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ENTROPY FOR +-ENDOMORPHISMS AND RELATIVE
ENTROPY FOR SUBALGEBRAS

MARIE CHODA

1. INTRODUCTION

Connes and Stgrmer ([4]) extended the notion of the entropy from the classical
ergodic theory to the frame of II;-von Neumann algebras and showed that the n-shift
of the hyperfinite II, factor is not conjugate to the m-shift for n # m. For each n,
the n-shift is the automorphism corresponding to the translation of 1 in the infinite
tensor product ._QEDI(M.-, tr;) of the algebra M; of n x n matrices with the normalized

trace tr; on M;, for each i.

In the index theory ([8]) for finite factors, Jones defined the index [M : N] for
a subfactor N of a finite factor M. In a subsequent work, Pimsner and Popa ([11])
introduced the Connes and Stgrmer’s relative entropy H(M|N) as an invariant of
a subfactor N of a finite factor M up to conjugation. They obtained interesting
relations between H(M|N)'and the Jones’ index [M : N]. They also introduced
the automorphism 6, of the hyperfinite II; factor R which shifts ¢; to e;41, {e:}iez
being the Jones’ sequence of projecit.iops with the trace A which generates R and they
compute the entropy H(6,) for A # 1/4. However, the value of the entropy has not
been obtained in the case A = 1/4. A ,

Then in {10] Powers initiated the study of another class of shifts on R that
he called binary shifts, which translate u; to iy, {uilizo being a sequence of uni-
taries generating R. After that, in [2], [6], [1] and [12], the conjugacy problem of
*-endomorphisms corresponding to sequences of more general unitaries is investi-
gated. We call these *-endomorphisms unitary shifts. On the other hand, the author
[2] treated *-endomorphisms of R generated by the sequence (p;); of projections trans-
lating p; to pi41, which we call prb‘jection shifts. Those unitary shifts and projection
shifts turn out to be ergodic automorphisms of the hyperfinite 11, factor.

We will try in this paper to bring together this circle of ideas. We will first
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define the engropy for *-endomorphisms of finite von Neumann algebras by essen-
tially adapting the Connes-Stgrmer definitions. Then we shall obtain simple formulas
for entropy of *-endomorphisms. Under some good conditions, the entropy H (o) of
a *-endomorphism ¢ of an approximately finite von Neumann algebra M is deter-
mined by the entropy H(An)’s for an increasing sequence (An)n of finite dimensional
subalgebras which generate M:

H(o) = lim —}-I—(—AL)

n—oo n

The above all *-endomorphisms satisfy the relevant conditions and similar formula
are obtained in [5) and [11]. As an application of this result to the automorphism 8,
treated by Pimsner and Popa, we show that H(f,) = log2 for A = 1/4. We shall
show that if the inclusion data for the above sequence (A, )a is periodic in the sense
described later, then

H(o) = ;flo'gﬁ
where p is the period of the data and 8 is the Perron-Frobenius eigenvalue of the
inclusion matrix.

Next we shall investigate some relations between the entropy for *-endomor-
phisms and. the relative entropy for subalgebras. If ¢ is not an automorphism but a
*-endomorphism of a finite von Neumann algebra M, it is natural to discuss on rela-
tions between the subalgebra o(M) and H(o). We shall show that if M is generated
by an increasing sequence (N;); of finite dimensional subalgebras, the inclusion data
of which satisfies the bounded growth condition.defined in. below, then

H(o) = %H(Mla(M)).

All automorphisms and shifts discussed above satisfy the bounded growth condition.
Hence, as an application of this result, we can also obtain the value of the entropies
H(6)) for all ). ‘

The bounded growth condition is satisfied if the inclusion data is periodic. Under
the periodic condition, the algebra. Misa factor and we shall obtain that

H(o) = -log[M U(M)]—-H(MIU(M))

If a von Neumanh algebra N is generated by {6‘(P) :i € Z} for an *-automorphism
# of N and a subalgebra P of N, we get a *-endomorphism o of the von Neumann
subalgebra M generated by {6'(P):i=1,2,...}. Then we shall show

H(6) = H(o).

2. DEFINITION OF ENTROPY FOR *-ENDOMORPHISMS

In this section, we shall define the entropy for *-endomorphisms and state some
of its properties. Throughout this section, M will be a finite von Neumann algebra



ENTROPY: FOR *-ENDOMORPHISMS 127

with a faithful normal trace 7, 7(1) =.1. For a von Neumann subalgebra N of M,
we denote by En the unique falthful normal conditional’ expectatlon of M onto N
defined by 7. The letter g des1gnates the function on [0, c0) defined by n(t) = —tlogt.
For each k € N, we let Sy be the set of all families (i, 4,...,i1 )i eN of positive elements
of M, zero except for a finite number of indices and sat\;isfying

Z Ty, i = 1.

[ ST IO 7'

For z € S,j €{1,2,...,k}, and i; €N, put.
I::,- = _ Z Tiy,ig,... fn-
l‘l,...,i,'_l,i,‘.‘,l,...,ig

Let Ny, N, ..., Ni be finite dimensional von Neumann subalgebras of M. Then
Connes-Stgrmer defined:

H(Ny,...,Ny) = :gg z (24,00 ) — EZT'}EN;(‘{,-S
* F

f1,..0k

We recall the basic propéfties concerning the function H(-) which will be used later.
(A) H(Ny,...,Ne)SH(Py,...,P) if Nj C P; for all j.
(B) H(Ny,..., N, Niy1, ..., N))SH(Ny, ..., Ni) + H(Niga, ..., N).
(OOIfP,CcPfori=1,2,...,n, then

~

H(Py,...,Pn, Pagy, ..., Pn)SH(P, Payy, - .., Pm).

(D) Let (eq)aer be a familiy of minimal projections of N such that Eea =1
- agl
Then H(N) = E n7(ea)-
‘ a€l
(E) If (N1, Nz, ..., Ni)" is generated by pairwise commuting subalgebras P; of
- Nj, then H(Ny,..., Ng) = H((Nl, . .Nk)”).

2.1. DEFINITION AND PROPERTIES OF H(c). Let o be a r-preserving x- endomor-
phism of M. Following [4], we shall deﬁne the entropy for such a o.

“

REMARK 1. If a x-endomorphism of M preserves a faithful normal trace 7,"7(1) =
=1, then o is one to one , (1) = 1 and o is weakly continuous.

LEMMA 2. Let ¢ be a T-preserving x-endomorphism of M. Then

-H(O'(Nl),(f(Ng), <oy 0(Ni))SH(Ny, Na, ..., Ni).
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Equality holds if o is an automorphism.

Proof. Although the inequality is obtained by [5, Proposition III.6], we shall give-
a proof of it for the sake of completeness. By Remark 1, (M) is a von Neumann
subalgebra of M. Let E be the conditional expectation of M onto ¢(M). Then

H(U(Nl)l' '_"U(Nk)) = fgg Z "T(E(zu. .'h)) ZZTUEa(N,)(E( ))

$1,00000

Let Si(0(M)) be the subset of Si such that all z;,, ;, are contained in o(M).
Since

Eqyny(o(y)) = o(En(y)) and 7no =79,
H(U(Nl), ve- ,U(Nk)) =

T
[E n7(ziy,..ik) — szﬂEo(N,)( =

=€Sb(°(M )

= sup [7(!/-., i) — ZZTQUEN,(.V:)

N

y€o=1(Sx(a(M)))

SH(Ny, N3, ..., Ni).

If o is an automorphism, then o~1(Si(s(M))) = Sk, so that the equality holds.
[ ]

For each r-preserving #-endomorphism o of M and a finite dimensional von
Neumann subalgebra N of M, the following limit exists by Lemma 2 and properties
(B), (D):

H(N,o) = lim \—l-H(N, o(N),...,a¥ 1 (N)).
k—co'k

DEFINITION 3. The entropy H(o) for o is the supremum of H(N, o) for all finite
dimensional subalgebra N of M.

PROPOSITION 4. Let M be an approximately finite dimensional finite von Neu-
mann algebra, T a faithful normal trace of M with (1) = 1 and o a r-preserving
*-endomorphism of M. Let (N;)jeN be an increasing sequence of finite dimensional
subalgebras which generates M. Then

H(U) = Jlin; H(Nj, (7).

Proof. This‘ proposition is proved by the same method as [4, Theorem 2] applying
property (F) and Lemma 6 below. |
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Using Lemma 2 and' Proposition 4, the following proposition is obtained by the
same proof as [4]:

PRoPOSITION 5. (1) Entropy for *-endomorphisms is conjugacy invariant, that
18,

H(o) = H(07'00)

if @ is a T—preserving *-automorphism of M.

®
H(o")<nH(o)

. for all n € N, and equality holds if M is approximately finite dimensional.

2.2. RELATIVE ENTROPY. The relative entropy H(A|B) for arbifrary von Neu-
mann subalgebras A and B of M is defined ([4], [11]) by

H(A|B) = sup E [rnEs(z:) — TnEa(z:))

and it is allowed H(A|B) = oo.
(F) H(NlaNza"‘)Nk)SH(Pl;P21"-yPk)+ZH(Nj|}’j)‘
i

LEMMA 6. If o is a T-preserving *-endomotphism of M, then
H(o(Alo(B))<H(A|B).

Equality holds if ois an automorphism.
Proof. Immediate by a similar argument as Lemma 2. ]

2.3. RELATIVE ENTROPY FOR FINITE DIMENSIONAL ALGEBRAS. If A C B are
finite dimensional subalgebras of M, then H(B|A) is given by a more concrete formula.
We decompose such A and B as follows:

A =®A1 and B = @Bk,

leL kEK

where L, K are finite sets and A; or B; are the algebras of a; X a; or b X bi matrices,
respectively. Then row vectors a = (a;); and b = (b;)r are called the dimension
vectors of A and B. The inclusion matrix [A < B] = (mut)ieL rek is given by the
number my; of simple components of a simple B, module viewed as an A; module.
The trace (column) vectors ¢ = () and s = (sp)r has t; res\pectively 8; as the traces
of the minimal projections in A respectively Bi. Then

a[A— Bl=b, [A—Bls=t, Y ati=1= bess.
. 1 k
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Pimsner and Popa showed the following equality:

H(B|A) = Z ait;logt; ~ Z ait;loga;—
1 1

- E brsi log Sk + Z bise log b+
k k

., a
+ aymy;. 53 log min(—, 1).
%: gmin(;—, 1)

In order to simplify the notation we put

I(A) =Y aitilog :—’
€L !

LEMMA 7. If m;;p<a;, then

H(B|A) = I(B) - I(A).

3. APPROXIMATELY FINITE DIMENSIONAL ALGEBRAS

In this section, we shall obtain some formulas in the case of approximately finite
dimensional algebras. Throughout this section, M is a von Neumann algebra with a
faithfull normal trace 7, 7(1) = 1 and (N;)jen is an increasing sequence of M which
generates M, also & is a r-preserving *-endomorphism of M.

3.1. SIMPLE FORMULA FOR H(0). If the inclusion data in (2.3) for the sequence
(Nj)jen satisfies the following two conditions, then the sequence (N;); is said to be
periodic with a period p ([13]).

There are no>0 and p>1 such that for all j>ng :

(i) [N; = Nj41} = [Nj4p < Njtpsal,
(ii) The matrix [Nj < Nj4,] is primitive.
REMARK. If M is generated by a periodic sequemce (Nj)jeN, then M is a factor

((71.013). : '

LEMMA 8. Assume that (N;)jeN is a periodic sequence with a period p. Let B;
be the Perron-Frobenius eigenvalue of the matrix [Nj < Nj4,] for a j>no. Then

tj = Bitivp

and HN
lim H(Nn)
nsco n

1
= ~logp;.
P g Pj



ENTROPY FOR *-ENDOMORPHISMS 131

Proof. Let fix a j>2no. We denote by T the matrix [N; < Nj;4,] and by g the
Perron-Frobenius eigenvalue of T'. Since

k
tiap = Tt (k)

for all k>0, and T is primitive, there is a positive real number a so that ¢;,, = af,
where £ is a Perron-Frobenius eigenvector of T for 8. Hence

ti=Ttjyp =aTE=Ptjp=...= Ptjtnyp
for all n20. By the property (D),

H(Njtap) = =Y _ djsnp(k)tj 4np(k) log 8~ 1;(k) =
~ _

=nlog B = Y dj1np(k)tjsnp(k) logt; (k).
k

Since {t;(k); k} is a finite set and Zd:(k)t,(k) =1,
k

lim V) _ iy " log 8 = - log .
np p

n—oo n n 7+

ASSUMPTION (*) FOR 0. (1) For j and m, there is a 7-preserving *-endomorphism
o so that a(Nj;1m) contains the von Neumann algebra generated by {Nj,o(Nj),...
.., 0™(N;)} '
(2) There exists a sequence (n;)jen with the properties

zo™(y) = o™ (y)z, (z,y € N;, m € n;N)

r(aot™()) = m(@)(y) (2 € (N;, 0™ (N;), ..., o*OM(Ny)Y',y € Ny)

and
n,- bt

lim J =0
J=—+00 2

THEOREM 9. Under the Assumption (),

H(o) = .‘lim

J—o0

H(N;)
=5

Proof. By Proposition 4 and the' Lemma 2, we have

H(o) = jl_i‘rgo H(Nj,o0) = li;nliElH(Nj,o'(Nj), o YN )R
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gli;nlirr}cian((Nj. O 0°79) (N Cat s 0.7 WOt 0/ )) Y/ 2
<limliminf H (e(Ne), k=i +1(01(}‘121-—1)))/ k<
<lim liminf{F (V) +H(Ny_))/k <
<liminf H(N)/k.

Onh the other hand, by properties (D) and (E),
njH(o) = H(o™)2
> lim H(N;, o™ (Nj), . -, o*"i(N;)) k=
= H(N;),

because (Nj,o"(N;),...,0*"i(N;)) are pairwise commuting and T satisfies a kind of
multiplicative property. Hence

s AWN;) _ H(N;) =350
H(o)> el Py H(N;)

which implies

H(N;)-

H(¢)2limsup ——=.
J J
Therefore ]
H = lim =-H(N;).
|

COROLLARY 10. If the sequence (N;); is periodic with a period p, under the
Assumption (%), '

1
H(o) = =logfn
p
for a large enough n,where 3, is the Perron-Frobenius eigenvalue of [Ny < Npyp].

Proof. By Theorem 9 and Lemma 8,
H(o) = lim 1H(N-) = ! lé Bn,
j . b . & Pn,

for a large enough n. |

3.2.APPLICATION TO f) AND n-SHIFTS. Let (e;);cz be a sided sequence of pro-
jections satisfying the axioms:

a) e;eix16i = Ae; for a A € (0,1/4) U {1/4sec? /m; m>3},

b) e;e; = eje; for|i—j|>2,
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¢) the von Neumann algebra P generated by (e;)icz is a hyperfinite II; factor
with the trace 7. :

d) 7(we;) = Ar(w) for the trace 7 of P if w is a word on 1 and {e;;j < i}.

We define the sequence (A,)_,GN\ of finite dimensiondl subalgebras of P which
generates P by

Azj = {ei; <G =1}, Azjyr = {Azj,€;}"

Then we proved in [3] that the inclusion data for (A4;);en is the same as the data
in [8]. In case A = 1/4, the sequence of trace vectors has beautiful values as follows.

LEMMA 11. Let t; be the trace vector for the restriction of T to Aj. If ) =1/4,
then for all k € N,

tor = (1/4’*,3/4’25/4& o (2k+ 1)/4%)

and
tasr = (1/45,2/4%,3/4%, ., (k + 1)/4%).

Proof. We shall prove that by the induction on k. It is obvious for k = 1. Assume
that lemma holds for k = m. It is shown by Jones [8] that t3(n41)(5) = (1/4)t2m(5)
for j =1,2,...,m+1. Hence we just have to show ty(my1)(m+2) = (2m+3)/4>™+1,

The dimension vector dj of Ay satisfies dar(i) = (k 21k+ i) - (k?-,k ,), where
. - i -1 .

‘ (':) is the binomial symbol with the convention ( i ) = 0. Since 3 d;(i)t; (i) = 1,
we have a = t2p41(p+ 1) = (2p + 3)/4?P*! by the equality: A

= (2(::11)) (2p +1)+Z (2(“1))‘ #+a.

Similary, we have the values for tok+1- ]

THEOREM 12.
H(8,)) =log2, for A=1/4.

Proof. - We denote ) by 6. It is easy to check that Assumption (%) for 8 is
satisfied. Hence H(f) = hm H(A;j)/j. On the other hand,

k41
H(Azt) = =) do(§)tae log tar(j) =
ji=1
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=~ ) dor(j)tak (§)(log(2j + 1) ~ log4*) =
i

= log4* ~ Zdzk(j)tzk (5)log(25 + 1),
. j ‘
fork=1,2,....
Similarly,

H(Azt41) =log4* — 2.d2k+l(j)t2k+l(j) logj for k=1,2,3,... .
j

On the other hand,

0< lim (1/2k) D dae(5)t2e(5) log(25 + 1)< Jim (1/2k) log(2k +1) = 0
j .

and

k— o0

1 Niorar(G) log i
lim ﬁ_ﬁzj:'duu(ﬁtuu(ﬁb&] =0.

Hence we have

k
H(0) = lim ng:_ = log 2.

After I had known for this paper to be accepted, I received the preprint ” Entropy
of certain noncomutative shifts” from H. S. Yin in which he had the same result as
Theorem 12.

By applying Corollary 10 to 85, we have the following results by Pimsner-Popa:
COROLARY 13. Let A > 1/4. Then H(6,) = —(1/2)logA.

Proof. Since the inclusion data for the sequence (A;j);en is the same as one
obtained by Jones [8] ([3]), the sequence (A;);en is periodic and the period of it is 2
[8]- For a sufficiently large j, the Perron-Frobenius eigenvalue of the inclusion matrix
[Aj < Ajy2] is 1/Xif A > 1/4. Hence H(6)) = —(1/2)log A by Corollary 10. [

As another application of Corrolary 10, we have the following result of Connes-
-Stgrmer.

COROLLARY 14. Let S, be the n-shift of the hyperfinite I1; factor, then H(S,) =
= logn.

Proof. Let M be the algebra of n x n-matrices. For an integer j, let

z;=..91®...901® z ®1Q... (zeM)

J
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Then S, (z;) = x4 for all z € M and j € Z. For an integer j>0, let
Nojy1 = {UMy; [kIS5}Y,  Naj = {M;j U Ngj_,}".

Then S, satisfies Assumption (*). The sequence (N;);en is a periodic sequence which
generates the hyperfinite II, factor. The period of (N;)jen is 1 and the inclusion
matrix [N; < Nj;41] is the number n for all j>0. Hence we have H(S,) =logn. H

3.3. BOUNDED GROWTH CONDITION FOR (Nj)jen. Let

Nj = @ N; (k)

kEK;

be such a descomposition as in (2.3), d; = (dj(k))rek; the dimension vector of N;
and t; = (¢;(k))r the trace vector of 7 on Nj.

DEFINITION 15. We shall say that the increasing sequence (N;);en satisfies the
bounded growth condition if

(1) sup §(K;)/j < oo and
J .

(2) For some mg, N;4+1(l) contains at most d;(k) N;(k)-components for a j>my,
where f(K;) is the cardinal number of K;.

PROPOSITION 16. If an increasing sequence (Nj;); satisfies the bounded growth
condition, then '

I(Np) = I(Nmg-1) = Z H(N;IN;-1)

for n > my and

3 " t(k)d; (k) logt; (k)d; (k)
J_lirgo k y =0.

Proof. Since the condition (2) in the bounded growth condition implies the
condition in Lemma 7, we have

H(NalNawt) = I(Na) = I(Nae1) = I(Np) = I(Nn—2) = [I(Nau) = I(Na_)] =

n—-1
= I(Na) = I(Nmg-1) = > H(N;IN;_y).

j=mo
Hence

I(Nn) = I(Nmo-1) = ) H(N;IN;_y).

I=mo
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Put r;(k) = t;(k)d;(k) and §(K;) = k;. Then Y r;(k) = 1 and r;(k)3>0. Since
kEK;
the function 7 is concave, we have

zk:'l(rj(k)) = kj Xk: ﬁr,l)cf_k))s

ri(k
<kjn (Z #) = logk;.
e

k
Hence by the condition (1),

3 n(ri (k) -
0g lim *t— < lim 27
2

J 7 )

=0,

which implies the conclusion. o [ |

4. ENTROPY H(o) AND RELATIVE ENTROPY H(M|o(M))

In this section we shall obtain relations among the entropy for *-automorphisms,
the entropy for *-endomorphisms (which are not automorphisms) and the-tfelative
entropy for subalgebras. '

~ DEFINITION 17. Let M be a von Neumann algebra with a faithful normal trace
7, 7(1) = 1. A r-preserving *-endomorphism o of M is said to have a finite dimen-
sional 7-independent generator P if the following conditions are satisfied:

(1) M is generated by the family {o*(P); all considerable i} (that is
"M = {o'(P);i € Z}" if 0~'(P) is defined, otherwise M = {o*(P);i € N}"),
@) ]
(o (@:)0 (21,) -0 (zi,)) = [] sy,
i=1

for z;; € P and 4; # i if | # k, and

(3) The algebra generated by {¢*(P);i = 0,1,...,n} is finite dimensional for all
n and there is such an m that P and o*(P) commute for all i2m.

THEOREM 18. Let M be a von Neumann algebra with a faithful normal trace
7, 7(1) = 1 and o a T-preserving *-endomorphism of M which has a finite dimensional
r-independent generator P. Let N; be theralgebz;a generated by {o*(P);i =0,1,...
...,J}. Assume that the sequence (N;); satisfies the bounded growth condition. If o
is not onto, then '

H(o) = %H(MIU(M)).
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Proof. The algebra M (resp. o(M)) is generated by an increasing sequence (N;);
(resp. (¢(Nj);)). By the property of 7 or o, we have for all j,

En;Eo(n;y = Eo(N;_1)-
Hence we have by [11, Proposition 3.4],
H(MIo(M)) = Tim (Njlo(N;-1))

It 'is obvious that there is a T-preserving *-automorphism a of M which satisfies
a(Nj) = Nj and o(N;_1) = o(Nj_1). Hence H(N;|o(Nj-1)) = H(N;|N;_1). Let d;
be the dimension vector of N; and ¢; the trace vector of 7 on Nj. Then by property
(D) and Theorem 9,

H(o) = lim H(N;)/j = =1lim(1/3) 3 & (£)d;(k)log t;(k) =
: k

= lim(1/7) | I(N;) = 3 t;(k)d; (k) log d; (k)|
k

Since

.1
lim H > ti(k)d; (k) logt;(k)d; (k) = 0
LI
by Proposition 16, we have

H(o) = nm§zt,-(1c)d,-(/c)1og d; (k).
k

Hence
2H(0) = im(I(N;))/j = lijm[I(Nj) = I(Nm_1)/j =

=1im(1/7) Y H(N;|N;_1) = H(M|o(M)).

i=m
n
COROLLARY 19. Let M, o and :(NJ-.)J- be the same as in Theorem 18. If the
sequence (N;); is periodic, then

H(o) = %log[M . a(M)]

and :
H(M|o(M)) = log[M : o(M)].

Proof. By Remark in (3.1), M is the hyperfinite II; factor. Let p be the period
of the sequence (N;); and B; the Perron-Frobenius eigenvalue of the inclusion matrix
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[N; & Nj4p)- The algebra M is generated by (N;); and o(M) is génerated by o(N; )i
By'the propérty of o for 7, we have E,(n,)En; = Eq(n,_,). Hencéthe sequences (N;);
and (o(Nj)); have the property N; D ¢(N;) for all j and satisfy the periodic condition
due to Wenzl [13]. Denote by ¢; the trace vector of r on Nj, then by ([13], [7])

it 13
M :o(M)] = ——%.
M- o= 1 o B

On the other hand, by Lemma 8,

Ii t 13
g =22
7 N4 13
Hence we have
ﬂf =[M :a(M)),

which implies by Lemma 8,
1 1
H(o) = ;logﬂj = Elog[M 1 o(M)].

On the other hand, a periodic sequence satisfies the bounded growth condition. Hence
by Theorem 18, we have

H(M|o(M)) = 2H(0) = log[M : o(M))]
a
Next we shall discuss the relation between the entropy of automorphisms and the
entropy of x-endomorphisms.

THEOREM 20. Let N be a finite von Neumann algebra with a faithful normal
trace 7, 7(1) = 1 and 6 a r-preserving *-automorphism of N, which has a finite
dimensional T-independent generator P. We let M be the von Neumann algebra
generated by {6°(P);i>0} and o the restriction of § to M. Then

H(g) = H(6).
Proof. Let N; be the algebra generated by {#*(P);i = 0,1,...,5}. Then the

sequence (Nj); staisfies the Assumption (x) for M and o. Next we define the sequence
(A;); of finite dimensional subalgebra of N by

Az = {BF(P); 15 = 1), Agjyr = {4s;,6(P))".

Then the sequence (A4;); also satisfies the Assumption (x) for N and . Since
there exists an r-preserving *-automorphism ¥ of N such that y(N;) = A;, we have

H(6) = lim H(4;) _ lim H;) _ H(o).
b J H J



ENTROPY FOR *-ENDOMORPHISMS 139

REMARK. .Let N,8, M and o be as in Theorem 20. Then ¢ is a shift of N in the
oo . “
sense of Powers, that is (] ¢*(M) = C1 by the property of 7. If ¢ is a shift, then  1s
i=0
ergodic.

To conclude we shall show some examples which satisfy the conditions discussed
in Section 4.

EXAMPLE 1. Let @ be the n-shift and o the restriction of ¢ to: the hyperfinite
II;-factor M = 'EBN(M.-,Tr,-), where M; is the n x n matrix algebra and TY; is the
trace of M;. The;l 0 has a finite dimensional independent generator My and a periodic
sequence (Nj;); defined as above. Hence

H(6) = H(o) = %H(Mla(M)) = ;,i—log[M  o(M)] = logn.

EXAMPLE 2. Let (e;); be the two sided sequence of projections with the prop-
erties denoted in (3.2), but a) and b) are exchanged to a’) and b’) as follows: For a
keN

a') eieje; = de; if | i —j |=k,

b') e.-ej =, eje,- ifI i—j |¢ k. ‘

Then the automorphism ¢ (resp. #-endomorphism o) of {e;}{¢z (resp. M =
= {ei}ien) has a finite dimensional independent generator, which is the algebra gen-
erated by eo. The sequence (4;); defined by a similar method in (3.2) (resp. (Nj);) -
satisfies the bounded growth condition and if A > (1/4) then the sequence (N;); is
periodic. Hence if A<1/4 then using the computations due to Pimsner and Popa [11]

" H@O) = H(o) = '%H(Mla(M)) =t +n(1 1)

where A = t(1 —t), and if A > (1/4), then

1 1 _ log A
H(6) = H(o) = 3 H(M|o(M)) = 7 log[M : o(M)] = ~ g .
Although the entropy of the x-endomorphism o depends only on A, the conjugacy

classes of & depend on A and & ([2]).

EXAMPLE. 3. Let S be a finite subset of N. Let y = exp(2i/n) for some
positive integer n. Then there exists a family (u;);ez of unitaries which generates the
hyperfinite II;-factor and satisfy the following conditions;

(i) up =1
(1) wiuj = yuju; if i — j € S (¢25)

(i) wiuj = wju; if [i— 5| €S,
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Let @ (resp. o) be the x-automorphism (resp. the restriction of 8) of {u;}! ez
(resp. to M = {u;}N) defined by 6(u;) = uiy1. Then 6 has a finite dimensional
independent generator P which is generated by up. The algebra M is generated by a
periodic sequence. Hence

log n

H(6) = H(o) = -H(MIU(M))- log[M o(M)] =

Although the entropy of the *-endomorphism o depends only on n, the conjugacy
classes of such ¢’s depend on n and S.
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