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ON A PROBLEM OF THE PERTURBATION THEORY OF
SELFADJOINT OPERATORS IN KREIN SPACES

P. JONAS

INTRODUCTION

Let H be a Krein space and let A and B be selfadjoint operators in H ‘whose
resolvent sets have a nonempty intersection. Assume that A is definitizable and that
the difference of the resolvents of A and B belongs to some Schatten-von Neumann
ideal §,, 1< pgoo. . : .

If, in addition, A is fundamentally reducible and if p < oo, then B is definitizable
over R\ c¢(A) (see Definition 1.1), where c(A) is the set of the critical points of
A. In particular, B is either a spectral operator in Dunford’s sense or an operator
with spectral singularities ([18]) and the ‘acc,ur'nulation points of the set of spectral
singularities belong to c(A). This is, in the essence, a result of H. Langer ([13], see
also [7]). ' ' g

In [8] a result of this type is proved without the assuming fundamental reducibili-
ty of A. Instead, an assumption on the a@cumulation points of the nonreal spectrum
of B is introduced in that article. '

If the difference of the resolvents of A and B is not of finite rank, it is not true,
in general, that B is definitizable over opén neighboﬁrhoods of the critical points of
A (see [9; proof of Proposition 3]). '

Assume now, in addition, that oo 1is a critical point of A. The aim of the present
paper is to give sufficient conditions for the operator B to be definitizable over an
. open neighbourhood of co. The main results are Theorems 3.6 and 3.10. We restrict
ourselvs to operators B which arise from A by perturbations belonging to a slightly
more general class than that of relatively compact perturbations. This class is stud-
ied in Section 2. Results of this type were proved in [5] but only for positive and
fundanientally reducible operators' A and definitizable perturbed operators B.

We shall admit that the selfadjoint operator A is definitizable only over a neigh-
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bourhood of co and, moreover, that A and B are selfadjoint with respect to different
Krein spaces with the same underlying linear space.

From the results of this article one can easily derive criteria for the operator B
to be definitizable over a neighbourhood of a finite critical point of A which is no
eigenvalue of A. In a subsequent paper Theorem 3.10 will be used for investigating

operators connected with perturbed wave equations.

1. NOTATIONS AND PRELIMINARIES

Throughout this paper (X, [-,-]) denotes a separable Krein space. All topological
notions are understood with respect to some Hilbert norm || - || on H such that [-,-]
is || - ||-continuous. Any two such norms are equivalent. For any subspace X of H,
the least upper hound (€ 00) of the dimensions of the subspaces K’ of K such that
(-,-]is positive (negative) definite on K'-is denoted by x4 (K) (resp. #_(K)).

~Let-Abea se}fadjo(i‘nt operator in the Krein space H. Then the spectrum o(A) of
Ajis symmetric with respect to R. We put 0o(A) := 0(4)\ Rand R(z;A) := (A—zI)~! -
for every z in the resolvent set p(A)ﬂ of A. By 0pnorm(A) we denote the sei of all
normal eigenvalues of A, i.e. the set of all eigenvalues A of A such that the root space
corresponding to'A is finite-dimensional and has an A-invariant closed complementary
subspacé Ny with X € p(A| Ny). A s called nonnegative if p(A) # @ and [Az,z] 20
holds for every z in the domain D(A) of A. 4 is called defi;zitiza_ble, if p(A) £ 0
and. there exists a polynomial p such that [p(A)z,z] >0 holds for all z €D(p(A)). If
A'is definitizable, 0¢(A) is contained in the set of the zeros of any polynomial p with
the‘ above-mentioned property. ’

Now we recall some definitions for a selfadjoint operator A in M (see {7]). Let A

be an open real interval. Assume that Ap N oo(A) = @ and that for every compact
subset g of Ay there exists an m > 1 such that

(1.1) sup { llmz|™ [|R(5,4)]| : Rez €8, 0< fImz|<e} < oo,

if ¢ is sufficiently small. Ag is said to be of positive (negative) type with respect
to A, if for every nonnegative f € C(R) with compact supp f C Ag the operator
f(A) (resp. —f(A)) (defined, on account of (1.1), by extension of the Riesz-Dunford-
-Taylor functional calculus; see e.g. [7]) is nonnegative. We say that the interval Ay
is of definite tyi)e with respect to A, if it is of positive or of negative type. For an
equivalent definition of the intervals of definite typc see [7; Remark 2.5].

In this paper we restrict our considerations, for convenience, to those selfadjoint

operators which satisfy the following condition:

(fo)  oo(A) has no more than a finite number of nonreal accumulation points.
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Obviously, all definitizable selfadjoint operators satisfy the condition (fo).

Let A be an open subset of R. Here and in the following R denotes the closure

of R in the complex sphere C.

DeriniTion 1.1 ([7; Definition 2.3 ]). A selfadjoint operator A in # satisfying
the condition (fo) is called definitizable over A, if the following holds:

(i) No point of A is an accumulation point of og(A).

(ii) For every closed subset & of A there exist m>1 and M > 0 such that
1Rz A<M + |21 {mz| =™

for all z in a neighbourhood of § (in €) with z # 0o and Imz # 0.

(iii) For every t € A\ {00} there exist open intervals of definite type of the form
(t',t) and (,t"),t' <t < t". If oo € A, then there exist intervals of definite type;of
_ the form (t’, 00) and (—o0,t"). '

A selfadjoint operator A is definitizable if and only if it is definitizable over R

and ao(A) consists of a finite number of poles of the resolvent of A.

For an arbitrary selfadjoint operator A in A satisfying the condition (fo), A(4)
denotes the union of all open subsets A éfﬁ such that A is definitizable over A. A
finite point ¢ € A(A) is called critical point of A, if there is no open interval of
definite type containingt. co € A(/i)*is\é‘eilled a critical point of A, if for every pair
of intervals (', 00) and (—00,t"”) of definite type one of the intervals is not of positive
and the other not of negative type. The set of critical points of A is denoted by c(A).
For the spectral function E(-; A) and its properties we refer to [7]. 'We mention only
that for every subinterval § of A(A) Who§e endpoints belong to A(A)\c(A4), E(6; A)
is defined and is a selfadjoint projection in the Krein space H. '

We shall say that an open interval A9 C A(A) is of type my(7_) if K_(E(6;
AYH) < oo (resp. k4 (E(6; AYH) < oo) for every compact subinterval § of Ao such
that E(8; A) is defined. By co(A) we denote the set of those critical points ¢ such
that there exists no open interval containing ¢ which is of type my or of type 7_. A
critical point ¢ is called regular if there exists. an open deleted neighbourhood-éy (in
A(A)) of t such that the set of the projection E(8), where 6 runs through all intervals
with § C &, is bounded. The set of all regular critical points of 4 is denoted by c.(A).
The elements of c¢s{A) :=c(A)\c.(A) are called singular critical points. ‘
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2. A RIGGING GENERATED BY A SELFADJOINT OPERATOR IN
A KREIN SPACE AND A CLASS OF PERTURBATIONS

2.1. Let A be a selfadjoint operator in H with p(A) # @. We set R(z) :=
:= R(z; A), z € p(A).

The following spaces were introduced in [10; §1]. We denote by ’H( y or, more
fully, by H(;;('A) the Hilbert space (D((A*A)%),(-,-)\')

(2. 0)$) = (I +A4"A) bz, (I + A A)%y), 2,y € D(A"A)%).

Here (-,-) is the scalar product corresponding to || - || (see Section 1.1). We set
||1:||(;_2_ = (z, )( )3 The completion of H with respect to the norm
1 ! :

llzll-g = sup {1z, 9]l : w1}, Il < 1}, zen,
is denoted by H_ or H_1(A). Evidently, the form [-,-] can be extended by continu-

ity to ’Hf;)l xH_yand toH_; X ’H( ) . The extended form is denoted in the same way.
2

*)

We have [z, y] = fv, z], :cE’H+%,y€’H___ The mapping ¢ : H_g Sz v+ g: € 'H+.,

defined by
[v.z] = (y,yz)+,, yG'H(ﬁ,

is an isometry of H_. onto 'H( ) :
It is easy to see tha.t for arbltrary 2z € C the operator A — 21 can be extended
by continuity to a continuous linear operator (A — zI)~ from ’Hg_i in H_y ({10).
R 2

Ifz € p(A), then (A — 2I)~ is an isomorphism of ’H( onto H_,. In this case we
2 2

have ((A — 2I)~)~! = R(z), where R(z) is the extension by continuity of R(z) to a
continuous linear operator of ’H__ onto 'H( )

2.2. In the case when A is deﬁmtlzaule over an open subset Ag ofR the spectral
projections of A are continuous in D(A) with respect to the graph norm. Therefore,

)

by interpolation, they map ’H( i continuously into itself. Hence the spectral function
E(-):= E(-;A) can be ext,ended by continuity to a set funct.lon E whose values are
projections in 7'(__. For any bounded real interval 6 such that E(&) is defined we
have E(§)H_y = E(5)H = E(6)’H
Ifbisa Borel subset of C symmetric with respect to R such that E(b) is defined,
then .
E(bYH() (4) = KO (AL E(DH), EGYH_3(A) = H_4(A| EG)H)

and, hence,
21) HL(4) = H(‘)(AIE(b)H ® H)(A](I - E(O)N),

M 5(A) = 1A E@®H) + H_y(A1( - EG))
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up 'to equivalence of norms.

2.3. If oo € A(A)\cs(A), it is convenient to choose the Hilbert scalar product
(-,") on H in a special way. In this case it is no restriction to assume that there

exists a 1o > 0 such that
(2.2) ‘ A =R\ (=to,t0) C A(A), . to,—to & c(A),

E([to, 00))is nonnegative and E((—oo, "tO;]) is either nonnegative or nonpositive. We
set ag = 1 (o = —1) if. E((<00, —to]) is nonnegative (resp. not nonnegative) and

set

(z,y) == aotE((—OO,"'tO])f,y] + [E([to, 00))z,y] +

(2.3) + (I - E(A))z, (I - E(A)y)e, =z, y€H,

where (-, )o is an arbitrary Hilbert scalar product on (I — E(A))H. Then setting
Ap = A|E(A)H we obtain

(@,9)%) = (441 + DFEQ)z, (1441 + D E(A)y) +

+ (I - E(A)a,(I= (Ao, =y EHY),

(2,9)-3 = (144 + D" FE(A)z, (A4 + )" FE(A)y) +
+ (I - B(A)e, (I =B()w)o-, =y€MN,

(2.4)

where (-, )o,+ and (-, - )o,— are certain Hilbert scalar products on (I—E(A))YH which
are equivalent to (-,-)¢. The operator '

(2.5) A=+ IAlezj)%E(A) + (I-E(4))
(*)

+4
phism 74 of H onto H_j.

is an isomorphism of X'} onto M and it can be extended by continuity to an isomor-

2.4. The operator A’. Let A be a s?lfadjoint operator in ‘H which is nonnegétive
over a neighbourhood of co: There exists a positive number 2o such that (2.2) holds
and A5 := A|E(A)H is nonnegative. We define a positive definite scalar product

. () |
(-,-)a on H+% by

(e = [AB(A)e,1] + (T~ E(@)e, (1= E@)), =y},

This scalar product is equivalent to (- , . )&’i Denoting by IA’AL|A the modulus of
' 2
the bounded selfadjoint operator A'Al in (E(A)'H(;)L, (-,-)a) we define
2

(@9 = (AL 1AE(Q)x, E(A)y)p + (I - E(A))z, (I - E(4))y), =.y€ Hiz
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One verifies without difficulty that

(l’,y)A = nl_l_'n;o[(E([to’ TL)) - E((—n1_t0]))$)y] +
+ (U - E(Q)z, (I~ E(A)y), =z,yeH]).

For any set A, with the same properties as 4, the scalar products (-,-)a and (-, ) a,
are equivalent on HE:_);_ The completion of ’H(;i
2 2

Ha. By [3; proof of Lemma 2.3] the form [-,-] restricted to ’Hﬂ:)l

2

by continuity to H 4 such that (H4,[-,]) is a Krein space. In the following H4 will

with respect to (-,-)a is denoted by

can be extended

denote this Krein space. According to [3; Theorem 2.5] the space H and H 4 coincide
if and only if o6 ¢ c5(A4). ‘

With the help of the rigging Hi} CHaCH.
inHa:

y we define now an operator A’

(26)  D(A):={z¢ ’HS:)% : Az € Ma), Az = Az, zeD(A).
It eésy to see that A’ is a selfadjoint operator in H4 and that
(2.7) p(4) C p(4).
We shall show in the following lemma that the operators A and A’ are closely

connected.

LEMMA 2.1. (i) o(A) = o(A).
(ii) R\ [—to,t0] C A(4).
(iii) If E' denotes the spectral function of A’, then

(2.8) (I - ER\(=s,s))H = (I - E'(R\ (-s,5)))Ha

for every real s > to. A and A’ coincide on the space (2.8).
(iv) H)(4) = H{L(4).
2 2
(v) oo ¢ cs(A').
Proof. Evidently, (I — E(A))H is a Krein space of H 4 contained in D(A’) such
that A'(I — E(A))H C (I - E(A))H and

(2.9) A|(I - E(A)H = A'|(I - E(A))H.

Let A € o(A). As (2.9) is also true for A replaced by closed set Ay # A with the same
properties, we get A € 6(A’). Hence o(A) C 6(A’). Then (2.7) gives the assertion (i).
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Denote by H4(4) the orthogonal complement of (I — E(A))H in Ha. Forz €
€ D(A’' |Ha(Q)), 1e. for z € E’(A)’H(*) ;such that Az € H4, we have

(2.10) [A'z,z] = [A:c z] > 0.

If A € p(Ap), then (A — AIJ maps E(A ’H(')l isomorphically onto E(AYH_, and,
A +3 b
therefore, A € p(A’ | H a(4)). It follows that :

@iy ¢ o(A' | HA(4)) C 7(An) C 4.

Then from (2.9), (2.11) and (2.10) we obtain the relation (ii).
By (2.11) we have 0 € p(A’|H4a(4)). Then on account of (2.10) (for z €
€ D(A’' | Ha(4))), 'HSX(A’ | H4(A)) coincides with the completion of D(A’ |H 4 (4))-
2
with respect to the norm z — [A’z, z]7. On the other hand D(A’ | H4(4)) is densein
E(A)’H( L with respect to the norm z — [Az, ]%. It follows that ’H&Q(A’ |Ha(Q)) =
+%(A | E(A)H) and, hence, that (iv) holds.
Let s > to. We set E, := (I — E(R\ (~s,s))) and E, := (I - E'(R\ (—s,5))).
We have E,H C D(A) C ') and EjHa C D(A') C H(*) Let z € H{') ) . Then
2
1 .
Eyz = — lim (27mi)~! / R(z; A)z dz, E, = — lim (2mi)~! / R(z; A')z dz
C‘m ' c’m

in H and M 4, respectively, where C,m,. m=1,2,..., denote certain curves in p(A) =
= p(A’) (see [15; proof of Theorem 3.1]). We have R(z; A)z = R(z; A)z € H( ) for
every z € p(A), and z — R(z; A)z is a continuous function on p(A) with values in
’H(*) This implies Fyz = Ez. : '
_Assume now that z € E;H = E,(E,H). Then there exists a u € 'H( 2 such that
z = Esu. It follows that z = = FElu, i.e. 2 € E{H 4. Similarly we obtain: E"’H C EsH.
Hence (2. 8) holds. By the definition of A’ the operators A and A’ coincide on the
space (2.8). :
It is easy to see that {-,-)a can be extended by continuity to H_y

to 'H( )1 x H_, and that (Az,y)a = (z, Ay)a for z,y € E(A)’HS:)L It follows that A’

1)
1 ‘XH+% and

1est‘.11cted to (Ha(4),(-,-)a) is selfadjoint. Hence co & cs(A’).

2.5. Let A given as in Section 2.1 and let R(z) := R(z; A), z € p(A). We set
£A) = LZ(’H(J:Z ,’){__) For an operé.toi W € £ the adjoint with respect to the
duality [-,-] is denoted by wt:

W,y = [e, Wy, a,yen().
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It is easy to see that this adjoint is compatible with the usual Krein space adjoint.
An operator V € £ s called [-, ] symmetric ([, -]-nonnegative) if Im[Vz, 2] = 0
(resp. [Vz,z]>0) for every x € 'H(

Let V € £(*) be compact. I‘lom the fact that (V' (see Section 2.1) is compact in

'H( it follows that V can be written in the form
2

(2.12) V=Y sil-6lfi, 1<vr<oo,
i=1
where s; > 0, lim s; = 0if v = 00, ¢;,f; € H_} such that [ce;,e;] = [ofi, fi] =
j—o00
= 6;;. The sum in (2.12) converges with respect to the norm of £, If, in addition,

V is [-,-]-symmetric, we have

(2.13) V=> sigl-.filf;  1<v<oo,
i=1

where s; and f; are as above and ¢; = £1.

2.6. Making use of the rigging 'H( )1 C M C H_, we introduce now a class of

perturbations of A. These perturbatlons could also be defined in terms of sesquilinear

forms. We use the notation of [12].

DEFINITION 2.2. Assume that the operator Z € £ can be written as a sum
Z=Z1+25, 2,2, G £ , such that the following holds:

(i) There exists a z € C such that (A=zIT+ Z; 1san 1somorp}nsm of ’H( i onto
H

N|=-

(ii) Z; is the extension by continuity of a bounded operator in H. Then the
restriction of A + Z to

D(ALZ) ~—{z€’H (A+2)s N}

regarded as an operator in H is denoted by AT Z.
Evidently, AL Z is a dense'l.y defined closed operator.

LEMMA 2.3. Let V € £(4) be compact. Then ALV is defined.
Assume, in addition, that p(A)ﬂp(A;*',V) # O andV € 6, for somep, 1 < p<oo.
Let z € p(A) N p(AL V). Then

(2.14) ' R(z) - R(z; ALV) € 6,.

Ifve s compact and [- ;-]-synlxnetric, then ALV is selfadjoint in the Krein

space K.
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Proof. Let z € p(A). Using the representation (2.12) of V' we see that there
exists a decomposition V = Zy + Z3, 21,23 € £ such that

(2.15) | HZ1||£(A)||R(Z)H,C(H_%,Hf;;) <l

and Zs is of finite rank and fulfils the condition (ii) of Definition 2.2. By (2.15) we

have

(A=zD)+ 27 = ([ + ZRENA-=0)7)7 =
= R(z) - R(2) Y _(-1Y " Y21 R(2))'.

i=1

(2.16)

Hence ALV is defined. : _
Assume now that p(A)Np(ALV) £ @ and z € p(A)Np(ALV). Since (A—zI)"+
+ V€ £ has a dense range in ’H_% and, on the other hand, its Fredholm index is

zero, it is an isomorphism of ?‘l(ji onto H‘_%. Then, by the relation
(A—zD)"+ V) WA—z2l) "L =(A-2D) " = (A= 2I)"+ V)7,

V € 6, implies (2.14).

To prove the last assertion assume that V is compact and [-,-]-symmetric, and
z € p(A). Then Z € p(A) and the norms of R(z) and R(%Z) in,\L(’H_%,'H(;;) co-
incide. ' Using (2.13) we find a decomposition of V as above such that Z; is [-,-]-
-symmetric. Then (2.15) is also true with z replaced by z and we find z,fe p(A_CtZl).

Mqreovgr,
(A= 2D+ 2) 'z, 2] = [z,(A-2D)"+ Z1)"'z), =z€ H_y.

Hence R(Z; A:'}Zl) is the 'Krein space adjoint of R(z;A;tZl). This implies that
AZ 7, is selfadjoint in H. Then ATV is'also selfadjoint.

.. REMARK 2.4. If A is nonnegative and V € L") is compact and [, - ]-nonnegati-
ve, then the selfadjoint operator ALV is nonnegative. Indeed, by the definition of
ALV we have [(A;t‘V)I‘, 2] 20 if £ € D(AZV). Then, on account of [14; Folgerung.
1.1] the range of (AL V) — zI is dense in H for every nonreal z. On the other hand
(A-z)"+Visa Fredholm operator of index 0. Consequently, c(ALXV) C R and

the operator ALV is nonnegative.

LEMMA 2.5. Assume that V € L) is compact. Let K be a Hilbert space, V) €

€L 'H(*z,/C , Vo € L(K,H_1) such that V = V,V], and let at least one of the
+3 2

operators V; and V, be compact. Assume that z € p(A). Then we have 2 € p(AL V)"
if and only if ‘

Q(z) =1+ le(Z)V2 K=K
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is invertibile. If this holds, then

(2.17) (A—=zIT+ V)™t = R(z) - R(2)VaQ 7 (2)V1 R(2).

Proof. Assume that z € p(A). If Q(z) is not invertible, then there exists an

z €K, z #0, such that z + Vi R(z)Voz = 0. Therefore,
Vo + V2V1R(Z)V2$ = V213v+ VR(Z)VQ], = {(A - ZIT+ V}R(Z)Vzl = 0.

Hence (A — zIJ+ V is no isomorphism of 'H(;l onto H_1 and, consequently, >z ¢

2

p(AL V). If Q(z) is invertible, then it is easy to see that the right hand side of (2.17)
is the inverse of (A — zIJ+ V. Thus z € p(AL V).

ReEMARK 2.6. Lemma 2.5 will be applied below in the following situation: As-
sume that (2.12) holds. Let, for finite v, ¢2 denote the Hilbert space C” and let £2,
be the Hilbert space £2. Define

Viiz — (31%[27,61],82%[13,62],...)‘: : 'H(;_Z_ — )

3 1
Vai(ar,a, .. ) — awsifitassifo+... 1 & —H_y.

- Then Vi and V; are compact and V = Vo V).

2.7. The following lemma shows that within a certain class of operators A,
which will play a role in Section 3, the rigging corresponding to A is preserved under

compact perturbations in LA,

LEMMA 2.7. Let A be a selfadjoint operator in M with co € A(A). Let V € £(*)
be compact and [-,-]-symmetric, and assume that oo € A(Aj',V). Assume, further,
that there exists a connected open subset A of R such that oo € A, 4 C A(A) N
NA(AZLV), the endpoints of A do not belong to c(A)U (AL V), and A| E(A; AYH
and ALV | E(A; ALV)H are nonnegative. Then ’Hf:i (4) = ’H(;)% (AL V).

Proof. The norms ||||(+*Z_ and z +— ([AE(Q; A)z,z] + ||z||*)7 are equivalent on
2

D(A). Then there exists an ag > 0 such that for every a2 ag
HEY(4) 32— ([Az, 2] + allzl)

is a norm equivalent to ||||(+'2 on ’H(:i(A) Now we write V as asum V = V| + V3,

Vi,Wh € E(A), where

2

1 - h *
Wiz, 2ll< 5(1Az, 2] + aolle?), 2 € WY (A),



A PROBLEM OF THE PERTURBATION 'I‘HEORY . " 193

and V> is the extensmn by. continuity of a bounded operat01 in 'H Then the norms
z+— ([(A+ W)z, 2]+ 010||:c||"’)2 and B || L are equ1valent on 'H( L

and,thele exists -
2 -

an al > aq such that foraza, -
@18) . .- %(‘2 (4) 32— ([(A+V)z,2] + a|'|z||2)%' i

is a norm eqmvalent to |- || on -'H('%(A) By deﬁmtlon ’D(A+V) is dense in
(A) Hence the closure of ’D(A+ V). with respect to (2. 18) is equal to 'H( )(A)
: Now oné proves as above that for sufﬁcnently large o the norm of 'H (A'*'V) is

equlvalent to (2 18) on ’D(A+V)

'2.8. Given A to and Aas in Section 2 4. Let A’ be the operator defined in Section
‘2.4. Then, evidently, C(A) = L(A) Let the [, -]-symmetric operator Ve L4 be )
compact. Then AL V and A’ A 'V are selfadjomt operators in H and Ha, respectlvely
In the sequel we shall need the followmg connectlons between ALV and At x V

LEMMa 2. 8 (2) I[G is an open subset ofp(A), then
"f(2.19) . Gneatv) = Gno(A""V)

IfA €Gis an isolated pomt ofa(A+ V) and £ (L)) is the root space. ofA+ V (resp
A’+V) conespondmg to a, then L) = C’ ’H(‘l and A+V and A’+V comc:de on
. e , : -

) IfA+V and ALV are defimtlzable over (—00, —tg) U (to, 00). and oo is no
,accumulatxon pomt ofao(A+V) (or, equ:valently, ofao(A’+V)) then Ce '

(2.20) (I—E(IR\(—s s); A+V)) = (I - E@\ (s, vs)'A'\'*;V))’H-A' ’

for every real s > tg. The operators A+V and ATV comc;de on the subspaces
(2.20). In particular, we have s(ALV) = o(A'TV). S :

(¢) If, in addition to the assumptjons of (b), one of the operators A+ Vor ATV
is definitizable over R\ [—to,to] then the other also has this property.

Proof. For every z € G the operator (A — 21} is an isomorphism of 'H( _2_ onto
H_y. The operators (A—zI)'+ V,z€ G are Fredholm operators of 1ndex 0. A point
z€G belongs to o(AZLV) if and only if (A — zI)'+ V is not one-to-one. The same

holds for (AL V) replaced by a(A’+V) Hence (2.19) is true. ‘
~ The proofs of the rest of assertion (a) and of assertion (b) are similar to the proof

‘of assertion (iii) of Lemma 2.1.

Let the assumptions of (b) be fulfilled. Assume that A’V is definitizable over
- R\[~to, to]. Then, in view of (a), 0o is no accumulation point of 6o(AL V). According



194 _ P. JONAS

to (b) there exists a t' > to, ', —t' ¢ (AL V), such that (—oco,—1') is of negative
type and (1, co) is of positive type with respect to ALV, Weset A =R\ (=t',1).
To prove that ATV is definitizable over R\ [—to, /o] it remains to show that

(2.21) E(A’A+V)H -\ Bl(-n, ~) U, m); AZVIH.
n>t!

Since E(4’; A\'*;V)D(Aj’,\/)' is dense in E(A"; A(ﬁV)'H and I)y (b)

lJ E((-n,-1) ( )A+VH U E((=n, =Y U (', n); ALV M, =: M,

n>t' n>t'

it 1s sufficient to prove that an arbitrary z € E(L\’;A;tV)’D(Aj}V) can be approxi-
mated in H by elements of M. We have

E(A5 AEV)D(ALY) = {v e D(AEV) - E(A’;A;*‘,V))ﬂ] - {01} c

c{yen?) - B A2V)H) = (0} = B(a; A EVIHE).
+3 ) . +3

By assumption every element of E(A’;A’:tV)’H( 2 can be approximated in H by
elements of M. This 1mplles (2 21). If ALV is (leﬁml,lzableA over R\ [~tq,10] an

analogous reasoning applies.

3. PRESERVATION OF THE DEFINITIZABILITY OVER A NEIGHBOURHOOD
OF oo UNDER PERTURBATIONS ' .

3.1. Let A be a selfadjoint operator definitizable over a neighbourhood of co
in the Krein space M. -Again we set R(-) := R(-;A) and E(-) := E(-;A).
what follows we consider operators of the form AXV with compact V € £, The
following proposition shows that every operator of this form has a nonempty resolvent

set.

PROPOSITION 3.1. Let A be a selfadjoint operator in ‘H definitizable over neigh-
bourhood of co. Let V & L4 be compact Then there ewsts an 79 >0 such that
ine p(ALV) for || =n0.

Proof. We use the notations introduced in (2.12) and Remark 2.6. On account

of Lemma. 2.5 it is sufficient to prove that

lim ViR(in)Va=0
nfTeoneR ()2
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with respect to the operator norm in £2. For in € p(A) we have

i : ) B
S(; si [R(in)fr.e1)  [R(in)f2, €]
2
ViR(in)V, = ) ' 0 [R(in)fl,ez] [R(iq)fz’ .
0 :
51% 0
0 sé

0
Since the two diagonal operators in this relation are compact, it 'is sufficient to prove
that the operator in the middle converges to 0 in the weak sense if [n]| T o0, € R,

or, equivalently,
(3.1) | lim [R(in) f, f] = 0
nToo
for every f € ’H_%. This holds if and only if
(32) lim[R(in) B(4co) f, E(4c) f] = 0

for some open neighbourhood A, of co'in R and every f € 'H_%.
If (E(As)H,{-,-]) is a Hilbert space and f € H_, then

[RGn) B(Aee)f, (A=) = [ (e + ¥ = i) d(E (D3, 2
i | ,

for some z € E(Ae)H (see the remark at the end of Section 2.3). Evidently, the
right hand side of this relation converges to 0 if [7| T co.

Assume now that (E(A)H,[+,-]) is a Krein space such that the restriction
of A to E(Ac)H is nonnegative. Let f € H_y and g := E~(Aoo)f We have
Im{z[R(2)g, 9]} = (OIm 2)[AR(z)g, R(z)g} 2 0 if Im z > 0. If we set r(2) := [R(2)g, 9],
z € p(A), then according to [11; §1.1]

lim r(in) = lim(in) " tinr(in) = lim ™ Im(inr(in)) = lim Re r(in).
nToo nToo A nTeo
A simple computation shows that

Re r(in) = [AR(i)g, R(i)g] + (1 — n*)[AR(in) R(i)g, R(in) R(1)g).
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By [10; Proposition 3.1] the right hand side of this relation converges to 0 if n T oo,

and the Proposition 3.1 is proved.

REMARK 3.2. Let A, V and 1o be as in Proposition 3.1. Then according to
(2.17) and to the fact that the operators R(in), |n| >mno, are uniformly bounded
there exists an g¢ > 0 such that for every compact W € £(4) with “W”C(A) < €&p we
have in € p(AL(V + W) for |n] > 1.

The following proposition is a consequence of Proposition 3.1 and a result from
[9]. '

PROPOSITION 3.3. Let A and V be as in Proposition 3.1. Assume, in addition,
that the quadratic form z — [(A 4 V)z,z] on ’HE:; is symmetric and has a finite
number of negative squares. Then ALV is definitizable and (0, 00) ((—o0,0)) is of
type my (resp. w_) with respect to ALV.

If A is nonnegative, 0 € p(A), and V € L4) is compact and [-,-)-symmetric, the

assumptions are fulfilled.

Proof. 1t is easy to see that there exists a [-,-]-symmetric Vg € L4 of finite
rank such that A + V + V; is [-,-]-nonnegative.. Then, by Proposition 3.1, po :=
= p(AL V)N p(AL(V 4+ V,)) # @. For z € py the operator .

(A-zI+ V) = (A= zIT+ V + Vp) !

is of finite rank. Hence the difference of the resolvents of ALV and AL(V + Vp) is of
finite rank. Since AZ(V + V) is nonnegative, it follows by [9; Theorem 1] that ALV
is definitizable and that the above statements on the type of (0, 00) and (—o0,0) are

true.

REMARK 3.4. Making use of this proposition the results of [5] concerning the
preservation of definitizability can be extended to the case when the unperturbed

operator is.not fundamentally reducible.

3.2. The following lemma will be needed in the proofs of our main results in
Section 3.3.
For a closed operator B in H such that it € p(B) for every real t with o< |t] <

< 00, where 779 is some positive number, we set

—ino in
T(no,n; B) := —(27ri)'1(/ R(z; B)dz +/R(z;B)dz,
: -in ino

n € (no,00). If the strong limit s-liTm T(mo, n; B) exists, it is denoted by T'(no; B). If
ntoo
B is selfadjoint in M, then the operators T'(no,n; B) and T(10; B) are also selfadjoint.
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The operators T'(rno; B) were first used by K. Veseli¢ in the study of nonnegative

operators in Krein spaces ([21], see also [6], [5]).

LEMMA 3.5. Let A be a selfadjoint operator in 'H definitizable over a neighbour-
hood of oo such that oo ¢ c¢,(A). Let V' € L) be compact. Then for sufficiently
large 1o > 0 the strong limit - ‘

s- lim T (30, m; AL V)
nfoo.

exists. T(r;o;A;*',V) depends continuously on V with respect to the norm topologies
and we have

(3.3) T(110; ALV) = T(1o; A) € Goo.

If, in addition, V belongs to &,, p € [1, ‘o‘o), then

(3.4) T(0; ALV) = T(no; A) € &,.

Proof. 1. Let ty be a real number, to > 1, such that A is definitizable over a
neighbourhood (in R) of A := R\ (~tg, 1), and to, —to & c(A). We assume that
E([to, o0)) is nonnegative and E((—o00,~1]) is either nonnegative or nonpositive.
This is no restriction. We choose the Hilbert scalar product (-,-) on H as in (2.3)
and define A 4 := A| E(A)YH. By Proposition 3.1 there exists an 79 > 0 such that

(3.5) {it : teR, |t =m0} Cp(A)Np(ALV).
- We use the notations introduced in (2.4), (2.12), Lemma 2.5 and Remark 2.6. By

Lemma 2.5 and Proposition 3.1 the function @' is bounded on {it : t € R, |t|> 7).
Let 5o <n<n' and let z and y be arbitrary elements of . Then according to (2.17)

| [{ 0w, a2 v)-
—~T (10,75 A) — ( (7,0,;,,4\-1-/1/) _ T(’?o,T};A)) }l',y] I _
[ [{rosatv) - R} ] ad -

(=n",=m)u(nm’)

= (27[')_1

= (QW)‘I‘ / : [‘VzQ‘l(iu)V]R(i/t)w,R(~iu)y] dp| <
(=n",=mu(n.n") '
3.6 ]
( ) <M R(i1): (%) R(—i (")d <
. < RG2S A=)l ) de <

(=n"\=mu(n,n")

<M( [ irGwa )

(=n",—mu(n,n")
: 1

( / IRl ) ,

(=n",=n)u(mn'y
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where M is a constant. Further, we have

1

1RGN = [ (102 +1) " (1P +2) " d( Bz, 2) +

. A
(3.7 +[[ (1~ B) Riws| :’+ <
gz/ 1 (161 + 2) _1d(E(t)z,§:) + ” (1- B(a)) R(ip):l:” z+
A
Hence
IRzl Y dp <
(3.8) (=", =mu(n.n")
< 4/ ( arctan 7)'|[¢t| ™! — arctan 7)|t|_1) d(E(t):c, :c) + M’ / ||~ 2dp,
A (n.n")

where the constant M’ does not depend on 7, 3’ and z, if  belongs to a fixed bounded
set. It follows that for fixed z the left hand side of (3.8) converges to 0 if 7 T co and

7' 1 oo.
A relation similar to (3.8) shows that there exits an M" < oo such that

IR(=im)yl ) du < "
(=n",=mu(n.n’)
for all y € H with |y| <1 and all real numbers 7, 5’ with o <n<n’. Therefore,
on account of (3.6), T(no, n; ALV) — T(1o, n; A) converges strongly if n 1 co. Since

by the assumptions on A, T(n,n; A) converges in the strong sense, the strong limit

s-lim T'(no, n; AL V) exists.
nToo

2. Now we are going to prove the continuity statement. Let (V) be a sequence
of compact operators in £ converging to Vo, := V with respect to the operator

norm. We may assume that

{it : teR, [t|=n]}C p(A;tV;,), n=12,...,00
(see Remark 3.2). Let d be a positive number such that
(3.9) sup { “R(lt)lﬁ”ﬂf; rz €M, 2l <1, |22 770} <d.
By the compactness of V,, there exists a compact Vy € £4) with

Vol pear < d™*
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such that Voo = Vo + Vo', where Vo' is an operator of finite rank in H. Then the
scquence of the operators Vg , := V,, =W/, n = 1,2,. .., converges to Vg o = Vo. We

may assume that

sup{]|\/0',,||£(,\) ‘n= 1,2,...} < d"‘i
Then according to (3.9) it follows that | '

{it : 1R, |t|‘e [0,0)} C p(AE Vo), n= 1200
Moreover, we ‘have |

|[{7 00,1 A2 Va) = T(ro,mi AL Vio) 2,0 | = (2m) 7

/ [ i(— D { (Vo RG)Y = (Voo R()Y } 2, R(=in)y] du

i=1

)

(=n,~n0)Y(n0,n)
n=12,... .

i’hen analogously to part 1 of the proof ((3.7) and.the following considerations) it
1 .
follows that '

(3.10) lim TAEVon —TAI Vool = 0

uniformly for 7 € [1o, 00). Similarly we obtain .

(3.11) Jim (|R(is; ALVo,0) = Rips; AL Vo,e0)l| = 0
uniformly for g € [, 00) and | |

(3.12) R(ip; AZVo ) =01 kl™h), il —oo,n=1,2,...,00,

uniformly with respect ton=1,2,...,00.
It easy to see that for every pu € R with ||1tl] = no we have
(3.13) R(ip; AL V,) = R(ip; AT Vo) — R(ip; AL Vo ) Vo' x
' x(I + R(ip; AL Vo WV ) IR(p; AV, ), n=1,2,...,00.
Hence ! .
T (o, m; AL Vo) = T(mo, 1; ALV,) =
= T(n0, 1 AL Vo,e0) = T(mo, 1y AL VO )+
+(2r)"t / R(ip; AC_*'/V(],CO}

(3.14) : ("I,;—ﬂo)U(r’o'q)
'VO’(I + R(ill; A\tvovm)VOI)—lR(ilt; AltVo,oo)du—

—(2mi)~1 / R(ip; AV, )

(=n",=mu(n.n")

Vo'(T + R(ips; ALV 2) V')~ R(ip; AL Vo 0 )dps.
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Then (3.10), (3.11) and (3.12) yield
lim | T(n0, 1 AL Veo) = T(no, 15 ALV = 0

uniformly for n € [ng, 00). Therefore T(no;A(';V) depends continuously on V' with

respect to the norm topologies.
Let (W,) be a sequence of operators of finite rank in H which converges to V in

£, Then"
Jim [T (50; A + Wa) = T(n0; A) = (T(n0; AZV) = T(mo; A))|| = 0.

Since by (3.13) and (3.12) (with Vo, = 0, Vo' = W,) we have T'(no; A + W,) —

—T(no; A) € S for every n, it follows that (3.3) holds
3. Assume now that V € &;. We shall prove that T\(10; ALV ) — T(no; A) € &,

For every n > no we have
IT(n0, n; AZV) — T(no, n; A)llg, <

Mo IRGe)Vallg, IViR(ip)ll g, dpe < Mo

(=n,=n0)U(n0,n)

( / IIR(i#)V2l|262d/l)

1

2

( / .IIV1R(iu)H'262dM),

S(=n,~n0)Y(n0,7)

Nl=

(3.15)

(=n,~10)Y(n0,n)
where My does not depend on 7. Here ||- ||62 denotes the Hilbert-Schmidt norm

operators in G3(£2,H) or G5(H,£2). To prove that the right hand side of (3.15) is
uniformly bounded for 5 € 19, 00) it is sufficient to prove that the integrals

IB(A) Rin)Valls, d

(=n,=n0)V(n0,n)
and

(3.16)
IViR(in)E(4)|l5s, du
~(=n,~10)U(n0,7)
are uniformly bounded for n € [, 00). We have
IE(Q)R(im)Vall, = IIE(A)R(m)V2(E(D) R V) g, <
< Y S IE(@)RG) f11?

i=1

and
IViRGm)E(Q)IG, = IViR(u)E(Q))* Vi R(p)E(Q)|lg, <
<

2 si| E(A) R(~ip)e; ||2.
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We define two bounded subsets {z;} and {y; } of E(A)H of cardinality v by E'(A)e,
= rAz_, and E(A)f; = ‘rAy, (see (2. 5)) In view of (2.4) we have

IIE(A)R(m)f;II’ = Ry lI)
and
NE@R(=im)ej I = I1R(=i)=; I}
As in part 1 of the proof we see that the integrals

IR o [ i

(—u.—oo)U(no.n) . : (-n.-no)U(no.n)

" are uniformly bounded for n € [no, oo) Smce by assumption Z 8; < 00, the integrals

(3.16) are uniformly bounded for 5 € [no, o). Then it follows l'rom part 1 of the proof
and [20; Theorem 2.7} that

T(no; ALV) = T(ny; A) € 61

' -,

4. Assume now that V € &, for some p € [1,00). We write V in the form

V E":l c:lf:»

j=1

where s;, ¢;, f; are as in (2.12). We have Zs’ < oo. ~Choose now §; € (0 l), i=
)-l

=1,...,v, such that hm6 _0|fu._oo and Zs’& P <oo(see (19; Lemma
i=1
1.7.4]). We deﬁne a continuous function V on the closure G- (in C) of G := {z 0<

< Re z < p} wnth values in £(4) by
V(z) = Z(%‘f‘)’f'%[w%lfj, z€G,

where (s; 6")"‘ = exp{(p— z) logo(s;%; l)} and logo denotes the principal value of
“the loganthm The values of V are compact Set :

§; = max{(s, ; l)' :tefo,p]}.

. In this part of the pl'oof we additionally assume on 1)0 that

S 1
@iy sup{“VlR(lt)Vz"p_.p tER|t|>qo} <3
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where V| and Vj are defined as V) and V; in Remark 2.6 with s; replaced by s;-. Then
it follows by Lemma 2.5 that

{it : tER,|t] 2o} C p(A)Np(AZV(2))

forall z € G.
We consider the operator functions F,, 1 € [19,00), on G defined by

Fy(2) = T(no,m; ALV(2)) = T(no,m; A), z€T.

According to pal't 2 of this proof the functions £}, are continuous on G. The function
Vis holomorphic on G. Then one verifies without difficulty, making use of Lemma
2.5, that z = R(it; AZV(2)) is holomorphic in G for every fixed t € R with |t] > no.
As a consequence the functions F,, 17'. € [770,0?), are holomorphic in G.

By part 2 of this proof the values of F, are compact operators. We have
Fy(p=1) = T(no, 1 ALV) = T(no, m; 4), n€ [;10,00)~
From (3.17), Lemma 2.5 and part ‘1 of this proof we éénclude that
sup {[|Fy @+l + v ER1E [10,00)} <oo.
" According to part 3 of the proof we have
sup{||F(i)ll, : v € R, 7 € [70,00)} < o0.

Tﬁen .on account of [4; Theorem 13.1] it follows that the oéerabrs

T(n0,m; ALV) = T(no, 3 A)
are uriiforml& bounded in &,. Theﬁ'[Q(.J; Theorem 2.7] gives |

T(no; ALV) = T(10; A) € G,

which proves the lemma.

3.3. Now we present our main results. Let H' = (M, [+, -]") and ' = H,[-,-1)
be Krein spaces with the same underlying linear space H. Assume that there exists
a scalar product (-, ) on M such that (M,(-,-)) is a separable Hilbert space and
[-,-] and [-,-]" are continuous with respect to (-,-). We define bounded selfadjoint
operators G* and G” in (H,(-,-)) by

(G'z;y) = [o,9), (GC'z,y) = [2,4)", =zyeH.
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THEOREM 3.6. Let Abea selfadjomt operator in H' such. that ao(A)\o'plnorm(A)
is empty or finite, ‘A is definitizable over A := (12,00)U {c0} U(—00,1,), where t; and’
t3 are.two real points belonging to p(A), t1 < t,, and (t2,00) ((=00,t1)) is of type Ty
(resp. 7_). Let V € L) be compact and let ALV be symmetric in M.

Assume that one of the following conditions is fulfilled:

(1) G’ — G" is compact-and oo ¢cs(f4)

(11) G'=G" and V is -, ]-symmetric.

"“Then ALV is a se]fadjomt operator in H" deﬁmtlzable over A and (t2,00)
((—00,%1)) is of type my (resp. w_) with respect to, A+V Moreover, if (i), holds,
then oo ¢ cs(A+ V). If (i) holds then ool € ¢s(A) if and onIy ifoo € cs(A+V)

Proof. Let first condltlon (i) be fulfilled. We assume that ¢, < 0 < t, and
t,t2 € p(4) ﬂp(A+ V) This is no restriction. Let O be a bounded simply connected |
C°° domaln of C symmetrlc w1th respect to R such that the followmg holds:

(a) ONR = (t1,t2). OmR {1t : te (=70, 70)}, where 1g is as in Proposition

(ﬁ) a(A) \ A c 0

(-y) C:= 60 is contamed in p(A'*'V)

(6) The sets 01 = .{z Rez < 0}\0 a.nd O; = {z Rez > O}\O are connected.

We prov1de the curves C cn {z Re z2<0} and Cr =CN {z : Re z> 0} with
the orientation induced by C. By the functlonal calculus of A the operators

Bi(A) := T(no; A) + (2#i)"! / R(); A)d) + 51,
. C, : . .
. . . : 1
(3.18) - P,(A? = —=T(no; A) + (2_7{‘1)"l / R(X; A)dX + EI’
: o C.
Py(A) := —(21ri)‘1/R(/\;A)dA
zi're3pairZWisé"comrrilit',iri'g projection and we have
P(A)P(A) = R(A)Py(A) = P(A)Py(A) =0
and :
P(A) + P(A) + Py(A) = 1.

We now choose an € > 0 such that for any compact V' € £4) with -
_V“l:(") SEO) , ‘
it : 1t]2m}UCC p(ALV)

(see Remark 3.2). For every such operator V' (including V' = V) we define the
operators A(AXV'), P(AZV"), Po(AZ V) as:'in (3.18). Let ng be an integer, ng >
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> max(- | t | |t2 l), such that the intervals ( 00, —-no) and (no, o0) are of deﬁmte type
with respect to A:

Assume now that some operator V' with the properties mentioned above has the
form

k
—Zs,-'[-,e,-']fj', where
j=1

(3.19) |
€; ,f, GU{(I ER\ (=n,n); A)H : neN,n>ne}, j=1,2,...,k.

Then there exists an n, € N, n; > ng, such that the decomposition
H=E,H+(I-Ey)H, E, := ER\ (-ny,m); 4),

reduces A+V’ and the operator A and A4V’ coincide on E,, M. A+V'|(I-Ea,)H is
bounded. This implies that R(A+V’), P.(A+V’) and Po(A+V’) have the properties
of the operators P(A), P.(A) and Py(A) mentioned above. ‘

By the compactness of V there exists a sequence (Vi) of operators of the form
(3.19) whioh converges to V in LA, Let ||V, - .V”l:(A) <eo for all n. For brevity
we set B := AZV. Then according to Lemma 3.5 the operators P(A+ V), P(A+
+V’) Po(A+ V’) converge to B(B), P;(B), Po(B), respectively, with respect to the "
operator norm. Hence the latter operators are also pairwise commuting prOJectlons
satisfying the relations .

R(B)P.(B) = A(B)Po(B) = P(B)Po(B) =

and
P\(B) + P(B)+ Po(B) = I.

The operators (3.18) are selfadjoint in 7{' Since B is symmetric in H’ and p(B)N
NR # O it follows that B and the pro_lectlons P(B), P{B) andPy(B) are selfadjoint
in M. By Lemma 35

(320)  AB-AWes.
and
321)  P(B)=P(A) € 6u.

According to our assumptions we have

(3.22) ky(A(AH') < 00
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and

(3.23) n_(P,(A)?{’) < 00.

Then, on account of [7; Theorem 3.1, (3.20) and (3.22) imply
(3:24) k+(PA(BYH") < oo,

and (3:21) and (3.23) imply

(3.25) | k- (P(BYH") < o0.

We set B := B| P(BYH", By := B| Py(B)H" and By := B| Po(B)H". According to
(3.20), (2.14) and to the relation o(A| A(AYH') C (—o0,t1) we have

(326) U(Bl) \ Up,normtBl) C (—OO,tl).

We claim that
(3.27) o(B) C O

Indeed, suppose that A € o(B)) N (O U O;). Then by (3.26) there exists an ¢ €
€ P(B)H", z # 0, such that Bx = Az. From this relation we find A(B)z = 0, a

contradiction. Hence (3.27) is true. Similarly,

(3.28) o(B;) C O

Furthermore, we have

(3.29) a(BY) CO.

By and B, are selfadjoint operators in the Pontrjagin spaces P((B)H" and P.(B)YH",
respectively. Let E) and E, denote the spectral functions of B, and B, respectively,
and let B’ be the Boolean algebra of Borel sets b C R with the property

abN (O U c(B) U c(Br) Uoo(Bi)Uao(Br) U{oo}) = 0.
Then the mapping E’ defined by
E'(b) := E\(b)P(B) + E.(b)P.(B) + €Po(B),

where e = 0if ONb = @ and € = 1 if O C b, which is a homomorphism of B’
into a Boolean algebra of projections of M, fulfils the conditions of [7; Theorem 2.6].
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As a consequence E’ coincides with the spectral function £(-; B) of B restricted to
%B’. Then the assertions of the theorem in the case when (i) holds follow easily from
(3.24), (3.25), (3.27) - (3.29)) and well-known properties of Ey and E,.

Assume now that (ii) holds and that oo € cs(A). Set H' = H"” =: H. Then by
Section 2.4 and Lemma 2.1 the operator A’ in H 4 (see (2.7)) and the operator V €
€ £ fulfil the assumptions of Theorem 3.6 with condition (i). Hence the statements
of Theorem 3.6 are true for ALV replaced by A’ZV. Then, on account of Lemma
" 2.8, they are also true for ATV,

Suppose that co ¢ ¢s(AX V). Then Lemma 2.7 and this proof yield co ¢ cs(A),
a contradiction. Theorem 3.6 is proved.

REMARK 3.7. Under the conditions (ii) Theorem 3.6 can also be proved similarly
to Theorem 3 in [5].

REMARK 3.8. Let the assumptions of Theorem 3.6 be fulfilled with oo ¢ ¢(A)
and let V' € &, for some p € [l,00) U {00} 1f 1} € (—00,1)), ty € (ta,00), 1},
th € p(A) N p(AL V), then

E((—Ooitll)! :4iV) - E((—OO, I'll)r A) € Gpr
E((ty, 00); ALV) — E((th, 0); A) € 6.
This is a consequence of Lemma 3.5.

REMARK 3.9. If A and V are as in Theorem 3.6 and oo does not belong to ¢s(A4),
then the operator i(AL V) is the infinitesimal generator of a strongly continuous group

of unitary operators in the Krein space H".

. Now we replace the requirement t,, t, € p(A) by the weaker condition ¢y, {2 ¢
4 rro(A:_*',V). We remark that in the perturbation theory of differential operators this
condition is a natural one. At the same time the compactness of V is replaced by the

stronger condition V € G,, 1< p < co.

THEOREM 3.10. Let A be a selfadjoint operator in H' such that oo(A)\op norm(A)
is empty or finite, A is definitizable over A := (1,00)U {00} U(—cc, 1)), where t; and
1, are two real points, 1) < ts, and the interval (1, 00) ((—o0,11)) is of type 7. (resp.
n_). Let V € L) belong to &, for some p € [1,00) and let ALV be symmetric in
H'". Assume that 1, and 1, are no accumulation points of (ro(Ai.V) and that one of
the following conditions is fulfilled:

(i) G'—G" € 6, and oo ¢ ¢5(A).

(i) G'=G" and V is [-,-}-symmetric.

Then ALV is aselfadjoint operator in M definitizable over A and the interval (t2, 00)
((=00,1,)) is of type my (resp. . ) with respect to ALV,
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Moreover, if (i) holds, then oo ¢ cs(A+V) If (il) holds, then we have co € cs(A)
if and only if oo € cs(ALV).

Proof. 1. Suppose that Theorem 3.10 is already proved under the condition (i).
Then a reasoning similar to that at the end of the proof of Theorem 3.6 shows that
Theorem 3.10 is also true under the condition (ii).

We now assume that the condition (i) is fulfilled. We set again B := ALV. By
Proposition 3.1 there exists an 7 > 0 :sucjh that

{it : It] € [no,00)} C p(A) N p(B).

Then the symmetry of B in H” implies the selfadjointness of B in H". According
to the assumptions on A and Lemma 3.5 the operators T4 := T(no; A) and T :=
:= T(no; B) exist. They are selfadjoint in H' and H", respectively. In what follows
we assume that

i, —1€ p(A) N p(B).

This is no restriction.

Let Arc tan ~denote the principal branch of the arc tangent function, which maps
C\{iy : vy € R,|y|>1)} conformally ont,o {z : |Rez| < #/2} (see e.g. [17; 2,
§5]). We denote the mapping z — —(1/7)Arc tan(n; 'z) defined on C\ {iy : 'y €
€R, |y| 2 no} by ¢. Then making useofz% functional calculus for selfadjoint operators
in Krein spaces which are definitizable over open subsets of R (see [7; Section 2.2])

we may write

(3.30) p(A) =Ta

- Let Ko denote a compact subset of € which is symmetric with respect to R such

that the following holds:

(a) {z€C : Rez>0}\Kgand {z€C : Rez < 0}\ Ko are simply connected
domains, {it : || E [10,0)} N Ko =0, —i, i¢ Ko.

(b) R\ Ko =

(c) o(A) CRU Ko ;
Then by Lemma 2.3, o(B) \ (RU Ixo) C 0pnorm(B). By (3.30) we have o(T4) C
C ¢(RU Ky). Since according to Lemma 3.5, T — T € G, it follows that o(Ts) \
\PRURe) C 75 norm(T5). ‘

We claim that

(3.31) e(oe(B) \ (RU Ko)) = o(Tp) \ p(RU Ko).
Evidently, by the spectral mapping theorem we have

¢(a(B) \ (RU Ko)) = o(Ts) \ p(RU Ko).
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To prove the opposite inclusion we first observe that the operator I/ ca'n' he djrrroni-
mated in £{4) by operators V' of finite rank of the form (3.19). By the continuity
of the mapping W ~— T(10; AZW) on some neighbourhood of V (see Lemma 3.5)
and the upper semicontinuity of the spectrum with respect to the operator norm it
is sufficient to prove (3.31) for V replaced by an operator V' of the form (3.19} such
that {it : [t]| € [no,00)} C p(A + V’). In this case there exists an n; € N such that

the decomposition :
H=E,H+(I—-En)H, En :=ER\(=ny,n;);A),

reduces A+ V' and the operators A and A+ V"’ coincide on E.H. A+V'|(I-E.)H

is bounded. Hence
(A +V'[(I = En,YH) = T(no; A+ V') (I = En, )

in the sense of the Riesz-Dunford functional calculus. Then the spectral mapping
theorem implies (3.31) for V replaced by V', and (3.31) is proved.

Assign € > 0. Then by assumptions and the relation (3.31) there exist points
t} € (t1 —€,t)) and t§ € (12,12 + €) such that ¢(1]) and ¢(t5) are no accumulation
points of oo(Tg). Then it follows from [8] that the bounded operator Tp is defini-
tizable over (p(t}),00) U (=00, p(t5)). As a consequence of (3.31) and since € was
arbitrary, A contains no accumulation points of og(B). Hence, again by [8], B is
definitizable over (—o0,t,) U (f3,00), and the interval (t3,00) ((—0o0,t})) is of type
74 (resp. w_). Moreover, there exists an My > 0 with =My < 13,12 < Aly such
that p((—o0, —Mpy)) is of negative type and ¢((Mo, 00)) is of positive type with re-
spect to Ts. Let 8 C (Mp, 00) be a compact interval whose endpoints are no critical
points of B. Then TgE(6y; BYH” C E(bo; B)YH" and o(Ts | E(80; BYH") C ©(b¢).
On the other hand, from the general properties of the spectral functions of self-
adjoint operators definitizable over open subsets of R ({7; Theorem 2.6]) it follows
that E(p(60); Te)H" is a spectral maximal space (see [2; Definition 1.3.1]) with re-
spect to Tg. Thus E(8; BYH” C E(p(60); Te)H" and E(8y; B) is nonnegative. If
8o C (—00, — M), then a similar reasoning gives that E(q; B) is nonpositive.

2. Set A’ := R\ [-Mp — 1,mo + 1] and suppose that

2

E(&; BYH" = \[{B((~=m, =My ~ 1)U (Mo + 1, m); BYH" :

.32
(3:32) :meN, |m| > M;+1}.

This relation implies that B | E{A’; B)YH" is nonnegative. Then T | E(4’; BYH" is

also nonnegative and it follows as in [6; proof of Theorem 1.1] that the projections

E(8; B), where 6 runs through all compact intervals contained in 4’, are uniformly
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bounded, i.e. 0o & cs(B). Therefore, to complete the proof it is sufficient to verify
the relation (3.32). :

Suppose that (3.32) does not hold. Then the [-,-]"-orthogonal complement of
the right hand side of (3.32) in E(4/; B)’H“ is a nontrivial closed subspace Ho, of
E(4'; BYH" which is invariant with respect to the resolvent and the Cayley transform
Y(B),¥(z) := ;(z —1i)(z+1)"1, such t,l"xa,t:j

(3.33) o($(B) | Hoo) C {—1}.

We claim that for every = € Hoo the function z — (R(z; B)z, z) is an entire function

of finite order, i.e. there exist positive numbers m and M such that
max{ | (R(z; B)z,z) : |z| =r}<Me™", r30.

Since there exists an N > 0 such that

~

| R@Gwa) | <N|1= ¢l

for all ¢ € T in a neighbourhood of —1, and the difference ¥(B) — ¥(A) belongs to
S,, there exist Ny > 0 and N3 > 0 such that '

(3.34) | R(G;¥(B)) | < NIGXP{N2|1“ 'Cl}_p_ }

for all ¢ ¢ T in a neighbourhood of —1 (see [2; proof of Theorem 5.5.2], [7; proof of
Theorem 3.6]).

For an albltrary z € Ho we consider'now the linear functional T,

T(f) := (I + 2R(1; $(B)) | Hoo )2, ),

which on account of (3.33) is defined for all functioris f locally holomorphic at 0.
Making use of (3. 34) one verifies without difficulty that there exist positive numbers
N{ and Nj such that

(3.35) - IT(f:) | S N{exp{Nj|Imz| ™7}, [Imz| #0,

where f,(A) := (A — z)~1. On account of [1; Theorems 1.4, 1.2, 1.1] it follows from
(3.35) that there exist complex numbers-on, n =0,1,..., satisfying the relations
(3.36) lan | S cL™M(n)~ ' =CpD™" = 0,1,

with some ¢ > 0 and L > 0 independent of n, such that T" can be written in the form

T(f) = ¥ anfC(0)
n=0
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for any function f locally holomorphic at 0. Set g,(A) := (A7! — 2)~1, z # co. Then
using the definition of T we find

(3.37). (R(z; B)z,z) =T(g.) = 2~} Z a,n!z".

Now by a well-known result on the order of entire functions (see [16; I, §2, Lehrsatz
2]) it follows from (3.36) and (3.37) that z ~— (R(z; B)z,z) is an entire function of
finite order.

For arbitrary z € Ho, the function z +— (R(z; B)z, z) is bounded on any set of
the form

M, :={z :argz€le,m—e]U[-7+¢,—€]}, ¢€€(0, —72[)

This follows from (2.17) and the fact that Vi R(z)Vs, z € M., converges to 0 if
[Imz] T oo, which can be shown as in the proof of Proposition 3.1. On account
of the Phragmen-Lindelof theorem the functions z — (R(z; B)z,z), ¢ € Hy, are
bounded and, hence, equal to constants, It follows that Ho, = {0}, which contradicts

our assumption. This proves Theorem 3.10.

REMARK 3.11. If A and V are as in Theorem 3.10 and oo ¢ c¢s(A), then the
operator i(A:f,V) is the infinitesimal generator of a strongly continuous group of

unitary operatots in the Krein space H".
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