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MAXIMAL TRIANGULAR "SU?BALGEBRAS OF AF ALGEBRAS

MICHAEL A. THELWALL

1. INTRODUCTION

A subalgebra A of C*-algebra B is triangular if A N A* is a maximal abelian
self-adjoint subalgebra (masa) of B. It is maximal triangular if it is not contained
in any larger triangular subalgebra of B. Maximal triangular algebras have been the
subject of recent studies, for example that of P. S. Muhly, K.-S. Saito and B. Solel
in [3]: Triangular subalgebras of AF algebras have also been studied, by S. C. Power
in [11] and [12], by R. L. Baker in [2] and by J. R. Peters and B. H. Wagner in [9].
The combination of the two has been studied by Y. T. Poon and the last two named
authors in [8]. In this paper some' tools for studying these and other subalgebras
of AF algebras are developed, including an AF version of the Spectral Theorem for :
Bimodules of [3], continuing the work in {10] and [11]. The main result, Theorem 3.3,
is a characterisation of maximal triangular AF algebras having a special Cartan-type
masa, called a canonical masa, as dlagona.l It shows that symmetric “gaps” can
occur in them in terms of partial isometries which are not contained in the algebra.
This reveals that these algebras are not highly structured, contrasting with both the
finite-dimensional case and the ultraweak theory of [3]. We give examples of maximal
triangular algebras with various properties motivated by this theorem. Dilation theory
is studied and an example of a contractive Hilbert space representation of a maximal
triangular algebra without a Stinespirinig dilation is given.

Every closed subspace of an AF algebra which is a bimodule f(;: a canonical masa
defines a binary relation, called the fundamental relation as in Section 1. It follows
from Theorem 2.2, the’AF Spectral Theorem, that for a fixed canonical masa there
is a 1-1 correspondence between bimodules and binary relations satisfying a topolo-
gical condition. The properties of a relation for it to be a fundamental relation of a
triangular or maximal triangular algebra can be identified. (Proposition 2.3 and The-

orem 3.3.) This provides a new way of analysing these algebras directly instead of as
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the limit of finite-dimensional subalgebras. This approach is particularly helpful for
subalgebras of the tensor product of an abelian AF algebra with a matrix algebra, the
context of Examples 4.1 and 4.2. A variant of the technique is used in the more com-
plicated Example 4.3. In this case the fundamental relation of a triangular bimodule
is constructed from a chain of finite-dimensional subspaces, allowing any discussion
of embeddings to be completely avoided. The methods used treat an AF algebra as
the C*-algebra of its fundamental relation (as a groupoid), and bimodule subalgebras
as supported on a subset of the relation, rather than treating these subalgebras as

inductive limit algebras.

The results introduced in the next two sections are the basics required for the
study of non-self-adjoint subalgebras of AF algebras which are bimodules for a ca-

nonical masa.

This paper is taken from my thesis [13] and I would like to thank my supervisor,

Professor S. C.' Power, for all his help, encouragement and advice.

1. PRELIMINARIES

We first look at‘simple spaces of matrices defined by specifying which matrix
entries must be zero. Let M(n) denote the set of n x n complex matrices. Pick a
set of matrix units. The algebra D(n) spanned-by the self-adjoint matrix units is an
n-dimensional masa. From direct calculations, a subspace of M(n) is spanned by the
matrix units it contains if and only if it is a bimodule for D(n). Every triangular
subalgebra of M(n) contains, and is a bimodule for, a masa generated in this way. A
D(n)-bimodule N defines a directed graph with vertices the matrix units in D(n) and
arrows the matrix units in N, where e;; is an arrow from e;; to e;;. The set of D(n)-
-bimodules in M(n) is thus in 1-1 correspondence with the set of directed graphs
on n vertices. Given a set of matrix units, all properties of a D(n)-bimodule can be
read off its directed graph, for example if it is a triangular or maximal triangular
algebra. This process allows large matrix spz;ces to be analysed easily, and is essential
for Example 4.3. A general finite-dimensional C*-algebra is isomorphic to the direct
sum of full matrix algebras so similar statements hold in this case. This construction

was generalised in [11] to some subspaces of AF algebras.

Let By, B, ... be an intreasing chain of finite-dimensional *-algebras with closed
union the AF C*-algebra B. For a subspace L of B write L, for LN.B, and Lo for
the union of all these. The space L is inductive if Lo, is dense in L. Let C be an
inductive masa in B such that C, is a masa in B, for all n, called a canonical masa.
Let M be a C-bimodule in B (a closed subspace with CM C M and MC C M). It
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is a key result of Power [10, Lemma:1.3] that all C*-bimodules are inductive. Each
M,, has the properties described in the above paragraph since it is a C-bimodule in
B,. This is already good enough to characterise certain properties of C-bimodules
but not more complex ohes, which n}eed%the fundamental relation, iﬁtroduéed in [11,
Chapter 6] to study tensor products of sfo'r'ne triangular subalgebras of AF algebras.
A partial isometry v in B is said to be C-normalising if vCv* C C and v*Cv C C.
It will be seen later that any C-bimodule is spanned by the €-normalising partial
isometries which it contains. The fundamental relation of ‘M is the binary rélation
R(M) defined on the Gelfand space ®(C) of C by zR(M)y if and only :if there is a
C-normalising partial isometry v'in M such that y(c) = z(vev*) for all cin C, where
z and y are (unit norm multiplicative linear functionals) in ¢(C). This, relation also
defines a directed graph with set of vertices #(C) and a subset. {(z,y): zR(M)y} of
&(C) x &(C), we shall use these interchangeably for R(M): Notice that the relation
is not dependent on the particular chain of *-subalgebras of B picked at the starf,

just the choice of masa.

A system of matrix units for the AF algebra B (w1th respect to By, B»,...) is a
choice of matrix units for each B, such that each one in Bn is a sum of matrix unlts
from Bpyi. Itis always possible to find a system of C-normalising matrix units and we
shall fix such a system for B for the rest of this paper. By inductivity, any C-bimodule
is the closed span of the matrix units it contains. From [11, Lemma 6.3, every C-
-normalising partial isometry is the product of partial isometries, one from C and
the other a finite sum of matrix-units. In particular the fundamental relation could
have been defined using matrix units instead of partial isometries. Many properties
of a C-bimodule can be found in its fundamental relation and in the next section it is
shown that they will then be reflected in the matrix units contained. Often this will
lead to the construction of a chain of finite-dimensional subspaces with the property
and having dense union. For some properties there are examples to show that this

does not happen.

2. BIMODULES

Recall that we have an AF algebra B, a canonical masa C, a C-bimodule M and
a system of C-normalising matrix umts In this section we explore the relationship
between M, its fundamental relation, the matrix units it contains and the chain
My, My, ... for some simple properties. '

We construct a natural topology on R(B). If z is a functional in ¢(C') and v is

a C-normalising partial isometry with :c(bv*) = 1 then a new functional, denoted z,,
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is defined by z,(c) = z(vcv*) for all ¢ in C. For a partial isometry v let I'v be the
set {(z,z,):z(vv*) = 1}. The topology we consider is that having base {I'w:w is a
matrix unit }. Direct calculation shows that the base sets are clopen and the topology
is Hausdorff. The following lemma shows that it is also locally compact. Notice that
the locally compact space &(C) is topologically isomorphic to {(z,z):z is in ¢(C)}
with this topology.

LEMMA 2.1. If w is a matrix unit then I'w is compact.

Proof. Fix.an open covering of I'w. For every functional z with z(ww*) = 1, the
point (z, ) is in ['w so there is a matrix unit, v(z) say, such that I'v(z) is contained
. in an element of the open cover and z,, = z,(s).

The set {I'v(z)v(z)*: z(ww*) = 1} forms an open cover of I'ww* which is com-
pact, since it is isomorphic to the compact space #(Cww*), so there is a finite number
of functionals zi,...,z, such that the set {I'v(zy)v(z1)*,..., Tv(z,)v(z,)*} covers
T'ww*. Now I'w is covered by {I'v(z,),..., I'v(z,)}. |

THEOREM 2.2 (AF Spectral Theorem). Let w be a matrix unit. If 'w C R(M)
then w is in M.

Proof. Suppose that I'w C R(M), so that zR(M)z,, for all z with z(ww*) = 1.
From the previous section, for all these z there is a matrix unit v(z) in M with
I'v(z) C I'w such that z, = z,(z). Now {I'v(z):z(ww*) =1} is an open cover of

T'w so by the lemma there is a finite subcover {I'v(z),..., I'v(z.)}.” These sets may
overlap.
Take n large enough so that v(z,),...,v(z,) are all in M,. We have v(z,)-

w(z1)* + ...+ v(z,)v(z,)* > ww* by identifying both sides as functions on &(C).

* is a sum of

The left hand side is a sum of projections from C,. Also each v(z;)v(z;)
minimal projections in C,, the duplicated projections can be eliminated by choosing
mutually orthogonal projections pi,...,pr in C, such that pyv(zi)v(z1)" + -+
+p,v(z,)v(z,)* = ww*. The partial isometry v = pyv(z;) +---+ pru(z,) is a finite
sum of matrix units from M, and has the same final space projections as w. Let e
be a matrix unit in C, with e < ww* and z a functional such that z(e) = 1. Since
z(vv*) = z(ww*) = 1, the functional z, exists and (z, z,) is in I'v C I'w and therefore
Z, = Zy. This forces ew = ev and over all matrix units e it implies that w is equal

to v. This finishes the proof since v is in M,. : [ ]

It folows that a subset of R(B) is the fundamental relation of a C-bimodule if
and only if it is an open set. Also since from [11] every C-normalising partial isometry
is the product of an element of C with a sum of matrix units the theorem holds for

these partial isometries too.
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Suppose that z and y are functionals with zR(M)y. From the last section there -
is a matrix unit w in M such that :ct;, = y. Let n be élarge integer such that w is in
M, . Taker > n. There is a matrix unit e of By, in C, such that z(e) = 1,50 zew = ¥
and ew is a matrix unit of B, in M,. ‘

In summary, zR(M)y if and only if for all n large enough there is a matrix unit
w of B, in'M,, such that Y=1=Ty.

The knowledge of the topology of the fundamental relation gained above can now

be applied to investigate properties of bimodules reflected in it.

PROPOSITION 2.3.- The relation R(M) is transitive, reflexive, symmetric, anti-
symmetric, anti-reflexive if and only if M is an algebra, C C M, M=M' MAM*C
C' MNC=0 respect:ve]y

* Proof. All the parts have similar proofs, we show one.
Suppose that M is an algebra, zR(M)y and yR(M)z. For large enough n there
are matrix units v and w of B, in Mn such that y =z, and z = y,. For ¢ in C,
z(c) = y(wew*) = z(vwew*v*) and so z = zy,. Conversely, suppose that R(M) is
transitive. Let v and w be matrix units of B, in M, with vw non-zero. If z is a
functional with z{vww*v*) =1 then zR(M)z, and z,R(M)z,, so :cR(M)xuw: By
the AF Spectral Theorem, vw is inj M,,. Now M, is an algebra for all n and by
mductlvnty M is too. . ; ' .

Every property of M mentioned in the above proposition is hered;tary in the
sense that M has it if and only if every M, has the corresponding property. Similar
techniques to the above can be used to investigate ideals of subalgebras of AF C *

-algebras whlch are also bimodules. -

 PROPOSITION 2.4. If M is an algebra and I a C-bimodule then the following are |
equivalent. |
(1) I is an ideal of M.
(ii) In is an ideal of My for all n.
(iii) R(I) C R(M) and :z:R(M)y, yR(I)z = :l:R(I)z and zR(I)y, yR(M)z
= zR(I)z.

Proof. (i)«>(ii) One way is a result of the inductivity of M, the other is a
direct calculation. (ii)=>(iii) Suppose (ii) holds. It follows from the definition that
R(I) c R(M). Suppose that :cR(I)iy and yR(M);. For large enough n there are
matrix units v and w of B, in I, and M, respectively such that y = z, and z = y,,.
Since the matrix unit vw is in I, and z = z,, we have zR(I)z. The final paft is
proven in a similar way.

(iii)=>(ii) Suppose (iii) holds. It follows from the AF Spectral Theorem that I



1638 : MICHAEL A. THELWALL

is a subspace of M. Let v and w be matrix units of B, in I, and M, respectively
and suppose that vw is non-zero. If z(vww*v*) = 1 then zR(I)z, and z,R(M)z,y
50 zR(I)zyw. Again using the AF Spectral Theorem vw is in I,. Similarly wv is in
I, so this is an ideal of M,,. [ |

If M is an algebra containing C then any ideal of M is a C-bimodule and so the
proposition classifies the fundamental relation of its ideals.

In the next section we shall investigate some more complex properties of M, ones
which are semi-hereditary in some sense and ones which are not hereditary at all but

can still be classified in terms of the fundamental relation.

3. MAXIMAL TRIANGULAR ALGEBRAS

We shall restrict our attention to triangular subalgebras of B which have diagonal
C, such algebras can have very different properties from triangular subalgebras of
finite-dimensional C*-algebras. A triangular subalgebra A of B is strongly maximal
if there is an increasing chain G,, Ga, ... of finite-dimensional *-algebras with closed
union B such that A N G, is maximal triangular in G, for all n. In [R1 it is shawn
that this is a strictly stronger condition than maximal triangularity. Proposition 3.2
classifies the fundamental relation of such an algebra in terms similar to Corollary 3.6
of (3].

" A study of the fundamental relation of a general maximal triangular algebra
brings out interesting properties not found in the strongly maximal case. Theorem
3.3 classifies such relations using some topological condition which are suficiently loose
to allow the examples of the next section and Section 5.

From Proposition 2.3, the C-bimodule M is a triangular algebra if and only
if its (unique) fundamental relation is reflexive, transitive and anti-symmetric. We
introduce a definition to help analyse strongly maximal algebras. The relation R(M )
is called full (in R(B)) if whenever zR(B)y then z = y or zR(M)y or yR(M)z. This
property is more complicated than those in the last section, it is not hereditary but
has a related property (ii) with the matrix units.

LEMMA 3.1. The following are equivalent.

(i) R(M) is full in R(B).

(i1) All matrix units of B are contained in Mo + Coo + M.
(iii) M + M* + C is dense in B.

Proof. (i)=>(ii) Suppose that R(M) is full. Let w be a matrix unit and let z be
a functional in &(C) with z(ww*) = 1. Since zR(B)z,,, there is a matrix unit v(z)
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in M, C or M* such that z,, = zy(z). As§ in the proof of the AF Spectral Theorem,
using the compactness of I'w, there is a finite sequence vy, ..., v, of matrix units in
My U Cx U M}, which sum to w.

(i1)=(i) Let z and y be functionalsin ¢(C) with zR(B)y, and let v be a matrix
unit with y = z,. Although v* is not necessarily in M, it can be expressed as the
sum of matrix units vy in My, vy in Cy and vz in M}, . The functional z evaluated
at vyv}, vov5 and vzv} gives the value 1 at one of them, but each one corresponds to
one of the three conditions for R(M) to be full.

(ii)=>(iii) From (ii), Bso is contained in Mo + Coo + M.

(ii))=>(ii) Let v be a matrix unit of By,. If M + C + M* is dense in B then sois
My + Coo + M, and there is a sequence of a, in M, + C + M with ¢, — v. If
v is not i the Cp-bimodule M, + Cp + M; for n > m then for some projections p,
and gn in C, the product ¢gn(v — an)pa isia matrix unit govp, so |[v — a,|| > 1. The

convergence of the sequence shows that v is in Mo, + Coo + M3,. |

ProposiTION 3.2. The C-bimodule M is strongly maximal triangular if and only

if its fundamental relation totally orders each equivalence class of R(B).

Proof. From Proposition 2.3, R(M) is a partial order on @(C) if and only if M
is a triangular algebra containing C'. This partial order on &(C) is a total order on
each equivalence class of R(B) if and only if R(M) is full.

If Mis strohgly maximal then M + M* is dense in B so R(M) is full. Conversely,
suppose that R(M) is full. From the lemrﬁa, for every integer n and for-large enough
k > n there is a smallest finite set of matrix units of By in M such that each matrix
unit in B, is a sum of elements and adjoints from this set. The Cr-bimodule generateﬂ
by this matrix units is triangular and is by construction maximal tuangular in the
Cj-bimodule Gn generated by B, . Some subsequence of G1,Gy, ... is increasing and
so M is strongly maximal. - n

We now study more general maximal triangular algebras. The condition on M
equivalent to it being a maximal triangular algebra is that if S is an open, transitive,
reflexive, anti-symmetric subset of R(B) containing R(M) then the two are equal. A
more useful characterisation can be obtained by studying the topology on the relation.

If My is a triangular subalgebra of a finite-dimensional C*-algebra By and v is a
partial isometry sum of non-self-adjoint matrix units from By then there are matrix
units u; in Mo such that ujvus...vu, is a non-zero projection if and only if the
algebra generated by My and v is not triangular. In graph theory terms this means
that the MoN Mg-bimodule generated by Mo and v has a directed cycle in its directed
graph. A directed cycle is a finite, non-zero seduence of arrows, each arrow coming

from the vertex which the previous arrov(iz went to and the last arrow going to the
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vertex which the first arrow started from. None of the arfows may start and finish at

the same vertex.

THEOREM 3.3. The C-bimodule M is maximal triangular if and only if all of the
following conditions hold.
(i) R(M) is transitive, reflexive and anti-symmetric.
(ii) If U is a non-empty open subset of R(B)\(R(M) NR(M*)) then R(M)NU
cdntains a directed cycle. '
(iii) If U is a open subset of R{M) and its closure is open then this is also in -
R(M).

Proof. Suppose that M is maximal triangular. By Proposition 2.3, (i) holds. Let
U be an open subset of R(B)\(R(M)NR(M*)). Since R(M)NU lS open it is the
fundamental relation of a bimodule, N say, which contains M. If R(M)NU contains
no directed cycle then the algebra generated by each N, is triangular by definition,
so the algebra generated by N is triangular. Since M is maximal, N = M and so U
" is an empty set, (it) holds. :

Let v be a matrix unit not in M and let U be an open subset of T'v. It will be
shown that U is not dense in I'v. Since I'v is not in R(M) we can take an integer n
such that the algebra generated by M, and v is not triangular and v is in B,. Since
v is a sum of 'non-self-adjoint matrix units of By, there are matrix units uy,...,ur of
B, in M, with r > 1 such that ujvusv...vu, = p, a non-zero projection. If z is a
functional with z(p) = 1 then a directed cycle in R(M) N I'v can be defined from =

as follows. Let 2o = z and let

z2:(c) = z{ujvusv .. .buivc(ulvugv coou)) fori=1,...,r—1,
z2i-1(c) = z(uyvusv. . vuic(uyvugy. . vy)’) fori=1,...,r
define functionals zq, ..., Z2,_1 with £2,—; = z¢ and (z;, z;41) in R(M) N v for all

i. This is a directed cycle and so for some positive integer i the element (z2i—1, Z2)
is not in R(M). Let X(j) be the set of functionals y with y(p) = 1 and (y2j-1,¥2j)
not in R(M). If z is a functional with z(p) = 1 and (22j_1, z2;) in R(M) then there
is a matrix unit w.in M such that 'w C I'v and w is small enough not to be a sum of
more than one matrix unit in B,,. Also we can choose w so that T'w is a subset of the
complement of X(j) in I'v, thus this complement is open and X(j) is closed. Since
X(1)U...UX(r) = I'p, the finite version of Baire’s Theorem (true for all topological
spaces) forces some X(j) to have non-empty interior. This implies _t.ha:t a non-empty
open subset of I'v is in R(M) so U is not dense in I'v. Thus if the closure of an open
subset of R(M) is an element of the base then this element is also in R(M). '
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For a general open set U with open closure, the closure of U is the union of
countably many elements Wy, W5, ... of the base and U N W; is an open set with
closure W; so by the above W; is in R(M ) and hence the whole of the closure of U is
in R(M) and (iii) holds. :

For the converse, suppose that M is a C-bimodule satisfying (i), (ii) and (iii).
By (i), M is a triangular algebra.

Suppose that W is an open set and that the C-bimodule with fundamental re-
lation R(M) U W is also a triangular algebra. It will be shown that W is contained
in R(M). If the set W NR(M*) is not empty then since it is open it contains I'w
for some matrix unit w. For large enough n both w and w* are in M, so it is not
triangular. Thus W N R(M™*) must, be the empty set.

Suppose that U is an open subset of W with U N R(M) empty.-From the above
paragraph UNR(M™) is also empty. Now U must be empty by (ii) as the fundamental '
relation of a triangular algebra is transitive and anti-symmetric hence it contains no
diregted cycles. Every open subset of W has non-empty intersection with R(M), so.
W n"R(M) is dense in W. It follows that R(M) is dense in R(M)U W. Let v be a
matrix unit with I'v in R(M)UW. Now I'v is clopen and R(M)N I'v is dense in I'v so
that by (iii), v is in R(M). This finishes off the proof since R(M) U W is the union
of the base sets it contains. ‘ |

4. EXAMPLES

The following three examples will illustrate both the conditions of Theorem 3.3
and the properties which maximal triangular subalgebras of AF algebras may have.
For the first two examples the AF algebra will be the tensor product of an abelian
AF algebra with a matrix algebra. This form is chosen for its simplicity and for the

ease of visualising the fundamental relétion in this context.

Let D be the abelian AF algebra which is the limit of the sequence D;, D, ...
where D, is the direct sum of 27 copies of C and the ith copy of Cin D,, is embedded
in the 2ith and 214+ 1th copy of C in- D,;41. As matrix units for each Dy, use the

projections onto each copy of C. This forms a D-normalising system.

Identifying the it matrix unit of D, with the characteristic function of the
interval [( — 1)27",:27"] the algebra D is isomorphic to a subalgebra of L™ [0, 1],
the algebra of multiplication operators on L%[0,1]. A unital multiplicative linear
functional on D corresponds otherwise to "pointwise evaluation at a non-dyadic point
or to left or right limit evaluation at a dyadic point in {0, 1]. Thus the fundamental
relation of a D-bimodule cah be identified with a subset of [0, 1]2, with each dyadic
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rational in (0,1) counting twice.

Let e; be the penultimate matrix unit of Dy;_; and let f; be the penultimate
matrix unit of D,; for all ¢. The set £ = I'e; N Tep N ... is open. Let z be the
functional on D defined on each D, by z(A1,...,Azr) = Azn, so that z is not in
since z(e;) = 0 for all i. However if v is a matrix unit with I'v containing (z, z) then
it contains Ie, for all large enough n so (z,z) is a limit point for E. In fact (z,z) is
the only limit point for E using the same argument. Let F = I'fy UT'foU... which is
the complement of E so EU F is an open set with closure the maximal ideal space of
D. In fact EUF corresponds to the set [0,1), missing just the functional of left limit

evaluation at 1.

For any integer k the algebra of continuous functions from the maximal ideal
space of D to the matrix algebra M (k) is a unital AF algebra isomorphic to the tensor
product D ® M(k) and is the limit of the finite-dimensional *-algebras D, ® M (k).
With respect to this sequence the space of continuous functions into the diagonal
is a canonical masa. We shall denote the standard matrix units'of M(k) by v;; for
t,7 = 1,...,k in the usual way. We tensor the matrix units of D with all the v;; to
give a system of matrix units for D @ M (k).

We can identify D ® M (k) as a subalgebra of L(L2[0, k]). Identify the operator
1 ® vi; with the identity map from L%[j —1,j] to L2[i —1,i] and D ® v;; with a
subspace of L™ [i — 1,i] as above. From this the fundamental relation of a bimodule
is isomorphic to a subset of the set of (a,3) in [0, k] x [0, k] such that « — 3 is an

integer, with pairs of dyadic points counting twice.

EXAMPLE 4.1. This example will be explained in detail, the next one is simi-
lar. Let S be the union of the sets I'(e; @ viz) U I(fi @ v12) for all i together with
I(D ® vy;) and T(D ® vg3). As a set, this is an open subset of R(D ® M(2)) which
1s reflexive, transitive and anti-symmetric but it is not the fundamental relation of a
maximal triangular algebra since the closure SUI(1®wvy,) of S is also open, reflexive,
an'ti—symmetric and transitive, it contains one more point than S. Let N be the
bimodule with fundamental relation S. Every N, = N N (D, ® M(2)) is isomorphic
to the direct sum of 2" — 1 copies of the upper triangular part of M(2) and one copy
bf the diagonal of M(2). The diagram below left shows the fundamental relation.

Every closed interval in a line corresponds to a sum of matrix units.

Let S’ be the union of the sets I'(e; ® v12) U I'(f; ® v21) for all together with
the sets I'(D ® vy;) and I'(D ® v22). This is an open subset of R(D ® M (2)) which is
reﬁexive, transitive and anti-symmetric, it is the fundamental relation of N’ say. This
1s a maximal triangular algebra but not strongly maximal since if v is a matrix unit
not in N’ or N’* then I'vAR(N') and I'vNR(N'*) are both non-empty. The closure of
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S’ is not open, it contains two more points than $’. Note that each N'N(D, ® M(2))
is isomorphic to Np! The diagram below right shows the fundamental relation.

0 1 2 0 1 2

N

EXAMPLE 4.2. Let S be the union of the sets I(1®wv;;) for i< j and (7, 7) # (3,4)
together with the union of all the sets I'(e; ® vaq) U I'(f; ® vg3) for all i. This is an
open subset of R(D ® M(4)) which is reflexive, transitive and anti-symmetiic with

2 2

the bimodule N having fundamental relation S maximal triangular, but not strongly.
maximal as in the second example above. In fact the C*-algebra generated by N
is the entire AF algebra since' 1 @ v34 is the product (1 ® va2)(1 ® va4), so N is an

example of a maximal triangular algebra in the C*-algebra it generates.

ExAMPLE 4.3. We shall see that it is possible to have a maximal triangular
algebra A and a matrix unit w such that I'w N R(A) = I'w N R(A*) = { }, justifying
part (ii) of Theorem 3.3. The containing algebra will be the CAR algebra, so that
By, is isomorphic to M(2") for all n. The example will be constructed in terms of the
directed graph of a bimodule M at each stjage M,, with the labelling of the vertices,
which is important to keep track of the bimodule, from the standard embedding.

We use single arrows to denote matrix units in M and double arrows for those
which are not in M but sum with others to w. Let M, have the digraph 1—»———2
this double arrow represents all of w. The Cs-bimodule generated by M, in B is :

1 3 1 4
and M, is N7
2 4 7 3

If the digraph
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is of M,, then the digraph of M, is obtained by taking two copies of the digraph of
M,, and joining them together after rotating the second by 180 degrees:

n

1 2™ ke 2" L™ 2™ 2

. — _ /y
2 2" %1 2™ i 22 2™ 1
Now if v is a matrix unit of B, with I'v C T'w then in the digraph of M, -the

double arrow representing v is

or

In the first case, from the construction of the bimodule, the four matrix units of
B, 42> which sum to v are represented on the digraph of M, 47, with the direction of

their arrows coming from that of v, by

so either v or v* added to M,,, will result in the algebra generated by M, 42 not being
triangular. The same happens in the second case.

The same argument as above shows that the algebra A generated by M is maxi-
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mal triangular with A, = alg M,, which is isomorphic to the direct sum of two copies
of the upper triangular part of M(2"~!). In fact A is very small to be maximal tri-
angular, for example the ratio of the number of matrix units in A, to the number in

the upper triangular part of M(2") tends to 0.5 as n increases.

REMARK 4.4. The example above of a maximal but no strongly maximal trian-
gular algebra can be embedded in the hyperfinite II; factor. The binary relation P on
[0,1] defined by zPy if and only if z — y is dyadic and together with measure v defined
on it from Lebesgue measure and counting measure can be used with the techniques
of Feldman and Moore to construct this factor. Our éxample can be embedded in this
algebra but the propefty of not totally ordering the eugivalence classes of the diago-
nal, which ultraweakly closed maximal triangular algebras must have as shown in {3,
is lost in the containing maximal triangular algebra. The partial isometries x sw and
w'xs: can be added, where S is a Borel subset of [0,1], and S’ its complement with
the property that for all 0 < @ < 8 <1 the measures of both SN («, ) and S' N(e, B)
are non-zero. The first of these is supported on a subset of the support of w.

5. REPRESENTATIONS

A representation of a subalgébra of a C*-algebra admits a Stinespring dilation
if and only if it is completely contractive [1]. Every contractive representation of a
finite-dimensional nest algebra is completely contractive from [7]. Thus, by density,
every contractive representation of a strongly maximal triangular algebra is com-
pletely contractive and so has a Stinespring dilation. In fact it follows in a similar
way from [6] thdt this is also true for the tensor prodﬁct of two strongly maximal tri-
angular algebras. For general maximal triangular algebras this fails, as in the folowing
example. '

In [6] a representation p of the algebra

(0 53)

(where D(3) is the diagonal of M(3)) which is contractive but not completely con-
tractive was given. The meéthods of the first two examples of the last section will
be used to construct a maximal triangular algebra as the sum of the algebra A with
another, A'. The representation 0+ p of A’ + A will then be shown to be contractive
without having a Stinespring dilation. ‘ .

Let S be the union of the sets [(1Quw;)fori=1,...,6, [(1®v;;) for 1<i<3
and 4<j <6, I(en ® vj) for all n and 1<i < j<6, and I(fa ® v;) for (i, 5) =
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= (2,1),(8,1),(3,2),(6,5),(6,4),(5,4). The bimodule N in D ® M(6) with funda-
mental relation S has been constructed so that NN (Dn ® M(6)) is isomorphic to the
direct sum of 2" — 1 copies of the upper triangular part of M(6) with one copy of the
algebra A. From Theorem 3.3 it is maximal triangular. Writing N as A’ + A, if b is
in A’ and a is in A then ||a + ]| > ||a]| so the representation 0 + p is contractive.
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