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TYPE III FACTOR STATES ON O, WHICH EXTEND THE
TRACE ON CHOI'S ALGEBRA

JOHN S. SPIELBERG

INTRODUCTION

A fundamental fact in the theory of C*-algebras is that the restriction map from
the state space of a C*-algebra té the state space of a C*-subalgebra is surjective
(where for simplicity we assume that the two algebras share the unit element). Re-
cently it has been pfoved in the separable case that the same is true if we write “factor
state space” instead of “state space” in the above. A natural endeavor, then, is to
investigate the richness of the preiimage of a fixed factor state of the subalgebra (see
[2] for a more general discussion of this problem). A very beautiful example is that of
Choi’s algebra, viewed as a subalgebra of the Cuntz algebra O3 ([3], [9]). There is a
unique tracial state on Choi’s algebra, which is a type II; factor state. Evans showed
that a type III 3 factor state of Oy can be constructed by using the crossed-product
decomposition of Oz, and Lance showed that this state extends the tracial state of
. Choi’s algebra (see [2], Section 4). In [9], pure states of O, are constructed which
extend the trace on Choi’s algebra. In this paper we construct, for each A € [0,1], a
type III, factor state of Oz which extends the trace on Choi’s algebra. In the case
A = 0 our construction yields uncountably many non-isomorphic factors.

Our method extends the method of Evans and Lance. The case A = % can be
obtained easily by starting with the trace on a UHF algebra, and constructing the
crossed broduct of a type Il factor by an automorphism scaling the trace by %
However for general A we must start with a general product state on a UHF algebra,
and hence analyze the crossed :product of a type III factor by an automorphism. The
analysis in this case is considerably more-difficult.. '

The paper is divided into three Eections. In Section 1 we present the construction
of the states on O, which are the basic objects of study. In Section 2 we show
that the states so obtained extend the tracial state of Choi’s algebra. The proof is



216 JOHN S. SPIELBERG

combinatorial. It relies on the computation of the zeroeth “Fourier” coefficient in O2
of certain elements in Choi’s algebra. In Section 3 we show that the basic construction
yields type III, factor states on O2. We rely heavily on the structure theory of factors
due to Connes and Takesaki, et. al. .

As Section 3 is much longer then Sections 1 and 2, we briefly outline its contents
here. It begins with an infinite tensor product factor constructed from what we call a
weight sequence (which is equivalent to the eigenvalue list of [1]). We then show that
two weight sequences which are closé in an appropriate sense give equivalent results.
We use this to give a sufficient condition on a weight sequence for the shift on the
factors of the infinite tensor product to extend to an automorphism of the factor,
i.e. for the weight to be quasi-invariant under the automorphism. This allows us to
work exclusively with the von Neumann algebras, rather than with the C*-algebra
O;. Restricting to the non-type I case, we prove that the automorphism is outer,
and from this that the crossed product is always a type III factor. The heart of the
section is in Propositions 3:21 and 3.23, where we compute the modular spectrum
and modular period of the crossed product from the same invariants for the original
infinite tensor product factor. The key tool is a certain central sequence with a very
strong property relative to the shift automorphism (Lemma 3.16).

We remark that in Section 3 of this paper we work only with weights on the
underlying AF-algebra which are quasi-invariant under the shift automorphism. We
have a paper in preparation, in which we study the factors obtained from non-quasi-
-invariant weights on the AF-algebra. In this case, which is easier than the quasi-
-invariant case, our results provide examples of type Il factor states of O which
extend the trace on the Choi’s algebra, as well as other examples of type III factor
state extensions. These, together with the results of the present paper, solve the
problem posed in the introduction of [9].

We mention that for A = 1 or A a root of an equation A" + Antl 1 =0 for
some integer n, the result has been obtained independently by Archbold, Lazar, Tsui
and Wright ([15]). Finaly, we wish to thank John Phillips and Ian Putnam for many
helpful discussions on this problem, and Rob Archbold for pointing out several errors

in the preprint of this paper.

WEIGHT SEQUENCES AND STATES ON 02

(o] . .
Forn =0,1,2,...let A, = & Mé’), where Mél) = M;(C) for each j. For

j=-n
an element b in My(C) we write bU) for the same element viewed in Mz(J). Let
in 1 An — Ans1 be given by: i,(z) = eEI"_l) ® z. Via the {in} we view the {A,} as
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nested. Put A = (UA,,) Itk < U with [k| < n, and b, bgyr, ... , bi € M2(C)
~ .
o,
we write @ b;’ ) for the element
j=k
k-1 00
( R (:)) (®bo>) ( Q l(j))
j=—n j i=l+1
in A,. Let B, ® M(’) for ni= 0,1,2,... . Then B, is a unital éubalgebra of
j=—-n .

An,and By € B, C B, C .... Let B =|JB,. Note that A = B, and for each
n
n, An = (An N B)~. Let e, be the identity element of A,. (We remark that in

the above notation, e, = 1{-™).) Then {e,} is an approximate unit for A consisting
of projections. Define ay : By — Bay1 by an ‘®b§")) = @b As Ba_y C
’ J J
C an(Bn), it is clear that {an} extends to an automorphism of A. Note that a(B) =
= B. We willlet E: A x, Z — A denote the canonical conditional expectation. Let
D = eo(A x4 Z)eo As in [6], D is isomorphic to O,: D is generated by isometries
Sy =Ueo, S2 =€ )Sl satisfying S; 57 + 5253 = 1, where U € A x, Z is the unitary
element implementing a. Elements in the finite dimensional subalgebras {40 N B,}
approximating Ay are obtained by‘

€O .. @) =55, ...5.5 ..5;,5;,.

Po,do Pn, qn Pn"gn

Every element 2 in the *-algebra generated by S; and S> has a unique expression of
the form

2= Y80 Fale) + Fo(2) + Y Fa(2)ST,

n<0 n>0
where F,(z) € Ap for all n. The {F,} extend to bounded linear maps F, : D — Ay,
and Fy is a faithful conditional expectation ([6]). Notice that

(L.1) Fo=E|D.

We now give the basic construction of the paper.

1.2. DEFINITION. By a wexghb sequence we mean an 1nte[,e1 Jo and a sequence
{ti}izjo with t; € [0,1] for each j. :

Given a weight sequence {t;};5;, we define for j € Z elements A; € M3(C) by

{diag{tjal_tj}: i2jo
Aj = .
la J <JO
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For n > 0 define f, € (An)% by

o0 (o 0]
f,.( (03¢ b§")) = [I m4;%),
J=-n J=—-n
forz = ®b§-‘i ) in A, N B, and where Tt is the usual trace on M,(C), taking value 1 on
rank-one projections. Then for n 2> |jo| and for z € A, N B we have fr41(z) = fa(z).
It follows that

(1.3) fat1 | An = fa, for n 3> jo.

1.4. LEMMA. Forz € A, and n 2 |jo|, fn(enzen) € fat1(ent1Z€ns1).

Proof. This follows from the Cauchy-Schwartz inequality, the fact that for
Y € Ant1, we have fn+1(eny) = fn+l(.'/eﬂ): and (1.3). u

1.5. DEFINITION. Given a weight sequence {t;};3;,, define a weight f on A by
f(:!!) =supfn(enxen), z € A;.
n

1.6. LEMMA. The weight f defined in 1.5 is densely defined and lower semi-
-continuous. If additionally, t; € (0,1) for each j, then f is faithful.

Proof. Dense definition follows from (1.3). Lower semi-continuity follows from
the definition of f. If t; € (0,1) for each j, then faithfulness follows from the facts
that each f, is faithful on A4, ([10], 6.5.9), that '{e,,} is an approximate unit, and
Lemma 1.4. ]

We note that if z = Q) a:gj )isin B, then it follows from the definition of f that

j=—-o0

©0
(1.7) f@y= I ™42;).
j=-o00
Given a weight sequence, {tj};>;,, and hence a weight f on A, let f=foFE and
g= f | D. Then f is a densely defined lower semi-continuous weight on A xo Z, and
g is a positive linear functional on D. It is clear that g is a state, i.e. g(eo) = 1, if

Jo=0.

THE RESTRICTION TO CHOI'S ALGEBRA

In this section we show that if g is a state of Oy constructed from a weight
sequence as in Section 1, then the restriction of g to Choi’s algebra is the (unique)

tracial state of Choi’s algebra.
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NoTATION. Throughout this section we will write
(p(): ¢Io) ® . (Pm Qn)

for the element ® epJ,q, in Ao.
j=0
Recall from [3] that Choi’s algebra C = C;(Z; + Z3) is a subalgebra of O, as
follows: C is isomorphic to C*(u,v) where u and v are unitary elements of orders 2

and 3, respectively, given by

u= 815 +55 =(1,2)+(2,1)

(2.1) v = 51558} + 5282515} + 525,85} =
=S((1,2)® (1,2)+(22)® (2, 1)+ ((2,1)® (1, 1))S:.

2.2. PROPOSITION. If z # 1 is an element of the group generated by u and v,
and g is a state of O obtained from a weight sequence as in Section 1, then g(z) =

The proof is divided into a nlimber of lemmas. We remark that the only group-
-theoretic relations satisfied by u and v are u? = 1, v® = 1.

NoTATION. In this section the letters m, p and ¢ will take values in the set {1 2}..

We will write ~ for the non-trivial permutatlon of {1,2}.

2.3. LEMMA. Let a € A,. Then

(1) aSt=S5;((1,1)®a),

(i) Sia=((1,)@a)s],

(iii) SyaSt =(1, )Q®a, :

(iv) Slasl—{a’ ifa=(1,1)®d

0, ifa=(p,q)®a’ with por q equal to 2.
Proof. This is easily checked using the fact that (1, 1)® a = a(a). |
2.4. LEMMA. Let z = uv™. Then z = S} F_,(z) + Fo(z) + F1(z)S), where

F_Il(%z) =(1,2)®(2,m),
Fo(z) = (1,2) ® (1, m);
Fx(z) (1,1)® (m,1).

Proof. Thisis a straightforwafd verification using the equations (2.1) and Lemma
2.3. . |
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2.5. LEMMA. Let z; = uv™, i = 1,2. Then

Fi(21)S1 - S; F_1(22) = 0,
Fo(z1) - Fi(22)S1 =0,
Fo(z1) - Fo(z2) = 0,
SiF_1(z1) - Fo(z2) = 0,
S{F_l(zl) . F1(22)51 =0.

Proof. This follows immediately from Lemma 2.4. [ ]
2.6. LEMMA. Let z = uv™uv™2 ... uv™r, r > 0. Then Fy(z) = 0 if r is even,

and if r=2d -1, then

Fo(’-) = (1) 2) ® (ml,fn.,) ® (m2) rhr—l) ® -® (md—lx fhd-l-l) ® (ﬁ"-d, md)'
Proof. By Lemma 2.4 we have
z= H[S;F_l(uv'"") + Fo(uv™) + Fi(uv™)8).
i=1

Lemmas 2.5 and 2.3 imply that upon expanding the product, only one term con-
tributes to Fo(z). We obtain Fo(z) = 0 if r is even, and if r = 2d — 1 then

d-1 r
Fofz) = H(Fl(uvm-)sl)] [Fo(us™)] [ I (S:F-muv"'-'))] .

1=d+1

We proceed by induction on d. Lemma 2.4 establishes the case d = 1. Suppose the
result is true for d — 1. Then

Fy (TI uv"la) = (1,2)® (mz,r’h,_l) ®  ® (md-l,fndﬂ) ® (ﬁld,md).
i .

Hence Lemmas 2.5 and 2.3 imply that

r—1
Fo(z) = Fl(uv’"‘)Sl - Fy (H uvm‘) . SIF_l(uv"") =
= [(1,1) ® (m1, 1)]S1[(1,2) ® (mz, 1) ® - ® (rina, ma)]S1[(1,2) ® (2,7, )] =
= [(1’ 1) ® (mlv l)][(lw 1) ® (l, 2) ® -] (ﬁ'd’ md)][(li 2) ® (2) ﬁ'l,-)] =

:(1)2)®(7n1)ﬁ1r)®"'®(md—lymd-f-l)@(fhd)md)‘ .
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2.7. LEMMA. Let z = wPv™ uv™u...uv™u?, r > 0. Ifr is even then Fo(z) =0,
and if r = 2d - 1, then

Fo(z) = (p,7) ® (m1,11,) ® - - - ® (My_y, at1) @ (g, ma).

, .
Proof. Let 2/ = Huvm‘. Then z = uPz'u?. Since u,u? € Ay, it follows that

i=1 '
Fo(z) = v’ Fo(2')u?. The lemma now follows from Lemma 2.6 and the computation:
uP(1,2)u? = uP(2,2)u! = (p,q). e u

Proof of Proposition 2.2. Since u € Ay,

g(u) = f(efy + e5) = Tr(Ao(ed +€57)) = 0.

If z # u,1 then z = vPv™u...uv™ uf with » > 0. By (1.1) and the definition of g

we have ‘
9(2) = f o Fy(2).

By Lemma 2.7 we have g(z) = 0 if » is even, and if r = 2d — 1,
9(2) = f((p,9) ® - - ® (1ha, ma)) =

= Tr(Aoepq): . .'I‘r(/ld“e,;,d‘md) = 0,
since the last factor is zero. - 'n

2.8. THEOREM. If g is a state of Oa obtained from a weight sequence as in
Section 1, then g | C is the ( um'que)' trace of Choi’s algebra.

Proof. This follows from Hroﬁosition 2.2 and the representation of C as the
reduced group C*-algebra of Z; * Z3: ‘ |

WEIGHT SEQUENCES AND TYPE III FACTORS

Throughout this section we will assume that all weight sequences consists of
numbers in the open interval (0,1), and hence that the weights obtained from them
are faithful. Given a weight sequence {t;};>;, and associated weight f, as in Section
1, let M = m;(A)”. Let wp be the vector functional on L(H;) defined by ns(en).

Then Lemma 1.4 implies that

Wn I 7I'j(A) s Wn41 I Wj(A).
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By the strong continuity of vector functionals it follows that
(3.1) wn | M S wayy | M.

Thus we may define a semifinite normal weight ¢ on M by ¢ = sup(w, | M} ). Since
n

wn | ms(en) Mms(en) is faithful for each n, and 7j(en) tends strongly to 1, it follows
that ¢ is faithful. In what follows we will identify H; = H,, and if there is no
potential source of confusion we will drop the subscript f or ¢ from H and 5, and will
omit reference to 7y and m,. We remark that B is o-weakly dense in M, and 5(B) is

norm dense in H.

3.2. LEMMA. Let M and ¢ be constructed from a weight sequence as above. If

T = ®a:§j) is an element of B, then
Agn(z) = n®(45'=; A7),
and hence
of(z) = ®(A;‘:cj/1j"')(’).
Proof. This follows easily from the construction of ¢. a

In Lemma 3.9 we will give a sufficient condition on the weight sequence to ensure
that o extend to an automorphism of M. First we give a series of three lemimas which
allow us to compare the constructions associated to two weight sequences which are

close in the appropiate sense.

3.3. LEmMA. Let {t;};>;, be a weight sequence, let {A;};ez and f be as in
Section 1, and let M and ¢ be as above. Let {r;};»;, be another weight sequence,
and for j € Z let £2; € M2(C) be given by '

Q_z{dia‘g{rj)l—rj}) .72]1
77, i <'ji

oo n .
Suppose that Z(tj - 1'j)"’tj'1 <oo. Puth,= & (.QjAJ-_l)(’) in Bn. Then for each
j=—-n

z € B, the sequences {n(hn,z)}3%o and {n(zhy)}32, are Cauchy in H. Moreover,
letting h and h’ be the linear operators in H with domain n(B) defined by
hay(z) = ﬂlLrLlo (hnz)
/ o
hay(z) = nll{lgo n(zhy),

the closures of h and b’ are nonsingular positive self-adjoint operators, and h and R
are affiliated with M, and M', respectively.
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Proof. We will prove the results for k. The proof for A’ is similar, with one
exception which we will indicate. Let € By and let k <1 < n, with { > max(jo,J1)-
We have L
lIn(hez) = n(ha2)||? = p(2* (ki — hn)?z) =

. 2
= |(z*hiz)® ( QI@ (Q}A,-‘")(“) ® (® Y (9,-11;1)0'>) =

J=k+1 j=l+1 j=i+1

l n
=¢(z‘hiw>( II T‘r(ﬂfAf‘>) (—1+‘ II mn?A;‘)) :

j=k+1 j=i+1

Thus to show that {n(hnz)} is Cauchy, it suffices to show that the infinite product
[>=]
H’I‘r(.QfAj'l) converges. An easy computation yields
(22 A7Y) = r';tj“l +(1-r)?1-t) =
= (=17 (1-4) 7 + 1
Hence the convergence of the inﬁniﬁe product is equivalent to the convergence of the
o]

series E(tj — )1 - )7

To show that % is self-adjoint it suffices to show that k +i and h — i have dense
range ([12], 13.20). We will show that R(h + i)~ contains n(B), the proof for h — i
being similar. For n = 0,1,2,... let b, = (h, + ie,)~1, where the inverse is taken in
B,. We note that ||b,|| < 1, and that b, commutes with h; for all n, I. Let z € Bx.

Then for | > k we have
(h‘ + iel)bw =2z

Then |
(h+)n(biz) — n(:c) = hn(biz) — hin(biz) =

= T}ergo n((h" - h,)bl.:c).

We have
In((ha = R)biz)||? = [|bin((ha — h)2)||? <

< In((hy = h)Z)||? = 0 asl,n — oo.

(We mention that at this point in the! proof for A’, one uses the fact that b commutes

1
with (¥) 47.)

j=-1 ) .
Notice that we have shown that for £ € R(h +1),

Jim he = (R+i)"e
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Since R(h + i) is dense and {;} is bounded, we have that & — (h + i)~ strongly.
Thus (A +i)~! € M,, since {l;} C M,. This implies that the spectral resolution of
(R +i~1), and hence that of &, is contained in M,,. It follows that & is affiliated with
‘M. To see that h is positive, let F = {z € C: |z + %1| = 1, Rez > 0}. Note that
F is the image of [0,00] under the map (t +i)~!. Hence sp(b;) C F for all I. Since
b — (h+i)~! strongly, {b;} is bounded, and {b;} and (R +1i)~! are normal operators,
a routine argument shows that sp((h +i)~!) C F. It then follows by the functional
calculus that sp(h) C [0, o).

To prove that & is nonsingular, we show that R(h), and hence R(L), is dense
in H. Let h7 1 denote the inverse of h, as an element of B,. Let £ € B;. Then
hy(hitz) = nli_{rgg n(hah; 'z). For k <1< n and k > max(jo, ji), we have

i n n
hahilz—z=20 | R 10| e | R (247HD - Q 19].
j=k+1 =i+l j=l+l

Hence

n
lIn(habi ') = n(@)|* = p(z*z) | -1+ [] T(@}47") | -0 asi— oo
=41

Thus n(z) € R(h). [ |

3.4. LEMMA. We maintain all notations, hypotheses, and conclusions of Lemma
" 3.3. Then for z € B we have

p(hz) = lim p(haz),
where @(h - ) is as in [11].
' k .
Proof. Let Ly = @ Ag’ )in By. By checking on elementary tensors one can

j=—k
easily verify that for z, y € B with £ € B, we have

(35) o(L; 'z Liey) = p(yz),

where L,:l denotes the inverse of Ly in Bj. Since ¢ | erMe; is a bounded norrnél
functional, it follows that for fixed £ € By, (3.5) is true for any y € M commuting
with e;.

For any positive self-adjoint operator a, and any € > 0, let a, = a(1 + €a)™}, as
in [11]. We claim that for each € > 0, '

(3.6) (ha)e = h. strongly
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(3.7) ((ha)e) — B strongly,

where for z and y in B we let z'n(y) = n(yz), and note that since h, commutes with
Ly, ((hn)e) extends to a bounded operator on H.

To verify (3.6), note first that @, = e~ — e~1(1 + £a)™!, so that it suffices to
'show that (1 +¢hn)™! — (1 +h)~* strongly. This follows from the equation

(L+eR)™" = (1+cha)™ = (1 + eha) ™ (hn — R)(1 +€R) 7Y,

and the fact that R(1+ €h) is dense in H (which is proved in the same way that was
‘used to show the density of R(h + 1) in Lemma 3.3). Statement (3.7) is verified in a
similar way. (We thank John Phillips for showing us this argument.)

Now let z and y be elements of 1B;. Then

p(hyz) = lim p(heyz) =
i

= liem‘go(L;l:cl‘,kEy) = by (3.5),

= lim(hen(y), n(Les" L)) =

=lim lim ((ha)en(y), n(Les"L; ")) = by (3.6),
= limlim p((hn)eyz) =
= limlim(n(z), n(y" (hn)c)) =
= lim(n(=), Fen(y")) = by (3.7),

= (n(2), B'n(y")) =
= lign(p(:c), Ny ha)) =

= lim p(h,y2). a

3.8. LEMMa. We maintain all notations, hypotheses, and conclusions from Lem-
mas 3.3 and 3.4. In addition, let g be the weight on A constructed from {r;} as in
Section 1, let N = my(A)”, and let ¢, be the faithful normal semi-finite weight on N
obtained from g. Then

(i) 7y and m, are unitarily equivalent.
(i) If 8 : M — N is the unitary equwalence in (1) then o(h - ) =vo 6.

Proof. (i) Define a linear operatpr T :D(T)C Hy — Hy, with D(T) = n4(B),
by Tns(z) = ny(z). We will show that T has a densely defined adjoint, that T*T
has dense range, and that T*T is affiliated with M’. Then since T also has dense



226 JOHN S. SPIELBERG

range, the partial isometry in the polar decomposition of T will be a unitary operator
intertwining 7; and =,.
Let z = (8):1:‘5-J ) and y = ®y§’) be elementary tensors in B. Then

(ng(z), Tns(y)) = 9(y’z) =

=H1&(n,~y;'z,-) = . by (1.7}

= HTI(Ajy;.’l:j.QjAj—l) =
J

= nll‘ngo f(y'mh") =
= li'1'n<ﬂf (zhn),ns(y)) =

= (h'ng (), ns(¥)).

Hence ny(B) C D(T*) and T*T = k’. Part (i) now follows from Lemma 3.3. -

(ii) It follows from (1.7) and Lemma 3.4 that p(hz) = 1 08(z) for z € m;(B). By
Lemma 3.2, wy(B) is globally invariant under ¢¥°°. Hence by [11], Proposition 5.9,
it suffices to prove that 1 o8 is invariant under a;”(h ). Since a:"(h )= Ad(ﬁ”) oaf
([4]), it suffices to prove that & is affiliated with Myes and that yof is invariant under
of.

Applying Lemma 3.2 to ¢, it follows that m4(en) and m4(h,) belong to My. Hence
6 o my(bn) belongs to My, where b, is as in the proof of Lemma 3.3. From [4}, 1.2.10,
it follows that 7;(bs) € Myos. Then as in the proof of Lemma 3.3, it follows that h
is affiliated with My.g.

To see that 1o is o®-invariant , let T be as in the proof of (i), and let ' = W|T|
be the polar decomposition of T. Then § = Ad(W). If z € M} we have

Yobooy(z)= sl'llp(g ooy (z)ne(en), ng(en)) =
= sup(oy (z)W*Tny(ea), W' Trj(en)) =
= snip(af(z)|T|nj(en), ITns(en)) =
= st:lp(ﬂf(f)ﬂf(en);yﬂf(en)) =
= S\'I'p klir&(df(z)ﬂj(en), ni(enhi)) =

= sup li{n(zA;“nf (en), A5 ns(enh)) =
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= sup likr.n(:cnj(e,,'), nilenhr)) = by Lemma 3.2,

=¢o€(:c) [ |

o
3.9. LEMMA. Let {t;};>;, be a weight sequence that E(tj i)’ (1-1) 7 <
< 00. Then o is implemented in L(H), and hence o extends to an automorphism of
M, which we also denote by a. Moreover, letting r; = tj4+1, j 2 jo— 1, and letting h

be as in Lemma 3.3, we have
poa=plh ).

Proof. We will freely use the notation of Lemmas 3.3 and 3.8. Let g be the
weight on A constructed from {r;} as in Section 1. A straightforward calculation
shows that foa« | B=gy | B. (In'fact f o @ = g, but we do not need this fact.)
Using this, it is easily verified that the map n;(z) +— ng(a~!(z)), z € B, extends
by continuity to a unitary operator V intertwining 7y o @ and 7,. Since m; and =,
are unitarily equivalent by Lemma 3.8 (i), it follows that 7o, and 7y are unitarily
equivalent (the equivalence is Ad(V*) 0 8). Next we claim that ¢ = % o Ad(V). To
see this let £ € M;. Then '

Y(VaV*) = sup(VaV ny(en), ng(en)) =

= s:l'p(:c"nf(en—l))) = p(z).

Then we have
ph-)=¢gob= by Lemma 3.8 (ii),

=ypoAd(V)oa=
=poa. ]

Our next goal is to show that under mild hypotheses on the weight sequence,
namely that o« extend to M and th(l — t;) = oo, the states of O, obtained from
our construction are type III factor states (Lemmas 3.14 and 3.15).

.

3.10. LEMMA. Let M be a von Neumann algebra, let B be a o-weakly dense -
-subalgebra of M, and let I' be a norm'dense subset of M. Let {z,}3%, be a sequence
in the unit ball of M, and suppose that lim [|[z,, g] l B|| =0 for each g € I'. Then
JLim |lzn, 9]l| = O for each g € M,. e

Proof. This follows from Kaplansky’s density theorem. [ ]
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3.11. LEMMA. Let {z,} be as in Lemma 3.10. Then [z,,y] — O strongly for
eachye M.

Proof. [5], 2.8. [ |

3.12. LEMMA. Let f be a weight on A constructed from a weight sequence as
in section 1. Let € B have the form z = ®:c§.’) where each z; is a diagonal matrix
in Mo(C). Then f([y,z]) =0 for ally € B.

Proof. This follows from the fact that z; commutes with A;. |

3.13. PrOPOSITION. Let {tj};>;, be a weight sequence, with associated von
Neumann algebra and weight (M, ¢), such that

(i) @ extends to an automorphism of M.

(i) D t;(1—tj) = oo.

Then for each k # 0, of is an outer automorphism of M.

Proof. We will give the proof for the case k = 1. The general case k # 0 is
similar.

Case (i). t; »0,1. Let s be a limit point of {t;} in (0,1). Then 0 < s — s?. Let
{tj.}n>1 be a subsequence converging to s. Let z, be the following element of B:

in—1
Tn = ( ® 1(”)) ®e§j1").
p=—jn
We will verify the hypotheses of Lemma 3.10. Let I' = {ga : a,b € B}, where
ga(z) = p(azb). Since ¢ is a faithful semi-finite normal weight and 7(B) is dense in
H = H,, I is norm dense in M,. If a,b € By, then for any n with j, > [, and any
¢ € B, we have a[z,, c]b = [z, acb]. Hence [zn, ga,b)(c) = w(a[zn, c]b) = 0, by Lemma
3.12. Thus {z,} satisfies the hypotheses of Lemma 3.10, and so by Lemma 3.11 we
have that [z,,y] — 0 strongly for each y € M. Hence z, — B(z.) — 0 strongly for
each inner automorphism 8 of M. But we claim that z, — a(z,) = 0 strongly. Note

first that z,, and a(z,) are commuting projections. Then for n such that j, > |jol,

l(zn — a(zn))nlejo)lI” = Plejo(n + &(za) = 22acx(zn))eso) =
=t F a4 — 25t =
= (tj. —t5) + (tinsr — 15 10) + (n — tan1)* 2
' 2t -t} —s—s'>0.

Case (ii). lim t; = 0. (The case lim t; = 1 is handled analogously.) Choose €
j—o0 j—oo
1 .
with0<e< 5 For n > 0 choose positive integers k,, and [, so that

(a) ko 2n, ka2 |jol
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: 1 I 1
(b) i o §_€<H(1_tkn+2j)<§+€~
j=0

This is possible because lim#; = 0 and th = 0o. Let z,, € B be given by

Tn = kél 1) e é(e§§"+2j)®1(k“+2j+l))
j==kn \i=0

Exactly as in case (1) we have that Zn — B(2,) — 0'strongly for each inner automor-
phism 3 of M. We will show that z; — a(z,) - 0 strongly. Let

In

an = (zan(ejo), 1(ej5)) = P(€joZnej,) = H(l — tkat2j)

b, = (a(:‘vn)rl(e]lo)) n(ejo))'

Then (zno(z,)n(ej,), n(€jo)) = anbn; Since z, and a(z,) are commuting projections
we have

‘ ll(:l:,, - Cl’(:c'l))n(]e.io)”2 = an + by — 2a,b, >

1 1
>§_€+bn_2(’2'+€)bn——
1 1 .
:5—5—}2€l)n>§—36>0. u

DEFINITION. A weight sequence satisfying (i) and (ii) in the statement of Propo-
sition 3.13 will be called admissible.

3.14. COROLLARY Let M be constructed from an admissible weight sequence.
Then M x4 Z is a type III factor.

Proof. Note that M = N ® e;, Me;, where N is a type I factor and ej, Me;, is
a factor ([1]), and hence M isa fac'tori. From Proposition 3.13 and [4], 4.1.1, it follows
that M x, Z is a factor. If M is of type III then so is M x, Z ([8], 13.4.2). Using [1],
2.14, it. 1s easy to show that the only other possibility is that M is ofrtype Il with
Z(t - —)2 < 0o. Then by Lemma 3.8 we may assume that ¢; = 1 for all j; i.e. that
P is t1ac1al Then a scales ¢ by 1, and so M x4 Z is of type III, ([4]) - a

3.15. LEMMA. Let {tj};»j, be an admissible weight sequence. Let g be the

positive linear functional on D obtainied as in Section 1. Then n4(D)" is isomorphic
toM x, 2.

Proof. Let E : M xo Z — M be the canonical conditional expectation, and

put 3 = po E. Let M x,Z act on Hjz. Then m4(d)” is unitanly equivalent to
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eo(M xo Z)egP, where P € (eo(M x4 Z)eg)' is the projection onto ngs(D). The

lemma now follows from Corollary 3.14. |

The sequence {z,} constructed in Proposition 3.13 has the following stronger
property. . A

3.16. LEMMA. Let {t;} be an admissible weight sequence. There is a positive
number § such that the sequence {z,} constructed in Proposition 3.13 has the fol-
lowing property: if @ is a normal nondegenerate representation of M, then for each

k # 0 and each vector { we have

liminf |lr(z, — o*(za))E|| > 6]I€]]-
n—oo :

Proof. 1t is clear that if the result is true for 7 then it is also true for the cutdown
of w by a projection in #(M)’. Thus it suffices to prove the result for 7 =id® 1,
acting on H @ Hy. Let y, = z, — of(z,). Let &= Zn(a;) ® &;, where a; € B,
& € Hy, and the sum is finite. For some !, all of the {a;} belong to B;. Then for all

large enough n,

()l = D (wan(@), yan(a;))6i &) =

i.j

= Zcp(y,z,a}“i)(fi,fj) =
0

olesoy2) D ela) i) (&, &) =

i
f
= llynn(eso)INEN1.

Since such vectors ¢ are dense in H ® I}, we may take 6% = %(s —s%)if {t;} falls
under case (i) of Proposition 3.13, and §2 = % (% - 36) in case (1i). u

Our final task is to show that for each A € [0,1] there is an admissible weight
sequence {t;} for which M x, Z is a type III factor. We will use the continous
decomposition of M and M x, Z ([13]) and the modular period group T ([4]). Let
E and @ be as in the proof of Lemma 3.15. We now fix some notation. Let H =
= H ® ¢*(Z) ® L} (R). We let {6,}ncz be both the usual orthonormal basis for
£2(Z) and the rank-one projections with ranges spanned by those vectors. We let
'R be the shift on ¢2(Z): RS, = 6n41. We let {L;}ier be the translation group on
L2(R): (L:g)(s) = g(s —t), g € L*(R). Let 7 : M — L(H) be given by

n(z) = Ea:'"(:c) ®6®1,

nel
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let U=1®@ R® 1, and let

vy = E(Dy:) 00":Dp) A" ®6. ® L, tER,
nel )

where A is the modular operator for ¢.

3.17. LEMMA. With the above notation,

R (r(MYU{U}Y'2 M xo 2
(i) (m(M) U {vi}ier)” =M Xov R
(iii) o (r(M)u{U}U {bt}teu&)" Z(M xal) xq6 R=

é(M Xge R) X & Z,
where & = Ad(U) | (n(M) U {v:}rer)”.

Proof. (i) is clear. (ii) follows from a straightforward computation using (4],
1.2.10. To prove (iii), we claim that v,Uv_; = Un((Dy o @ : Dyp);). Then (iii)
follows from [7], 3.2. To prove the claim, note first that if ¢ and 4 are faithful normal

semifinite weights on a von Neumann algebra, and 8 is an automorphism, then
(3.18) 0((Dy o0 : Dpo8);) = (Dy : Dy),.

This follows from the proof of [4], 1.2.2. The claim now follows by a straightforward
calculation. n

We note that the dual actions (6%)" and (¢%)" are both implemented on H by
{1®1® U)g}gém, where (wg)(s) = €"**g(s), g € L*(R). The dual actions & and (&)
are both implemented by {1® Q¢ ® 1}¢ev, where Q¢6, = ("6n, n € Z. In what
follows we will omit reference to the representation =, and will use 3.17 (1), (i), (iii)

as definitions of the various crossed-products.

3.19. LEMMA. Let (M, ) be constructed from an admissible weight sequence,
and let {z,} be the sequence constructed in Proposition 3.13. Then [z,,y] — 0

strongly for each y in M x,+ R under any normal representation of M x,. R.

Proof. 1t suffices to prove the lemma for the semi-cyclic representation associated
to a faithful normal semi-finite weight. Let v be.the weight on M x,+ R which is dual
to ¢ ([7], 3.1 and 3.2). Let B ={JC(R, B;) C M x,+ R. Then B is contained in the

]

domain of definition of 4. For z € B, 'a € B, we have v(a) = ¢(a(0)), and za, ax € B
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with (za)(t) = ¢%,(2) - a(t), (az)(t) = a(t) -z. Let I' = {§as.: a,b € B}, where
Gap(c) = y(acd). Since each z, is o¥-invariant, (Lemma 3.2), the lemma follows
from Lemmas 3.10, 3.11, and 3.12. [ ]

3.20. LEMMA: Let M be constructed from an admissible weight sequence. Then

M O[(M xa Z) Xps R = M' 0 (M x40 R).

Proof. D is clear. To prove C, let
ze€ M'N{(M xo2) x,6 Rl= M'N[(M x,¢ R) x5 Z].

Let B: (M x50 Ry xgZ — M x;v R be the canonical conditional expectation. Let
zr = E(2U~F) (see [14, V.7.5]). Then for z € M and k € Z we have

zz; = zE(zU%) = E(22U~%) = E(2U"*a*(z)) = zxa"(2).
Letting z; = yi|2zx| be the polar decomposition, we obtain
(vezyi — o™ (z))meyi =0,

forallz € M, k € Z. Let {z,} be the sequence constructed in Proposition 3.13, and
let 6 be the positive number obtained in Lemma 3.16. Then for any vector & in the

range of y we hav}e

0 = liminf ||(y2ny; - aF(za))exll =

= liminf||(zn — &~ F(zn))&|| 2 ~ by Lemma 3.19.
>0kl ,ifk#0 - by Lemma 3.16.
Thus 2z, =0 for k #0,and so z = 20 € M X,v R. |

3.21. ProrosITION. Let M be constructed from an admissible weight sequence.
Then
Z((M %o Z) X546 R) C Z(M x,¢ R).

Proof. From Lemma 3.20 we have

Z((M xaZ) X6 R) C M'N{(M x4 Z) X6 RN (M Xo¢ R)' =
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=M'ﬂ(M Xge R)ﬂ(M Xge R)I:

= Z(M x,0 R). ]

3.22. COROLLARY. Let (M, ) be constructed from an admissible weight se-
quence. If M is of type 1I1;, then M x4 Z is of type III,. If M is not of type Il
then M x4 Z is not of type Ill,.

Proof. This follows immediately from [13] and Proposition 3.21. n

We will now show that for certain weight sequences the above result can be

sharpened.

3.23. ProrosITION. Let {t;};>;, be a weight sequence such that t; > tj4,
for all j 2 jo, imt; = 0, and th = oo. Then {t;} is admissible, nd T(M) =
=T(M X4 2).

Proof. Since {t;} decreases to zero, the hypothesis of Lemma 3.9 is satisfied, and
so {t;} is admissible.

Proof of D: We remark that this containment is true for any admissible weight
sequence. Let s € T(M x4 Z). Then there is a unitary z € M x, Z implementing o¥.
Then

viz€ (M xaZY N[(M xqZ) X,6 R} C

CMx.e R by Lemma 3.20.

Hence z € M x,» R. It follows that z is invariant under (&). Since z € M x4 Z,
(&) (z) = &(z), and hence z is invariant under &. It follows that 2 € M, and thus
that s € T(M). .

Proof of C: Let s.€ T(M). Since T(M x4 Z) is a group we may assume that
s> 1. Let Aj =tj(1—=¢;)"" for j > jo. Then A; > 0, {};} decreases to zero, and
E/\j = co. Since s € T(M) we have by [4], 1.3.9, that

D= [+ (1 —15)M]] < oo
i

"~ An easy computation shows that this is equivalent to

(3.24) Z/\j(l — coslogA}) < oo.
J

It is a simple calculus exercise to show that there is a constant ¢ such that

1 —coslogt > ¢(1—1)%, fore ™ <t e,
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For each j there is unique n; € Z such that
(2nj — D)7 < log A} < (2n; + 1)

Let p1; = €2™3i*"" for j > jo. Notice that p; > 0, {p;} decreases to zero, and Z 1y =

= 00, since {);} has these properties. We have
SOy <, iz

We then have
1 — coslog Aj = 1 — coslog(p; )\]-_1)’ >

2 e[l = (A7) 2
>e(l- ;zj/\j’l)z, since s > 1.

It then follows from (3.24) that

(3.25) Y A1 = A5 h)? < oo
J

Let r; = pj(1 4 p;)~*. Then r; € (0,1), {r;} decreases to zero, and er =o00. A
straightforward calculation shows that (3.25) is equivalent to E(t —r;)? i ! < .
Since lim#; = 0, this is equivalent to L (tj —r;)? J-'l(l —1;)7! < co. It now follows
from Lemma 3.8 that the weight sequences {t;} and {r;} give unitarily equivalent
results. Thus by replacing {t;} with {r;}, we may assume without loss of generality
that /\” =1forallj>

It then follows from Lemma 3.2 that A" = 1. We claim that (Dyoa™ : Dy), =1
for all n. This will imply that v, = 1®1@® L, and hence that of = id, concluding
the proof of the proposition.

Note first that for n positive,

(Dpoa™:Dp)=(Dpoa™:Dpoa™).--(Dpoa:D,),

and that by (3.18), (Dpoai*! : Dpoal), = a~i((Dypoa : Dy),). A similar argument
for negative j shows that it suffices to prove that (Dy o @ : Dp);, = 1. By Lemma
3.9 and [4], 1.2.3(b), (D o & : Dy); = (h)*, where h is obtained as a limit of {h,}
as in Lemma 3.9. Since {t;} is decreasing, we may compute ||h,|| from the largest

eigenvalue of h,: for n > |jo| we have

Ihall = (1= t5,) [T Q= t541)(1 = 45)7" =

J=jo
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=1- tn+1 g 1.

Hence {h,} is bounded. It follows that h is bounded and that h, — h strongly. It
then follows that hi* — T strongly. Note that we have

diag{tj+1tj_l, (I-tjp)(1 =)'}, 7230

Aja A7 = < diag{ti,, 1~ .}, j=Jo-1
1, J<jo—2,
or, .
(L4 Xj40) 7 (L4 ) diag{ A A7 1), 52 o
Aj'HAJ'_l = (1 + ’\jo)—ldia'g{’\jm 1}’ J=Jo—1
1, J<jo—2.

Hence for n > |jo| we have hi¥ = (1 + A\,41)~™ - 1. Thus A — 1 is norm, and it
follows that B = 1. |

3.26. THEOREM.. For each A € [0, 1] there is an admissible weight sequence for
which M x4 Z is a type III factor. In the case A = 0, an uncountable family of
non-isomorphic type Illy factors can be so obtained.

Proof. A = 1: By Corollary 3.22 it suffices to choose {t;} admissible so that M
is of type III;. It follows easily from [1], 5.8, [4], 3.6.1, and Lemma 3.8(1) that M will
be of type III; if the weight sequence has two distinct limit points in (0,1). Using
Lemma 3.9 this can easily be done.

0 < A < 1: By [1], 9.4, a weight sequence {¢;} can be chosen with lim¢; =0 and
M of type III,. Since the isomorphism class of M is unaffected by the ordering of

t;}, we may assume that {¢;} is decreasing, and hence admissible t; = oo since
J J g J

M is not of type I). By Corollary 3.22, M X4 Z is not of type Illg. Therefore the
modular spectrum of M X, Z is uniquely determined by T(M x, Z). By Proposition
3.23, T(M x4 Z) = T(M), and hence M x, Z is of type III, also.

A = 0: Note that any factor constructed as in [1], 10.2 can be obtained from
a weight sequence with lim¢; = 0. By [1], 11.10 and [4], 3.6.2, uncountably many
non-isomorphic type IIﬁo factors may be obtained this way, which are identifiable as
type IIlp, and pairwise distinguishable, by the invariant T. The result now follows
from Proposition 3.23. |

3.27. THEOREM. For each A € [0,1] there is a factor state on O, of type IlI)
which extends the trace on C. In the case A = 0, uncountably many non-isomorphic
factors of type Illg can be so obtained.

Proof. This follows from Lemma 3.15 and Theorems 2.8 and 3.26. ]
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