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ON SOME REFLEXIVE LATTICES OF SUBSPACES

EDWARD KISSIN

1. INTRODUCTION AND PRELIMINARIES

Let £ be a collection of closed subspaces of a Hilbert space H containing {0}
and H which form a complete subspace lattice under the operation A (intersection)
and V (closed linear span). We denote by AlgL the algebra of all bounded operators
which leave all subspaces in £ invariant and by Lat Alg L the lattice of all subspaces
in H invariant under AlgL. A lattice is reflezive if £ = Lat AlgL.

Halmos (3] studied lattices which contain precisely five elements. Out of five
isomorphism types of such lattices three (the chain, the pendulum and the pendulum’

upside down) have the property that every realization as a subspace lattice is refle-
xive. The realization of the pentagon as a subspace lattice P = { {0}, K, M,N,H }
M C N,KAN = {0} and K VM = H can be reflexive or non-reflexive. Halmos
showed that if dim(N/M) = 1, it is reflexive. Longstafl and Rosenthal [7] considered
an example of the pentagon such that dim(N/M) = 2. They proved that it is non-
-reflexive. Longstaff [8] (cf. Exemple 2.7) proved that for any realization P of the
pentagon, AlgP always contains a rank one operator.
4 Halmos [3] also considered realizations of the double triangle as a subspace lattice
={{0},K,M,N,H}, KAM = KAN = {0} and KVM = KVN = MVN = H.
He established that all such realizations in finite-dimensional spaces are non-reflexive.
For the infinite dimensional case Longstaff [9] showed that if any of the vector sums
K+L, K+ M, L+ M isclosed, T is non-reflexive. He also proved that in this
case Alg T contains an operator of rank two (it was proved earlier in [8] that for any
realization 7 of the double triangle, Alg7 does not contain a rank one operator). He
also studied the operator. double triangles {{0},G(A), G(B), G(C), He H } , where
A, B, C are operators on H and for an operator T, G(T') denotes its graph, and proved
-an interesting sufficient condition that such a double triangle be non-reflexive. '

In Section 3 we shall show that 7 is non-reflexive if Alg7 contains a non-zero

finite rank operator. However, the question whether ‘all realizations of the double
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triangle in infinite dimensional spaces are non-reflexive is still open.  In Remark 3.4

we shall consider 7 such that Alg 7 does not contains a non-zero finite rank operator.
In this Ppaper we investigate a spec1al type of subspace lattices which we sha.ll call

s-lattices. '

DEFINiTION A'reflexive lattice £ is an s-lattice if £ has a non-trivial subspace K
which is not comparable to any other non—tnvxal subspace in £ and if AlgL contains
a.non-zero finite rank operator

From a result of Longstaff [8] it follows (cf. Example 2.7) that Lat Alg P is always
an s-lattice. If dim(N/M) = 1, then P is itself an s-lattice. In Section 3 we shall
show t{hét.for any realization 7 of the double triangle as a subspace lattice, such that
_AlgT contains a non-zero finite rank oper.ator, Lat AlgT is also an s-lattice.

- In Section 2 we establish that s-lattices, which have at least five subspaces, belong
to two classes. Lattices from one ‘class.contain the double triangle as a sublattice.
Lattices from another class do not contain the double trla.ngle Instead they contain
the pentagon. Theorem 2.6 describes those s-lattices which do not contain the double
triangle. o '

- Section 3 investigates the structure of an s-lattice £ in the most interesting case
“when it-contains 7. Theorem 3.2 gives a detailed description of II\{ {0}, H } which
is the union of disjoint segments IC,, t € S? = CUoo. It follows from Theorem 3.2
~ that any realization 7. = {{0} K, M,N, H } of the double triangle such that Alg7
contains a non-zero finite rank operator is non-reﬁexlve

Sectlon 3 also est.abllshes the structure of the algebras AlgL when L is an s-
-lattice which contains T. It shows ‘that there exist closed linear transformations F
and G from K+ into K such that AlgL is a subalgebra of the algebra A(F,G). (The
algebras A (F,G) were considered in [4].) Conversely, if a subalgebra A of A(F,G)
. contains a non-zero finite operator and if the algebras PAP and (1 — P)A(1 - P)
are transitive (Pis »t.hé» projec:ti"on‘ onto K), then Lat A is an s-lattice which contains
s . A
' The s-lattices £ whlch contain 7 constitute a large class of reﬂexwe lattices,
since the structure of the segments K ¢ in. L: can be very varied. It i is not even known
when different segments K, and K,, t # s, are isomorphic. Thus, i in [6) an algebra
" A(F,G) was considered such that Ko and K in LatA(F,G) contain only one
_subspace >w’hile' all the other K, contain at least two subspaces. ‘In Section 4 we study
s-lattices £ which satisfy the followmg condltlon L has a subspace K such that the
metric distance’

d(K,M)= Il_PK - Pul| <1

for all non-trivial M in 'L (Px and Py are the projections onto K and M). Using a
result of Davidson and Harrison [1] about close projections, we obtain that all such
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lattices are lsomorphlc and that all segments K¢ contam only one subspa.ce
Let £ be a reflexive lattlce For Mand Nin £, M C N, set

[MN] {LEL MCLCN}

Then £L(M,N) = {K C NeM M@K € £} is a sglbspace lattice in N© M |
isomorphic to [M N]. A(M,N)={PAP : A€ AlgL, P is the projection onto N ©
© M} is an operator algebra on N © M. By Theorem 4.2 [10] L(M N)=LatA (M,
N), so that £L(M, N) is reflexive. ’

Very often arbitrary subspace lattices contain segments 1somot’ph1c to s-lat.txces
ForLe £,write L.=V{M e L:MCL}and Ly = A{M € £:L C M}. Then
L_and Ly belongto £ and L. CLC Ly . fL_#L+# Ly andif AlgC(L-,Ly)

" contains a non-zero finite rank operator, £(L-, L) is an s-lattice. . o
" It is sometimes possible to solve the problem of ’ "synthesis” and to -obtain a

description of the structure of £ when the structure of the segments [M, N] is known
for “sufficiently many” pairs {M, N} in L. Section 5 considers a large class of reflexive
lattices which we call chain§ of s-lattices. Every such lattice has many segments [M, N]
isomorphic to s-lattices. It also has a nest. N as a sublattice and all the “ends” M
and N of the segments belong to A/. Theorems 5.2 and 5.3 describe the structure
of £ and of Alg L. In [4] certain reflexive operator algebras were 1nvest1gated whose
lattices are chains of s-lattices. :

I should like to thank the referee for many helpful suggestxons and for drawmg
my attention to papers [8] and [9]: I should also like to thank the referee and Professor
W. E. Longstaff for providing me with the examples cited in Remark 3.4. '

2. TWO CLASSES OF s-LATTICES

Let K be an non-trivial element of an s-lattice £ which is not comparablé to

any other non-trivial subspace in £. Set A = AlgL. Then H = K ® K+ and every
An An

0 Az
From the reflexivity of £ we obtain the following condition:

(C)) the algebras A; =PAPand A2=(1-P)A(1- P) are transitive on K
and K+ respectively.

operator in A has the form A = . Let P be the pto_;ectlon onto K.

If E = {{0} K,H } then AlgLZ consists of all operators (Aou An) from
B(H). -
If M # K is a non-trivial subspace in' £, then -

@M - KAM={0}and KVM=H,



144 . . o EDWARD KISSIN

since KAMCKCKVMand KAM,KVM € L. If z# 0 belongs to M, then
z=z+y,z€ K, y€ K and z # 0. Define Fz = y. It is easy to see that F is a
closed linear transformation from K< into K such that

(2) D(F)=(1- P)M is dense in K+ and M = { (F:)::c € D(F)} ;

where P is the projection on K. We shall denote such a subspace by Mr.

It easily follows that for every (Au Au) €eAlgl,
o _ 0 A
(C;)  AnD(F)C D(F) and Ayz | D(F) = (FAz: — ALLF) | D(F).

If £ = {{0},K M, H'} is the Boolean aigebra with four-elements then £ is

reflexive and AlgL consists of all operatqrs (Au 12

0 Ay
(C2).
If £ has more than. four elements, then there are four following possibilities:

) in B(H) which satisfy

(P1) L contains non-trivial subspaces M; and Nj,i = 1,2, distinct from K such
that Ml/\Mz {0} and NyVN, = H; - '

(Pz) My A M, # {0} for any non-tr1v1al M;,i =1,2,in £ and £ contains
non-trivial subspaces N;,i = 1,2, such that Ny V No = H (M; and N; are distinct
from K); ‘ '

(P3) L contains non-tnwal subspacw M;,i = 1,2, such.that M; A M, = {0}
_and NV N, # H for. all non-tnvlal N;,i= 1 2,in L (M and N; are distinct from
K);

(Ps) M, AM,; # {0} and M, VMz # H for all non-tnvxa.l Ml, M, in L distinct
from K.

Before studying all these cases we shall consider a few technical lemmas. For
all non-zero z,y € H we denote by z ® y the rank one operator z +— (z,z)y. Using
standard arguments from linear algebra one can obtain the following lemma. '

LEMMA 2.1. Let D be a dense linear manifold in H
(i) If {z:}i=, are orthonormal elements in H, then there exist elements {z.},_1
0: ’ :
in D such that (z;,z;) = {1 i# 3 .
, 1=7.
(ii) If A is a non-zero finite rank operator such tbat AD C D, then there exist
ortbonorma.l elements {z:}i=, in H and linearly mdependent elemcats {y;}7=, in D

sucb tbat A= Zz. Dy

i=1
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The following lemma was proved in [4].

LEMMA 2.2. Let F be a closed linear transformation from H, into H> and let A
and B be bounded operators on Hrand‘ H, correspondingly. Let D C D(F) be such
that Jd(F|D)y=F.IfADCD and if (FA— BF) | D extends to a bounded operator
C from H, into H,, then ' '

B*D(F*) C D(F*) and C* | D(F*) = (A*F* —R*B*) | D(F*)

We shall now prove a useful lemma about transitive operator algebras.

LEMMA 2.3. Let B be a transitive operator algebra on H and let B contain a
non-zero finite rank operator. Then there exists a dense linear manifold D in H which
is invariant under B and is contained in every non-zero linear manifold of H invariant
under B.

. ' . ' R n
Proof. Let A be a non-zero finite rank operator in B and let A = Zz;@ Yi

: i=1
where all z; are orthonormal. By D we denote the smallest linear manifold in H
invariant under B which contains all {y;}.,. Since B is transitive, D is dense in H.

Let D; be a non-zero linear manifold in H invariant under B. Then D, is dense in H.
. : ' 0, i#j

By Lemma 2.1(i), there are elements {z; };.'_1 in D; such that (z;,z;) = ) z * J

- ' y =1

Then .

n

Az =) (z,%)% = € Dy,

i=1
so that D C D;. The lemma is proved.

REMARK. Obviously D does not depend on the choice of the finite rank operator
in B. '
By, Bi

Let B = ( 0o B ) be a non-zero finite rank operator in AlgL. By (C),
22

Blz I D(F) = (FBgz—BllFl) I D(F) If Bu = B22 = 0, theI-l BIZ = 0, so that B = 0.
Therefore ’ ‘ ’

3) either By # 0 or By # 0.

The following theorem investigates the case when By, # 0.

. - . B
THEOREM 2.4. Let L .be an s-lattice and let B = ( (;1 gw be a finite rank
22

operator in A=AlgL such that By #0. Let Ay = PAP and A, =(1-P)A(1-P)
where Pis the projection onto K.
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(i) Let M, and M, be non-trivial subspaces in L distinct from K and such that
M; A M, = {0}. Let F;, i = 1,2, be closed linear transformations from K+ into K

such that M; = F;z T € D(F;)} . Then

1) Bll ;6 0,’
2) F; — F) is densely defined and closable; .
3) Ker(G) = {0} and Im(G) is dense in K where G = cl(F; — F);

4) for every 1 A € A the following condition holds:
0 Ax
(Cs) A2 D(G) € D(G) and Ay,G | D(G) = GAz | D(G);

5) MyVM,=H.
(u) If My A M3 # {0} for all non-tnvza] M;, M, in L distinct from K, then there
is a non-trivial subspace M in L such that L = {{0} K,[M, H]}

Proof. Let My A My = {0}. By (2) and by (C;), D(F;), i = 1,2, are dense
manifolds in K+ invariant under A,. Since Bp is a non-zero finite rank operator
in the transitive algebra A3, by Lemma 2.3, there exists a dense linear manifold D
invariant under A, which is contained in D(Fyi) and in D(F3). Set R = F, — F;.
Then R is a linear transformation from K into K, D(R) = D(F;) N D(F3) is dense
in K+ and D C D(R). Since My A M, = {0} Ker(R) = 0. It follows from (C2) that
for all Ae A

4 - A22D(R) C D(R) and RAs2 | D(R) = AnR|D(R).

If By = 0, by (4), RBy2 | D(R) = 0. Since D is invariant under A3, D is

invariant under Bss. We have that Bzé = E:c.- ®yi, where z; and y;, 1 = 1,...,n,
i=1
satisfy Lemma 2.1(ii). Choosing {z; };'zl in D as in'Lemma 2.1(i), we obtain that

0= RBynz =R (z,z:)% = Ry;.

i=1

This contradicts the fact that Ker(R) = {0}. Therefore B;; # 0 and 1) is proved.
We shall now prove that R is closable. From (C2) and from Lemma 2.2 it follows
that for every A;; € A,. '

5) A3, D(F}) C D(F}) and A}, D(F3) C D(F3).

Since By is a non-zero finite rank operator, By, is also a non-zero finite rank operator.
Since A, is transitive, the algebra A7 is also transitive on K and B}, € A]. By
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'Lemma 2.3, there is a dense linear manifold D, in K invariant under A} and contained
in every linear manifold of K invariant under A}. By (5),

D. € D(F1*) 0 D(F}).

Therefore the linear transformation F3 — FY is densely defined. Since Fy — F C R*,
R* is densely defined. Therefore the linear transformation R** is closed. Since R C
C R**, R is closable. Part 2) is proved. :

Since G = cl(R), using the standard argument we obtain from (4) that condition
(Cs) holds. Part 4) is proved.

If Ker (G) # {0}, it follows from (C3) that KerG is invariant under A2. Hence
KerG contains D. Therefore G| D = R | D = 0 which contradicts the fact that
Ker (R) = 0. It follows from (C3) that Im(G) is invariant under A,. By (C), Im(G)
is either {0} or dense in K. Since G # 0, Im(G) is dense in K. Part 3) is proved.

Let now M = M; V M,. If M # H, then, by (1) and by (2), there exists a
closed transformation F from K+ into K such that M = Mp. Since M; and M are
contained in M, D(F;) C D(F) and F | D(F;) = F;, i =1,2. Since D(F,)ND(F2) =
= D(R) is dense in K1, we obtain that

F|D(R) = Fy | D(R) = F; | D(R),

so that R = F, — F} = 0. This contradiction shows that M; Vv M; = H which
completes the proof of (i).

Let now M; A M, # {0} for all non-trivial M;, i = 1,2, in £ distinct from K. By
(2), M; = Mp,. Since My AM; # {0} and M AM; € L, there is a linear manifold
_ L in D(Fy) N D(F;) invariant under A3 such that

Fi|L=F;|L and MIAM2={(F;I)::BGL}.

Since B3, # 0, by Lemma 2.3, there exists a dense linear manifold D invariant under
A 2 which is contained in every linear manifold of H invariant under A . Therefore
DgLandFllDzelD.

Set T = cl(Fy | D). Then the subspace Mt = { (-7::)::: € D(T)} is contained
inevery M € L\ {{0},K, H} = L. Therefore
M= A\ M2 Mr#{0}
mel

and the theorem is proved.
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Using Theorem 2.4 we shall prove the following theorem which complements it.
B B2

THEOREM 2.5. Let L be an s-lattice and let B:(
0 B

operator in AlgL = A such that By, # 0.

(i) Let M, and M, be non-trivial subspaces in L distinct from K and such that
M1V M, = H. Let Fy and F, be closed linear transformations from K+ into K such
that M; = MF,. Then By, # 0, Theorem 2.4(i) holds and M; A My = {0}.

(i) If My V M, # H for all non-trivial My, M, in £ distinct from K, then there
is a non-trivial subspace N in £ such that £ = {[{0}, N],K,H}.

) be a finite rank

Proof. B* = (Bil B ) is a non-zero finite rank operator in A", the subspace
\Dj2 B3

K* belongs to £* = {L*:€ L} and L£” does not have subspaces comparable to

K*. Therefore £* is an s-lattice. The subspaces Mj* and M3 belong to £*. If

MV M, = H, then M{* A M5+ = (M V M)+ =.{0}. Since B}, # 0, it follows from

Theorem 2.4(i) 1) and 5) that B}, # 0 and M{* V M3 = H. Therefore

B2y #0 and My A My = (Mt v M)t = {0}.

The rest of (i) follows from Theorem 2.4(i).

If My VM, # H for all non-trivial M,, M, in £ distinct from K, then ML A
AMjs # {0}. By Theorem 2.4(ii), there is a non-trivial M in L£* such tha* £* =
= {{0}, K*,[M, H]}. Therefore £ = {[{0}, N, K, H}, where A = M*. The
theorem is proved. '

Now we shall use the results of. Theorems 2.4 and 2.5 in order to caracterize [
and A = AlgL in all four cases (P1)-(P4). As in Theorem 2.4,let A; = PAP and
A2 = (1 - P)A(1 — P) where P is the projection onto K. -

THEOR}EM 2.:6. Let L be an s-Jattice and let L contain at least five sub-
spaces. Then conditions (C,) and (C2) hold and every operator in A has the form

An Alz)
, A Ay A .
( 0 Ay 11 € A1, A € A,

(1) Let the case (P1) hold, i.e., there exist non-trivial M; and N;, i =1,2,in L

distinct from K and such that My A M> = {0} and Ny V N, = H. Then

1) Aj; # 0 and A2 # 0 for every non-zero finite rank operator in A.

2) M;VM; = H and Ny AN, = {0}, so that L contains the double triangle
as a sublattice; . )

3) if M; = Mp,, i = 1,2, then G = cl(F2 — F1) is a densely defined linear
transformation from K into K such that Ker(G) = {0} and Im(G) is dense in K;
for all A in A

(Ca) A32D(G) € D(G) and AnG | D(G) = GAz | D(G).
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(i) Let the case (Py) hold, i.e., My A My # {0} for all M; and M in L, and
there exist Ny and N2 in £ such that N1 VN, =H (M and N; are non-trivial and
distinct from K). Then ’

1) Ay = 0 for every finite rank operator A in A, i.e., A, does not contain
non-zero finite rank operators;
2) there is a non-trivial M in £ such that £ = {{0},1<,[M,H]}.

(iii) let the case (P3) hold, i.e., Ny VN3 # H for all Ny and N, in L, and there
exist My and M, in £ such taht My A M = {0} (M; and N; are non-trivial and
-distinct from K). Then A

1) A3z = 0 for every finite rank operator A in A, i.e., A does not contain
non-zero finite rank operators; | ’
2) there is a non-trivial N in L such that £ = {[{0} N),K;H

(iv) Let the case (P4) hold, i.e., My A My # {0} and Ml \% Mz # H for all
non-trivial My and Mz in £ distinct from K.

1) If A, has and A » does have a non-zero finite rank operator, then (iii)
2) holds. ‘ '

2) If A, has and A, does nut have a non-zero finite rank operator, then
(i1) 2) holds. ’
‘ 3) If A 1 and A, have non-zero finite rank operators then there are non-

trivial M and N in L such that £ = {‘{0},1{,H[M,/\/]}

Proof. Let A be a non-zero finite rank operator in A. By (3), either Aj; # 0 or
Azz # 0. Let (Py) hold. If A, # 0, part (i) follows from Theorem 25(1) If Azz #0,
part (i) follows from Theorem 2.4(i).

Let (P3) hold. If Ay; # 0, by Theorem 2.5(i), N AN, = {0}. Therefore A =0,
so that A2 # 0 and (ii) 2) follows from Theorem 2.4(ii). Similarly one can prove part -
(iii) and part (iv) 1) and 2). V

If (P4) holds and if 4; and A3 have non-zero finite rank operators, then by
Theorems 2.4(ii) and 2.5(ii), there are non-trivial M and A in £ such that

£ ={{0}K, [M,H)} = {[{0},/\/],1<,H}.
Therefore every non-trivial M # K in £ is contained in [M, A] which concludes
the proof of the theorem.

REMARK. In the case P1) L coﬁtains the double triangle 7 = {{0}, K,M,N,

H} as a sublattice. In the cases (P2)—(P4) £ does not contain the double triangle
but contains the pentagon.

ExaMPLE 2.7. Let H = K @ K and let F; and F, be closed and densely
defined linear transformations from K+ into K such that Fy C Fy. Set M = Mpg,
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and N = Mp,. Then M C N and P = {{0},1(, M, N,H} is the pentagon, since
NAK ={0}and MV K = H. It is clear that every realization of the pentagon has

this form. Set A = AlgP. Then A consists of all (Aou- 212> in B(H) such that
22

AzzD(Fi) g D(F;), i: 1,2, and A12 ' D(Fz) = (F2A22-— Aqu) l D(Fg)

The algebra Ay = {A;; : A € A} contains all rank one operators z ® y, z € D(F3),
y € K and the algebra A, = {A2; : A € A} contains all rank one operators z @ y,
z € K*,y € D(F;). A, and A are transitive algebras on K and K4, 5o that Lat.A4
does not have non-trivial subspaces comparable to K. Hence Lat A is an s-lattice. It
is easy to show that Lat A = Lat AlgP = {{0}, K,H, [M, N]}, so that the example
corresponds to the case (P4) 3). If dim(D(F2)/D(F)) = 1, then [M,N] = {M, N},
so that Lat A = P, and P is reflexive. This case was considered by Halmos [3]. The
case when dim(D(F;)/D(F;)) = 2 was studied by Longstaff and Rosenthal [7]. They
constructed the operators F) and F; in such a way that [M, N] contains at least three
subspaces, so that Lat. A # P and P is not reflexive.

REMARK. Longstaff 8] showed earlier that if P is a realization of the pentagon,
AlgP always contains a non-zero rank one operator and that Lat AlgP is always an
s-lattice.

3. STRUCTURE OF s-LATTICES WHICH CONTAIN THE DOUBLE TRIANGLE

Theorem 2.6(ii), (iii) and (iv) describes the structure of £ in the case when it
does not contain a sublattice isomorphic to the double triangle with least element {0}
and greatest element H. There is not much more we can say about the structure of £
in this case. However, in the most interesting case (P;) when £ contains a sublattice
isomorphic to the double triangle, a detailed description of £ can be obtained. We
shall do it in Theorem 3.2 using conditions (C,), (C,) and (C3) which Alg L satisfies.

Firstly, we shall prove the following lemma.

LEMMA 3.1. Let R be a densely defined linear transformation on H and let B
be a transitive algebra of bounded operators on H which contains a non-zero finite
rank operator B. If there is a dense manifold X in D(R) such that for all A€ B

AXCX and RA| X = AR | X,

then there exist a complext and a dense manifold Z C X such that

AZCZ, foral A€ B and R|Z=tI|Z.
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Proof. By Lemma 2.1(ii), B = Z:c; ® y; where {z;};., are orthonormal in H
i=1
and {y;};_, belong to X. Choosing {z};_ 1 in X asin Lemma 2.1(i), we obtain that

RBz; = RZ(zj,:c.-)y,- = Ry; = BRzj = Z(sz,z,-)y,-.
‘ izl -

i=1

Therefore the n-dimensional subsapce H, generated by {3}~ =, is invariant under R.
Hence R has.an eigenvector u € H, C X and Ru =tu. Set Z = {Au: A € B}. Then
Z C X and AZ C Z forall A€ B. Since B is transitive, Z is dense in H. For every
A € B, RAu = ARu = tAu, so that R | Z=tl | Z. The lemma is proved.

Let now £ be an s-lattice which satisfies (P1) and let non-trivial subspaces M
and N in £ be distinct from K and such that M A N = {0}. By (2), there are closed
and densely defined linear transformatidns Fy and F, from K% into K such that
M = Mp, and N = Mp,. Then the iine;axr transformation G = cl{( F; — Fy) satisfies
Theorem 2.6(i) and MV N = H. Set F = F; and let A, A, A; be as in Theorem
2.6. Since ' '

D(F;) N D(F) € D(G)n D(F) €.D(G),

we have

<G | D(F)ND(G)) =G

By Theorem 2.6(i), the transitive algebra A has a-non-zero finite rank operator-
and D(F) and D(G) are invariant under .4 . It follows from Lemma 2.3 that D(F)N
ND(G) is dense in K* and invariant under A». By (Cs), G(D(F)ND(G)) is invariant °
under A;. Since A, is transitive and since Ker(G) = {0}, G(D(F)ND(G)) is dense in
K. Similarly we obtain that D(F‘)ﬂD(d*) is dense in K and that G*(D(F*)ND(G*))
is dense in K. In [4] it was proved that in this case the linear transformations F'+tG
and F** +tG* are closable for any complex t. Set '

S = d((F +1G) | D(F) N D(E)) and R, = (F* +iG" | D(F*)n D(G*))".

Then S; C R; and Sp C F C Rp. o

By Lemma 2.3, there exists the smallest dense linear manifold D in K invariant
under A> whlch is contained in every linear manifold of KL invariant under A;:
Similarly, there exists the smallest dense linear manifold D, in K invariant under
A7 which is contained in every linear manifold of K invariant under Aj]. Then
D C D(F)n D(G) and D. C D(F*)n D(G*).

For every complex t set

P, = cI(S; | D) and Q. = (F* +1G" | D.)".
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Then
(6) Q: = Cl((F"l +t-G‘) l D..) and Pg g St g Rt _C_ Qt-
Set $?2 = CUo0, Ko = K and

Ktz—[MPt;MQt]:{Le‘c:MptngMQl}) tec;

where M = { (7:) :z € D(T) ¢ for any closed linear transformation T from K+
into K. The following theorem gives a detailed description of L.

THEOREM 3.2. Let an s-lattice £ satisfy (P,) and let M = My, and N = Mp,
be non-trivial subspaces in L distinct from K and such that M AN = {0}.

(i) The linear transformations F = Fy and G = cl(F; — Fy) from K* into K
are densely defined and closed. D(F) N D(G) and G*(D(F*) N D(G*)) are dense
in K+, D(F*) N D(G*) and G(D(F) N D(G)) are dense in K, Ker(G) = {0} and

~cl(G | D(F) N D(G)) = G. The algebra A and the transformations F and G satisfy
conditions (C,), (Cz) and (C3). There are the smallest dense linear manifolds D in
K< invariant under A, and D, in K invariant under Aj.

(i) € = {{O},H, U IC,}. Every K., t € C, consists of all subspaces My
' tes?
where T is any closed linear transformation from K+ into K such that P, € T C Q

and that Ayx; D(T) C D(T) for all Ay; € Az In particular, T can be Py, S, Rt, Q.
and F ift =0.

(iii) All K. are disjoint. Any non-trivial comparable subspaces from £ belong
to the same segment K ;.

Proof. Part (i) was already proved above. A subspace Mr bélongs to £ if and
only if D(T) is dense in K+ and for every A € A

(7) A22D(T) - D(T) and A;, l D(T) = (_TAZZ‘— AuT) I D(T)
D is invariant under 4, and, by (C;) and (C3),
(8) (PgAzz - Ang) l D= (FAzz — A“F) I D +t(GA22 - A“G) I D=A I D.

Since Py = cl(S; | D), we obtain in the usual way that D(F,) is invariant under A,
and that (8) also holds on D(P;). Therefore Mp, € L for all complex .

Let us show that Mg, € £. From (C;), (C3) and from Lemma 2.2 it follows
that A}, D(G*) C D(G*), A}, D(F*) C D(F*) and that

(9) G*ALi | D(G™) = A%G™ | D(G?), AL, | D(FT) = (A3, F" — F*AL,) | D(F”).
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The linear manifold D, is invariant under A} and is contéined in D(F*) n‘D(G").
Therefore, by (6), (8) and (9), '

(QI A7 —A3,Q}) | D. = (F*A},~A5,F") | D.+HG" A}, ~43,G") | D, = -4}, | D..

Applying Lemma 2.2 and replacing D by D*, F by Q;, A by A},, B by A3, and C
by —Aj},, we obtain that '

A2nD(Q:) C D(Qr) and Ay D(Q) = (QeAzz — AnQy) | D(Q:).

Therefore, by (7), Mg, € L. In the same way one can prove that the subspaces Ms,,
Mp, and Mp belong to £ and that My € L if T satisfies the conditions in (i1).
Suppose now that My € L, so that (7) holds. Let us show that there-exists a
complex t such that P, C T C Q.. Since D C D(T), we obtain from (C;)-and: from
(7) that
A12|D (TAn-AnT)'D (FAzz—A“F)lD

Therefore (T' — F)Az2 | D = Ay (T - F) | D. Since A2;D C D C D(G), by (C3);;
An(T -F) | D= (T — F)A22 | D= (T — F)G™1GAj:| D. = (T —‘F)G"‘Au_G [ D.

It follows from (C3) that GD i is invariant under Aj. Since .Al is transmve and
since Ker(G) = {0}, GD is dense in K. Set R= (T F)G~'. Then

GD C D(R) and AuR I GD = RAu I GD

By Theorem 2.6(i) 1), A, contains a non-zero finite rank operator Therefore it:
follows from Lemma 3.1 that there exist a dense manifold Z C GD and a complex t
such that R| Z =tI | Z and that A,,Z C Z for all A;; € A;. Hence

Y=G"'Z¢CD and (T—F) Y =tG |Y
By (03)r
Y=G"1Z2G'A11Z = G 1A;,GY = G~'GAY = AjY,

so that A22Y CY for all Ay; € A,. Since D is the smallest invariant manifold under-
A2, DCY. Therefore D =Y and

(10) : T|D= (F+.t<;) | D.

Since T is closed, P, C T.
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Now let us prove that T C Q. From Lemma 2.2 and from (7) we obtain that
1,D(T*) C D(T*) and A}, | D(T*) = (43,T" ~ T" 111) | D(T™).
‘Since D(T*) is invariant under A2, D, C D(T*). 1t follows from (9)
12| Do = (A3,T" =T A1) | D, = (A% F" ~ F A1) | D,

" so that A%,(T* - F*)| D. = (T* — F*)A?, | D..
Repeating the same argument as we used in order to prove (10), we obtain that
there exists a complex r such that

T* | D, = (F* +#G*) | D..
By (6), QF C T*, so that T C Q.. Let us show that »r =¢. By (6),
T|D=Q,|D=P.|D=(F+rG)|D.

Comparing this to (10) we obtain that (r — ¢)G | D = 0. Since Ker(G) = {0}, r = 1.
Thus P, CT C Q; and M € K,.

IfLe £ and L # K, then LAK = {0} and LV K = H. By (2), there exists a
closed linear transformation T from K+ into K such that L = M. Thus part (ii) is
proved.

Finally, let LM € £ andlet L C M. By (ii), L € Ky and M € K4. Then
Mp, CLC M C Mg, . Therefore

P|D=(F+1G)|D=Q.|D=(F+uG)|D,

so that (u —t)G | D = 0. Since Ker(G) = {0}, ¢ = u which tompletes the proof of
the theorem.

REMARK 3.3. It follows from Theorem 3.2 that any realization of the double
triangle 7 such that Alg7 has a non-zero finite rank operator is non-reflexive. A
particular such realization was considered by Halmos in [3]. Longstaff [9] studied
operator double triangles of the form 7 = { {0}, H® {0},G(A),G(B),H® H} where
A and B are operators on H and G(A) and G(B) are their graphs. He showed that
if there exists a complex t such that R(A) + R(B) C R(A —tB) (R(T) is the range
of T') and such that the image of Ker(A.— tG) under A is not dense in H, then 7 is

non-reflexive.

REMARK 3.4. We shall consider now an example of an operator double triangle
T= {{0}, H&{0},G(A),G(B),H® H} in H @ H such that Alg7 does not contain
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a non-zero finite rank operator. Let A and B be positive injective operators in B(H)
such that R(A) N R(B) = {0} (see [2]). Then

, z
AlgT:{ ()g Y) YA = A(X +2A) and YB = B(X+ZB)}

X Z
and YR(A) < R(A) :and: YR(B )-C R(B) If ( 0 Y) ENIgT and has'a finite rank

then Y has finite rank. Therefore R(Y) YR(A) C YR(A) YR(A) c R(A) and
similarly R(Y) C R(B). Thus R(Y) C R(A) N R(B) = {0}, so that Y = 0. “Then
A(X+ZA) = B(X+ZB) = 0and, since A and B are injective, X+ZA = X+ZB = 0.
Therefore Z(A ~ B) = 0. Since R(A).N R(B) = {0}, A — B is also injective and
selfadjoint, so that Z = 0. Therefor§ X = 0 and Alg7 does not contain a non-zero
finité rank operator. Of course, for this: 7, Lat Alg 7 is not an s-lattice.

In Section 2 we shoWed théit if an s-lattice £ contains a sublattice isomorphic
to the double triangle then A]gﬁ satisfies conditions (C,), (C2) and (C3). Using the
results of Section 2 and of Theorem 3 2 one can prove the following theorem.

THEOREM 3.5. Let H=KeoK* and let F and G # 0-be closed and densely
defined linear transformations from K into K. Let an operator algebra A have a
non-zero finite rank operator, let K € Lat A and let F and G satisfy conditions (Cy),
(C2) and (C3). Then Lat A is an s-lattice which contains a sublattice isomorphic to
the double triangle. Theorem 3.2 describes the structure of Lat A.

DEFINITION. Let H = K & K+ and let densely defined and closed linear trans-
formations F and G from K+ into K satisfy Theorem 3.2(i). By A (F,G) we denote

Ay A
" 12) in B(H) which satisfy conditions (C2) and

the algebra of all tor
e algebra of all opera oxs( 0 Az

(Cs).
For every y € D(F) N D(G) and every z € D(F*) N D(G*) set Aj; =z ® Gy,

A FAy—AnF L
Azy = (G*z)® y and A(z,y) = 61 22A 1 ) Then A(z,y) are finite rank
i

operators and they belong to A (F,G). From the properties of F and G it follows that
the algebras P A(F,G)P and (1 — P)A(F,G)(1 — P) are transitive on K and K+
respectively. By Theorem 3.5, Lat A (F, G') is an s-lattice which-contains a sublattice
isomorphic to the double tnangle and whose structure is described in Theorem 3.2.

- The algebras .A(F, G) were investigated in [4). It was shown that D = D(F) N
N D(G) and D. = D(F*)ND(G*),so that P, = S;, Q: = R, and K, = [Ms,, Mg,],t €
€ C. It was also proved that A (F,G) is reflexive if either '

a) () D(S) = D and (G | D) = G, or
teC
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b) () D(R}) = D. and ci(G* | D.) = G".
teC

From Theorems 3.2(i) and 3.5 we obtain easily the following theorem.

THEOREM 3.6. Let an s-lattice £ contain a sublattice isomorphic to the double
triangle. Then there are linear transformations F and G from K* into K which
satisfy Theorem 3.2(i) and such that AlgL is a subalgebra of A(F,G). Conversely,
if a subalgebra of A(F,G) contains a non-zero finite rank operator and satisfies
(C.1), then Lat A is an s-lattice which contains a sublattice isomorphic to the double
triangle.

4. TOPOLOGY ON s-LATTICES

In this section we consider a certain class of subspace lattices which have a sublat-
tice isomorphic to the double triangle with least element {0} and greatest element
H. We define them using the topology on £. Let £ be a reflexive lattice which
has a subspace K such that d(K, M) <1 for any non-trivial M in £ and such that
Alg £ has a non-zero finite rank operator. We also assume that £ has at least five
subspaces. By D we denote the class of all such lattices.

‘We shall show that all lattices £ in D are isomorphic and describe their struc-
ture. . .

Davidson and Harrison [1] studied some properties of close projections (P and Q
are close if ||P — Q|| < 1). They proved the following very useful lemma.

LEMMA 4.1. Let L, M and N be subspaces and let M and N be comparable. If
the projection Py is close to both Py and Py, then M = N.

Let £ € D. Since d(K, M) < 1 for all non-trivial M in £, K is not comparable
to any other non-trivial subspace in £. Thus £ is an s-lattice. From Lemma 4.1 it
follows immediately that if M and N are distinct non-trivial subspaces in £, they

are not comparable.

THEOREM 4.2. Let £ belong to the class D.

(i) £ contains a sublattice isomorphic to the double triangle.

(i1) There are closed and densely defined linear transformations F and G from
K* into K which satisfy Theorem 3.2(i) and such that AlgL = A(F,G).

(i) S; = I{F +tG) = R, for allt € C, so that every K, consists of only one

subspace Ms,. L =1 {0},H, | ] Ms, 3 where Ms,, = K. For all distinct t and u

tesS? .
in §?, Ms, A Ms, = {0} and M5, v Ms, = H.

Proof. Since non-trivial subspaces in £ are not comparable, it follows from
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Theorem 2.6 that £ contains a sublattice isomorphic to the double triangle. By
Theorem 3.4, there are linear transformations F' and G which satisfy Theorem 3.2(i)
and such that Alg L is a subalgebra of A (F,G). Therefore Lat A(F,G)C L.

By Theorems 3.2 and 3.3,

Lat.A(F,G):{{O},H, U /c',} and £ ={{0},H, U ic,}

tes? teS?

where for t € C,
K, =[Ms,, Mg,] = {Mr :5; CT C R and Ay;D(T) C D(T) for all A € A(F,G)}
and

K = [Mp,,Mq,) = {Mr : P. C T C Q: and A3, D(T) C D(T) for all A € AlgL}.

It also follows from Theorem 3.2(ii) that; Ms, and Mg, belong to K ;. Since we have
not yet proved that A(F,G) = AlgL, other subspaces from IC: do not necessarily
belong to K. Since non-trivial subspaces in £ are not comparable, it follows from
(6) that Mp, = Ms, = Mg, = Mg,. Therefore K, = IC; and consists of only one
subspace Ms,. Thus Lat A(F,G) = L, so that AlgL = AlgLat A(F,G). Since
AlgL C A(F,G) C AlgLat A (F,G), we.obtain that AlgL = A(F,G). The theorem
is proved.

F'iQally, we shall consider a sufficient topological condition for an s-lattice to

contain a sublattice isomorphic to the dq)uble triangle.

THEOREM 4.3. Let a subspace‘K in an s-lattice £ be not comparable to any
other non-trivial subspace in L. If K is not isolated in £, then L has a sublattice
isomorphic to the double triangle.

Proof. L contains at least five subspaces, since K is not isolated in £. If £
does not contain 7, then L satisfies Theorem 2.6(ii).or (iii) or (iv). Assume that
L satisfies Theorem 2.6(ii). Then £ :{{0}, K,[M, H]} and there exist {M,} in
[M, H] such that |Pk — Pu, || — 0. Since (1 — Py, )Ppm =0,

(1 = Pre)Paal| = [I(1 ~ Px)Pa = (1= Pa, ) Pral| =

= ||(Pma = Px)Pumll < ||Pm, — Px|| — 0.

Therefore Py = Py Paq, so that M C K. We obtain similar contradictions if we
assume that £ satisfies Theorem 2.6(iii) or (iv). Thus the theorem is proved.
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5. CHAINS OF s-LATTICES

In this section we investigate reflexive lattices £ which contain ma,.r.ly segments
[M, N] isomorphic to s-lattices. These segments are situated in £ in such a way that
it becomes possible to obtain a description of the structure of £. First we shall study
a particular class of such lattices by imposing certain conditions on £. At the end of
the section we shall consider a much larger class of lattices by weakening one of the
conditions. )

We first assume that £ contains a complete nest N' (N is a totally ordered
subspace lattice) as a sublattice and .

1) every non-trivial element in N is not isolated in £ with respect to the metric
distance;

2) every element L in £\ N is comparable to all elements in N apart from one
element N(L) which depends on L.

‘From condition 1) it follows that £ # AN. For every N in N set

N.=\/{MeN:MCN} and Ny = \{Me N:NcCM},

so that N_ is the immediate predecessor of N in A and N; is the immediate successor
of Nin N,if N_ # N # N;.

As in the case of s-lattices we also impose the following important condition:

3) for every N in N such that N_ # N # Ny, the algebra AlgL(N_, Ny) has
a non-zero finite rank operator (L(N-,Ny)={KC Ny 6N_:N_® K € L}).

THEOREM 5.1. Forevery L€ L\ N, N_(L) # N(L) # N+(L) and N_(L) is
the immediate predecessor of N(L) in L and Ny (L) is the immediate successor of
N(L) in L. CL(N_(L),N4+(L)) is an s-lattice which contains L © N_(L) and which
contains 7T as a sublattice.

Proof. Set N_ = N_(L) and Ny = N4(L). Since L is comparable to all elements
in N apart from N(L), N C L.for all N in N such that N C N(L). Therefore
N_ C L. Since L is not comparable to N(L), N_ # N(L). Similarly, L C N4 and
N(L) # N4. Thus L © N_ is contained in L{N_, Ny).

Suppose that there is M in £ such that N. ¢ M C N(L). Then M € L\ N
and N_ C N(M) C N(L). Since N_ is the immediate predecessor of N(L) in N,
N(M) is either N_ or N(L) and M is comparable to N(M). This contradiction
shows that N_ is also the immediate predecessor of N(L) in £. Similarly, N, is the
immediate successor of N(L) in £. Therefore N(L) © N_ is not comparable to any
other non-trivial subspace in £(N_,N,). Since the algebra AlgL(N_,Ny) has a
non-zero finite rank operator, £(N_, N;) is an s-lattice.

Since N(L) is not isolated in £, for every 1 > r > 0 there is M in £ such
that d(N(L), M) < r. It is clear that M € £ \ N. Since N_(M) C M C Ny (M),
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N_(M) C N(L) C Ny(M). Therefore M € [N-, N4] and d(N(L), M) = d(N(L) ©
© N_,M o N_)<r. Hence N(L)© N_ is not isolated in £(N-, N;). By Theorem
4.3, L(N_,N4) has T as a sublattice. The theorem is proved.

DEFINITION. = We say that subspaces L and M in £ \ N are linked if either
N(L) = N_(M) (so that Ny(L) = N(M)) or N(M) = N_(L) (so that Ny (M) =
= N(L)). Wesay that subspaces L and M in L\N are related if either N(L) = N(M)
or there are subspaces {L;}!_, in c \N, L=1L;and M = L“, such that L; and
L;41 are linked.

It is easy to see that this relation on £ \ N is in fact an equivalence relation.
We denote the set of all integers by Z, all positive mtegers by Z 4, all nonpositive
by Z_ and all integers m such that;1 < m< k, by Zg.

THEOREM 5.2. (i) All elements in £ \ N are related. N is a discrete nest and
N = {{0}, H} U {NN‘i},-e,.where I is either Z, or 4, or Z.. or Z; for some k. For
every i in I such that i+1€ I, N°= N*' and NL = N**1 If [ is Z, or Zk, then
Nl ={0}. If1=17_,.then' N = H and if I = Z;, then N} = H."

(i) For every i € I, the segment [N* N il= St is isomorphic to an s-lattice

which contains T as a sublattice, S N Si*! = {Ni Ni*+1} and £ = {{0},H} V]

U <L€JIS>

Proof. Fix Lin £\ N and let R(L) be the set of all segments in £\ N related
to L. Set ‘

P=A\{N(M): M€ R(L)} and Q= \/{N(M): M€ R(L)}.

Then P and @ belong to A. If P # {0}, then P is not isolated in L. There is L! in
L \ N such that d(P,L') < 1. Since N(L') is the only element in A’ which is not
comparable to L', N(L') = P. By Theorem 5.1, Py # P. Therefore L' € R(L).

If P_ # {0}, thereis L? in £\ N such that N(L?) = P_. Therefore L? is related
to L' and, hence, is related to L. Hence P C N(L?) C P_. This contradiction shows
that either P = {0} or P_ = {0}. Similarly, either Q = Hor Q4 = H.

Let P_ = {0} and Q4 = H. ’I?her:i P # {0} and Q # H. As above, L! and L
are related and N(L!) = P. Similarly, since Q # H, there is L3 in £ \ A such that
N(L3) = Q and that L and L3 are related. Thus L' and L2 are related and there are
subspaces {M; } .= in £\ N such that L' = My, L3 = My and that M; and M;4,
are linked. Thus in this case all elements in £\ N are related and

= {{0},H}U'{N"}iezkl N* = N(M;).
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Let now P = {0} and Q = H. Since N(M) is never {0}, the set {N(M) :
: N(M) C N(L)} is not finite. Therefore there is a countable sequence {L;};.55 of
subspaces in £ \ N such that Lo = L, such that all L;., and ‘L.~ are linked and
such that N(L;—,) = N_(L). If N-.= AN(L;) # {0}, then, since P = {0}, there
is M related to L such that N(M) C N. Therefore there is only a finite number of
distinct subspaces’in N between N(M) and N(L). This contradicts the fact that
all subspaces {N(L)};g are distinct and lie between N(M) and N(L). Therefore
N = {0}. Similarly, there is a countable sequence {L;}$2,, Lo = L, of subspaces in
L \ N such that all L; and L;4, are linked and such that AN(L;) = H.

If M is a subspace in £ \ N, there is i such that N(M) = N(L;). Therefore M
is related to L and

N = {{0}, H} U{N'}, 7, N'=N(L).
Similarly, one can cgn;ider two other cases:
1) P_={0} and Q== H,
2) P={0}and Q4 = H:
“Thus part (i) is proved.
Part (ii) follows easily from part (i) and from Theorem 5.1.
REMARK. The structure of every segment [N, Ni] was obtained in Theorem

3.2. Therefore Theorem' 5.2 gives a full description of the structure of the lattices .
which satisfy condltlons 1) 2) and 3).

DEFINITION. We. shall call thelattices whose structure was described in Theorem
5.2 chains ofs-la.ttlces )

Let £ bea cham of s-lattices, let N= {{0} H} U{N'}ier be the discrete nest
in L Set H; = Nitl g Nf, HO—Nl if IisZy or 1, Ho—HeN° if I=2_ and
” H%—HeN" if I =Z. Then

H= ZQ’H;
: jeJ
where J = I if F'isZ or Z- and J = {0}urIiflisZj or Z;.
We denote by P; the projection onto Hj and by A; the algebra P;Alg L P;. Set

B = {B=(Bi;) € B(H), i,j€J : B;; = 0if j - 1<i}

and » .
V={V=(V;)€EB(H), i,jelJ :V;j=0ifi>jorj=1>i},

ie.,

V= Vii Vi
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From Theorems 3.2 and 5.2 we immediately obtain the fol_lowing description of
Algl. ‘

THEOREM 5.3. Let L bea cham ofs—lattlces Then

(i) B C Alg[l A; are transitive algebras on H; and for every A in Alg[:
A=V +B,VeVandBe B;

(ii) there are closed and densely defined transformations F; and G; from H;y,
into H; which satisfy. Theorem 3.2(i) and such that for every V € AlgL NV

Vittip1 D(F) € D(FY) and Viigy | D(F) = (FiVigrier — Vi i) | D(Fy)

and
Vir1i41D(Gi) € D(G:i) and ViiGi | D(Gi) = GiVitrisa | D(Gi)--

Let us now weaken t'he first condition on L:

1) every element of the form N(L) in A is not isolated in £ with respect to
.the metric distance.

Now not all elements in £ \ A'are necessarily related to each othér. Therefore
L \ N can be partitioned into a family of sets {C }ueU which consist of related
elements For every set Cy put

N_(Cu)= AN(L): L€ Cu} and No(Cu) = VIN(L): L € Cu).

Using Theorem 5.1 'and repeating the argument of Theorem 5.2 we obtain the
following description of L. '

THEOREM 5.4. (i) The elements N_(Cy) are comparable to all elements in £
and the segments [N_(Cy), N4+(C.)] are isomorphic to chains of s-lattices.

(i) If u # v, then either Ny(Cy) C N_(C,) or N4(C,) C N_(C,). The set
L\ U [N_(Cy.), N+(C.))] is contained in N and consists ofelements comparable to

uelU
all elements in L.
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