discussion concerning the Case (A) is finished.

Case (B): $d(y_1, N_0(\tilde{T})) > \hat{\delta}_0(T, \tilde{T})^{\frac{1}{2}}$.

There are $\tilde{\psi} \in (\tilde{Y}/\tilde{Y}_0)^*$ and $\tilde{y}_2 \in D_0(\tilde{T})$ with:

(3.8)
$$\tilde{\psi} | N(\tilde{T}) = 0, \quad \tilde{\psi}(\tilde{y}_2 + \tilde{Y}_0) = 1, \quad ||\tilde{\psi}|| \leq d(\tilde{y}_2, N_0(\tilde{T}))^{-1},$$

$$d(\tilde{y}_2, N_0(\tilde{T})) > \hat{\delta}_0(T, \tilde{T})^{\frac{3}{4}}, \quad ||y_1 - \tilde{y}_2|| < 3\hat{\delta}_0(T, \tilde{T}).$$

Let us prove (3.8). First of all, note that $\hat{\delta}_0(T,\tilde{T}) \neq 0$ (otherwise, we should have $y_1 \in N_0(T) = N_0(\tilde{T})$). Since $(y_1,0) \in G_0(T)$ and $||y_1|| \leq 2$, there exists $(\tilde{y}_2,\tilde{x}_2) \in G_0(\tilde{T})$ with

$$||y_1 - \tilde{y}_2|| + ||\tilde{x}_2|| < 3\hat{\delta}_0(T, \tilde{T}).$$

Let $\tilde{y} \in N_0(\tilde{T})$ be arbitrary. Then

$$\begin{split} ||\tilde{y}_{2} - \tilde{y}|| &\geqslant ||y_{1} - \tilde{y}|| - ||\tilde{y}_{2} - y_{1}|| > \\ &> ||y_{1} - \tilde{y}|| - 3\hat{\delta}_{0}(T, \tilde{T}) \geqslant d(y_{1}, N_{0}(\tilde{T})) - 3\hat{\delta}_{0}(T, \tilde{T}) > \\ &> \hat{\delta}_{0}(T, \tilde{T})^{\frac{1}{2}} - 3\hat{\delta}_{0}(T, \tilde{T}) > \hat{\delta}_{0}(T, \tilde{T})^{\frac{3}{4}} \end{split}$$

(the last inequality is true because $3\varepsilon + \varepsilon^{\frac{3}{4}} < \varepsilon^{\frac{1}{2}}$, by condition (3.2); see also (3.6)). Therefore, $d(\tilde{y}_2, N_0(\tilde{T})) > \hat{\delta}_0(T, \tilde{T})^{\frac{3}{4}}$.

Let $\tilde{\varphi} \in \tilde{Y}^*$ be such that $\tilde{\varphi}(\tilde{y}_2) = 1, \tilde{\varphi} \Big| N_0(\tilde{T}) = 0$ and $\|\tilde{\varphi}\| = d(\tilde{y}_2, N_0(\tilde{T}))^{-1}$. Since $\tilde{Y}_0 \subset N(\tilde{\varphi})$, we can take $\tilde{\psi}(\tilde{y} + \tilde{Y}_0) := \tilde{\varphi}\tilde{y}, \ \tilde{y} \in \tilde{Y}$.

Let (\tilde{A}, \tilde{B}) be as follows:

$$\begin{split} \mathrm{D}(\tilde{A}) &:= (D_0(\tilde{S}) \times Y_1) / (\tilde{X}_0 \times \{0\}) \subset (\tilde{X} \times Y_1) / (\tilde{X}_0 \times \{0\}), \\ \tilde{A} &: \mathrm{D}(\tilde{A}) \to \tilde{Y} / \tilde{Y}_0, \\ \tilde{A}(\tilde{x} + \tilde{X}_0, \lambda y_1) &:= \tilde{S}(\tilde{x} + \tilde{X}_0) + \lambda \tilde{y}_2 + \tilde{Y}_0; \\ \mathrm{D}(\tilde{B}) &:= \mathrm{D}(\tilde{T}) \subset \tilde{Y} / \tilde{Y}_0, \\ \tilde{B} &: \mathrm{D}(\tilde{B}) \to (\tilde{X} \times Y_1) / (\tilde{X}_0 \times \{0\}), \\ \tilde{B}(\tilde{y} + \tilde{Y}_0) &:= (\tilde{T}(\tilde{y} + \tilde{Y}_0) - \tilde{\psi}(\tilde{y} + \tilde{Y}_0) \tilde{T}(\tilde{y}_2 + \tilde{Y}_0), 0). \end{split}$$

It is easy to verify that $(\tilde{A}, \tilde{B}) \in \partial_S(\mathcal{E}, \mathcal{F})$. We have also to check that (3.3), (3.4) and (3.5) hold for (\tilde{A}, \tilde{B}) defined as above (i.e. in Case (B)).

 $\frac{\delta_0(A,\tilde{A})<\varepsilon_0}{(x,y-\lambda y_1)\in G_0(S)} \text{ Let } ((x,\lambda y_1),y)\in G_0(A) \text{ be such that } ||x||+||\lambda y_1||+||y||\leqslant 1.$ Then $(x,y-\lambda y_1)\in G_0(S)$ and $||(x,y-\lambda y_1)||\leqslant 1$. There exists $(\tilde{x},\tilde{y})\in G_0(\tilde{S})$ with $||x-\tilde{x}||+||y-\lambda y_1-\tilde{z}||<\varepsilon$. Then $((\tilde{x},\lambda y_1),\lambda \tilde{y}_2+\tilde{z})\in G_0(\tilde{A})$ and

$$||x - \tilde{x}|| + ||y - \lambda \tilde{y}_2 - \tilde{z}|| \le ||x - \tilde{x}|| + ||y - \lambda y_1 - \tilde{z}|| + |\lambda| ||y_1 - \tilde{y}_2|| <$$

$$< \varepsilon + 3|\lambda| \hat{\delta}_0(T, \tilde{T}) \le \varepsilon + 3\varepsilon < \varepsilon_0$$

by (3.6) and (3.2).

 $\frac{\delta_0(\tilde{A}, A) < \varepsilon_0}{\tilde{x} \in D_0(\tilde{S})} \text{ Let } ((\tilde{x}, \lambda y_1), \tilde{y}) \in G_0(\tilde{A}) \text{ be such that } ||\tilde{x}|| + ||\lambda y_1|| + ||\tilde{y}|| \leqslant 1.$ Then $\tilde{x} \in D_0(\tilde{S})$ and $\tilde{S}(\tilde{x} + \tilde{X}_0) = \tilde{y} - \lambda \tilde{y}_2 + \tilde{Y}_0$. Since $(\tilde{x}, \tilde{y} - \lambda \tilde{y}_2) \in G_0(\tilde{S})$ and

$$\begin{aligned} ||(\tilde{x}, \tilde{y} - \lambda \tilde{y}_2)|| &\leq ||\tilde{x}|| + ||\tilde{y}|| + ||\lambda \tilde{y}_2|| \leq \\ &\leq ||\tilde{x}|| + ||\tilde{y}|| + ||\lambda y_1|| + |\lambda| ||\tilde{y}_2 - y_1|| \leq \\ &\leq 1 + 3\hat{\delta}_0(T, \tilde{T}) < 1 + 3\varepsilon < 2, \end{aligned}$$

there exists $(x, z) \in G_0(S)$ such that

$$||\tilde{x} - x|| + ||\tilde{y} - \lambda \tilde{y}_2 - z|| < 2\varepsilon.$$

Then $((x, \lambda y_1), \lambda y_1 + z) \in G_0(A)$ and

$$\begin{split} ||\tilde{x} - x|| + ||\tilde{y} - \lambda y_1 - z|| &\leq ||\tilde{x} - x|| + ||\tilde{y} - \lambda \tilde{y}_2 - z|| + |\lambda| ||\tilde{y}_2 - y_1|| \leq \\ &\leq 2\varepsilon + 3\hat{\delta}_0(T, \tilde{T}) < 2\varepsilon + 3\varepsilon < \varepsilon_0, \end{split}$$

by (3.9), (3.6) and (3.2).

 $\frac{\delta_0(B,\tilde{B})<\varepsilon_0}{|E|} \text{ Let } (y,(x,0))\in G_0(B) \text{ be such that } ||y||+||x||\leqslant 1. \text{ Then } y\in C_0(T) \text{ and } (y,x)\in G_0(T). \text{ Hence there exists } (\tilde{y},\tilde{x})\in G_0(\tilde{T}) \text{ such that } ||y-\tilde{y}||+||x-\tilde{x}||<\varepsilon. \text{ Then } ||x-\tilde{x}||<\varepsilon. \text{ T$

$$(\tilde{y},(\tilde{x}-\tilde{\psi}(\tilde{y}+\tilde{Y}_0)\tilde{x}_2,0))\in G_0(\tilde{B})$$

and

$$\begin{split} \|\tilde{y}-y\|+\|x-\tilde{x}+\tilde{\psi}(\tilde{y}+\tilde{Y}_{0})\tilde{x}_{2}\| \leqslant \\ \leqslant \|y-\tilde{y}\|+\|x-\tilde{x}\|+|\tilde{\psi}(\tilde{y}+\tilde{Y}_{0})| \|\tilde{x}_{2}\| \leqslant \\ \leqslant \varepsilon+\|\tilde{\psi}\| \|\tilde{y}+\tilde{Y}_{0}\| \|\tilde{x}_{2}\| \leqslant \varepsilon+\|\tilde{\psi}\| \|\tilde{y}\| \cdot 3\hat{\delta}_{0}(T,\tilde{T}) \leqslant \\ \leqslant \varepsilon+(\|\tilde{y}-y\|+\|y\|)d(\tilde{y}_{2},N_{0}(\tilde{T}))^{-1} \cdot 3\hat{\delta}_{0}(T,\tilde{T}) \leqslant \end{split}$$

$$\leqslant \varepsilon + (\varepsilon + 1)\hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}} \cdot 3\hat{\delta}_0(T, \tilde{T}) \leqslant \varepsilon + 2 \cdot 3\hat{\delta}_0(T, \tilde{T})^{\frac{1}{4}} < \varepsilon + 6\varepsilon^{\frac{1}{4}} < \varepsilon_0$$

by (3.9), (3.6) and (3.2).

 $\frac{\delta_0(\tilde{B},B)<\varepsilon_0}{(\tilde{T}) \text{ and } \tilde{T}(\tilde{y}+\tilde{Y}_0)-\tilde{\psi}(\tilde{y}+\tilde{Y}_0)\tilde{T}(\tilde{y}_2+\tilde{Y}_0)=\tilde{x}+\tilde{X}_0.} \text{ Since}$

$$\tilde{T}(\tilde{y}-\tilde{\psi}(\tilde{y}+\tilde{Y}_0)\tilde{y}_2+\tilde{Y}_0)=\tilde{x}+\tilde{X}_0,$$

we must have $(\tilde{y} - \tilde{\psi}(\tilde{y} + \tilde{Y}_0)\tilde{y}_2, \tilde{x}) \in G_0(\tilde{T})$. Note that

$$\begin{split} \|(\tilde{y} - \tilde{\psi}(\tilde{y} + \tilde{Y}_0)\tilde{y}_2, \tilde{x})\| &\leq \|\tilde{y}\| + \|\tilde{\psi}\| \|\tilde{y}\| \|\tilde{y}_2\| + \|\tilde{x}\| \leq \\ &\leq \|\tilde{y}\| + \|\tilde{x}\| + \|\tilde{y}\| \hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}} (\|\tilde{y}_2 - y_1\| + \|y_1\|) \leq \\ &\leq 1 + \hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}} (3\hat{\delta}_0(T, \tilde{T}) + 2) \leq \\ &\leq 1 + 3\hat{\delta}_0(\tilde{T}, \tilde{T})^{\frac{1}{4}} + 2\hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}} \leq \\ &\leq 4 + 2\hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}}, \end{split}$$

by (3.8). Then there exists $(y, x) \in G_0(T)$ such that

$$\begin{split} &\|\tilde{y} - \tilde{\psi}(\tilde{y} + \tilde{Y}_0)\tilde{y}_2 - y\| + \|\tilde{x} - x\| < \\ &< (4 + 2\hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}}) \cdot 2\hat{\delta}_0(T, \tilde{T}) \leqslant \\ &\leqslant 8\hat{\delta}_0(T, \tilde{T}) + 4\hat{\delta}_0(T, \tilde{T})^{\frac{1}{4}} < 8\varepsilon + 4\varepsilon^{\frac{1}{4}}, \end{split}$$

by (3.6).

Note that

$$(y + \tilde{\psi}(\tilde{y} + \tilde{Y}_0)y_1, (x, 0)) \in G_0(B)$$

and

$$\begin{split} \|\tilde{y} - y - \tilde{\psi}(\tilde{y} + \tilde{Y}_0)y_1\| + \|\tilde{x} - x\| \leqslant \\ \leqslant \|\tilde{y} - y - \tilde{\psi}(\tilde{y} + \tilde{Y}_0)\tilde{y}_2\| + \|\tilde{x} - x\| + \|\tilde{\psi}(\tilde{y} + \tilde{Y}_0)(\tilde{y}_2 - y_1)\| \leqslant \\ \leqslant 8\varepsilon + 4\varepsilon^{\frac{1}{4}} + \|\tilde{\psi}\| \|\tilde{y}\| \|\tilde{y}_2 - y_1\| \leqslant \\ \leqslant 8\varepsilon + 4\varepsilon^{\frac{1}{4}} + \hat{\delta}_0(T, \tilde{T})^{-\frac{3}{4}} \cdot 3\hat{\delta}_0(T, \tilde{T}) \leqslant \\ \leqslant 8\varepsilon + 4\varepsilon^{\frac{1}{4}} + 3\varepsilon^{\frac{1}{4}} < \varepsilon_0 \end{split}$$

by (3.8), (3.6) and (3.2).

So, (3.3) is verified in Case (B) too. We have only to prove (3.4) and (3.5). Since $\tilde{y}_2 \notin N_0(\tilde{T})$, we have $\tilde{y}_2 + \tilde{Y}_0 \notin R(\tilde{S})$ and so $R(\tilde{A}) = R(\tilde{S}) + \Lambda(\tilde{y}_2 + \tilde{Y}_0)$.

Note also that $N(\tilde{A}) = N(\tilde{S}) \times \{0\}$ and $R(\tilde{B}) = \tilde{T}(N(\tilde{\psi})) \times \{0\}$ (now, $\tilde{\psi} := \tilde{\psi} | D(\tilde{T})$).

We have

$$N(\tilde{A})/R(\tilde{B}) = N(\tilde{S})/\tilde{T}(N(\tilde{\psi})) =$$

(3.10)
$$= (N(\tilde{S})/R(\tilde{T})) \times (R(\tilde{T})/\tilde{T}(N(\tilde{\psi}))) =$$
$$= (N(\tilde{S})/R(\tilde{T})) \times \Lambda$$

where = stands for isomorphism (because $N(\tilde{T}) \subset N(\tilde{\psi})$ and there are algebraic isomorphisms $R(\tilde{T}) = D(\tilde{T})/N(\tilde{T})$ and $\tilde{T}(N(\tilde{\psi})) = N(\tilde{\psi})/N(\tilde{T})$).

There is also an isomorphism

(3.11)
$$L: N(\tilde{B})/R(\tilde{A}) \to N(\tilde{T})/R(\tilde{S})$$

defined as follows: if $\xi \in D(\tilde{B}) \subset \tilde{Y}/\tilde{Y}_0$ and $\tilde{B}\xi = 0$, then

$$\xi - \tilde{\psi}(\xi)(\tilde{y}_2 + \tilde{Y}_0) \in N(\tilde{T}).$$

If $\xi \in R(\tilde{A})$, we have

$$\xi - \tilde{\psi}(\xi)(\tilde{y}_2 + \tilde{Y}_0) = \tilde{S}\eta + \lambda \tilde{y}_2 + \tilde{Y}_0 - \tilde{\psi}(\tilde{S}\eta + \lambda \tilde{y}_2 + \tilde{Y}_0)(\tilde{y}_2 + \tilde{Y}_0) = \tilde{S}\eta \in R(\tilde{S}).$$

Then we set

$$L(\xi + R(\tilde{A})) := \xi - \tilde{\psi}(\xi)(\tilde{y}_2 + \tilde{Y}_0) + R(\tilde{S}), \ \xi + R(\tilde{A}) \in N(\tilde{B})/R(\tilde{A}).$$

It is easy to verify that L is injective and surjective. The assertions (3.10) and (3.11) readily imply (3.4) and (3.5). The proof of the theorem is complete.

3.2. REMARK. Let \mathcal{X}, \mathcal{Y} be Banach spaces, $X_0, X \in G(\mathcal{X}), Y_0, Y \in G(\mathcal{Y}), X_0 \subset \mathcal{X}, Y_0 \subset Y, S \in C(X/X_0, Y/Y_0), T \in C(Y/Y_0, X/X_0), R(S) = N(T), R(T) = N(S).$ Then, there is an $\varepsilon > 0$ such that if $(\tilde{S}, \tilde{T}) \in \partial_S(\mathcal{X}, \mathcal{Y})$ and $\hat{\delta}_0(S, \tilde{S}), \hat{\delta}_0(T, \tilde{T}) < \varepsilon$, it results $R(\tilde{S}) = N(\tilde{T}), R(\tilde{T}) = N(\tilde{S})$. To see this, we could invoke Corollary 2.12 from [2], which refers to a more general problem and whose proof is essentially based on a quite laborious approximation method (see also [1] and [5]). For the convenience of the reader, we shall give a short proof of the (much simpler) remark stated above.

We therefore consider $(\tilde{S}, \tilde{T}) \in \partial_S(\mathcal{X}, \mathcal{Y})$ with $\tilde{S} \in C(\tilde{X}/\tilde{X}_0, \tilde{Y}/\tilde{Y}_0)$, $\tilde{T} \in C(\tilde{Y}/\tilde{Y}_0, \tilde{X}/\tilde{X}_0)$, where $\tilde{X}, \tilde{X}_0 \in G(\mathcal{X})$, $\tilde{Y}, \tilde{Y}_0 \in G(\mathcal{Y})$, $\tilde{X}_0 \subset \tilde{X}, \tilde{Y}_0 \subset \tilde{Y}$. Let S_0, \tilde{S}_0 be the injective operators obtained from S, \tilde{S} , factoring through the null-spaces. Then:

$$S_0 \in C(X/N_0(S), N_0(T)/Y_0),$$

 S_0 is injective with closed range,

$$\tilde{S}_0 \in C(\tilde{X}/N_0(\tilde{S}), N_0(\tilde{T})/\tilde{Y}_0),$$

$$G_0(S_0) = G_0(S), \quad G_0(\tilde{S}_0) = G_0(\tilde{S})$$

and

$$\delta(N_0(S), N_0(\tilde{S})) \leq (1 + 2\gamma(T)^{-1})\delta_0(T, \tilde{T})$$

(the last assertion follows from Lemma 3.4 (a) with: $N_0(S) = R_0(T)$ and $\overline{R_0(\tilde{T})} \subset N_0(\tilde{S})$). By applying Proposition 3.3 below for S_0, \tilde{S}_0 , we obtain that $R(\tilde{S}_0)$ is closed (if $\hat{\delta}_0(S, \tilde{S})$ and $\hat{\delta}_0(T, \tilde{T})$ are small enough). Therefore, $R_0(\tilde{S})$ is closed. But we also have

$$\delta(N_0(\tilde{T}), R_0(\tilde{S})) \leqslant C(S, T)(\delta_0(\tilde{T}, T) + \delta_0(S, \tilde{S})),$$

where C(S,T) > 0 depends only on S and T. Indeed, we can write

$$\delta(N_0(\tilde{T}), R_0(\tilde{S})) \leq \delta(N_0(\tilde{T}), N_0(T)) + \delta(N_0(T), R_0(\tilde{S})) +$$

$$+ \delta(N_0(\tilde{T}), N_0(T))\delta(N_0(T), R_0(\tilde{S})) \leq$$

$$\leq (1 + 2\gamma(T)^{-1})\delta_0(\tilde{T}, T) + (1 + 2\gamma(S)^{-1})\delta(S, \tilde{S}) +$$

$$+ (1 + 2\gamma(T)^{-1})(1 + 2\gamma(S)^{-1})\delta_0(\tilde{T}, T)\delta_0(S, \tilde{S}),$$

by Lemma 3.4, since $N_0(T) = R_0(S)$, where we have used the estimate

$$\delta(X,Y) \leq \delta(X,Z) + \delta(Z,Y) + \delta(X,Z)\delta(Z,Y)$$

valid for any linear closed subspaces X, Y, Z of an arbitrary Banach space.

Because of the inclusion $R_0(\tilde{S}) \subset N_0(\tilde{T})$, a well-known lemma of Riesz shows us that $R_0(\tilde{S}) = N_0(\tilde{T})$ (if $\hat{\delta}_0(S, \tilde{S})$, $\hat{\delta}_0(T, \tilde{T})$ are small enough). Consequentely, $R(\tilde{S}) = N(\tilde{T})$.

3.3. PROPOSITION. Let $A \in C(X/X_1, Y_1/Y_0)$ be injective with closed range and $\tilde{A} \in C(\tilde{X}/\tilde{X}_1, \tilde{Y}_1/\tilde{Y}_0)$ with $X, X_1, \tilde{X}, \tilde{X}_1 \in G(X), Y, Y_1, \tilde{Y}, \tilde{Y}_1 \in G(Y)$. If $\delta_0(\tilde{A}, A)$, $\delta(X_1, \tilde{X}_1)$ are sufficiently small, then \tilde{A} is also injective with closed range (see also [1] for a version of this result).

Proof. Since A is injective with closed range, there is a C > 0 such that

(3.12)
$$C||x+X_1|| \leq ||A(x+X_1)||, \quad x \in D_0(A).$$

Let $\varepsilon > \delta_0(\tilde{A}, A) + \delta(X_1, \tilde{X}_1)$. If $\delta_0(\tilde{A}, A)$ and $\delta(X_1, \tilde{X}_1)$ are sufficiently small, we may also assume that

$$(3.13) 2(3+C^{-1})\varepsilon < 1.$$

Let $\tilde{x} \in D_0(\tilde{A}), \ \tilde{x}_1 \in \tilde{X}_1, \ \tilde{y}_1 \in \tilde{Y}_1 \ \text{and} \ \tilde{y}_0 \in \tilde{Y}_0 \ \text{be such that}$

(3.14)
$$\|\tilde{x} - \tilde{x}_1\| \leq 2\|\tilde{x} + \tilde{X}_1\|,$$

$$\tilde{A}(\tilde{x} + \tilde{X}_1) = \tilde{y}_1 + \tilde{Y}_0,$$

$$\|\tilde{y}_1 - \tilde{y}_0\| \leq 2\|\tilde{y}_1 + \tilde{Y}_0\|.$$

Since $(\tilde{x} - \tilde{x}_1, \tilde{y}_1 - \tilde{y}_0) \in G_0(\tilde{A})$, there exists $(x, y_1) \in G_0(A)$ with

$$(3.15) ||\tilde{x} - \tilde{x}_1 - x|| + ||\tilde{y}_1 - \tilde{y}_0 - y_1|| \leqslant \varepsilon(||\tilde{x} - \tilde{x}_1|| + ||\tilde{y}_1 - \tilde{y}_0||).$$

A standard calculation gives the estimate

(3.16)
$$d(v, \tilde{X}_1) \leq d(v, X_1) + 2\delta(X_1, \tilde{X}_1)||v||, \quad v \in \mathcal{X}.$$

Indeed, for arbitrary $v \in \mathcal{X}$ and $\alpha > 0$, we can choose $v_1 \in X_1$ with $||v - v_1|| \le (1 + \alpha)d(v, X_1)$ and $||v_1|| \le ||v_1 - v|| + ||v|| \le (1 + \alpha)d(v, X_1) + ||v|| \le (2 + \alpha)||v||$. Then there is $v_2 \in \tilde{X}_1$ with $||v_1 - v_2|| \le (\delta(X_1, \tilde{X}_1) + \alpha)||v_1|| \le (\delta(X_1, \tilde{X}_1) + \alpha)(2 + \alpha)||v||$. Consequently, we can write

$$||v - v_2|| \le ||v - v_1|| + ||v_1 - v_2|| \le (1 + \alpha)d(v, X_1) + (\delta(X_1, \tilde{X}_1) + \alpha)(2 + \alpha)||v||$$
$$d(v, \tilde{X}_1) \le ||v - v_2|| \le (1 + \alpha)d(v, X_1) + (\delta(X_1, \tilde{X}_1) + \alpha)(2 + \alpha)||v||.$$

Letting $\alpha \to 0$, we obtain (3.16).

Let $a := \varepsilon(||\tilde{x} - \tilde{x}_1|| + ||\tilde{y}_1 - \tilde{y}_0||)$. Then, using (3.12), (3.14), (3.15) and (3.16), we have:

$$\begin{split} \|\tilde{x} + \tilde{X}_1\| &= \|\tilde{x} - \tilde{x}_1 + \tilde{X}_1\| \leqslant \|\tilde{x} - \tilde{x}_1 + X_1\| + 2\varepsilon \|\tilde{x} - \tilde{x}_1\| \leqslant \\ &\leqslant \|\tilde{x} - \tilde{x}_1 + X_1\| + 2a \leqslant 2a + \|\tilde{x} - \tilde{x}_1 - x + X_1\| + \|x + X_1\| \leqslant \\ &\leqslant 3a + C^{-1}\|y_1\| \leqslant 3a + C^{-1}\|y_1 - \tilde{y}_1 + \tilde{y}_0\| + C^{-1}\|\tilde{y}_1 - \tilde{y}_0\| \leqslant \\ &\leqslant (3 + C^{-1})a + 2C^{-1}\|\tilde{y}_1 + \tilde{Y}_0\| \leqslant \\ &\leqslant 2(3 + C^{-1})(\|\tilde{x} + \tilde{X}_1\| + \|\tilde{y}_1 + \tilde{Y}_0\|)\varepsilon + 2C^{-1}\|\tilde{y}_1 + \tilde{Y}_0\| \end{split}$$

In this way we have obtained

$$\|\tilde{x} + \tilde{X}_1\|(1 - 2(3 + C^{-1})\varepsilon) \le (2(3 + C^{-1})\varepsilon + 2C^{-1})\|\tilde{y}_1 + \tilde{Y}_0\|,$$

from which we derive, by (3.13), the existence of a constant c' > 0 such that

$$||\tilde{x} + \tilde{X}_1|| \leqslant c' ||\tilde{A}(\tilde{x} + \tilde{X}_1)||.$$

Therefore A is injective, with closed range.

3.4. Lemma. Let $S \in C(X/X_0, Y/Y_0)$, $\overline{R(S)} = R(S)$, $\tilde{S} \in C(\tilde{X}/\tilde{X}_0, \tilde{Y}/\tilde{Y}_0)$. Then:

(a)
$$\delta(R_0(S), \overline{R_0(\tilde{S})}) \leq (1 + 2\gamma(S)^{-1})\delta_0(S, \tilde{S}),$$

(b)
$$\delta(N_0(\tilde{S}), N_0(S)) \leq (1 + 2\gamma(S)^{-1})\delta_0(\tilde{S}, S)$$

Proof. A similar result is stated in [2] (see [2], Lemma 2.9). Since the proof of that result is omitted in [2] and our estimates are slightly different (due to the fact that we use another norm on a Cartesian product of Banach spaces), we give here full details.

Let $\varepsilon > \delta_0(S, \tilde{S})$, let $y \in R_0(S)$ and let $x \in D_0(T)$ be such that $S(x+X_0) = y+Y_0$. Then $||y|| \ge \gamma(S)d(x, N_0(S))$. Let $x_1 \in N_0(S)$ with $||x-x_1|| \le 2||y||\gamma(S)^{-1}$. Since $(x-x_1, y) \in G_0(S)$, there exists $(\tilde{x}, \tilde{y}) \in G_0(\tilde{S})$ such that

$$||x - x_1 - \tilde{x}|| + ||y - \tilde{y}|| \le \varepsilon(||x - x_1|| + ||y||).$$

But $\tilde{y} \in R_0(\tilde{S})$ and

74

$$||y - \tilde{y}|| \le \varepsilon (||y|| + 2||y||\gamma(S)^{-1}) = \varepsilon (1 + 2\gamma(S)^{-1})||y||.$$

Letting $\varepsilon \to \delta_0(S, \tilde{S})$, we obtain (a).

Let $\varepsilon > \delta_0(\tilde{S}, S)$ and let $\tilde{x} \in D_0(\tilde{S})$ be with $\tilde{S}(\tilde{x} + \tilde{X}_0) = 0$. Since $(\tilde{x}, 0) \in G_0(\tilde{S})$ there exists $(x, y) \in G_0(S)$ such that $||\tilde{x} - x|| + ||y|| \le \varepsilon ||\tilde{x}||$. Since

$$\varepsilon ||\tilde{x}|| \geqslant ||y|| \geqslant ||y + Y_0|| \geqslant \gamma(S)d(x, N_0(S))$$

there exists $x_1 \in N_0(S)$ such that $||x - x_1|| \leq 2\varepsilon ||\tilde{x}|| \gamma(S)^{-1}$. Then we have

$$||\tilde{x} - x_1|| \le ||\tilde{x} - x|| + ||x - x_1|| \le \varepsilon ||\tilde{x}|| + 2\varepsilon ||\tilde{x}|| \gamma(S)^{-1} =$$

$$= \varepsilon (1 + 2\gamma(S)^{-1}) ||\tilde{x}||.$$

Letting $\varepsilon \to \delta_0(\tilde{S}, S)$, we obtain (b).

4. AN APPLICATION

In this section we shall present a theorem concerning the stability of the index of a complex of Banach spaces, due to E. Albrecht and F.-H. Vasilescu ([1], [2], [5]), as a consequence of the result in Section 3 (see Theorem 4.3 below). In fact, the concept of symmetrical pair was introduced by the above mentioned authors in connection with the study of semi-Fredholm complexes (see [1]).

4.1. DEFINITION. A complex of Banach spaces is a sequence of the form

$$\cdots X^p \xrightarrow{\alpha^p} X^{p+1} \xrightarrow{\alpha^{p+1}} \cdots$$

where X^p is a Banach space and $\alpha^p \in C(X^p, X^{p+1})$ such that $R(\alpha^p) \subset N(\alpha^{p+1})$ (for all $p \in \mathbb{Z}$).

A natural treatment of the problem studied in [2] is provided by the following particular definitions.

Let \mathcal{X} be a fixed Banach space. A family $\alpha = (\alpha^p)_{p \in \mathbb{Z}}$, where $\alpha^p \in C(X^p/X_0^p, X^{p+1}/X_0^{p+1})$, $X_0^p, X^p \in G(\mathcal{X})$, $X_0^p \subset X^p$ and $\alpha^{p+1}\alpha^p = 0$ will be called a *complex* in \mathcal{X} . The set of all complexes in \mathcal{X} will be denoted by $\partial(\mathcal{X})$.

The complex α is said to be semi-Fredholm if at least one of the functions

$$Z \ni k \mapsto \dim N(\alpha^{2k})/R(\alpha^{2k-1})$$

$$\mathbb{Z} \ni k \mapsto \dim \mathbb{N}(\alpha^{2k+1})/\mathbb{R}(\alpha^{2k})$$

is finite and has finite support, and, moreover, we have $\inf\{\gamma(\alpha^p); p \in \mathbb{Z}\} > 0$. Then, we define the *index* of α by the equality

$$\operatorname{ind} \alpha := \sum_{p \in \mathbb{Z}} (-1)^p \dim \mathcal{N}(\alpha^p) / \mathcal{R}(\alpha^{p-1}).$$

If, in adition, ind α is finite, then α will be called Fredholm.

We say that $(S,T) \in \partial_S(\mathcal{X},\mathcal{Y})$ $(\mathcal{X},\mathcal{Y})$ Banach spaces) is semi-Fredholm if R(S), R(T) are closed and at least one of the numbers $\dim N(S)/R(T)$, $\dim N(T)/R(S)$ is finite. Then,

$$\operatorname{ind}(S,T) := \dim N(S)/R(T) - \dim N(T)/R(S).$$

The following "reduction" result has been proved in [1] (see Theorem 5.5 from [1]).

4.2. THEOREM. Let us consider a complex α of Banach spaces of the form

$$\cdots X^p \xrightarrow{\alpha^p} X^{p+1} \xrightarrow{\alpha^{p+1}} \cdots$$

Then there exist two Banach spaces \mathcal{X}_0 and \mathcal{X}_1 , and a symmetrical pair of densely defined operators $(S_0, S_1) \in \partial_S(\mathcal{X}_0, \mathcal{X}_1)$ with the following properties:

- (1) $\inf\{\gamma(\alpha^p); p \in \mathbb{Z}\} = \min\{\gamma(S_0), \gamma(S_1)\};$
- (2) The complex α is semi-Fredholm (Fredholm) if and only if (S_0, S_1) is semi-Fredholm (Fredholm), and in this case ind $\alpha = \operatorname{ind}(S_0, S_1)$.

Let us outline the proof of Theorem 4.2, since we need some details in the following.

With no loss of generality we may assume that $\overline{D(\alpha^p)} = X^p$ for all $p \in \mathbb{Z}$. Let

$$\mathcal{X}_0 := \bigoplus_{k \in \mathbb{Z}} X^{2k}, \quad \mathcal{X}_1 := \bigoplus_{k \in \mathbb{Z}} X^{2k+1}$$

where the direct sum is endowed with the ℓ^2 -norm. One defines the operator

$$S_0(\bigoplus_{k\in\mathbb{Z}}x_{2k}):=\bigoplus_{k\in\mathbb{Z}}\alpha^{2k}x_{2k}$$

on the linear space

$$D(S_0) := \left\{ \bigoplus_{k \in \mathbb{Z}} x_{2k} \in \mathcal{X}_0 \; ; \; \sum_{k \in \mathbb{Z}} ||\alpha^{2k} x_{2k}||^2 < \infty \right\}$$

One can see that $S_0 \in C(\mathcal{X}_0, \mathcal{X}_1)$.

Similarly, one defines the operator

$$S_1(\bigoplus_{k\in\mathbb{Z}}x_{2k+1}):=\bigoplus_{k\in\mathbb{Z}}\alpha^{2k+1}x_{2k+1}$$

on the linear space

$$D(S_1) := \left\{ \bigoplus_{k \in \mathbb{Z}} x_{2k+1} \in \mathcal{X}_1 \; ; \; \sum_{k \in \mathbb{Z}} \|\alpha^{2k+1} x_{2k+1}\|^2 < \infty \right\}.$$

and one has $S_1 \in C(\mathcal{X}_1, \mathcal{X}_0)$.

To verify (1) and (2) is then a simple matter.

Let us state now the theorem of stability of the index for Fredholm complexes (the original proof, which is also valid for semi-Fredholm complexes, can be found in [2]).

4.3. THEOREM. Let $\alpha = (\alpha^p)_{p \in \mathbb{Z}} \in \partial(\mathcal{X})$ be a Fredholm complex. Then there exists an $\varepsilon > 0$ such that if $\tilde{\alpha} = (\tilde{\alpha}^p)_{p \in \mathbb{Z}} \in \partial(\mathcal{X})$ and $\sup \{\hat{\delta}_0(\alpha^p, \tilde{\alpha}^p); p \in \mathbb{Z}\} < \varepsilon$, then $\tilde{\alpha}$ is also Fredholm, $\dim N(\tilde{\alpha}^p)/R(\tilde{\alpha}^{p-1}) \leq \dim N(\alpha^p)/R(\alpha^{p-1})$ for all $p \in \mathbb{Z}$, and $\inf \tilde{\alpha} = \inf \alpha$.

Proof. From Theorems 4.2 and 3.1 we draw easily the conclusion about the equality of the indices. For the upper semicontinuity of dim $N(\alpha^p)/R(\alpha^{p-1})$, we must apply directly Proposition 2.10 from [2] (strictly speaking, Theorem 3.1 allows only to state the semicontinuity of some numbers of the form $\sum \dim N(\alpha^p)/R(\alpha^{p-1})$). In

order to derive the estimates of Theorem 4.3 from Theorem 3.1, we make the remark that

$$R(\tilde{S}_0) = \bigoplus_{k \in \mathbb{Z}} R(\tilde{\alpha}^{2k}), \quad R(\tilde{S}_1) = \bigoplus_{k \in \mathbb{Z}} R(\tilde{\alpha}^{2k+1})$$

(see the outline of proof of Theorem 4.2). Then, $R(\tilde{\alpha}^p)$, $p \in \mathbb{Z}$ are still closed, if $\sup\{\hat{\delta}_0(\alpha^p,\tilde{\alpha}^p);\ p\in\mathbb{Z}\}$ is small enough. Now the estimates of Lemma 3.4 allows us to apply a theorem due to Fainshtein and Shul'man [3] and to obtain also the inequalities of Theorem 4.3. We omit the details.

REFERENCES

- 1. Albrecht, E.; Vasilescu, F.-H., Semi-Fredholm complexes, in Operator Theory:

 Advances and Application, vol. 11, Birkhäuser Verlag, 1983.
- 2. ALBRECHT, E.; VASILESCU, F.-H., Stability of the index of a semi-Fredholm complex of Banach spaces, J. Funct. Anal., 66(1986), 141-172.
- 3. Fainshtein, A. S.; Shul'Man, V. S., Stability of the index of a short Fredholm complex of Banach spaces under perturbations that are small in the non-compactness measure (Russian), in Spectral'naia teoria operatorov, 4, The Publishing House "Elm", Baku, 1982, pp. 189-198.
- 4. KATO, T., Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
- 5. Vasilescu, F.-H., Stability of the index of a complex of Banach spaces, J. Operator Theory, 2(1979), 247-275.

C.-G. AMBROZIE

Departament of Mathematics,
INCREST,

Bd. Păcii 220, 79622 Bucharest,
Romania.

Present address:

The Institute of Mathematics of The Romanian Academy P.O. Box 1-764, 70700 Bucharest, Romania.

Received June 9, 1989.