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TRIANGULAR AF ALGEBRAS
AND NEST SUBALGEBRAS OF UHF ALGEBRAS

J. R. PETERS and B. H. WAGNER

If D is a masa in a unital C*-algebra ¥, then a nest M C D is a linearly ordered
set of projections containing 0 and 1. Associated with M is AlgM = {z € U :
: ptzp = 0,p € M}, the nest algebra of M. Nest algebras form a class of non-
selfadjoint operator algebras; in this paper we will primarily be concerned with nest
sublagebrés of UHF algebras.

The study of nonselfadjoint subalgebras of UHF, and more generally, of AF
algebras was begun in [12], [2], and [9]; these papers deal mostly with triangular
subalgebras of AF algebras, called TAF algebras. These are nonselfadjoint subalgebras
T of an AF algebra 2 such that 7 N7* is a certain kind of masa. The present work
overlaps with these papers in as much as an important class of nest algebras, namely
the nest algebras of multiplicity-free nests, are TAF; furthermore, many of our results
are formulated for multiplicity-free nests. Just as in [12], [13], and [9], all masas under
consideration are assumed to be of the type studied by Stratild and Voiculescu in [15],
called canonical masas by Power and here denoted simply as masas. Such a masa D
in an AF algebra 9 is constructed by taking aLnéfgasing sequence {2,}5%, of finite

o]
dimensional subalgebras of 2 such that 2 = U 2, , choosing masas D,, C %A, such

n=1

. 00
that D, C D,41, n = 1,2,..., and setting D .= U D,. The spectrum of D is

zero dimensional. Recently Blackadar has shown ho£=ti) construct a masa in the 2%
UHF algebra whose spectrum is not zero dimensional ([4]; also see [14]). A theory of
triangular algebras and nest algebras based on such “noncanonical” masas would no
doubt be quite different from what is done here. But even aside from the question
of the masas, there are problems with nest subalgebras of UHF ;algebras that appear
to have no parallel with nest.algebras in B(#) = {bounded operators on a Hilbert
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space}: two nests may be apparently indistinguishable, yet their nest algebras may
not be isomorphic. In [9, Example 4.4],' there are two nests which admit a trace-
preserving bijection from one to the other, and this bijection even extends uniquely
to a C*-isomorphism of the masas genérated by the nests; the nest algebras are
nevertheless not isometrically isomorphic. The obstruction here is that the ambient
UHF algebras, though C*-isomorphic, are differently represented; i.e., representing
the UHF algebras as inductive limits, the sequences of embeddings are different.
This example illustrates the fact that C*-isomorphism is too coarse a notion in this
context. On the other hand, if two nest algebras are isometrically isomorphic, then
their ambient UHF algebras are C*-isomorphic (Theorem 2.11).

The normalized trace on a UHF algebra provides a useful invariant: if two max-
imal nest have isomorphic nest algebras, then they have the same trace (Proposition
2.16). Given a UHF algebra % and masa D, and 0 < o < 1, there is maximal
multiplicity-free nest M satisfying sup{tr(p) : p € M, p < 1} = & (Corollary 2.21).
Thus the nest algebras corresponding to distinct a’s are not ismetrically isomorphic.
This contradicts {12, Proposition 1.6}; unfortunately there is an error in [12, Lemma
1.5] which nullifies this proposition.

The trace is a relatively crude invariant; a stronger invariant is the diagonal order-
ing introduced in [9] (see Section 0). For instance, there are maximal, multiplicity-free
nests M and A in a masa ® in the 2°° UHF algebra such that tr(M) = tr(N) is the
set of all dyadic rationals, yet (D, <aigm) is not order-isomorphic Witi’l (D, <AgwN)
(Example 3.9), and a fortiori, Alg M and Alg N are not isometrically isomorphic. It
was observed in the previous paragraph that the trace of a nest can have gaps; e.g.,
(tt(M)) N (a, 1) = B, even if M is maximal and multiplicity-free. If M satisfies the
stronger condition that C*(M) is a masa, it can still happen that tr(M) is a proper
subset of the range of the trace (Example 3.17), but we can show tr(M) = [0,1]
(Proposition 3.18). An important fact is that among nests M for which C*(M) is a
masa, the trace is just as good an invariant as the diagonal ordering (Corollary 3.14).

Section 1 is concerned with isomorphisms of TAF algebras. The first results
is that isometric module isomorphisms of algebras are in fact algebra isomorphisms
(Theorem 1.1); this is a consequence of work of Arazy and Solel on Jordan isomor-
phisms. The main theorem in this section, called the Diagonal Extension Theorem,
addresses the question of extending C*-isomorphisms of masas to isomorphisms of
their ambient AF algebras (Theorem 1.10); it was motivated by the fundamental re-
lation of [13, §6.2] on the spectrum of the masa. This theorem implies {13, Theorem
6.15). ,

Sections 2 and 3 are devoted to the theory of nest subalgebras of UHF algebras.

In Section 2 we develop a number of isomorphism invariants, and show that there are
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many nonisomorphic nest algebras, generated by maximal nests, in any given UHF
algebra. The primary topic of Section 3 is the relationship between trace-preserving
bijections of nests and order isomorphisms of the masas induced by the nest algebras.
The Order Isomorphism Theorem for Nest Algebras (Theorem 3.13) gfves certain
sufficient conditions for extending such a bijection to an order isomorphism. At the
end of Section 3, we examine the necessary conditions give in {5, Theorem 4.3] for
order isomorphism and algebra isomorphism of TAF algebras, and show they are not
sufficient (Example 3.20). /

Section 4 deals with the Ko and K;-groups of both TAF algebras and nest al-
gebras. In the first case, the K-theory reduces to that of the diagonal masa, and in
'~ the case of nest algebras the K-theory coincides with that of the commutant of the
nest. Pitts [11] has proved the analogous result for Ko of nest subalgebras of B(%),
and Peters [10] has done the same for. Ko and K; of semicrossed products. Section 4
also has an interesting structure theorem for nest algebras (Theorem 4. 4) Two other

structure results are given.in Corollaries 2.17 and 3.16.

This paper is a first step toward a theory of nests and nest subalgebras of UHF
algebras. While the work on nests in Hilbert space serves as a model for the kinds of
questions to be asked, there seems to be véry little similarity, either in the techniques
or in the results. The fact that UHF algebras are antiliminal means that the role
played by the compact operators in our theory is nil. One result that is valid in both
contexts is that maximal nests are reflexive (Corollary 2.4). Much work remains to be
done. In particular,.we have not formulated the correct notion of general multiplicity,
nor have we resolved the question of the validity of the Arveson distance formula in
this setting. '

0. PRELIMINARIES

A C*-algebra 2 is almost finite dimensional (AF) if 2 contains a sequence {2,
: 1 € n < oo} of finite dimensional subalgebras such that %; C %, C ... and U =
o)

= U 2, .- All AF algebras in this paper will be unital, and in this case we reqﬁire that
n=1
2 contains the unit 1 of 2. In the special case that each 2y, is a full matrix algebra,

then 2 is called a UHF algebra. If § C 2, then §¢ will denote {z. € A : zs = sz for
all s € §}, the commutant of § in .

The term masa will be used in the sense of [15], as described in the introduction.

o)
If A = U A, is an AF algebra with masa D, where %, is a direct sum of factors

n=1
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Ank), then a system of matrix units {e )} can always be chosen for U A, so that
n=l

D is the closed linear span of {e,-,- )} (see [9, §1] for more details). Whenever we use

matrix units in 2, we will always assume that they are chose in this manner. Thus,

we can think of D, as the usual diagonal of %,. We will often write e( "k) as e("k)

In addition, if P(D) (resp. P(Dn)) is the set of (selfadjoint) pro_]ectlons in D (resp.
. )
D, ), then P(D) = U P(D,)- It follows that the spectrum of D is zero dimensional.

n=1
In the terminology of [14], a masa is a Cartan subalgebra with locally finite ample
semigroup. Thus, given two masas D and € in an AF algebra 2, Corollary I11.1.16 of
[14] implies that there is an automorphism a of 2 such that € = (D).

leen an AF algebra % = UQI,, with masa 9 the term D-module will always

mean a norm-closed unital D—blmodule Subalgebras of U will be assumed to also
be D-modules (i.e., norm-closed and containing D) for some masa D, usually clear
from the context. By Lemma 3.3 and Proposition 3.8 of [9), every D-module is the
closed linear span of the matrix units it contains. Another important property, proved
-in [9, Theorem 2.2), is that every D-module S in 2 is inductive. This means that

S= U (SNA,). A D-module § is triangular lf SNS* =9, and D is the diagonal

of §. S C Ais a triangular AF (TAF) algebra, if S is a triangular algebra in %, and -
S is a triangular UHF (TUHF) algebra if in addition 2 is UHF. A TAF algebra § in
2 is maximal triangular if it is not contained in any larger TAF subalgebra éf % A
maximal triangular algebra S is strongly maximal triangular if there is some sequence
{2,) such that A = Uﬁln.and S N2, is maximal triangular in 2, for all n > some

n
N. This is equivalent to the condition S + §* = A [V, Theorem 2.1].

Suppose 2 and B are AF algebras with masas D and €, respectively. Let S be
a D-module in 2 and 7 an ¢-module in B. We say that ¢ : § — T is a module
isomorphism if ¢ is an isometric bijection which preserves the module structure (i.e.,
p(dsd’) = p(d)p(s)p(d’) for all d,d' € D, s € S) and in addition (D) = €. Note that
7. I D'is an isomorphism of abelian C*-algebras, so it is a C*-isomorphism. Likewise,
we will always assume that an algebra isomorphism ¢ of two algebras S and 7 is
isometric. However, in this case we do not also assume that ¢(®D) = € (although it is
true that o(®) = € if S and T are TAF, by [9, Proposition 3.20)).

An important tool in the study of D-modules is the set Wp = {partial isometries’
weU: wDw C D and wDw* C D}. Note that the initial and final projections
of w € Wy lie in D. Also, every matrix unit of 2 is an element of Wp [9, Lemma
3.3]. Two partial isometries v, w € Wy are orthogonal if their initial projections are -
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orthogonal (i.e., v* vw*w = 0) and their final projections are also orthogonal. If S is a
D-module, then we define Wp(S) = WpNS. Wp(S) induces a relation <5 on P(D)
by e <s f iff there is some w € Wg(S) with initial projection f and final projection
e (we will use the notation e  f and e < f for the usual ordering on projection).
<s is the diagonal ordering induced by S. If § is a TAF algebra then <s is in fact a
partial ordering [9, Theorem 3.13]. If S is a D-module in Y and T is an E-module in
8, then a C*-isomorphism ¢ : ® — €'is an order isomorphism if it has the property
that e <s f iff p(e) <7 p(f). We denote such a map by ¢ : (D, <s) — (€, <1—) For
more details on Wyg, Wy(S), and order- 1somorphlsms see [9, §3]

Suppose S is a subset of U with @ CS. A projection e € 2 is invariant for
Sifetse = 0 for all s € S, where et .= 1 —e. Then e is also invariant for D, so
e € D¢ since D is selfadjoint. But D is a masa, so D¢ = 9 Thus, the set of invariant
projections of S lies in D, and therefore i is commutative. This set is also a lattice with
eVf=e+f—efandeAf=ef, and'is denoted Lat . Conversely, ifPis a set of
projections in 2, then we define AlgP = {a € A : ptap =0}. AlgP is a norm-closed
algebra, but it contains D if and only if P C D° = D, since D is selfadjoint. The
main focus of this paper, in Sections 2 and 3, will be to consider the case in which P
is a linearly ordered set of pro;ectlons in D, i.e., P is a nest, and 2 is a UHF algebra

One of the main discoveries in [9] was that the isomorphism class of a TAF alge-
bra depends on the way in which each finite dimensional C*-algebra U, is embedded
into the next C*-algebra 2,41, even though the isomorphism class of 2 is indepen-
dent of these embeddings [7, 5). This use of different embeddings will also be very
important in this paper. The nest embeddings for UHF algebras will play a particu-
larly important role, and the standard embeddings will be used. We will deﬁne this
below, and define other embeddings as we need them. But first, we note that M, will
be used.throughout this paper to denote a fixed representation of the n2-dimensional
factor as n x n.ma.E_ric_es_. Second; we remark that there are two ways to define AF

algebras: either as UQ(,., as we have done above, or as a Banach algebra inductive

limit im(2,, j»), where jn is a C*-embedding of U, into A, 41. In the latter case,

2, is isomorphic to a C*-subalgebra A, of A sﬁch that A = Uan. Because ‘of the

n
importance of the embeddings j, in this paper, we will often define an AF algebra
using the inductive limit notatlon but then we will identify 2, and 2,. The same
comments apply to D-modules in A.

Suppose {pn} is a sequence of positive integers such that p, divides Pn+1, and
let ¢n = Pny1/pn. Let e,(;') be the usual matrix units for M,,. The embedding
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Vn :Mp, — Mp,_,,, denoted by V,.(:c) =zQ® an, is defined by

((n)), Zeg‘j’ll)qn“ G-1)gntt

and is called the nest embedding of Mp“ into M,,,,,. Note that lim(M,,,v,) is the
UHF algebra of type (p1,p2,--.), and va(Dn) C Dnyy where D,,_i; the diagonal of
M;,,. ‘ : ’

Alternatively, let p,, ¢, and e( ) be the same as above and define o, : M, <
< M, by

""( (n)) Z e§1&‘3.;+:p.‘-
t=0
This embedding is denoted by o,,(z) = I;, ®z, and is called the standard emebedding.
lim(M,“ ,0n) is once again the UHF algebra of type (pll, P2, - - -), since the isomerphism
J‘as‘s of the inductive limit is determined by the dimensions of the finite dimensional
factors, and not the form of the embedding. Again, note that o, embeds the diagonal
of M,, into the diagonal of M,_,,. '
Let U,, be the set of upper triangular matrices in M, . Then both v, and Jgn map

U, into Un41, so we can define the Banach algebra inductive limits 7 = ll_rr}(l/,,, V,.)
and § = lim(ll,., 0n). It follows from [9, Theorem 2.6] that these are TUHF algebras.
The argument given in Example 1.1 of [9] show that LatS = {0,1}, but Lat7 is a

nest L. Infact,ﬁ:{z (), ]<pn,1$,n<oo}u{0}.
: i=1
DEFINITION 0.1. The nest £ defined above is called the canonical nest in the

UHF algebra 2 = lim(2,, v,,), and we will use £ throughout to denote this nest.

1. THE DIAGONAL EXTENSION THEOREM

It was shows in [9, Theorem 3.19 and Proposition 3.20] that an isomorphism of
two TAF algebras, or simply two modules, induces an order isomorphism of their
respective diagonals. However, the converse does not hold: diagonals may be order
isomorphic even though the corresponding algebras are not [9, Example 4.4]. The
main result in this section is Theorem 1.10, which gives a sufficient condition for
extending diagonal order isomorphisms to module, algebra, and C*-algebra isomor-
phisms. First, however, we discuss another question which was raised in [9, Example
4.4]: if two TAF algebras are module isomorphic, must they be algebraically isomor-
phic? We begin by answering this question in the affirmative.
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THEOREM 1.1. Suppose 2 and B are AF algebras with masas D and €, respec-
tively, and suppose S and T algebras with® CSCAand€CT CB. Ifp:S—T
is an isometric module isomorphism, then ¢ is also an algebra isomorphism.

Proof. Let {e("P )} be.a set of matrix units for %. Since Wp(S) generates

S, it is enough to show that gp(e("p )ei'?))

<p(e("p ))<p(e("q)) for all appropriate
i,7,k,€,n,p, and q. First suppose p # ¢ and let P and Q be orthogonal central pro-
jections in A, such that e(;'p) P and e("q) £ Q. Then 0 = ¢(PQ) = ¢(P)p(Q),
so w(e(np))v(e(nq)) = go(e("”)P)<p(Qe£';’)) = o(e ("p))tp(P)go(Q)qp(e(W)) -0 =
= ¢(e("P )eﬁ'zq)) Thus we may assume p = ¢, and we can write e;; instead of e( ?) for
convenience. ‘ '

If] # k, then
w(eij)pere) = p(eijej)plerere) = pleij)p(e; )‘P(Ck)SO(CkL) =

= pleijplejer)plere) = 0 = peijere).

It remains to show that @(eijejc) = p(eij)p(eje). Note that we can assume j # £.
Now by (1, Corollary 2.10], ¢(abc+cba) = ¢(a)p(b)p(c)+¢(c)p(b)p(a) for alla,c € S
and b € SNS*. Then

plesieie) = plesjeieie) = pleizejeie + ejeejeis) =
= p(eij)p(ej)p(eje) + pleje)p(e;)plei;) =
= p(eije;)pleje) + plejee;)plei;) =
= p(eij)p(eje),
completing the proof. |

COROLLARY 1.2. An isometric module 1somorplusm of two TAF algebras is in
fact an algebra zsomorpbtsm

REMARKS 1.3. (a) Note that ¢ does not have to be a module isomorphism as we
have defined it because it need not map ® onto €. The only necessary property is
that o(dsd') = o(d)p(s)p(d’) for all d,d" '€ D and s € S.

(b) Theorem 1.1 shows that the two algebras in [9, Example 4.4] are not even
module isomorphic.

We will now consider the problem of extending diagonal mappings to module
isomorphisms. We begin with some lemmas. .

LEMMA 1.4. Let 2 be an AF-algebra with masa ©. Suppose v,w € Wy satisfy
vev* = wew* for all e '€ P(D). Then: there is a unique partial isometry u € D
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satisfying vu = w and v*v = u*u and a unique partial isometry v’ € D satisfying
w'v = w and vv* = v'u’*..

Proof. Taking e = 1 above, we have vv* = ww*. Now ev*w = evivv*w =

= v'vev*w = vwew'w = v*wwwe = v'we for all e € P(D), so v'w € D° = D.
Let u = v*w. Then v*u = uu* = (v*'w)(v'w)* = v'ww*v = v*vv*v = v*v and
vu = vv'w = ww'w = w.

To prove the uniqueness, suppose u is a partial isometry in © satisfying vu = w
and vv* = u*u. Then u = uu*y = u'vu = v'vu = v*w.

The second statement is proved similarly. |

Let 2 and B be AF-algebras with masas D and €, respectively. Suppose S C U
is a D-module and 7 C B is an E-module, and suppose ¢ : & — T is a module
isomorphism. From [9, Lemma 3.18 and Theorem 3.19], if v € Wp N S, then ¢(v) €
€ WeNT, p(v'v) = ¢(v)'p(v), p(vv*) = p(v)p(v)*, and ¢ : (D,<s) — (€,<71)
is an order isomorphism. More generally, it follows. that p(vev*) = p((ve)(ve)*) =
= p(ve)p(ve)* = p(v)p(e)p(v)* for all e € P(D). It turns out that this is the extra
conditior.iAneeded to do the converse: extend a diagonal order isomorphism to a module
isomorphism and even further toa C"-isomorphism. More precisely, suppose S C U
1s a D-module and 7 C B is an ¢-module, and assume a C*-isomorphism ¢ : D — ¢

is given with the property that for any v € Wp N S there is a w € Wp N T for which
(*) p(vdv*) = wp(d)w*

for all d € D. Let a system of matrix units for 2 with respect to D be fixed, as well as
a system of matrix units for B with respect to €. Let W% denote those elements of
Wy which are matrix units or sums of orthogonal matrix units. Define W3 similarly.
Note that W9 contains P(D), is multiplicative, and is closed under orthogonal sums

and adjoints.

LEMMA 1.5. If ¢ satisfies (), then for each v € W3 NS there is a unique
weWin T such that (vdv*) = we(d)w* forallde®.

Proof. Given v, suppose w' € We NT satisfies (x). By [9, Corollary 3.7], there

is a @ € WeT NB,, for some n and a unitary u € € such that w = w'u. By [9,
. m

Lemmas 3.1 and 3.4], v = Z Aizi, where the z;’s are orthogonal matrix units of B,

i=1
and each )\; is a complex number with '/\,’I = 1. Let f; be the initial projection of

m m

zi, let y=(1 —o*d) + Z/\,Tlf,-, and then define w = wy. Then w = Zz,- and w
.=l ’ i=1

satisfies (*) since y and u are unitaries in €. Uniqueness follows from Lemma 1.4 and

[9, Lemma 3.4). [ ]
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On the basis of Lemma 1.5, we can define a map @ : WNS — W2 NT by
@#(v) = w if v, w satisfy (x) with v € WI NS, w € WINT. Notice that $ extends
¢ | P(D), for if e € P(D) C WY NS, we have p(ede*) = ¢(e)¢(d)¢(e)- forallde D,
and as p(e) € P(€) CWINT, it follows that @(e) = p(e).

LEMMA 1.6. If vy, va, v1v2 € WY NS, then $(v1)@(v2) € WANT and @(v1)-
-3(v2) = @(vivz). In particular, $(ve) = <p(v)go(e) and <p(ev) = ¢(e)p(v) for all
e eP(ED), vEWYNS.

Proof. Let w; = ¢(vi), i = 1,2. First, G(vivaduiv}) = @(vive)p(d)@(vive)®,
d € D. On the other hand, we alsb:have @(vi(vodvy)v}) = wlqp(vzdvg)wi =
= wi(wap(d)wi)wi = (w1w2)p(d)(wiw2)". By uniqueness, ¢(b3v2) = wywy = ¢(v1)-
-p(v2). The second statement follows from this and the fact that $(e) = ¢(e) for
e € P(D). ' | .

‘LEMMA 1.7. Let ¢ satisfy (*). For every v € W% ns,
(i) p(vv*) = @(v)$(v)*, and,
(ii) o(v*v) = 3(v)*@(v).

Proof. (i) follows from p(vdv®) = @(v)p(d)@(v)*, setting d = 1. Taking e =
= v*v in Lemma 1.6, we obtain ¢(v‘) = @(v(v*v)) = ¢(v)go(v"v)‘, g;id it follows that
B(v)*@3(v) = $(v)*B(v)p(v*v). Thus p(v*v) dominates #(v)*@(v). Let f € P(€) be
any projection orthogonal to $(v)*@(v) € 'P(G) Set f ='¢(9), 9 € P(€). Then
0= (¢(v)f)'(¢(v)f) implies ¢(v)f = $(vg) = 0, so vg = 0, and hence v*vg = 0,

(v‘vg) =0, and p(v*v)f =0,s0 fis orthogonal to <p(v‘v)." Thué (ii) follows.” ®

COROLLARY 1.8. Let ¢ sat:sfy (*) Then @ is an order-preservmg map from'
(D, <s) to (€, <7).

Proof. Let e, f € P(D) satisfy ¢ <s f, i.e., there isa v € Wp NS with v*v = f
and vv* = ¢, and in fact we may take v in W NS by [9 Corollary 3.7]. By Lemma
1.7, ¢(v) implements the relation p(e) <7 ¢(f). ' a

LEMMA 1.9. Let ¢ satisfy (), and extend @ to WAN(S*) by g(v*) = @(v)*. Then
¢ has a unique extension from the subsemigroup of WY generated by W3 N (SU S*)
into the semigroup of W2 generated by WaN (T UT*).

Proof. Let v € WY NS,e € P(D). Then p(v*ev) = p((ev)*(ev)) = @(ev)*-
-P(ev) = B(v)*p(e)p(v), so condition (x) is satisfied for v € W N (S u 8*). Let
v1,..., € W(SUS"*) and assume inductively that ¢(vy -+ -va) = G(v1) - - - B(v,);
in other words, @((vy---v,)d(v1---v,)") = wp(d)w* for all. d € D, with w =
= @(v1) - @(vn). Set v = v1---v, and w; = o(v;), i = 1,...,n. Let vay; €
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WP N(SUS*), wn1 = G(vn41), v = vony1, W' = wwayy. Thenforallde€ D,
P d") = p(o(tm41d0540)0) =
= wp(vnrdoy, Jw' =
= wwo 4 (d)wy 0 = w'p(d)w’™.

Since w’ € W2, we must have $(v') = w’ by the uniqueness assertion of Lemma 1.5,
and the induction is complete. |

Next we extend ¢ linearly to linear combinations of elements of the semigroup
generated by W3(SUS*). Since $(z*z) = ¢(z)*@(z) for any z in this set (denoting the
extension again by @), @ is isometric, and hence & has a unique extension to C*(S),
in which linear combinations of elements of the semigroup generated by W3 (S U S*)
are dense. We summarize these results in the following theorem.

THEOREM 1.10 (Diagonal Extension Theorem). Let % and B be AF algebras
having masas D and €, respectively. Let S be a norm-closed D-modulein 2 and T a
norm-closed €-module in B. Let ¢ : ® — € be a C*-isomorphism with the property
that given v € Wy NS there is a w € We N'T satisfying p(vdv*) = we(d)w* for all
deD. Then there is a C*-isomorphism @ of C*(S) into C*(T) which extends ¢. The
restriction of ¢ to S is an isometric module isomorphism from 8 into T. If S, T are
TAF algebras, then ¢ is an algebra isomorphism.

REMARKS 1.11. (a) If in addition to the hypotheses of the theorem we assume
that for every w € W2 N T there is a v € Wp N S satisfying p(vdv*) = wep(d)w* for
all d € D, then the C*-isomorphism ¢ : © — € is an order isomorphism. In this
case, the map @ of the theorem is a C‘-isomorphism from C*(S) onto C*(7T), and its
restriction to § is a module isomorphism onto 7.

(b) If C*(LatS) = D and C*(Lat T) = €, then it can be shown that there is only
one possible order isomorphism of (D, <s) onto (€, <) (see Section 3). In view of
(a), if one is given two specific modules with these properties, then-it is often rather
easy to prove that they are not isomorphic by showing that condition (*) does not
hold.

(c) If S, T are TAF algebras, the fact that the isometric module isomorphism ¢
is in fact an algebra isomorphism is a consequence of Theorem 1.1, though this does
not seem to yield a simplification of the proof of Theorem 1.10.

COROLLARY 1.12. If S C ¥ is a D-module and T C B is an €-module with
S ~ T, then C*(S) =~ C*(T) via an isomorphism @ which also satisfied $(S) =
= T. Moreover, for each m, there is some n such that (SN An) € 7 N B, and
F(C*(S) NUm) C C*(T) N B,..
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Proof. Suppose ¢ : § — 7 is an isometric isomorphism: By [9, 3.18-3.20], ¢ l D
is a C*-isomorphism onto &, p(Wp(S)) = We(T), and p(vev*) = ¢(v)p(e)p(v)* for
all v € Wyp(S). The result then follows from Theorem 1.10, Remark 1.11(a), and the
proof of Theorem 1.10. : : .

REMARK 1.13. This last corollary generalizes Theorem 6.14 of [13], in which it is
. required in addition that 2 and B be UHF algebras, C*(S) =%, and C*(T) = B. In
general, we cannot conclude that ¢ : § — 7 extends to a C*-isomorphism of C*(S)
onto C*(T). ¢(z) = go(z) for z € D, but on S they are only equal modulo a unitary -
in D (which depends on z). However, if $ and 7 are strongly maximal triangular
algebras, then it was shown in [9, Theorem 3.26] that ¢ does in fact extend to a
C*-isomorphism.

Finally, this last corollary allows us to prove a generalization of Theorem 2.7 of
[5)-

COROLLARY 1.14. Let S C U be a D-module and T C B be an €-module, and
define S, = SN, and T, = T NU,. Then S is isomorphic to T if and only if {T,}
contains a subsequence {T,,} and each T,, contains an G,.,‘-m_odqle R such that

(i) {R+} is an increasing sequence and there is an isometric (U Dn)-bimodule
isomorphism ¢ ofUS,. opio U’R,,, such that $(S,) = Rn and #(®,) C &,, and
n n
(1) for every m there is some n such that 7,, C R,.

Proof. Sufficiency follows from the facts that UT = U’R;,. (by (ii)) and that

¢ is isometric, and therefore ¢ extends to an isom(';rphism 'c;f S onto 7. Necessity
follows from Corollary 1.12 by defining R = $(S,) ((ii) follows by considering $=1).
: : |

Let %A be an AF algebra with masa D, and suppose § C 2 is an D-module. We
define an ordering <s on X, the spectrum of D, as follows: for z,y € X, r s y
if there is some v € Wip(S) such that (z,vdv*) = (y,d) for all d € D. We call this
the spectrum ordering induced by S. This is the same as the fundamental relation
defined in [13], except that Power uses the normalizer Np(S) = { partial isometries
v € §: vDv* C D} instead of Wp(S). It can be shown that Wy(S) is strictly
smaller than Np(S) for certains S. It was the study of this ordering which motivated
condition (*) in the hypotheses of Theorem 1.10.

It is not hard to show, using [9, Lemma 3.18], that the spectrum ordering is
a module isomorphism invariant. In other words, suppose ¢ : § — 7 is a module
isomorphism, where § is a D-module and 7 is an ¢-module, and let X and Y be the
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spectra of © and €, respectively. Now if ¢ : Y — X is the dual homeomorphism of
7 ‘ D, then y €71 ¢ if and only if ¢ s @(y'). We say that ¢ is a spectrum order
isomorphism. This raises the following questions. If $ : Y - X is a spectrum order
isomorphism, is ¢ | D a diagonal order isomorphism? And conversely, if ¢ | D 1s an
order isomorphism, is ¢ one? We have been unable to resolve the first question, but

the next example shows that the second question has a negative answer.

. We must first discuss the spectrum and the relation «s in greater detail. To
make the notation simpler, assume that 2 is UHF. For e € P(D), let é € C(X) be
the image of e under the Gelfand map. Let {e] (n )} be a set of matrix units for 2

with respect to D, and define e( ) - e( ™) Given z € X, there is a unique sequence
(e (1) ) (3

i ,2 1 €5y ,) such that ég:)(z) = 1 for all n. Conversely, each such sequence

with e ) S 6(2) ... correSponds to a unique z € X. Thus, the spectrum X can
be 1dent1ﬁed with the set of such sequences. Now suppose z = ( f:), ff), ) s

Ls z' = (e(l) 2) ) via v € Wy(S). By [9, Corrolary 3.7], we can assume v lies

N J2 ?
in some U,,. It then follows that there is some N > m such that ve(“) vt = e(") nd
v* ( Dy = eg ) for all n 2 N, and by replacing v with ve( ) , we have v = e(N) nd

vv._.e( ) . Thus, e( )-<se§n)foralln/N.

EXAMPLE 1.15. We use the same algebras defined in [9, Example 4.4]. Specifi-
cally, let °A, = Mj~ with diagonal D,, and define A = lim(U,,v,), where v, is

10 01
the nest embedding defined in Section 0. Let I = [0 1] and J = [1 0] and

define B = lim(Y,,, Ad P, ov,), where P, = I & ---& I & J. Finally, let S, and 7,
both represex?t the set of upper triangular matrices in 2, and define TAF algebras
S = im(S,,v,) and T = im(7,, Ad P, ov,). Then, as shown in [9, Example 44], S
and 7T are not isomorphic but (D, <s) and (€, <7) are order isomorphic.

We will show that the diagonal order isomorphism between D and ¢ does not
induce an order isomorphism of their spectra X and Y. In fact, we will prove more:
the spectra of © and € are not order isomorphic at all. Let {e(")} and { (")} be
sets of matrix units for 2 and B such that e(") <s eE") and f("g <7 J; ) i 4 <7
Now X contains a unique minimal element z for the ordering €s, namely zq =
= (egl), 882)’ 883), .. ) Also, X has a unique maximal element z,; =(e(l) e(12), (3), .. )
Similarly, Y has a unique minimal element yo = (fél), 82), 33)
element y; = ( 1(1), fz), 53), ) for the ordering 7. It follows that if o : X — Y is

a spectrum order isomorphism, then a(z¢) = yo and a(z;) = y;. This is impossible,
(1)

,) and maximal

however, as yo €7 11 viav = 12’ while o &5 z1. In fact, it is not hard to show
that (e S,l): ff),ef::), L) <s ( 51), 53), 5::), ...) if and only if i¢ < ji for all k£ > some

N.
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The spectrum ordering is an interesting invariant which merits further study. We
close this section with a result related to the nest algebras studied in Sections 2 and 3.
but which is true in greater generality. Let 2 be an AF algebra with masa D C . If
S is a D-module in U, then & induces the diagonal ordering <5 on P(®). In Theorem
3.11 of [9]. we showed that among all norm-closed D-modules which induce <s on
P(D). there is a unique maximal D-module. denoted Mmaxs). Let M C D be a set
of projections and consider S = Alg.M. As § is defined in terms of .M. and since
by [9. Lemma 3.22] the ordering <s determines Lat S. and also Alg(LatS) = 8. it s
natural to expect that & = Alg.\ is the maximal D-module consistent with <s. This
is in fact the case. This next proposition is the analogue of the result for maximal

triangular algebras proved in [9. Corollary 3.14).

ProposiTION 1.16. Mmax(Alg..vl);: Alg. M.

Proof. Let v € Wo N Muac(AlgM) = Wiaae(AlgM). By dfeﬁnition “ Theorem
3.11]. ver® <algm evtre = vtve for all e € P(D). By [9. Lemma 3221 if p €
€ .M. then vetr™ < p whenever v"ve € p. Taking ¢ = p. we have vpr™ < p for all
p € .M. Multiplying both sides by ve™, we obtain vpr™ = vpr're® € pre”. Thus
preprt < pr(pre7) = 0. But then 0 = ptvpr™p*t = (p- l'pj([f vp)*. so ptrp = 0 and
v € We(Alg £). This shows that We(Alg.M) 2 Wiaeo(Alg M), The other inclusion -
1s obvious. Now use the fact that every closed D-module is-the closed span of the

elements of Ve it contains. ‘ . : |

2. NEST SUBALGEBRAS OF UHF ALGEBRAS

We now turn to the study of a different type of nonselfadjoint subalgebra of an
AF algebra. Suppose 2is an AF algebra with masa ©. and let .\ be a commuting set
of projections in O which contains 0 and 1 and which is linearly ordered by the usual
ordering of positive elements in 2 If Alg .M is a D-module. then A C Lat(Ale M) C
Clar® C D =2 Conversely. if M T D then Alg M2 AP D) =27 =D 50
Alg.M s a D-module. Thus, to use the techniques and resuls of ¢ for D-modules.
we must always assume that A C ©. We say that .M is a pest and .-\lé.\-i 15 a nest
algebra. Now Af is always contained in LatyAlg MY, but if U is not UHF. then in
general Lat (Alg. MY will be larger than At and will not be a nest. In the UHE case.
however. Lat (Alg. M) is always a nest 1 Theorem 2.3v and At = LaviAlg M i M s

RED

maximal in D (Corollary 2.4V, In addition. a UHF aigebra has a unigque normal

trace (denoted try which. as we will see. {s veryv useful for differentiating bets
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setting, often with M replaced by Lat (AlgM). Another direction for generalization
is to let M be a more general lattice than a nest. Some of our results are also valid
in this setting, but, as in Hilbert space, the general lattice situation is much more
complex. ‘ ' ’ .

As mentionated in the preliminaries, given any two masas in 2, there is an
automorphism of 2 which maps one onto the other. This implies that the properties
of a nest algebra Alg M do not depend on the particular ambient masa containing
M. Thus, if one masa is conveninent for studying M or Alg M, there is no loss in
generality in using that masa.

In this section, A = UQ[,. and B = U B,, will be used to represent UHF algebras

with masas D and €, respectively. In view of the remarks in the last paragraph, we

will always assume that A, and B, are factors, unless otherwise indicated. We say’
that M C D is a maximal nest if it is a maximal nest in its masa D. It is easy to
. see from Definition 0.1 that the canonical nest is maximal. As in the theory of nests
‘in Hilbert space, we say that M is multiplicity-free if M€ is a masa, i.e., M¢ = D.
Equivalently, M = (M°)° = D. Note that (Alg M) N (Alg M)* = M°, so Alg(M)
is triangular iff M is multiplicity-free~The canonical nest £ is multiplicity-free since
D = C*(L) C L5 CD. The following two results illustrate the relationship between
nest algebras and maximal triangular algebras in a UHF algebra.

ProPosITION 2.1. If § C A is a maximal triangular algebra with respect to ®,
then Lat S is a nest. If in addition (LatS)* = D, then § = Alg(Lat §), ie.,Sisa
nest algebra. '

Proof. With minor variations, this is the content of Proposition 2.8 and 2.9 of
[9]. , ' |

PROPOSITION 2.2. Every triangular nest algebra is maximal triangular.

Proof. Suppose M is a nest, M C D C 9, such théft S = AlgM is triangular,
and suppose T 2 S is maximal triangular. Then there is some T € T and P € M
such that PLTP # 0. Replace T by PLTP,so T € T\S and T = PLTP # 0. But
then T* = PT*PL € AlgM CT,soTETNT*=DC S, a contradiction. =

More generally, a similar proof shows that a nest algebra § = Alg M is maximal
with respect to property that S NS* = M¢€.

THEOREM 2.3. If M is a nest in D C 2, then Lat (Alg M) is a nest in D also.

Proof. M C D implies that D C AlgM, so Lat(AlgM) C LatD C D = D.
Now suppose M;; M, € Lat(AlgM), M; # M,. We must show that M; < M, or
-Ms < M;. ' '
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We first claim that M U {M,} is a nest. If not, then there is some P € M such
that PIAE # 0 dnd PLM, # 0, since P and M; commute. PME, PLM; € P(D,)
for some n, so there are diagonal matrix units e( ) ¢ PM{ and e( " < PLM;,
"i#j. Then e;) € AlgM since PAPL'C AlgM. But MM, = e(") # 0,50
M, ¢ Lat(Alg M) a contradiction.

Now AlgM = Alg(M U {M;}), so: M2 € Lat(Alg(M U {Ml})), and we can
- use the same argument to conclude that M U {M;} U {M_} is a nest. It follows that
M, < My or My < M;. . L |

'COROLLARY 2.4. If M is a maximal nest in D C A, then M-is reflexive, i.e.,
Lat (AlgM) = M '

CoROLLARY 2.5. If M is multiplicity-free nest, M C D C A, then Lat (Alg M)
is a maximal multiplicity-free nest in D: -

Proof. M = Lat(AlgM) is a nest by Theorem 2.3. Note that Lat (Alg M) =
= M. Now M D M, so M is multiplicity-free since D C M® C M® = 9D. This
same argument shows that if A is a nest with A’ D M, then N is multiplicty-
-free. Therefore AlgA and AlgM are both triangular, in fact maximal triangular
by Proposition 2.2. Since AlgN C AlgM, it follows that AlgN = AlgM. Thus,
N C Lat (Alg M) = Lat (Alg M) = M, which proves that M is maximal. -

ExAMPLE 2.6. By Corollary 2.4, if two maximal nests are different, then so are
their associated nest algebras. Here we will give an example of two different nests,
one nonmaximal, which have the same nest algebra. Let 2, = M~ with. diagonal
Dp, and let {eg.')} be a set of matrix units for A = lim(%,, v,), where v, is the
nest embedding defined in the preliminaries. Let £ be the- canonical nest (Definition
0.1), and define N to be the nest C\{e(lll)}. Then N is clearly not maximal, and
AlgL C AlgN. To see that these nest algebras are equal, it is enough to show that
every matrix unit in Alg N also lies in Alg L, since Alg N is generated by its matrix
units. So suppose v = e( ) e AlgN. Then v € Alg(D, N N), so either i < j or else
i—1=2""1=j Ifi < j, then v € AlgL. On the other hand, if i — 1 = 2"~! = j,
then vp(v) = eg'.'lill)z,._l + eg','.i;)z,. ¢ Alg(Dn41 NN) D AlgN, a contradiction.
Therefore, v € Alg L and the nest algebras are equal.

LEMMA 2.7. Suppose ¥ and B are C*-algebras and S and T are Banach subal-
gebras of U and B, respectivley. If p : S — T is an isometric algebra isomorphism,
then (SNS*)=T NT* and ¢ | SN S* is 2 C*-isomorphism.

Proof. The proof of [9, Theorem 3.20] also works in this more general setting.

PROPOSITION 2.8. Suppose M and N are nests, M C D C% and N C € C B,
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and suppose ¢ : Alg M — Alg N is an isometric isomorphism. Then
(i) p(Me) = N°; |
(i) PM=) = N,
(iii) o | Me and'p | M are C*-isomorphisms;
(iv) p(Lat (AlgM)) = Lat (AlgN), and p(M) = N if M and N are maximal
nests. '

Proof. (i) and (ii) follow from Lemma 2.7 since AlgM N (AlgM)" = Mc and
Me C M¢. Now (ii) and (iv) follow from the fact that ¢ is an algebralc isomorphism,
along with Corrolary 2.4. a

Note that if Alg M and Alg N are not triangular, then we may not have (D) =
= ¢. However, (D) still has useful properties, as the proof of the next lemma shows.

LEMMA 2.9. Suppose M and N are nests, M CD C % and N C € C B, and
suppose ¢ : AlgM — AlgN is an isometric isomor'pbism.' If v € Wyp(Alg L), then
(v)*¢(v) = ¢(v*v) and p(v)p(v)* = p(vv*). -

Proof. This same result was proved for module isorf{orphisms in [9, Lemma 3.18].
In that case p(D) = €, and the proof used the facts that ¢ I DwasalC ‘-isomofphism,
€ was maximal abelian in B, and sp(€) was zero-dimensional. The same proof will
work in this case if we can show that (D) has the latter two properties, since we
already know ¢ | D is a C*-isomorphism by Proposition 2.8(iii) (because D C M°€).

If b € (D)%, then b € p(M)° = (N)° = N® = ¢(M)¢ by Proposition 2.8,
so b = p(a) for some a € M°. But then p(a) € ¢(D)° implies that a € D* = D.
Therefore b € (D), and it follows that ¢(D) is maximal abelian. Now sp(D) is zero-
-dimensional and ¢ | D : D — (D) is a C*-isomorphism, so sp(®) and sp(p(D)) are
homeomorphic. It follows that sp(p(®)) is also zero-dimensional: As noted above,
the remainder of the proof is the same as in [9, Lemma 3. 18] by replacmg € in that
argument with (D). . u

The following lemma is a slight variation of [8, Lemma 6.6.4]. The proof is the
same.

LEMMA 2.10. Let 2 be a unital C*-algebra, {E; : 1 < i € n} a family of
orthogonal projections in 2 such that EE =1, {E; : 1< i< n} afamily of
partial isometries in % such that E4 E}, = E;, E}\E;; = E,, and E1y = E,. Then
{Fij = EnEf i1, < n} is a complete set of matrix units for A, with F;; = E;, and
Fi=E;.

- THEOREM 2.11. Suppose that S = AlgM and T = AlgN are nest subalgebras,
”&'7"@ SCAand €C T C B, and p:S — T is an isometric isomorphism. Then
A~ B.
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" Proof. If M is trivial, then § = 2 and LatS = M, so Lat 7T is also trivial by
Proposition 2.8(iv), and therefore 7 = B. Thus, we may assume M is nontrivial,
and therefore M N D,, is nontrivial for all n 2 some N. Choose n > N and let
PEMND, P+#0,1. Let {eij : 1 < 4,7 € m} be a set of matrix units for A, so
that D, = span{e; = e;; : 1 i< m}, ey < P and e < P. PAPL CSNY,, so
p(ei1) is defined for all i such that e¢; < P and g(ez;) is defined for all j such that
e < Pt o

If &; < P, define Eiy = ¢(ei;). If e; < P+, define Ejy = p(ez)*p(e21). Define
E; = p(ei) for all i. {E;} is a family of orthogonal projections in B such that
2 E; = 1 by Proposition 2.8(ii1), and Eyy = ¢(e21)*p(e21) = p(e3 e21) = p(en) =
= E) by Lemma 2.9. We will show that {E;,} satisfies the conditions of Lemma 2.10.

Ife; < P, then E; 1 E}) = p(ei1)p(ein)” = p(eiref,) by Lemma 2.9, and p(eiref,) =
= p(eii) = E;. Also, E}, Eqy = p(ein)*e(ein) = p(el 1) = pleir) = Ei. Qn the other
hand, if ¢; < P+, then ' :

Eu B}y = p(ex) plea)p(ea) plea) =
= plezi) pleares))p(en) = plea) pleaz)plex) =
= p(e2i)"p(eaze2:) = pleai)p(en) =
= p(enien) = ples) = E,

again by Lemma 2.9. Similarly, E}\ E;; = El. Thus, Lemma; 2.10 appiies to {E;} and
{Eir}, so {Fi; = E;1 E}, : 1< 4,5 < m} is a complete set of matrix units. Therefore,
if Yn =~ My, then B contains a factor of type I,. Since thisis true for all n > N,
it follows that if pi*!p7'? - - - and ¢7*¢3? - - - are the supernatural numbers of % and B,
respectively, then for each i, p; = some ¢; and m; < n; (i.e., the supernatural number
of 2 is less than or equal to the supernatural number of B). But now we can apply

the same argument to ¢~! and conclude that 2% and B have the same supernatural
numbers. Therefore, A ~ B. ' - .

REMARK 2.12. With the addition of Corollary 2.17 below, this theorem would be
a consequence of Theorem 1.10 and the remarks following it (or of [13, Theorem 6.14))
if we knew that (D) was a Stritild-Voiculescu masa in A. Of course this holds if A/
is a multiplicity-free nest by Proposition 2.8, but we doubt that it holds in general.

DEFINITION 2.13. Suppose S is a D-module, ® C'S C A. Then S is irreducible
if there is no nontrivial projection p € S§°. § is strongly irreducible if there is a
subsequence {n; : 1 < k < 0o} such that S N U,, is an irreducible D,,-module in
A,, for each k, i.e., there is no nontrivial projection in (sn 2(,,,‘)"'091,.,‘. Equivalently,
S is strongly irreducible if and only if C*(S N U,,) = Un, for some subsequence
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{ni}. Since every projection in S¢ must lie in P(D) = U’P(D,,), it follows that

n
strongly iryeducible modules are irreducible. However, the converse is false, as shown
in Example 2.14 below. Note that if SN2, is maximal triangular for each n, then &
is strongly irreducible.

EXAMPLE 2.14. We will give an example of an irreducible TAF algebra which
is not strongly irreducible. Let 2, = Ma~ with diagonal D,,, let {e(") } be a set of
matrix units for U,, and let o, : A, — A,4; be the standard embedding, defined
in Section 0. Define V, to be the set of matrices (a;;) in 2, such that a;; = 0
for ¢ > j and aj; = 0 for'j > 1. Note that each V, is a triangular subalgebra of
A, and 0n(Vn) C Vs, so V = lim(V,,0,) is a TAF algebra in the UHF algebra
A = lim(2U,, 6,) by [9, Theorem 2—6] Also Vi = Vg1 NAUn, 50 Vo = VN, by (9,
Propo;ition 2.5].

Now the projection eﬁ';) commutes with V,, so each V, is reducible. However,
V is irreducible. To see this, suppose p is a projection which commutes with V.
Then p € D = D and therefore lies in some P(D,,). .Also, p commutes with V,, so
p=0,e,et, or 1, where e= eil). But 0,,(e) and o, (et) do not commute with V41,

sop=0orl.

PROPOSITION 2.15. If S is a nest algebra, ® C S C %, then S is strongly
irreducible. In fact, S A A, is irreducible for all n > some N.

Proof. Let M = LatS. If M = {0,1}, then S = % and the result is trivial, so
.assume M is nontrivial. Since M = U(M ND,), it follows that MND,, is nontrivial

for all n > some N.

Now suppose n > N and § N U, is reducible, i.e., there is some projection
p # 0,1 in U, such that ps = sp for all s in SNA,. p € D, since D, C SN,
“and D, is a masa in A,. We first show that there isnog € MND, such that
P> q q¥%.qt € AlgM = S for any such g, so in particular there is some matrix
unit e( ) € SN, such that qe(") L= ( ). But then qe( "pl = p(qeg‘) L) =0,a
contradxctlon. Similarly, there is no ¢ € M ND, such that p < q. Thus, since MND,
is nontrivial, there is some ¢ € M ND,, q¢ # 0,1, such that plq # 0 and pgt # 0.
Let efd) be a matrix unit such that (plq)e(")(pq-‘-) = e(") Then efc';) €SN, since
q%nqt C AlgM = S, but pel?) = 0 and &{Pp = €{) # 0, a contradiction. Therefore,
SN, is irreducible for all n > N. 4 [ ]

Strong irreducibility is the key to showing that certain diagonal-maps preserve
trace. If D is a masa in 2, then there are C*-isomorphisms of © which do not preserve
trace on D (see Example 3.6). However, it turns out that diagonal order isomorphisms
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do preserve trace in some cases. This will be discussed in S‘ection' 3. Unfortunately,
as noted earlier, an isomorphism of two nest algebras does not necessarily induce an
order isomorphism of their diagonal masas. However, their nests are isomorphic by

Proposition 2.8(iv), and we can use Lemma 2.9 to show that the trace is preserved.

ProPosITION 2.16. Suppose M and N are nests, M C D C %, N C ¢ C B,
and ¢ : AlgM — Alg N is an isometric isomorphism. Then ¢ I D preserves trace. In
particular, ¢ preserves trace on Lat (Alg M).

Proof. Let S = Alg M. By Proposition 2.15, S N A, is irreducible for all n >

>some N. If weletey,..., e, be the minimal projections in D, n > N, it is enough
to show that tr(¢(e;)) = tr(e;) for all 1. Write e; ~ ej if e; <s €j or e <s €;, and
write e; ~ e; if there are ky, k2, ..., ke such that e; ~ex, ~--- ~ex, ~¢;. Then= is
an equivalence relation, and irreducibility of SN2, implies that [e;], the equivalence
class of ey, consists of the set {e;,...,em}, i.e., there is just one equivalence class
(otherwise p= Z e; commutes with SN A, )

e;€feq] '

If e; <s ej, then there is some v € Wyp(S) such that vv* = ¢; and v*v = ¢;.
Lemma 2.9 then implies that

tr(p(ed) = tr(p(0")) = tr(p(0)e(0)") = tr((o)"0(v)) =

= tr(p(v"v)) = tr((¢(e;)).

It follows that tr(p(e;)) = tr(p(e;)) if e; = ej, and therefore tr(p(e;)) = tr(p(e1))
for all j. Finally, :

1=tr(p(1) = ) _tr(p(e;)) = 3 tr(p(er)),
j=1 j=1

SO
te(p(es) = tr(p(er) = — = te(ej) for all 5
[ |

It is interesting to note that the same result holds for strongly maximal TUHF
algebras. For in this case, ¢ : § — T extends to a C*-isomorphism ¢ of 2 onto B
by [9, Theorem 3.26]. @ can then be used to show directly that tr(y(e:)) = tr(p(e;))
for each pair of minimal projections e; and ¢; in D,,.

If § = Alg M is a nest algebra, and ey, ..., e, are the minimal projections in D,,,
then as we saw in the last proof, e; = ¢; for all j if n is large enough. Actually, the
relation & can be implemented in at most two steps. To see this, let p be a projection
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in D,. N LatS If e( ) < p and e(") £ pt, then e(") € S and e(") <s e‘7 via e(;)
Suppose e , ™ < p. Let e( ) < pt. Then e( n) <s e( ) and e( ) <s e( )
(") (") ( ). Note also that e(") =e; )e(") € §S8*. Similarly, if e( ) (") < pt,

(nS ) ¢ %

then e ~ e( ) for some e, <pand e(") € 8*S. Therefore, we have

CoORROLARY 2.17. Suppose § = AlgM is a nest algebra, and let S, = AN
NAlg M. Then U, = span{S S,';,S‘S} for all n > some N, 2 = span{SS*, §*S},
A= C*(S), and §° =

If in addition C*(M) = D, then a stronger result is true (see Corollary 3.16).
We are now in position to use the trace and Proposition 2.16 to show that there are

many nonisomorphic nest algebras in any given UHF algebra.

THEOREM 2.18. Suppose 2 is a UHF algebra with masa® and 0 < a < 1. Then
there is a maximal nest M C D C ? such that sup{tr(P): PEM,P <1} = a.

Proof. We will carry out the construction for the 2°° UHF algebra; the construc-
tion is similar in general case. Thus, let {e(")} be the usual matrix units for M3», and
let % = lim(Mg3n, v,), where v, is the nest embedding. Let ef") = eg'). Considering
the infinite dyadic expansion .ddad3 ... of a, let {d,;} be the subsequence of 1’s in
the sequence {dn}, and let a; = .dydz - - -dy, for all j. Thus, o, < a2 <o03<...<
and o — «. Finally, let 8; = a; — a;_;. X

We will define a sequence {Ej : 1 < j < oo} of mutually orthogonal projections
in P(D) with tr(E;) = B; and such that if E € P(D), then EE; # 0 for some j.

j
Then define P; = E E;. It follows that sup{tr(P;) : 1 € j < 00} = o and that there

i=1 .
isno Q € P(D), Q # 1, such that @ > P; for all j. The proof can then be completed’
by choosing any maximal nest M in D containing the sequence {P;}.

First find k; such that tr(e(lk')) =0,. Let B, = e(lk‘). Now find k, such that

tr(egk’)) = B, and let E; = eg,w)_,_n and m; = 2.. Then e(ll)El # 0 and egl)Ez #0.

Let ffz), .. (2) be the minimal projections in 532 such that E,f(z) = 0 for all 4, j.

Actually, mg = 1 if @« > 1/2 and my = 2 if a < 1/2. For each i,1 < i € my, find

a new k; such that tr(e(k‘)) Bm,+i and let Ep, 4 = ef., , where n; is chosen so

that Ep,, 4 < f,(z) Now let f(s), . ,(,‘?3) be the minimal projections in D3 such
that E'jfi(s) = 0 for all ¢,5. For each i with 1 € 7 € m3, find a new k; so that
' tr(e(lk‘)) = Bm,+i and let Ep, 4 = e,(,. i , Where a new n; is chosen so that E,,,4+i <
fs). Continue in this manner to get the sequence {E;}. a
COROLLARY 2.19. There are uncountably many nonisomorphic nest subalgebras

in any given UHF algebra.
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Proof. For each o,0 < o < 1, construct a nest M, by Theorem 2.18 so that
sup{tr(P) : P € My, P < 1} = &. Then the nest algebras {AlgM,} are pairwise
nonisomorphic by Proposition 2.16. B

Before proving the next lemma, we make the following observations. If 2 is a
UHF algebra with masa D, and E € P(D), then EAE is a UHF algebra with masa
DE = EDE. Also, if M is a maximal nest in D, then ME = {PE : P-€ M} =
= EME = EM is a maximal nest in DE, and if M is multiplicity-free, then so is
ME (ie., (ME)*N EYE = DE). The proofs of these facts are straightforward and
will be omitted. '

Furthermore, given any 2 and D, a nest K can always be constructed with the
property that X ND,, is a maximal nest in D,,. Simply let £; be a maximal nest in
D, and inductively define K4, to be any maximal nest in D4, containing j,(K,),

" :
where j, is the embedding of %,; into 2U,4;. Then let K = U K.. Note that K is
‘ n=1 )
maximal and C*(K) = D, so K is multiplicity-free. B
N
Let A be a countable nest in D. Suppose A admits a finite partltlon N = U A;

i=0 .
with A; < A4y (i.e., p<gforall p€ A;, q € Aiy1), 0 < i < N, such that ’

(i) If p,q € Ai and p < q, then there is a finite chainp=py < p1 < - < pm = ¢
such that p; 4 is the immediate succesor of p; m N (and, necessarily, p;,...,pm-1 €
€ Ai). ' |

(i1) For each 1, there isno R € P(D) such that p< R < qforallp € A;, ¢ € Aiy).

(iii) For each 4, there is no e € P(D) with e ¢ —pforall p € A;, g € Aiyy.

LEMMA 2.20. Let N be as above, and let K be a nest in © such that K ND,,

is a maximal nest in ®,, for all n. Define N' = U p+ (- p)lC), where p' is the
pPEN
immediate succesor of p in N if p has such, and p' = p otherwwe Then N is a

maximal, muItlpIJCJty-free nest containing N .

Proof. To show A is maximal, let r € P(D) be comparable with N, r g N. Set
r-={pEN:p<r}andry ={p€N :r<p). Then N =r_Ur,. Consider two
cases: v :

Case (a). There exists an ip € {0,..., N} such that r_NA4;, # @ and r4 N A4;, #
#0O. Letper_nNA;,, g € r4+NA;,. By ( ), there is a chain p = pg < Pr<-<pm=¢
in A;,, where p;; the immediate succesor of p; in N. Thus, p; /< r < pj41 for
some j. Change notation and set p = p;, ¢ = pj41. Then r is comparable with
p+(g—p)K C N; equivalently, r—p is comparable with (g—p)K. But r—p € (¢—p)D,
and (¢ — p)K is a maximal, multiplicity free nest in (¢ —p)D by the remarks preceding
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this lemma. It follows that r — p € (¢ — p)K, so r € p + (¢ — p)K, a contradiction.

Case (b). There exists an ig such that A;; C r_, A;,41 C r4. But then r violates
hypothesis (ii).

To show that A is multiplicity free, we first establish a claim: if e € D is any
nonzero projection, there exists p € N having an immediate succesor p’ € A such
that (p'—p)e # 0. Suppose, on the contrary, that (p'—p)e = 0 for all p € A having an
immediate succesor. Then if ¢, p € A;, it follows that pe = qe. Indeed, if p < ¢, write
P=po<p1<--<pm=qby/(i), and then ge = pe+(p1—po)e+- - -+ (Pm —Pm-1)e =
= pe. This shows that if we set e¢; = pe, where p is any clement of A;, then e; is
well-defined. Since the function N — P(D) defined by p — pe increases from 0 to
e in P(D) as p increases from 0 to 1, i.e., 0 = eg < €; € --- € eny < ¢, it must be
true that e; # e;4) for some i. Let f = e;4; —¢;. Forall p € A; and ¢ € Aiy,y,
f = ge — pe = (¢ — p)e < p— q. But this violates hypothesis (iii). We conclude that
(p' — p) # 0 for some p € N, establishing the claim.

Now N€isa D-module, so it is generated by the matrix units it contains. Suppose

(") € N<, i # j. By the claim, there is some p € N with succesor p’ € N such that
(p —p)e{™ # 0. Choose m > n so that p,p’' € Dm. Then 0 ;’: (»— p)e(") -;')(p'—p)
is a sum matrix units in NC of the form ef,";),, ' # 5/, so e', J, € (p' p)ICc =(('-p)D
for some ¢',j'. As ' # 3/, this is a contradiction. It follows that Ne¢=9. ]

CoRoLLARY 2.21. Let 2 be a UHF algebra with masa D, and let 0 < o < 1.
Then there is a maximal multiplicity-free nest M C D C U such that sup{tr(P) :
:PeM,P<1}=aqa.

Proof. As in the proof of Theorem 2.18, there is an iﬂcreasing sequence {P;}
of projections in D such that sup{tr(P;)} = a and such that there is no Q € P(D),
Q # 1, with Q@ > P; for all j. Now apply Lemma 2.20 with N = 1, Ag = {Pj}, and
Ay = {1} to get M. ]

COROLLARY 2.22. There are uncountably many nonisomorphic triangular nest

subalgebras in any given UIF algebra. -

Proof. For each a,0 < a < 1, find a nest M, using Corollary 2.21. The nest
algebras {Alg M, } arc nonisomorphic by Proposition 2.16 and triangular since each

M, is multiplicity-free. [ ]
We can do even more:

COROLLARY 2.23. For each a, 0 < o < 1, there are uncountably many non-
isomorphic triangular nest algebras Sp in a given UHF algebra such that Lat Sg is a
maximal nest with sup{tr(P): P € Lat Sg, P < 1} = . :
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Proof. First find a sequence of orthogonal projections {E;} C D as.in the proof
J
of Theorem 2.18. Let § = tr(E)), let P; = EE;, and let A; = {P;}. Now fix 3,

0 < 8 < 6, and find a sequence of projections L{_Fl'J} CDE, as in the proof of Theorem
2. 18 such that sup{tr(F;)} = B and such that there is no projection Q € P(D) with

< Q < E, for all j. Let Ag = {0} U{F}}, Az = {1}, and let N = Ap U A; U A;.
Now use Lemma 2.20 to obtain a maximal, multlphclty-free nest My D N. Then
sup{tr(P) : P € Mp,P< 1} = a and sup{tr(P) : P € M,P < E\} = 8. Now, if
Sp =- AlgMp, then the Sg’s are pairwise non-isomorphic by Propositon 2.16. [ ]

By Proposition 2.2, the nest algebras in the last two corollaries are maximal
triangular, but they are not necessarily strongly maximal triangular. Indeed, a tri-
angular nest algebra need not in ge;xeral be strongly maximal triangular (Example
2.26). However, if we choose the projections {EJ} in the proof of Theorem 2.18 in a
certain way, then we can in fact obtain a strongly maximal triangular nest algebra.
It is not easy to see this using arbitrary embeddings, however. Instead, we will use
special embeddings to create the strongly maximal algebra, and then show that it is
a nest algebra. By rewriting the construction given in the following theorem in terms
of the nest embeddings, for example, one can see that it is the same as in Theorem
2.18 with particular choices for the E;’s. This ilustrates the value of both techniques.
If one wants to create a maximal triangular algebra with certain properties, it is gene-
rally easiest to use certain embeddings, as was done in [9]. If one wants to create nest
algebras with certain properties, it is generally easiest to first construct an appropiate
nest (and if possible use the nest embeddings), as we have done in the last few results
and in various examples in this paper.

Let A, = Majn, let {es;') :1€14,5< 2"} be matrix units for U,, and define
= eS?). For every positive integer N, let Q(N') be a permutation matrix in My~
such that : ' '

o)

o) 1

= dlag (a(ll)’ agz)’ a(lN) a(21)' a(ZZ), ) ag’N)) .

Q(N)diag (af?,af",a{?, 7, .., oM, a{™) Q)T =

)

Here diag(by,...,be) denotes the diagonal matrix in M, with diagonal entries by, ...
..., bs. For each nand 1 < m < 2%, let R(n,m) = Io;m @ Q(2" — m). Observe, as in
[9, Theorem 4.5, that Ad R(n, m) o v,, maps the upper triangular matrices in 2, to
the upper triangular matrices in D/
k
For @ € (0,1}, let a = 5:1 be the nonterminating binary expansion. Set

n= 1

- ; ke M. .
= Z?""k; and a, = Z-QT = o Finally, let 5, = AdR(n, M,) o vy,



102 J. R. PETERS and B. H. WAGNER

A= li_rp(Ql,.,j,.) and D = lim(D,, jn), where D, is the diagonal of U,;.

THEOREM 2.24. There is 2 maximal nest M in D such that Alg M is a strongly
maximal TAF nest algebra and sup{tr(P): P € M,P < 1} =a.

Proof. We will prove the result for the 2°° UHF algebra; the general case is
similar. Let M,,an,jn,?, and D be as defined above. Set P(") Ee("), | =

=1,...,M,,and M = {Pj(") :j=1,...,M,n=12,... JU{0,1}. Then sup{tr(P) :
:PeEM,P< 1} =sup{an} =a. Form > n,let jom = jm-10-:0jn : Un = Upn.
Set T = AlgM and T, = (AlgM) N2, Observe that if £ < n, then {P}‘) j=
=1,. M¢}C{P(") i=1,...,Mp},s0 Mis anest. Nowif 1 i< j< 2% then
(")G’T Thlsnsclearlfz..],soletz<]andp€M say p = P( ), If m < n, then

.L()

by the observation above p = P,E, ) for some k', and therefore p p = 0. Suppose

m > n. As j, m(e ) is a sum of upper triangular matrix umts of the form ef J,) ,

¢ < j', we have P(m)lef.';',)P(m) =0 for all #, j', and hence ptj, m (e )) =0.
Next we show that if i > j, then e( )¢ T,. If j < My, then P(")“L (")P(")
(") # 0. Now suppose j > M, and write j = M, + jo.

Clalm. There is an m > n such that
2™ Ma + jo < Mn.

To see this, write _
jO _ M, j0 _ 2m "M, +;7.0
°"+2m—2n+2m— om .

Since the binary expansion of o is nonterminating, there exists m; > n such that

2m

is nondecreasing, replaciné m; by m > m; only increases the right side, so J—:‘ <

2

o, < &, . If mis sufficiently large, then Jo € am, — an. As the sequence {ay}

. o )
- € am — ap, OF a,,+2)—m<am. Hence

MM, +]0 jO _ Mm
T—=an+§;sam—7ﬁ-,
from which the-claim follows.
) LXQ m&e the least integer ¢,¢ > n, satisfying the inequality 2'~" M, + jo > M;.
Note that jn(e{™) = 3410, + efgTy) 1on: Hm> n+ 1 (e, 2Ma + jo > Mnsa),

then ju41 © j,.( (n )) contains the summand eg';‘;?,jo. Continuing inductively, we
obtain that j, m(e( )) contains the summand ei ), =2™"" M, + jo. It follows that

(

Jn m(e ) = Jjn m(e )J,. m(e ) contains a summand of the form etlc) for some

£ > k. This is because j,, m Maps. the lower triangular matrix unit e (z > j) in
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2, to a sum of lower triangular matrix units in Ql . Ask € M, P(m) E ‘M, and
P('")'L (m)P(m) = e(m) # 0. Hence pim _7,. m( ))P(m) # 0, so that e Vg T, =
= (AlgM)N2,.

We have shown that 7;, consists precisely of all upper triangular matrices in Ql,,,
and thus 7 is a strongly maximal triangular nest algebra. In fact, 7 is just the algebra
T(a) of Theorem 4.5 of [9] (assuming we choose the nénterminating expansion for a;
see remark (b) below). It is shown in the proof of that theorem that Lat7 = M, so
it follows from Cdrollary 2.5 that M is maximal. ]

REMARK 2.25. (a) trtM = {2% ck,nelt, ;:; <ar.

(b) In case o € (0,1) is a dyadic rational, we specified in the proof of 4.5 of [9] a
terminating binary expresion for a. However, the proof works equally well if we use
the nonterminating binary expansion. If we use the terminating binary expansion,
the resulting 7(4) of [9, Theorem 4.5] is not a nest algebra; rather, it is isomorphic to a
direct sum of a nest algebra and a TAF algebra with no notrivial invariant projections. -

EXAMPLE 2.26. We give an example of a nest suba]‘gebra of a UHF algebra
which is triangular but not strongly maximal. Let %, = Mzg with matrix units
{e )} A= UQI,,, and v, : A, < Uny the nest embeddlng Leb dlag(bl, yom)

represent the dlagonal matrlx in.M,, with dlagonal entries by, ..., by, and define U,
to be the permutation matrix in U,, which satisfies '

. " .
Undlag (al, cany agn)Un = dlag (al, i..yQon_4,09n_3,02n.1,09n, agn_Q).

Let jn = Ad Up4; 0 Vs, and let Jn,m = jm=10---0ja. Define

. |
M,.:{o,l,zef"):lgk<2"-2}.

i=1

Note'that jn (M, ) C Mpy1,50 M = U M., is a nest.

n=1
Claim. (AlgM)N %, = span({e‘j i<\ {62':._1'2,.}).

It follows from the claim and [9, Theorem 2.6] that AlgM is a TAF algebra,

and therefore a ma.x1mal TAF algebra by Proposmon 2.2. First let w = efj ), 1> 7,

]€<2" -2 Let p= Zel ). Note that n must be greater than ‘1, so p is a nonzero
projection in M. Butt;) wp # 0, and therefore w ¢ AlgM Next let w = eEJ ), i< g,
J#2". Let p= Zet .PEM since n > 1 and j # 2" Then pwpt = w, and it
follows that w € AﬁglM since ¢2Aqt C Alg M for every q € M.
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2~t.3
Now let w = eg,.)z,. L and p = z e("+1). Then jn(w) = eg',',i',l)”,.“ 3+
t=1
+ (2','.111 1,27+1, S0 P Lja(w)p # 0, and therefore w ¢ Alg M. Finally, let w = eg..)_l on -

Then j,(w) = 632,,.“1_)_3 gnt1_p + 6(2’,‘,1-11)2,,_,;1 ,- As we just saw above, the first term on

the right is in Alg M, but the second term is not. Thus, w ¢ Alg M. This completes
the proof of the claim. .

Claim. Alg M is not strongly maximal.
Let T = AlgM and 7, = (AlgM) NA,. It suffices to show that T +T* 'T* # A

Indeed, e ¢ ’T + T*. For if it were, then there would be a sequence {tx} C U (Tn+
n=1
+7!) such that t;, — egfz),. By passing to a subsequence of {7, +T }, we can assume

" that tx € 7; + 7;'. Choose kg large enough so th.at |

tko — Ji,m 612 “ < 1, where m is

the integer satisfying dim 2, = (2™)2. Multiplying on the left and right by egm) , and

e({:), we have ||€2m_1(tko—j1 m( ) eg'.':) “ < 1 and "ez,..) (tjo—n m(e(l) ez,.._1” <

< 1. But e{® txel™ =0 = e("')tkoez,.,)__l by the previous claim, and it follows

from the definition of ji » that either e iim (egg) (2,,.) = &{m) 1,2m (m odd) or
(m) (m)

sz n m(e(l))ezm | = €3m 3m_; (m even). This contradiction completes the proof.

This example is especially interesting in light of Corollary 3.16, which gives a

simple condition for a nest algebra to be strongly maximal triangular:

DEFINITION 2.27. Let 2 be a UHF algebra with masa D, and let m be a positive
integer. We say that a nest M C D has uniform multiplicity m if there is a set of
partial isometries {Wij : 1 <15 < m} C Wyp(MF) such that Wy; Wy, = 6;, Wi, for

all 4, 7,k,¢, Z Wi = 1, and the nest Mo = MW, C Wi 2AW;, is multiplicity-free.
i=1

It follows that M is unitarily equivalent to‘Mgm) ={p®---®p (m times) : p € Mo}

via the unitary U = @W;l. U al'so carries M€ onto (Mf,"‘))c = M§®M,,, and
i=1 . '
the argument given in [6, Lemma 7.12] then shows that uniform multiplicity is well-

-defined. If M has uniform multiplicity m, then so does Lat (AlgM). It follows
frqm Proposition 2.8 that if M and N are nests of uniform multiplicity m and n,
respectively, and Alg M =~ Alg N, then m = n. Note that unlike the Hilbert space
situation, a nest cannot have uniform infinite multiplicity, since then D would have
an infinite number of projections with the same trace. Also, uniform multiplicity one

is just another way of saying multiplicity-free.

It is perhaps surprising that there are maximal nests with uniform multiplicity
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greater than one. The following proposition shows exactly which multiplicities are

poss1ble

PROPOSITION 2.28. Suppose 2 is a UHF %algebra of type (pT pTpT - ) with
masa D. Let m be a positive integer with prime factorization (q7'¢3*---q7*). Then
D contains a maximal nest M of uniform mtj)ltiplicity m if and only if for each i,

gi = p; for some j and n; < m;.

Proof. Let ji be the embedding of Uy, into A4y, and let [k] = /AmA;. Neces-
sity is now clear for {(Wi;:1<ig<m}isa set of projections, with identical trace
which lies in some D,,. Therefore, m | [n ], and|the result follows.

To prove sufﬁc1ency, we will construct the nest. Let { (n )} be a set of matrix

units for 2, and denote e( ) by e . From the hypothesis, there is some n such

that m | [n]. Let d = [n]/m and define M,. 0= {E e(") 1€<kg d} U {0}. For

=1

1 € 4,j € m, define Wy; = Z e~ 1)d+k (] 1)d+k" Now for p > n, inductively

define Mp41,0 to be a maximal nest in 'DPHW}I containing jp (M, 0) and let My =
= UM,, 0- Mo is multiplicity-free since C*(Mo) = DWjy;. Finally, define M to

be the nest Z WieWi e € Mg p. Maximz;,lity follows from the construction and
i=1 : .
the fact that each M, 0 is maximal in CD’ Wi, ) ' [ ]

\EXAMPLE 2.29. Let A,, = M~ and deﬁne‘ = hm(Ql,,, Vn), where v, is the nest

embedding defined in Section 0. Then the construction for m = 2 in the preceding
k

proof yields the nest M = {Z( (n) + ™

i42n-1 ) :1<k<2n_1,1<"<00}u{0}-
i=1 .

We have not formulated a general theory of;multiplicity for a nest. One possibilit.y
would be to embed the UHF algebra in a II; faotor and then consider the usual multi-
plicity of the strong closure of the nest. In view of the fact that all such factors are
1somorphic, we feel that this is probably not the correct formulation.

It is not hard to prove analogues of Corollanes 2.21, 2.22, and 2.23 for nests
of uniform multiplicity m, where m is any allowable multiplicity given by Proposi-
tion 2.28. For example, to show that there is hlaximal_ multiplicity m nest M with
sup{tr(P): PE M,P < 1} = a, first define {W;; : 1 < 4,5 < m} as in the proof of
Proposition 2.28. Now use Corollary 2.21 to obtain a maximal multiplicity-free nest
Mo C WIICD such that sup{tr(P) : p € Mo,P < Wu} = a/m. Then just define

t
|
|

M= Z heWi:e€ Mo}. It follows thap there are an uncountable number of
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nonisomorphic nest algebras in 2 whose nests have uniform multiplicity m.- By using
Corollary 2.23 instead of 2.21, we can obtain an uncountable number of such nest al-
gebras § which are nonisomorphic and have the additional property that sup{tr(P) :
: P €LlatS,P <1} = « for any given c.

3. NEST ALGEBRAS: TRACE AND ORDER ISOMORPHISM

While in the previous section the primary focus was on nest algebras, in this
section we turn cur attention to the relation between masas and nests. In [9, Corol-
lary 3.23], it was shown that an order isomorphism of masas preserves hests, and in
Proposition 3.7 below we show that it must also preserve trace. Conversely, if there is
- a trace-preserving bijection between two nests, can it be extended to an order isomor-
phism of masas? In general the answer is no (Example 3.9), but in the special case
that the nests generate the masas, such an extension exists (Theorem 3.13). This is
the principal result of this section. We begin with a lemma that concerns projections -

generated by a nest, and which is used repeatedly.

LEMMA 3.1. Let D be a masa in a UHF algebra A, and let M CD be a nest. If
p € C*(M) is a projection, then there exist projectionis fy > fi > fa> - > fa > f3,
fi, L € M, 1 < i < nysuch that p= (fi — fi)+ (fa= fo) + -+ (fa — f2). The

pro_;ect:ons fi, fi, 1 i< n, and the integer n are uniquely determmed by p

' n
Proof. Initially we prove uniqueness. Suppose p = Z(f, f )= Z(g_, ;)
i=1
where g1 > g1 > 92> - > gm > gm are projections in the nest. Flrst note that

fi=g. X fi > g, then 0# fi —g1V f] < p, but (fl—glmeZ(g,—g,

=1
Reversing the roles of f; and g, we likewise obtain a contradlctlon by assuming -

91 > fi. Next, we have f| = g|. Forif f] > g}, then 0 # f{ — f Vg <g1—91 €p,
whereas f{ — fo Vgl < (fi - fa)L Z(f,- — f!). Similarly, assuming g} > f] yields a

i=1
contradiction. Now suppose m 2> n, and apply the first paragraph top—(fi — f1),

p=(h—-f)—(f2—F3), etc to conclude that fi =g, fi=g/,1<i<n. Ifm>n,
then we are left with 0 = Z (95 ~ gj), which is absurd, as the right side is a sum

j=n+1
of orthogonal projections.

i=1

Let@o={a€D:a:Z/\;(f,--—f,{)forsomenEN,/\;GC(lsign),
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and fi > fi> > fa> > fn> fl € M} It is elementary to verify
that €p is an algebra over C, and the closure of € in D is evidently the samllest
C*-subalgebra of D containing M, ie., €& = C*(M). View C*(M) as C(X) via
‘the Gelfand representatlon and let a € & satlsfy le — pll < 1/2. Express a =

_E,\(f, ). Weclalmthat\/(f, fl)_Z(f, )= p Forle(f, fi)<p,

then there is an zo.€ X with p(xo) =1 and (f. . f’)(:ro) =0,1<: < n. But then
1 = |p(z0) — a(zo)| < |lp — al| < 1/2. There is.no loss in assuming (f; — Mp#0
for all ¢, for if (f; — f/)p = 0 for some ¢, then b = Z’\j(fj — f}) also satisfies
, , i#i
n
llp = 8|l < 1/2. Now suppose \/(f‘ iy > P- Then there is an iy € {1,...,n}

and an z; € X for which (f,,, - f,o)(:cl) = l'and p(z1) = 0. As (fi, — fi,)p :,6 0,
there is an z2 € X for which (f;; — f{ )(z2) = 1 and p(z3) = 1. Thus we have

|A;°| = lp(zl)—a(z'l)l < |lp—al| < 1/2, and |1—/\,-D I = lp(mg)—a(22)| < llp-q|l < 1/2.
n
From this we conclude that p = \/(f; ~fi) ‘"

i=l

COROLLARY 3.2. Let M C N be nests in D. If C*(M) = C*(N), then M = N.

Proof. Suppose F € N\ M. Since f is a projection in C*(M), we can express

f= Z(f, ft) where f1 > f] > --- >:f,.' > f are unique projections in M. But
f.,f\e N, 1< i< n, and the unique decomposition of f in C*(N) is f =0, so it
follows that n = 1, fi =0, and in particular f; = f. u

CoOROLLARY 3.3. If M is a nest in D such that C*(M) = D, then M is maximal.

Proof. Suppose A is a nest in D with A" 2 M. Then D 2C*N) D C* M) =
so C*(NV) = C*(M), and therefore N' = M by the previous corollary. [ ]

REMARKS 3.4. (a) Corollary 3.2 is false without the hypothesis M C N. Exam-
ple 3.17 gives a nest M with C*(M) = D; the canonical nest £ also has this property.
But 1/2 is not the trace of any projection in M, whereas tr(£) includes all dyadic
rationals, so £ # M.

\ ~ | -
(b) If M is a nest in D = UD,,, then C*(M N D,) is in general properly

n
contained in C*(M) ND,. For example, let dimD, = 2" with basis { e{™ : 1 g
i }, and let v, ZD,, — Dp41 be the nest embedding. Define M =
{0,p1,p2,1}, where p; = 61 ) and p2 = e( )+ e(l) Then egl) € C*(M)N Dy, but
C*(MND;) =Cl. If NV is any nest (in partlcular a maximal nest) containing M, it
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will still be the case that C*(N ND;) # C*(N)ND;. For e(l) = p2 — p is the unique
expression of eg ) by Lemma 3.1, and since p; ¢ D, it follows that ezl) ¢ CHNND,).

COROLLARY 3.5. Let M and N be nests M CDC AU N C EC B. If
tr(M) = tr(N'), then there is a unique C*-isomorphism ¢ : C*(M) — C*(N') which

preserves trace on M.

Proof. If p € M with tr(p) = t, let (p) be the unique element ¢ € N with

tr(¢) = t. As in the proof of Lemma 3.1, each element a in the *-algebra generated by
n

M has a unique representation a = Z XN(fi—=f),with X\, €C, fi, fleM, > fi >

. i=1
> o> fo> fr. Set tp(d) Z/\ @(f:) — ¢(f})). Then ¢ is trace-preserving, and

its image is the x-subalgebra of 03 generated by N. Aslal| = [nax |A I=lea)],
extends to an isomorphism of C*{M) onto C*(N). |

Suppose ¢ : D — € is an isomorphism of masas. We saw in Proposition 2.16
that if ¢ is the restriction of an isometric isomorphism of nest algebras, then ¢ is
trace-preserving. More generally, it turns out that if ¢ is an order isomorphism, and
the ordering on P(D) is given by a nest algebra, then ¢ preserves the trace. But
first we observe that in the absence of additional hypotheses, v need not preserve the

trace.

ExaMPLE 3.6. A C‘-isomorphism of masas need not preserve trace. Let U, =
= Mgn for n > 2, and let { (), £t475<€ "} be a set of matrix units for U,,. Write
[n] = 2". Let D, be the span of the diagonal matrix units {e; (n) = e(") 1<ig )}
Let A = lgrl(?ln,vn) and D = ll_{n(D,.,u,,), where v, is the nest embedding. We

construct an automorphism ¢ of © as follows:

(n-l-l) +ef,"‘+;) gr:+11) + e(n+l)’ =1,..,[n-2
( o ))— E:+11])+2| 1+CE:f11])+z; ) ci=[n=-2]+1,...,[n=1]
e, i=n-1+1,...,[n]

Note that ¢ is well-defined since <p(e$" ) (6(2':+11 ))+¢(eg':+l)). The linear extension
of ¢ is clearly a unital embedding of D into D. To see that ¢ is onto, ovserve that
(™), i=1,...,[n-1
o = e ‘t’[n D) i=lh-+Lsh =14 -2
e(et D), i=h-1+lh-2+1,...,[n]

PRroOPOSITION 3.7. Suppose S is a strongly irreducible ®-module, ® C § C %,
and T is any €-module, € C T C B. Let ¢ : (D,<s) — (€, <7) be an order
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isomorphism. Then ¢ preserves trace. In particular, the result holds when § is a nest

algebra.

Proof. The proof is almost the same as the proof of Proposition 2.16. The only
differences are that we must assume stro‘ng-.kirreduc‘ibilit;y, and then use the order
isomorphism property instead of Lemma 29 Proposition 2.15 then implies the result
for nest algebras. - , |

REMARK 3.8. If S is a strongly maximal TUHF‘algebra, DCSCATis
any €-module, € C 7 C'B with B UHF, and ¢ : (D, <s) — (&, <) is an order
1somorphism, then ¢ also preserves trace. The proof is a slight generalization of the
argument in Proposition 2.16. First, it follows from [16, Lemma 2. 4] that A, C
C (C*(2n, Dm)NS) + (C*(An, D) NS*) for some m > n. Choose a particular mini-
mal projection e; in D,, i # 1, and let e;; be the partial isometry with initial
projection e; and final projection e;. Then there is some p € P(D,,) such that
e1i = pey; + prey; with pey; € S and pte;; € S*. Letting ¢ and ¢’ be the initial
projections of pe;; and pte);, respectively, it follows that pe; <s ¢, pte; <s+ ¢', and
g+ ¢ = e;. It follows that tr(p(pe1)) = tr(e(q)) and tr(p(p*e:r)) = tr(e(q')) since
¢ is an order isomorphism, and therefore tr(p(e;)) = tr(p(e;)). Now just apply the
last line of the proof of Proposition 2.16. '

It is now easy to see that if M C D and A/ C € are maximal nests such that
C*(M) = D and C*(N) = €, then there is only one possible order isomorphism
of (CD,<A1g M) onto (G,-<A1g N)- For suppose ¢ is an order isomorphism. Then
¢ : Lat (Alg M) — Lat (Alg M) is a trace-preserving bijection by [9, Corollary 3.23]
and Proposition 3.7. M = Lat (Alg M) and /' = Lat(AlgN) since M and A are
maximal, and the result now follows from Corollary 3.5. In Theorem 3.13, we will
prove the existence of an order isomorphism in this case, given a trace-preserving
bijection of the nests. The next example shows that an order isomorphism does not

exist in general.

ExaMPLE 3.9. Lattice 1sornorph1sm does not imply order 1somorphlsm even
among maximal, multiplicity free nests. N
Let A, = Mja w1th a given set of matrix units {e( ) i1gi .7 < [n]=2"}. Set
= hm(‘ll,,,u,.) and D = llm(I),., Vs), where D, is the diagonal of 2, spanned by fl

{ S") f:'), 1 < i< [n]}. Let £ be the canonical nest (Definition 0.1). Next, let R be !
the 8x8 permutatlon matrix Q(4), defined just prior to Theorem 2.24, which cohverts
the nest embedding to the standard embedding; i.e., AdRo v, = o, : My - Ms.
Define a sequence of permutation matrices P, = I[n41)-3 ® R, n 2> 2, and define

n U = Ung1 by ya = Ad Pro vy,
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. - _
Let B = lim(%n,7,) and € = lim(D,, ¥,). Now define N = U N, C &, where
n=3

k
N, = { (n). Z J1gkg [n] — } U {0,1} C D,. To show that N is a

k
nest, it is enough to show No CNajr- Let ge N, g = Eeg") = qfc") for some k,
Ci=1

< [n] - 4. Then

2k %
1a(q) = AdP, (Z 65"“)) = ZeS"H) = qg',:H) since 2k < [n+1) - 8
i=1 i=1
Maximality now follows since tr(V) = {k/2" : 0 < k < [n]—4,3 < n < co}U{1} is the
set of all dyadic rationals. In addition, since tr(L) = tr(N), there is a trace-preserving
bijection of £ onto .
To see that A is multiplicity free, note that because N is a norm-closed ¢-

-module, it is the closed linear span of the matrix units e( ) it contains. Thus to show
N¢ =D, it is enough to show that e(J) € N¢impliesi = 5. Now if 1 i< [n] -
1< 7, wehaveq()f) (.j),wherease(")()—O Ifl1g [n]—4]<z then

qJ(-") (;') = 0, but e(;lg 5") = 5;1) So suppose [n] —4 < 4,5 < [n] Then 7x (e ("))

(nt1) +e("+l), where [n+ 1] -8 < i), i <[n+1] -4 < iz,j2 < [n+1], and

171 12)2

iy # J1, i2 # jo. Thus if i) < j;, then

=€;

(nt1)

4, 7n( (n)) (nt1) ("+1) = 6(-’1-+1) and 7n( ))q:(:l.H) 0.

qlx 1111 11

On the other hand, if j; < iy, then

() = 0 and 30 (¢) ) = 1)
Thus' eg;') does not commute with Ay,

Suppose now that ¢ : D — € is an order-preserving C*-isomorphism. By [9,
Corollary 3.23], ¢ maps Lat (Alg £) onto Lat (Alg ). By Corollary 2.4, (L) = N
and therefore p(C*(L)) = C*(N). As C*(L) = D, we will arrive at a contradiction
by showing that C*(N) # €.

We claim that e‘(f) g C*WN). If on the contrary e, ® e C"(N), then by Lemma
3.1 there is a unique representation e =(q1—q)+(g2—¢5)+ -+ (gm — an),
with ¢; > ¢} > “>qm > q.. projections in N. Choose n sufficiently large so that

¢i,q} € Na, 1 < i < m. Expressing e = y,-10---0 -yz(ef1 )) as a sum of minimal

projections in D,, observe that eE ]) < e and e,(- )_Le for [n} — 4 < i < [n]. Note

that for any ¢ € N,,, ¢ < 1, we have q.l.ef:]). Thus ¢; must be 1. But also ¢ < 1,
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[n] L
q € N,, implies q_LeS"), [n]—4<ig[n]). Thuse > q1—¢q} 2> Z eS"), which is a
i=[n}-3
contradiction.
We conclude this example by remarking that the diagonals ©D and € are iso-
morphic; in fact, there is an isomorphism ¢ : A — B with ¢(D) = E. Define
Yn : U — AU, so that the diagram

A - ¥ an+l
‘/’nl . l¢n+1
an QIn+1

7,,:A<§ P,.ov,.‘

commutes. One checks inductively that this is accom‘plished by taking ¢, = AdQ,,
n>2 where Q2 =1,Q3= R = Py, Qs = Paws(Ps),...,Qns1 = Pavn(Qy). Note
that ¥(D,) = D,. Define ¥ on U(Ql,,,u,.) by ¥(z) = Yn(z) if 2 € A,. ¢ is

consistently defined, and is an isometric *-isomorphism onto U(an,7n). Hence )

extends umquely to a C*-isomorphism of % onto B. As 1/)(9,.) Dy, it follows that
Y(D) = €. (Note: This argument works for any embeddings, not just v, and 7,).

REMARK 3.10. If 2 and B are isomorphic UHF algebras with masas D and €,
respectively, and if M C D*and A C € are nests with tr(M) = tr(N), then the bijec-
tion ¢ : M — N given by the trace extends uniquely to a C*-isomorphism C*(M) —
— C*(N) by Corollary 3.5. A necessary condition for this mapping to have an exten-
sion to an order isomorphism D — € is that codim C*(M) in D equals codim C*(N)
in €. In the previous example, M = ( generates D, whereas codimC*(NV) =
Theorem 3.13 says th_at.‘if the codimensions are zero, then the map is an order
isomorphism. However, it seems unlikely that the conditions tr(M) = tr(N) and

codim C*(M) = codim C*(N') would in general imply D and € are order isomorphic.

PROPOSITION 3.11. Let M be a nest in® C . Suppose w € Wp with w*wlww*
and either w*w € C*(M) or ww* € C*(M). Then there are projections Pji, ..., Py,
and Ry,..., Rm, in M and orthogonél partial isometries wy, ..., Wm,,Wm,,---, Wm
in Wy such that Pw,P = w; and R WiR; = w; for all i and w = Ew. Zw,
(Note that each w; € Wp(Alg M) since PUAPL C AlgM and similarly each w; €
€ Wo(AlgM)*).

2

Proof. Suppose ww* € C*(M). Then by Lemma 3.1, we can write ww* uniquely

as ww* = Z(ng — Q2k-1), where each Qi EMand Q, < Qs < -+ < Qam. Since
k=1
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. m

w'w L ww*, it follows that w*w = EF" with Fp = Qliu‘w and Fy = (Qzk4+1—
k=0

—sz)w‘w (letting Q2m+l = 1) Let R]_ = Ql, ‘!I)l = U)Rl = Rllel, and vy =

= w—1y. Note that v}v; Lvjv}, vivy = Y Fy, and vyv} = Y Ej with B = (Qak—
: k=1 k=1
—Q2k-1)v1v}.

Now let P, = @2, wy = Pyv;, and vy = v; —w;. Then vivy L vav3, vov3 = Z Ey,
m k=2
and vivy = Z F,Ez) with F,Sz) = (Q2k+1 — Q2x)v3v2. Next, let Ry = Q3, W2 = v2Ra,
k=1 :
and vs = vz — Wy. Then vjvz Lvsav3, vivy = ZF,Sz), and vav} = ZE,(?) with

k=2 k=2

E,(cs) = (Q2t — Q2k-1)vsvy. Continue in this manner. Eventually, P; = Q2 and
R; = Q- foralli, 1 £ i < m, and Rpny1 = Q2my41. However, we may have
w; = 0 or w; = 0 for some i’s and j’s. In this case, delete these w;’s and w;’s and
corresponding P;’s and R;’s from the lists and relabel. Note that the w;’s and w;’s
are orthogonal from the construction.

" If instead w*w € C*(M), then apply the same argument to w* and M+ = {1-
—P : P € M}, obtaining projections P, ..., Py ,R},..., R, € M* and orthogonal

my)
partial isometries wi, ..., w}, ,®@,...,d;,, such that Plw/P!* = w} and RI*&/R} = .
= ] for all { and w = Zw: + Zﬂ): Then just let P; = P'*, R; = R\Y, w; = w)*,
and o; = 171:-‘. a

COROLLARY 3.12. Suppose M is a nest in ® C % and w € Wy sucht that
w*w L ww* and either w*w € C*(M) or ww* € C*(M). Then w € Wp(AlgM) if
and only if there are projections Py, ..., P, € M and orhogonal partial isometries

R m
wy, ..., Wn € Wy such that P,-w;P,-J' = w; for all t and w = Zw;. (Note that each
. L i=1
w; € AlgM).

Proof. The ”if“ direction is clear. Now if w € Wy (Alg M), use Proposition 3.11
to write w = Y _w;+ »_ ; with w; € Wyp(Alg M) and &; € Wp(Alg M)". But then
if e and f are the initial and final projections of #;, then we have @; = ewf € Alg M,
which implies that each w; = 0. _ [ ]

THEOREM 3.13 (Order Isomorphism Theorem for Nest Algebras). Suppose M
and N are nests, M C D C A and N C € C B, such that C*(M) = D and
C*(N) = €. Let ¢ : M — N be a trace-preserving bijection.. Then ¢ extends
uniquely to an order isomorphism of (D, <aigm) and (€, <algn)-

Proof. By Corollary 3.5, ¢ extends uniquely to a C*:isomorphism of D onto €.
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Since ¢ preserves trace on M, it must also preserve trace on P(D) = P(C*(M))
because of the unique decomposmon of projections in C*(M) and C*(N) (Lemma’
3. '

Let § = AlgM and 7 = Alg)\/ and suppose p <s ¢ via w € WQ(S), ie,
ww* = p and w*w = ¢q. By [9, Corollary 3.7], there is some @ € Wyp(S) N A, and
unitary u in D such that w = wu. Then wi* = p and &*% = ¢, so by replacing w with
W, we can assume without loss of generality that w € A,. Let {e :1 < 4,j < kn)
be the matrix units of A, and denote e;; by e;. By [9, Lemma 3.4], we can write
w= E /\;e',';].'(,-)A+ E Aie;, where ); € C, XNl=1, 5L, C{l,... k. }, (LUj(I2))N

- i€l i€l
NI = @, and i # j(i) for all i € I. Note that each Xie; ;i) € Wo(S) [9, Lemma

3.1} and has orthogonal initial and final projections. Also, p = E e + Z e; and

sel, i€l
qg= E €j(i )+2 e;. Thus, it is enough to find for each i € I; some v; € We(T) siich
s€l, i€l :
that v;v! = p(e;) and v}v; = <p(ej(,-)), for then p(p) <7 ¢(q) viav = E v.+z plei).
o i€l i€l
Fix i € I;. By Corollary 3.12, there are projections Pi,...,Pn € M and
orthogonal partial isometries w;,...,ﬁ:m € Wp(S) such that Pgkakl = w; and
m

¥ e,,,(',) = Z:w;, Now tr(wpwe) = tr(wpw}), so tr(p(wiwy)) = tr(p(wrwy)). Also,

p(wrwy) < SO(Pk), p(wiwe) < P(PE) = p(Pi)*, and p(P:) € N. Since p(Ps)-
Bp(P)L C T, there is a partial isometry z; € We(T) with 2z} = p(wpw}).and’
T = tp(w;ﬁ:k). Let v; = sz. Orthogonality is preserved by ¢, so the z;’s are

: k=1 :
orthogonal, and therefore v; € We(']'), =

COROLLARY 3.14. KFC*M) = D and C*(N) = €, then (D,AlgM) and
(€, AlgN ) are order isomorphic if and only if there is a trace-preserving bijection

pIM—=N.

~ The techniques of Proposition 3.11 can be ﬁsed to givé additional information,
especially when C*(M) = D.

COROLLARY 3.15. If C*(M) = D and w € Wy, then there are projections
Piy...,Pyn, and Ry,..., Ry, in M and orthogonal partial isometries w;, . ..,w,;.,,
@y, ..., Wm, in Wy such that Pw;P* = w; and R} @;R; = @; for all i, and w—
=) wi—) @i €D. we AlgM if and only ifw—Y_ w; € D. Also, if w'w L ww*,

then wz_zw;+zﬂ;,-.

Proof. First, write w = u with @ € WpN2, and u € U(D), by [9, Theorem 3.6}.
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As in the proof of Theorem 3.13, & = E ei i)+ Z e; with (LUj(I1))N1; = @ and
iel, iel;

i # j(i) for all i € I,. Apply Proposition 3.11 to each e; j(iyu to get ¢; jiyu = E wir+

k=1
t;

+Zd').~¢ and projections Pjy,..., Py, Ri1y ..., Rit; € M such that P,kw,kPk = Wik
{=1 )

and'R wiRie = w.t Then w — z (Z wit + Ew.k) = Ze,u € D. Now just

T el
relabel {Px :i € I1,1 < k < s;} as Py,..., Pm,, and similarly for {R.t} {wir}, and

{ie}. ]

COROLLARY 3.16. If C*(M) = D, then AlgM + (AlgM)* = . In fact, the
stronger statement U((AlgM + (AlgM))NY,) = U A, holds. Therefore, Alg M

is strongly maxuna.l

Proof. w = e., , i £ 4, satisfies the hypothesis of Proposition 3.11, so w =
= Ew; + Zw. with w; € Alg M and @; € (AlgM)*. A closer examination of the
proof of Proposition 3.11 shows that in fact each w; and w; lies in some g, k > n.
By [16, Theorem 2.1), Alg M is strongly maximal. ‘ .

Note, however, that for a particular sequence {%,}, we can still have ((Alg M)+
+(AlgM)*)NA, € Ay, for all n.

We already have several examples of maximal, multiplicity free nests for which .
the trace has large gaps; e.g., (tr(M)) N (a,1) = O if M is the nest of Theorem
2.18 with 0 < « < 1. In view of Theorem 3.13, one would suspect that the trace
of a maximal nest M satisfying C*(M) = D ought to be more constrained. Indeed,
Proposition 3.18 below shows that tr(M) intersects every nonempty interval in this
case. However, there can still be “point gaps”, as the following example shows.

ExaMPLE 3.17. Let U, = Mja with diagonal D,,, given the matrix units { (n )}
for YU,. Denote e( ) by e(") Let 2 = llm(Ql,., v,) and D = hm(Dn,un) where v, is
the nest embedding. We will give an example of a nest M C D with C*(M) =
but such that no projection in M has trace 1/2. R

Construct an increasing sequence {p, : 0 < n < oo} of projections in D as

follows: po = 0, p1 = 2, p» = p1 + e(ss),...,pn = pn_1 + eg',',:ll)_s,... . Define a
decreasing sequence {q, :0g<n< oo} of projections in D tqo=1q =g — eg ),
@=q— eg ) gn = Qa1 eg',:i',llz, ... Observe that p, < ¢, for all n,m, and
that tr(p,) < 1/2 < tr(gm) for all n, m.

Let Ap = {pn:0 < n < o0} and 4, = {q,l :0 € n < 00}. Let £ be the canonical

nest, and set £; = .piy + (pi — pi-1)L and L' = ¢; + (gi—1 —lq.)L. Using £ for



TRIANGULAR AF ALGEBRAS AND NEST SUBALGEBRAS OF UHF ALGEBRAS 115

K in Lemma 2.20, it follows that there is a maximal multiplicity-free nest M g D
containing AgU A;. Obseve that 1/2 # tr(p) for all p € M. For if p € L;, then p < p;,
so tr(p) < tr(p:) < 1/2. f p € £7, then p > gj, so tr(p) > tr(q;) > 1/2.

We claim that C*(M)ND, D Doy, Let € = C*(M)ND,. Now p; — pp =
=p = e(lz) = e(") + - --+e(2','.)_, € ¢,, S0 {'e("),. eg','.)_ } C €. Also, qo—q1 =
=1l-q = e‘;’) = e(;,:) ap o +e(2','.)_, € ¢,, so {eg',")_,_'_l, . eg',"z_,} C ¢,. Next, po— -

-p1 = Cg ) = eg'.'.).; Rl o eg 2)n-a € €, implies that { 2"-l 1770 §n2)""} € En,
and q1—¢z = eg )= e(s'.'z).._=+1+ +eg"2)n-a € €, implies that { €g.am=341 0 g"2)"“’} ¢

C ¢,,. Continue this process n ~ 1 times, For the last step, pp—) = pn-2 = e2,.)_3 €

€ €, and gn_3 — gn_y = eg','.)_z € €,.. Thus, €,.D {e] (n) eg'.'.)_z}. Asl e ¢,
2"-2

1~ E M = e(z':)_l + eg..) € ¢€,. We ;onclude that €, contains the projections

(") + eg"), e:(,") + eﬁ"), e(zr,'.) 1+ eg','.), which are exactly the minimal projections of

D,,_l. This finishes the claim, and it follows immediately that C*(M) = D

Let A = UQI,, be a UHF algebra, and set [n)? = dim®,. Let { M. 1g4,5¢<

[n]} be a set of matrix units for %,, and let 9,, be the diagonal of %A, with respect
to this set of matrix units. Set D = UD

PROPOSITION 3.18. If M C D is a nest such that C‘(M) =D, then
{tr(p) : p€ M} =[0,1].

Proof. If the conclusion fails, there exist 0 < a < b < 1 with (a,b) C [0, 1]\{tx(p) :
:p€E M)} Let My = {f € M :tr(f) S a}, My = {f € M : tr(f) > b}. Then
M=M,UM;, and tr(g— f) 2 b—aforallg € My, f e M,.

Choose fo € Ma, fo € My (eg., fa=0,fs=1)andn sufﬁcieni;ly large so that
fas Jo € D, and [n]7! < b—a. Express f, — f, as a sum of minimal projections in Dy,

i.e., there is a set I C {1,...,[n]} of indices for which f, — f, = Eegﬂ). By Lemma
sel
3.1, each e( ) has a unique expression as e =(f (e(")) fi (e(")))+ +(fn: (e("))
(e("))) with f; (e(")) > fi(e (")) > fa ( (")) > > f1 (e( )) projections in
.M. Let fi(e S.)) = max{f1(e{) : i € I}; then fi(e (") > max { fi(e™) ;i€
€ I\{i1} }. Otherwise, the projections fl,(eS:' ) = fi(e (")) and fi(e E")) - fi(e ("))
are not orthogonal for some i € I\{i;}. But they are subprojections of egl and e("),
respectively, which are orthogonal.
Let g1 > g2 > -+ > gm be the projections f; (ef")) written in decreasing order,
and let g1 > g5 > --- > g7, be the projections f] (eS',')) written in decreasing order.
We just showed that g/ > g2. Continue inductively to show that g} > gx41, k =
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=1,...,m-1 As {gi—g, : 1< k<m} = {f; (™) = £ (™) 15 =1, ,nijieT)
we can write

fomfo= Y e = zz(f, (") - 7)) =

iel iel j=1

= (g — 9i)-
k=1

By the uniqueness result of Lemma 3.1, we must have f;, = g1, fa = g/, and g] = g2,
95 = 93,-- -y 9m—1 = gm. Since M = M, U My, there is a largest gx in M,, say
Gko SUCh t‘ha't Gkor Jko+1s- - 9m € Ma a'nd 91,892, -, 9ko-1 € Mb Thus Jko—-1—
—0k,—1 = Jko—1—9k, is a difference of projections in Mb ahd M,, and hence tr(gr,—1—

(n)

—9k,) = b— a. However, gi,-1 — gi,_; is a subprojection of some ¢; , with trace at

most {n]~! < b — a. This contradiction establishes the result. a

‘At this point it is worthwhile to reexamine Theorem 4.3 and Example 4.4 of .
[9] in light of the results obtained in this paper. Let £ be the canonical nest in
D C A= lim(A,,vn) and let S = Alg L. If T is a strongly maximal triangular algebra
with dia.go;al &, contained in a UHF algebra B isomorphic to %, then Theorem 4.3
gives necessary conditions for order isomorphism of (D, <s) and (&, <7), as well
as conditions implying isomorphism of § and 7. Now if cp\ D (D, <s) — (€,<71)
is an order isomorphism, then [9, Corollary 3.23] implies that (L) = Lat(7), so
M = Lat(7) is a nest and ¢(C*(L)) = C*(M). Since C*(£) = D, it follows that
C*(M) = ¢. Thus M is maximal by Corollary 3.3 and 7 is a nest algebra by
Propdsition 2.1. Therefore, Theorem 4.3 can be reinterpreted as a result about nest
algebras.

To briefly review of Theorem 4.3, one can first assume that B = lim(2,,, Ad P,o
" ovy,), where P, is a permutation matrix, and 7 N2, is the set of up;er triangular
matrices in 2,. Define [n] = v/dim®%,. Now if (D, <s) and (&, <7) are order

isomorphic, then for each k there is some £(k) such that for all £ > £(k), P, =
(k)
= @ P(¢,1) and P(¢,1)’s are permutation matrices of size [£+1 / (k). If S and T are

i=1
_ isomorphic, then in addition P(n,i) = P(n,j)for alli and j. To obtain Example 4.4 of

1 0
9], let A,, = M3~ and define each P, to be of the form I®- - -@I®J, where I =
0 1
0

andJ:[
1

diagonals are order isomorphic. This can be seen directly, or alternatively it can be

1
0]. Then S and 7 are not isomorphic by the theorem. However, the

easily shown that M = Lat7T = {Z F £2M,1<n < oo} U {0}, where



TRIANGULAR AF ALGEBRAS AND NEST SUBALGEBRAS OF UHF ALGEBRAS 117

{ (")} is a set of matrix units for B. It then follows that C*(M) = € and there
is a trace-preserving bijection of £ onto M, and therefore (D, <s) and (€, <7) are
order isomorphic by Theorem 3.13. .In addition, this order isomorphism is unique. As
a consequence, one can also see that S and T are not isomorphic by showing that
condition (*) of Section 1 cannot hold. We leave this rather interesting exercise for
the reader. Still another proof was given'in Example 1.15.

Example 4.4 is somewhat special, however. We will show below that the condi-
tions of Theorem 4.3 are not sufficient to ensure either order isomorphism or algebra
isomorphism. Indeed, Lat7 may not even be multiplicity-free. First we need the
following lemma, which was used implicity in [9, Example 3.27).

LEMMA 3.19. Let U and B be finite dimensional factors, and let S C 2 and
T C B be maximal triangular algebras with diagonals® = SN S* and E=TnNT"
Let ey <5 €3 <s ... <s ey and fi <1 .fa <7 ... <17 fn be the umque orderings of
the minimal projections of © and €, tespectively, induced by S and T. Let ¢ : D — ¢
be an injective unital C*-homomorphism which is order-preserving (p(e) <1 ¢(f) if
e<s f). Thenforl<j< M,

(C) I it +f; pler + ... +e¢j).

Proof. Suppose (*) holds for all j < jo and fails for j = jo. Since

Zf.-s«»(Ze,- kel el

i<ijo ji<jo igie
and f;, is a minimal projection, there is an m, Jo < m £ M, for which f}o <

p(em)- E figey Z ei | +o(em), so elejo)L z fi. Write p(e;) = Z_f, Then
J <o i<jo © o J<de iel;

plejo) <1 @(em) since ej, <s em. Let v € We N7 implement this relation, i.e.,

v*v = p(em) and vv* = p(e;,). Express v = Z vi, where v; = vf;. Then viv; = f;

1€ m

and v;v] = fy() for some ¢(i) € I;,. Thus, this defines a bijection 4 : I, — I;, with
Y(i) < iforall i € I,. Now jy € I, s0 ¥(jo) < jo. On the other hand, i > jp for all
i € Ij,, which implies that ¥(jo) > jo. This contradiction completes the proof. |

ExaMPLE 3.20. We show that the converses of Theorem 4.3 (i) and (ii) of [9] fail.
Let 2, = My~ and {ef]'-') : 1 <14,j € 2"} be a given set of matrix units for %,. Denote
the diagonal matrix in M4 with diagonal entries a,b,¢c, and d by diag(a,b,c,d). Let
S, and 7, each denote the upper triangular matrices in U, , and let v, : S, — Sp4+1 be
the nest embedding. Define j, : T, — T4 by jn = Ad(R(Z"_l)) ov,, where R is the
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4 x 4 permutation matrix satisfying Ad R(diag(zy, 2, T3, z4)) = diag(zi, 23, 22, 24)
and R®) = R@ ... @ R (k factors). Set S = lim(Sn,vn) and T = lim(7T,, jn). Let
Dn and €, each denote the diagonal matrices in A, and set D = li?n(D,., vp) and
€ = lim(€n, jn), so D and € are masas in A = lim(%n,v,) and B = (A, jn),
respectively. D =SNS*, E=TNT*, and P(D) and P(€) have diagonaTorderings
<s and <7 induced by S and 7.

We will give two proofs that (D, <s) and.(€, <7) are not order isomorphic. The
first proof is direct and uses the preceding lemma. Suppose ¢ : (D, <s) — (€, <7)
is an order isomorphism. Then there exist integers 1 < k£ < k + 1 < £ so that the

diagram o .
Je~10je-20:-0],

¢ —mMm &

v"l 1«*

Dy Drs1

. Vi
zl—l
commutes. Let j = j ; .-~ 1. Then j( 1y = ® ¢, By L

. J} = Jt-10)e-20 7. en j7(¢; ) = €t € &. By Lemma

: k=1
3.19, v (07 1(el)) > w () = !+ 4 {1, Again by the lemma, o4
+egk+l)) 2 egt) +e§;). As j(e(ll)) L egl), the diagram in fact does not commute. Thus,
(D, <s) and (€, <) are not order isomorphic, and it also follows that S and 7 are
not isomorphic by [9, Proposition 3.20].

The second proof uses information about Lat 7, specifically that C*(LatT) # €.
As mentioned above, this precludes an order isomorphism. We first show that Lat7
is a nest and that tr(Lat 7) is the set of dyadic rationals. 7 is an &-module, so as
noted in the preliminaries, every projection in Lat 7 must lie in some €,. Now any

. k
projection p € €, NLat 7 must be invariant for 7y, so p has the form p = Z eg-") CIf
i=1
2t
p= Ee(-"), 1 £ £< 2", then p is invariant for 7;,, and one easily checks that for

J
j=1

any m > n, j;—19- - -0j,(p) is invariant for 7,,, so p € Lat (U T,,) = Lat (U’T,.) =
’ 20-1 4c-3

= Lat (7). On the other hand, if p = Z eg-"), then jn.(p) = E eg-"“) + eg't'f:) ¢
j=1 i=1

2t
¢ Lat (7, + 1). We conclude that all p € Lat (7)) have the form p = z ey‘) for some
. i=1
n1gE<g 271 or p = 0. It follows that Lat7 is a nest and that tr(Lat 7) is the
set of all dyadic rationals. Thus, Lat 7 is a maximal nest in € and, since Lat S is the

canonical nest, there is a trace-preserving bijection of Lat S onto Lat 7.
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Now (Lat 7)° # € because egl) € (Lat’]’)C To see this, let p € LatT p=

-1

= Ee( ) Wnte Jn-10" o;l(egﬁ)) = Z e2k,2k—1’ and compute
i=1 . k=1

¢
ptin-10- 011(‘3%1))17: p* (2 6(22)% 1) =0.

k=1

Similarly, pjn;lo 0] (e 1))p =0.It follows that C*(Lat T) # €. This also shows
by Proposition 2.8(i), that S = Alg(L) and Alg(LatT) are not isomorphic.

REMARKS 3.21. This example shows more than was claimed. It shows that
the necessary condition (ii) of [9, Theorem 4.3] is not even sufficient for the weaker
conclusion (i) that the diagonals be order isomorphic.

Example 4.4 of [9] illustrates some of the problems that remain. Here we have
two strongly maximal triangular nest ajgebras with order isomorphic diagonals and
isomorphic nests. In addition, the two nests Lat S and Lat 7 are as “nice” as possible
in that (L.:at S§) N, is maximal in D,, and likewise for Lat 7. However, the algebras
-are still not isomorphic. Again, the different embeddings are the problem. In other
words, the nests look the same, but they are different in the way they lie in their
respective UHF algebras. This phenomenon is still not well understood in terms of
trying to classify such nest algebras, and remains an object of further study.

4. K-THEORY FOR TAF ALGEBRAS AND NEST ALGEBRAS

) oo .
Let A = U A, be an AF algebra andlet D = U D, beamasainU. Let S C YU

n=1 n=1
o0 o0
be a TAF algebra with diagonal . Set S = U SN, and D° = U D,; then -
- n=l n=1 ‘

S° and D? are local Banach algebras whose completions are S and D, respectively.
In the notation of [3, 5.1.2], V(§°) =~ V(S) and V(D%) =~ V(D), where V(S), for

example, represents the homotopy classes of idempotents in M (S) = U M. (S).

Now S is the algebraic inductive limit llm(S,.,(p,,) where S, = S ﬂQl,,, and ©@n is
the restriction of the embedding A, — Ql,H.l, similarly, D° = ll_r'n(CDn,cp,,). By [3,
5.2.4), V(S%) = im(V(S,), (pn)s) and V(D) = Kim(V(D,), (¢n)s)-

We claim th—;_t V(Sn) = V(D,). Fix n and Tet e € M,,.(S5) be an idempotent.
. Let {e,(-;-")‘} be a set of matrix units for A, chosen so that-all matrices in S, are
' ' )

in upper triangular form. View e as a matrix e = (a;;’) with a(r) = c('") ® AE; ,
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AS;) € M,,(C) and AE;) =0if 68") €Sn Ife, = (tj"a,(;)), 0 <t < 1, then one can
check directly that e, is an idempotent in M,,(S,), €1 = ¢, and eg € M (Dn).

Next, let e, f,e M,.(D,) be idempotents. If e and f are homotopic as elements
of Moo (Sn), then they are homotopic as elements of Moo (D,). For if h : [0,1] —
— M (Sn) is a homotopy with h(0) = e and h(1) = f, then by defining h, as
above (i.e., hi(s) = (h(s)):), we see that h, is a homotopy joining e and f for every
t,0 < t < 1. In particular, hq is such a homotopy; but ho(s) € M (D,) for all
s, 0<sg L.

PROPOSITION 4.1. Let S be TAF with diagonal ®. Then
(l) KO(S) jag Ko(@),
(i) Ky(S) = {0}.

Proof. (i) By the above, we have V(D) = V(S), and the conclusion follows from
[3,5.3.1 and 5.5.5]. (ii) By a similar argument with invertibles in place of idempotents,
we obtain K;(S) ~ K;(D). But D is an AF algebra, so K;(D) is trivial [3, 8.1.2(a)}.

|

We now turn to an analysis of the structure of (Alg M) N, for a nest M in-
D, where D is a masa in UHF algebra 2 = UQ[,,. This will allow us to determine

Y .
the K-theory of nest algebras, and is also of independent interest. (AlgM) N, is
of course a subalgebra of the matrix algebra 2, and we will show that it can be put
into “upper block triangular form”. Additional information will be given concerning

the component “blocks”.

DEFINITION 4.2. A partition P = (E\,E, ..., Ep) of D, is an ordered set of

orthogonal projections {E),...,Ey,} in D, such that Z E; = 1. The number m of
i=1
projections in the partition is the length of the partition and is denoted length(P).

If § C 9, then E;SE; defines a block of S with respect to P. We say that the block
E:SE; is full in % if E;SE; = E;UE;, and E;SE; is full in U, if E(SNU)E; =
= E;U, E;. On the other hand, E;SE; is zero in % if E(SNAL)E; =0. f S C Ay,
-then § is block triangular with respect to partition P = (E, ..., Ey) if there exist
no i and j with i # j such that both E;SE; and E;SE; are nonzero. S is upper block
triangular with respect to P if E;SE; = 0 for 1 > j.

The. riext lemma is undoubtably known, but we have been unable to find a re-

ference.

LEMMA 4.3. Let U be a matrix algebra with masa D. Suppose S is a block
triangular algebra in 2 with respect to a partition P = (Ey, ..., En) of ©. Then
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there is a permutation Q of P such that § is upper block triangular with respect
to Q.
Proof. Use induction on the length of the paitition. The result is trivial if

length(P) = 1. Let Q¢ = ZE Now QkDQk is a masa in the matrix alge-

bra QrAQk, and QrSQk is a block tnangula; algebra with respect to the partition
(Ey, ..., Ex), so we can for simplicity suppose the result is true for any block triangu-

lar algebra with respect to a partition of length less than m; and then prove the result
' m-1

for S. Let Q = Z E;. Then by the induction hypothesis there is a permutation of

f=1

the partition Pg = (E4,..., Em_y) so that QSQ is upper block triangular in Q2Q.
Let P’ = (F},..., Fy) be the new partition of D (so Fp, = Ep, and (Fy,..., Fp\y)
is a permutation of (E),..., Em—})). Define the blocks F;; = F;SF;, and note that
Fpoyj=0forallj<m-1.

If Fr; =0 for all 5 < m, then we are done. So suppose Fnr # 0 for some
k<m Ifk=m-—1, then F,,_|m = 0 since § is block triangular. If ¥k < m — 1,
and Fpo_y,;m # 0, then Fpa_y ¢ # 0 since S is an algebra, a contradiction. Thus in

either case F,~ym = 0. Now interchange Fin—; and Fy,, relabel the partition as
= (G1,...,Gm), and define the blocks G_, = GiSGj. Then Gn; = 0 for all

m-—1
Jj < m. Finally, let Q' = Z G; and permute (G, ...,Gmn-1) so that @Q'SQ’ is upper
. i=1 . :
block triangular form. Let @ = (Hy,..., Hy) be the new partition and define the
blocks H;; = H;SH;. Hpm = Fp,, so the bottom block row will not be affected by this
permutation, i.e., Hy,; = 0 for all j < m, and this completes the proof. ]

- THEOREM 4.4. Suppose U = U A, is a UHF algebra with masa®. If M is a nest
inD,8=AlgM, and S, = (Alg M) N, then there is a partition P = (E,, ..., Ey)
of D, such that

(1) S, is upper block triangular with respect to P,
(ii) for i <'j, E;SE; is either full in U, or zero in U,,
(111) E;SE; is qu in U, for all 7,
(iv) M N, = @Es E;,

i=1

(V) MND,={P,:0£ig<k},0=P <P <---<P,=1,and F; = P;—
=¥&i-1,

then there are integers 0 = mg < my < --- < my = m such that F; = Z E;,

t=m,_1+1
and F;SF; is full in A fori < j and F;SF; =0 fori > j.
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Proof. PUAP} C AlgM =S for all {, so F;UF; = F;P;UP}F; C F;SF; ifi < .
Also, PJ'SP =0 for all j, so F;SF; = PJ'SP F; = 0if i > j. It follows that S, is
. upper block triangular with respect to {Fl, ..., F}. We will now partition each F;
and then combine these partitions to finish the proof.

Fix£,1 << k. Define B, to be the matrix algebra FyU, Fy. Then M°NB, isa
C*-subalgebra of %,., so there are minimal orthogonal central projections Gy, ..., Gy,

. . ¢ -
in M°NB, with Y G; = Fy 5o that MSNB, = Y GjBaGj. FiDnFy is a masain

i=1
MNBy,,50G; € FiDpFyforall j. Also, MNB,, C FiSnFrso GjSG; = G; FSFG;
is full in A,.

Now let {e;;} be a system of matrix units for B, so that G; = e; + --- + ey,,
G2 = €1, 41+ -++é€y,, etc., where e; = e;;. Suppose e;; € S, such that Gpe;; G, = e;j,
p # ¢, i.e, e; is in an “off-diagonal” block of S,. Then e;; ¢ S, since otherwise
eij € M€, a contradiction of the choice of the G;’s. Suppose e,, is in the same block
(i.e., GpersGg = €r5). Thent, 3 +1 <4, r < tp 50 i € GpUnGp C MC. Similarly,
ejs € MS, s0 e,, = erieijej, € S, also. Therefore, GpU. G,y C Sn, 50 GpSG, is full in
An and G SGp is zero in A,. FySpFy is thus a block triangular algebra in B, with
respect to {G1, ..., Gk, }, so the G;’s can be rearranged by Lemma 4.3 so that F;S, F}
is upper block triangular. Denote these permuted projections by {Em,_,,..., Em,}
whsre mg = 0 and my — my_; = k¢, and the result now follows. ]

Now suppose M is a nest in D C A, and let P = (E,,..., E,) be the partition
of D, gnven by Theorem 4. 4 Let {e(")} be a system of matrix units for A, such

that E, = Zefl ) Ey = Z ef?), etc., and suppose e € M, ((AlgM)N2A,) is an
i=1 i=ky+1
1dempotent Then e can viewed as a matrix (a;;) with a;; = e( )GBA.,, A;; € M, (C)
and A;; = 0 if e(") ¢ (AlgM) N2A,. For each i and j, there are unique integers
k and Z such that Eke( )E[ = eSJ). Define ¢; = (t""a.-,-), 0 €<t < 1. Then each
e; is also an idempotent (by direct calculation), and lies in M, ((Alg M) N%A,) by
Theorem 4.4. {e; : 0 <t < 1} is a homotopy joining e = e; to e € M, (M N Y,),
so the same proof as Proposition 4.1, using blocks instead of matrix units, shows that
Ko(Alg M) ~ Ko(M°). Similarly, if e is an invertible element in M, ((Alg M) N2A,),
then so is each e;, and we obtain the same result for K;. Thus, we-have proved the

following proposition:

PROPOSITION 4.5. Let M be a nest in ® CU. Then
(i) Ko(AlgM) = Ko(M°),
(ii) Ki(AlgM) ~ K (M°) = {0}. _
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Proposition 4.1 and 4.5 are analogues of Pitt’s result [11] for Ko of nest subalge-

bras.of B(?) and Peters’ results [10] for Ko and K, of semicrossed products.
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