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ON COMPACT OPERATORS IN CERTAIN
REFLEXIVE OPERATOR ALGEBRAS

E. G. KATSOULIS and R. L. MOORE

One of the most interesting questions involving C.S.L. algebras is the question
of when a C.S.L. algebra contains a non-zero operator. Since. it seems difficult to
have a complete answer to this question, many authors have restricted their attention
either to concrete classes of compact operators (namely the well known von Neumann-
-Schatten classes (Cp, || - |l,) , 1 < p< + oco; we denote by Coo the colection of all
compact operators) or to concrete classes of C.S.L. algebras. In this direction, many
examples have been obtained, descrlbmg the quantity and the quality of compact‘

operators contained in such -algebras (see [3],{6],[7]).

. The purpose of this article is to add some more flavor t& the. general problem
by showing that for a certain class of C.S.L. algebras the appearance .of compact
operators 1s closely related to the ab-undjance of rank-one operators.’ Moreover,‘.’-som'e
related results are obtained.

In this paper, will use the following nétaiion. If (X,11]) is a Banach space, then
the set of all bounded operators on X will be denoted by B(X). If (X, | ||) is @(,Bénaph
space and Y a 51:1bset of its dual X*, then the weakest topology 7 wichy makes every

element of Y a continuous linear functional on (X, 7) will be denoted by ¢(X,Y).

The terms Hilbert space and subspace will be used to mean separable Hilbert
space and closed subspace respectively. A commutative subspacé lattice (abr. C.S.L.)
L, acting on a Hilbert space H, is a lattice of commuting projections in H‘, cbntaining
0 and I, which is closed in the strong operator topology of B(H). By Alg L, we wiil
denote the (strongly closed, unital) subalgebra of B(H), consisting of all operators A
leaving invariant the range of each projection Pin L, i.e., AP = PAP for all Pin L.
By. R1(L) we will denote the algebra of all finite rank operators which can be written

as a finite sum of rank one operators belonging to Alg L. A nest algebra is an algebra
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of the form Alg N, where N, is a totally ordered C.S.L., that is, a nest.
Let L a C.S.L. and let P be a projection in L. We define

P_=v{QeL:PZQ)

P.=nMQ-:QeL, Q¢ P}.

A CS.L. L is called completely distributive if P, = P for every P in L. There is
a standard lattice-theoretic definition of complete distributivity which Longstaff has
shown equivalent to this one (see [9]).

If N is a nest and F an arbitrary finite sublattice of N, we write

Ur(A)= ) PAAF(P)
PeF

Dr(A) = Y Ar(P)AAF(P)
PeF

Lr(A)= Y (P - Ar(P))AAr(P), A€ B(H)
PeF

where

Ar(P)=P—(V{Q€F:QC P but Q#P}).

As F varies over the finite sublattices of N, the sets {Ur}r, {Dr}r, {Lr}r form
nets of idempotents from B(H) onto Alg F', F’ and Rad Alg F respectively. We now
quote two theorems about the properties of these nests to be found in [4].

THEOREM 1. Let N be a nest. Then, for every operator K in C, I <p < + o0,
the nets {Ur(K)}r, {Dr(K)}r, and {Lp(K)}F are || - ||p-convergent to operators
Un(K), Dn(K) and LN(K) respectively. Moreover,

Dn(K)= ) (E- E_)K(E - E.).
EeN .

THEOREM 2. Let N be a nest and let K be a compact operator in Alg N. Then

K = Ln(K)+ DN(-K).

_In this note we will consider only commutative subspace lattices which are gener-
ated by a completely distributive C.S.L. Lo and finitely many commuting nests N,
1 < i<k (for such lattices L we write L = LoV N, V..V Ni). We begin our exposition
by giving a short transparent proof of results of Davidson and Pitts [1]. First we need
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a proposition that explores the question of whether such algebras can fail to contain

rank-one operators.

PROPOSITION 3. IfL is a completely distributive latticé and N a nest commuting
with L, then LV N contains a non-atomic Boolean algebra if and only if Alg (LVN)

contains no rank-one operators.

Proof. One direction is trivial. Let us assume that Alg (LV N) does not contain
any rank-one oﬁerators. We will show that, for every £ € N, we have Etel.
Suppose that Q@ € L and E € N. The definition of E_ implies that, for any
operator A in B(H), the operator EQAQ?Y E+ is in both AlgL and AlgN, and thus'
lies in Alg(L V N). (A remark: the subscript 7" is deﬁned with reference to a
particular lattice. We mean for. E_ to be computed in the lattlce N and Q_ in the -
lattice L.) Consequently, for any rank-one operator R; we have EQRQLE+X = 0
(because Alg(L;V N) contains no rank-one operators). This means fhat, whenever
EeNand Q€ L, either EQ=00r (E_VQ-)=1.
. Let E be a projection in N, and let P be the greatest projection in L that is
orthogonal to E, that is, P = V{Q € L: EQ}. Then E*+ D P, but we also have ‘

P=P,=A{Q_-:QeLandQg P} =

=AN{Q-:Q€Land QE #0} D
DMQ-:QeLand L CQ.} 2 EX D EL.
Thus, E+ = P and the conclusion follows. | |

THEOREM A [1]. Let L be a commutative subspace lattice generated by a
completely distributive C.S.L. and finitely many commuting nests. Then L is compact
in the strong operator topology of B(H) 1[ and only if L is completely distributive.

Proof. One direction is well known | [11 Corollary 2.6]. Let us assume that
L = Ly Vv N (where Ly is completely dlstrlbutlve and N is a nest) and, moreover,
that L is compact without being complétel):' distributive. Theorem 3.1 in [10] implies
the existance of a semi-invariant projectionJP in L" such that the algebra Alg(PL) =
PAlg L| P(H) contains no rank one operators Hence, by Proposition 1, the lattice
PL = PLyV PN contains a non-atomic Boolean algebra i.e., PL is not compact, a
conclusion wl_uch contradicts the fact that ia compression of a compact lattice must
be compact.

The general case follows inductively from the fact that complete distributivity

and compactness are hereditary for complete sublattices. [ |
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Proposition 3 implies immediately that for lattices of the form L = Ly V N,
where Lj is a compietely distributive C.S.L. and N is a nest, the appearance of non-
zero compact operators in Alg L is equivalent to the existence of non-zero rank one
operators. This fact can be also deduced from the following, more general result.

THEOREM B. Let L be a commutative subspace lattice generated by a completely
distributive C.S.L. and finitely many commuting nests N;, 1<i<k. Then every
compact operator in AlgL is the norm limit of finite sums of rank one operators

belonging to Alg L.

- Proof. First we ensure that the statement is true for completely distributive
lattices. Indeed, it is known (see [8]) that for every completely distributive lattice
Lo, the algebra R;(Lo) is w*-dense in Alg‘Lo. Hence, using elementary Banach space
“theory, we have:

0 CN, 1
Rl(Lo) = Rl(Lo) ( ¢ ) =

———o(B(H),C\
= Ri(Lo) (B(H),C1)

il I
NCo = AlgL NCy,

and the conclusion follows.

We now proceed to the general case; the proof foliows by induction on k.

If £ = 0, we have just proved the result. Let us assume that the statement is
true for k = n—1 and let L be a C.S.L. generated be a completely distributive C.S.L.
Lg and finitely many commuting nests N;, 1 <ign.

If K is an arbitrary compact operator in AlgL, K belongs to Alg N, and so, by

Theorem 2, we have:

K= ) (E-EB_)K(E-E.)+ Ly, (K).
EEN,
The induction hypothesis now implies that every operator of the form (E —
—E_)K(E — E.) can be approximated by elements of the set R;(L); hence the same
is true for Dy, (K).

It remains to prove that Ly, (K') belongs to RI(L)" I

Let £ be a positive number.
Since Ly, (K) is the norm limit of the net {Lr(K)}Fr, where F ranges over all finite
sublattices of N,, there exists a finite nest F, C N, such that:

Il Ln.(K) = Lr.(K) || <e/2.

On the other hand, LF, defines a bounded idempotent on B(H) and hence there
exists an element K, of Ry(LoV Ny ---V N,_;) such that

| Lr.(K) — Lr.(Kc) || <€/2.
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Thus, the finite rank operator L, (K.) is e-close to LNn(K) The rest of the -
proof follows from the fact that

Lr.(Ke) € Alg(Lo VN1 V-V Nooy) NRadAlgFe CAlgL

the last inclusion holds because Rad Alg F. consists of strictly up‘per triangular oper-

ators and is therefore a subset of Alg N,,. ]

REMARKS. 1. We observe that Theorem B gives the finishing touch to the
work in [6]; in a finite width C.S.L. algebra Alg L every finite rank operator can be
approximated by finite rank operators belonging to Alg L. '

2. The theorem above is not true tor other commutative subspace lattices; see the
work of Froelich ([3], for example), or Example 4 in [5]. In fact, our theorem shows.

that the lattices in these examples are not of the type described in Theorem B.

COROLLARY 4. If L is a commutative subspace lattice generated .by a completely
distributive C.S.L. Lo and finitely many commuting nests N;, 1 <i<k, then every '
Cp-operator in Alg L, 1 <p < + 00, can be approximated, i in the correspondmg [l - llp-
norm, by finite rank operators belonging to Alg L.

Proof. The proof follows the lines of the proof of Theorem B except for the fact
“that at one point has to use a result of Davidson and Power (Proposition 2.6 in [2]).
' =

The following gives a complete answer to the question that motivates the work
of Laurie in [7}.

COROLLARY 5. Let L be as in Corollary 4. Then L is contained in the invariant
subspace lattice of a non zero compact operator if and only if there exists a pro;ectlon
Pin L such P_ # 1.

Proof. The conclusion follows immediately from THeorem B and a well 'known

Proposition due to Longstaff (Lemma 3.1 in [9]). |

Can Theorems A and B be extended to commutative subspace jattices that are
generated by finitely many completely distributive lattices (instead of nests)? The

answer is not known, but a proof would surely shed on the structure of such lattices.
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