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POSITIVE COMPLETIONS OF MATRICES OVER C*-ALGEBRAS

VERN I. PAULSEN and LEIBA RODMAN

1. INTRODUCTION

Let A be a C*-algebra, and let M,;(A) be the C*-algebra of n x n matrices with
entries in A. An element a € A is called positive (notation: a > 0) if a = b*b for some
b € A, and strictly positive if a is positive and invertible (in this case it is assumed
that A is unital). Analogously‘one defines positive and strictly positive elements in
Mp(A).

A partial Hermitian n X n matrix @ over A is, by definition, an n x n matrix
some of whose entries are specified to be elements in A in such a way that if the
(4,7) entry in @ is a € A then (j,) entry in Q'.i‘s also specified and it is equal to a*.
The unspecified entries in @ are question marks. It will be always assumed that the
entries on the diagonal are specified.

The pattern of specified entries in a partial Hermitian n x n matrix Q over A
will be described by the undirected graph G having vertices {1,2,...,n} and an edge
(4,7) if and only if i # j and the entry (, ;) in Q is specified. Conversely, given an.
undirected graph G with vertices {1,2,...,n} and without edges from a vertex to itself
(only such graphs will be considered in this paper), we say that a partial Hermitian
n X n matrix @ over A is subordinate to G if the entry (¢, j) in Q is specified precisely
when either ¢ = j or i # j and (4, j) is an edge in G.

A completion of a partial Hermitian matrix Q = [Qi,j]:jzl over Ais any Z =
= [Z":J:]:jﬂ € M, (A) with the property that Z;; = Qi; whenever the entry Q;; is
specified as an’element in A.

We will be interested in positive and strictly positive completions. An obvious

necessary condition for existence of a positive (or strictly positive) completion of a
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partial Hermitian matrix Q = [Q,-j]:']. over A subordinate to the graph G is that

=1

for any clique V of G the matrix [Qif]i,jev € My (A) is positive (or strictly positive),
where k is the number of elements in V. (Recall that a set of vertices V is called
a clique of G if there is an edge in G between any two distinct vertices in V.) The
main purpose of this paper is to characterize the patterns {or graphs) G for which this
necessary condition is also sufficient for all partial Hermitian matrices subordinate to
G.

In the case A = C or A is the algebra of all n x n complex matrices, the problem
of positive and strictly positive completions was extensively studied (see, e.g., [5], [12],
(8], [14]), and for more general algebras (but less general patterns) this problem was
studied in [6], [13].

Throughout the paper we denote by H a (complex) Hilbert space, and by B(H)

the algebra of all bounded linear operators on H.

2. STRICTLY POSITIVE COMPLETIONS

An undirected graph G,without loops from a vertex to itself is called chordal, or

triangulated, if it has no minimal (simple) circuits with 4 or more edges.

THEOREM 2.1. Let A be a unital C*-algebra, and let G be a chordal graph.
Then every partial Hermitian matrix Q = [Q;j]:'j=1 over A subordinate to G, with
ijev € M (A) is strictly
positive, admits a strictly positive completion. Conversely, assume that the graph
(onn
1

G is not chordal. Then there exists a partial Hermitian matrix Q(®) = [Qj izl

over A subordinate to G, with the property that for every clique V of G the matrix

the property that for every clique V of G matrix [Q,-J-]

[Q;(';')) ijev € M. (A) is strictly positive, which does not admit a strictly positive (even
positive) completion. In fact, the specified entries Q.('?) can be chosen to be scalar
multiples of e, where e is the unit in A.

It should be noted that the condition on every clique V of G in Theorem 2.1
can be obviously replaced by the same condition on every maximal (in the sense of
set-theoretic inclusion) clique of G.

The proof of the direct statement of Theorem 2.1 is based on the following well-
known property of chordal graphs (see, e.g., [11]), which allows us to use the “one

step at a time” approach.

LEMMA 2.2. Let G be a chordal graph. Then there exists a sequence of chordal
graphs Gy = G,G2,Gs, ..., Gy with the following properties:

(i) Gj is obtained from G;_, by adjoining precisely one edge, call it (v}, s;), to
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Gj-1;

(ii) there is exactly one maximal clique in G; that contains both vertices r; and
Sj; '

(iii) the last graph in the sequence G, is the full graph, i.e. there is au edge

between any two distinct vertices in G,,.

For the proof of the converse statement of Theorem 2.1 the following lemma is

needed.

LEMMA 2.3. For a given n > 3 define the set
D, = {Q = [Qij]z]-___l EMy(A): Qij=eif|i—j|<1; Qa=Qu1= —e}.
Then the distance betiveen D, and the set of all positive elements in M,(A) is positive.

Proof. Let P = [aij]

|i — j} < 1. We claim that all elements in P are equal to e (thereby proving the

Ti=1 be a positive element in AM,(A) such that a;; = e if

lemma). Indeed, using Lemma 2.1 in [4] we have

e e apz e : 0 0 0
0<| e e e || e |[ceas]=]0 0 e — a3
*
ajs € e ats 0 e—ajs e-—ajsuis

Consequently, e — ay3 = 0. Analogously, we prove that a;; = e for |[i — j| = 2. To

prove that a4 = e apply the same argument to the 3 x 3 matrix

a1y Q@12 Q14 € € aq
aj, a2 aue | = e e e ,
aly @34 Q4a ajq e e
and so on. - |

Proof of Theorem 2.1. Assume G is chordal. Using Lemma 2.2, we can assume
by induction that the result of Theorem 2.1 is already proved for the chordal graph
G'2. Given a partial Hermitian matrix @ = [Q,'j]?j=1 over A subordinate to G as in

n

Theorem 2.1, it remains to find @ € A with the following property: Let (' = [Q:JL i=1
be the partial Hermitian matrix subordinate to G, obtained from Q by replacing the
question marks in (r2, s2) and (s2,r2) entries by a and a*, respectively. Then for every
clique V' of G5 the matrix [ng]i,jeV’

of Lemma 2.2 the only clique we have to worry about is the unique maximal clique

is strictly positive. Because of the property (it)

of G5 that contains both vertices ry and s». But then existence of the required a € A
follows from the general result of {13].
For the sake of completeness, we outline here a proof of the existence of the

required a € A which is sufficient for our case.
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By the above discussion it is sufficient to show that if b is a 1 x p matrix over A,

C is a p x p matrix over A, d is a p x | matrix over A and @ and J are elements of

a b C d
A such that the matrices (l)* C') and ( - f) are strictly positive matrices over
a

A, then there exists z in A such that

a b =z
(2.1)  C d
1:‘ d‘ f

is a strictly positive matrix over A. To thisend let b; = a~ %bC‘%, dy=C- %df‘]? and
note that ||b1 ”, ||d1 ” are both strictly less than 1. We claim that setting « = ¢2b,d,C*

suffices. To see this, note that

a=z 0 0 a b =z a~3 0 0
0 C™ % 0 b od 0 Ct 0 |=
0 0 f i) \a* & f 0 0 JF
e b byd, e 0 0\ [e b 0 e 0 0
=| b e d |=]10 e O bl e 0 0 ¢ 4
diby dy e 0 df ¢/ \0 0 e—didi) \0 0 e

which is easily seen to be strictly positive.

Conversely, assume G is not chordal, and let {1,... ,k} be the set of vertices
(k > 4) that form a minimal circuit. Thus, the only edges in G between the vertices
1,...,k are (1,2),(2,3),...,(k — 1,k),(k,1). For § > 0 sufficiently small let Q =
= [Qij]:jzl be the partial Hermitian matrix subordinate to G defined by @Q;; =
=(14+8e(i=1,...,n);Qij=clor|i—7]=1,1<4,7 <k Qi = Q1 = —c; and
Qi; = 0 in all other épeciﬁed positions. Clearly, for every clique V of G the matrix
[Q‘f]i,jev is strictly positive. However, by Lemma 2.3, if § > 0 is sufficiently small,
there is no strictly positive completion for Q.

The partial hermitian matrix @ constructed above proves also the last sentence

of Theorem 2.1. |

3. POSITIVE COMPLETIONS

We turn now to the patterns that allow positive completions for any partial
Hermitian matrix over A provided the obvious necessary condition is satisfied.

A partial Hermitian matrix [p;j]?‘jzl over C*-algebra A subordinate to graph
G will be called partially positive if for every clique V in G the matrix [pi;i jev is

positive.
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We start with an example showing that Theorem 2.1 cannot be generally carried

over to positive extensions:

EXAMPLE 3.1. Let z = re? be a complex number in polar form. Consider

1 =z z.
(3.1) T 1 |2 |,
z |z |2

and z unknown. It is easy to show that this a partially positive, chordal pattern and
that for z # 0 the only value of  for which there is a positive completion is z = *¢.
Hence the completion is discontinuous as |z| — 0. So in the C*-algebra of continuous
functions on the closed unit disc D, with z the coordinate function, the partial matrix

(3.1) has no positive completion. _ |

This example can be fairly easily modified to C([O, 1]): replace z by t- g(t) where
Ig(t)| = 1forallt, g is continuous on (0, 1] but 1il’51+ g(t) is dense on the unit circle.
t—s

Again z = ¢(t) is the unique completion, but is discontinuous at 0.

In view of this e"xarnple we introduce the following definition. Let (PC) stand
for the algebras A with the property that all partially positive matrices over A
with chordal patterns have positive completions. Example 3.1 shows that C(D) and
C([0,1}) are not (PC). On the other hand, Theorem 6 of [12] shows that the algebra
of all n x n matrices is (PC). Actually, every finite dimensional C*-algebra is (PC),
and we will see more classes of (PC) algebra later on. Also B(H) is (PC) (Theorem
4.3 in [18]).

A C*-algebra A is called injective (see [17]) if every completely positive map into
A has a completely positive extension, or, equivalently, if for any representation of A
as a C*-algebra of operators on B(H) there exists a completely positive projection
&: B(H) — A with @$(a) = a for all a in A. The equivalence follows easily from the
fact that B(H) is injective (by the Arveson extension theorem [1], {17}).

THEOREM 3.1. Ever_y injective C*-algebra and every W*-algebra (= weakly
closed x-algebra of operators containing I on a Hilbert space H) is (PC).

Proof. Assume that A is injective, and represent A as a C*-algebra of operators
on some Hilbert space H. Let Q = [Qij]n
subordinate to G. By [18, Theorem 4.3] there exists a positive completion of Q, call
it P= [P"f]?,jn’ over B(H). Let ¢: B(H) — A be a completely positive projection
onto A, as in the definition of an injective C*-algebra. Then [¢(P;; )]:l]
completion of @ over A.

Assume now that 4 is a W*-algebra, and let Q = [Qii]?jzl be as in Theorem 3.1.

i1 be a partially positive matrix over A

, 1s a positive
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Form = 1,2,...the partial Hermitian matrix Q,, = Q+ EI is strictly positive, hence
by Theorem 2.1 Q,, admits a strictly positive completion Z,, = [Z,-;n)] € M,(A). It
is easy to see that the norms "Z,(Jm)” (m=1,2,...) are uniformly bounded. Now we
use the fact that the unit ball in B(H) is weakly” compact. So there is a subnet (m,)
such that the weak® limits Z,-(;"“) — Z;j exist, and Z;; € A. One verifies without

difficulty that Z = [Z;j]n is a positive completion of Q. |

ij=1
We remark that every weakly closed *-algebra of operators on H contains its
own identity (which need not be the identity operator); see, e.g., [19]. Because of this
fact, the proof of Theorem 3.1 extends to all weakly closed x-algebras of operators on
H. Furthermore, by Sakai’s theorem, every C*-algebra which is a dual (as a Banach
space) can be identified with such algebra. So every dual C*-algebra is (PC).
It turns out that the (PC) property is preserved under passing to ideals and

quotients.

THEOREM 3.2. Let A be a C*-algebra with the (PC)-property, and let J be a
two-sided *-ideal in A. Then J and A/J are (PC).

Proof. Let P = [p;]7';-, be a partially defined matrix with specified entries in J
subordinate to a chordal pattern G, and assume that for every clique V of G the matrix
[pi,;)ijev is positive. As A is (PC), there is a positive completion P= [5ij)P =y of P
with entries in A. Passing to the factor algebra A/J we see that P+J = [p;; +J]I';-;
is positive in A/J. However, p;; + J = p;; +J = 0, hence the positivity of P 4+ J
implies that p;; + J = 0 as well for all i # j. So actually all entries in P belong to J.

For the proof of the second part of Theorem 3.2 it is convenient to prove first
two lemmas.

P 0
LEMMA 3.3. Let [pi;]P;-; > 0 then n = [pi]t 21 2 0.
0 Pnn

Proof. Let A be a primitive n-th root of unity, and let D;. be the diagonal unitary

whose i-th entry is (A*)*. Then Dy[pi;]?;-, D} = [(/\k)i‘jp;j]:j=l 2 0. Hence

(n—1)pn —p12 —Pin

n-1

—p21 (n—=1pa2 ... —Pon

0< Z Di[pi;)}j=1 Dk = : . . . =

k=1 . . .

—Pn1 . —Pn2 ce (n - l)p"n

P11 0
=n = [pijlE =1,

0 pnn
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since

A-1 .
Z()\"-")k:{n"1 ) .
-1 i li-jl<n

k=1

LEMMA 3.4. Let A be a C*-algebra with a two-sided x-ideal J. Let p;j € A/J so
that P = [pi;]7;, is a partially positive Hermitian matrix over A/J subordinate to a

chordal pattern. Then there exists a partially positive Hermitian matrix A = [a;;]} ;=
over A which lifts P.

Proof. We use a property of chordal graphs that they have a perfect vertex
elimination scheme (see, e.g., [11]). Namely, there exists an ordering of vertices
Sn,Sa-1,...,S81 so that S, is a simplicial vertex in G (i.e. the set of vertices ad-
jacent to s, is a clique), and if we remove s, from G (toghether with all the adja-
cent edges) then s,_; is a simplicial vertex in the remaining graph, etc. Without
loss of generality we assume that in this perfect vertex elimination scheme s, = n,
Sp1=n—-1,...,5 =1

Starting with s; we may lift p); to a positive element au in A, Assume that
we have defined a;; in A for all (7,7) in the graph with 1 < 4,5 < k — 1, such that
T = ‘1 is partially posmve and 1r(a,,) = pi; where m A — A/J is the natural
homomorphism. We wish to define mductlvely a;r and ag; for 1 < 4,j < k so that
[a,,],-“,-=1 is partially positive, m(a;;) = pi; (1 < 1,7 < k).

Since s is simpliéial in the graph spanned by s,,..., s, we have the following

picture:
G,
‘3 % y 27 cee Ptk-1 Pek
‘[pi.i]f,jL-:l: é : : :
| /, Pk-16 .. Pk-1,k-1 | Pk-1,k
21 pee ... Prg-1 | pr

Here £ < k; pij € A/J for £ € i,j < k; in the shaded region anything could be
specified or not specified, and in the (1,3) and (3, 1) blocks nothing is specified. As -
[pi;)¢ 'j=¢ is fully specified over AlJ and is positive, there exist bij € A such that
w(bi;) = pij (£ < 1,5 < k), and [b;]F =t is positive over A. Let a; = b, api = bpi
(¢ <igk), cj=bij—aij (€ <i,j<k). Observe that ¢;; € J. Also, cix' = cri =0
(£ < i< k). Write

[cllla,J_t [d'l] ij=t =~ [f"j]?,j=l ’

where [di;]F;_, and [fi;}}; ., are positive matrices over J. As [bi;]f;_, is positive. By
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Lemma 3.3
/du 0

) k — il 2 0,
0 dix .

hence if we define

ij —

;o {a.-,— + (k = &)d;;;
aij;

then since we have only altered some diagonal elements by adding positives, [a(-j f,j: N
is partially positive and 7r(a:~j) = pij, 1 € 1,5 € k. This completes the inductive step.

Observe that in the inductive step one cannot generally define a}; by the formulas
a{»j = aij +dij if £ < 4,5 < k; and @}; = q;; if at least one of the indices 1, j is less
than £. The reason is that the specified entries in the shaded areas of [p,-j]f’jz1 may
be such that the matrix [a{;]f;_; will not be partially positive with this definition of
asj. . [ ]

The proof of Theorem 3.2 can be: now easily completed using Lemma 3.4.

In particular, both the ideal K(H) of the compact operators on H and the Calkin

algebra are (PC).

4. UMF AND QF ALGEBRAS

In this section we explore the connections between the (PC) class and the classes
of UMF and QF algebras.

Recall that a C*-algebra A is called MF if given «¢,b € A such that aa* < bb*
there is ¢ € A such that a = be. If, in addition, we may take ||¢|| < 1, then A is called
UMF {uniform majorization-factorization). This class was introduced by Fialkow [9].
A Cr-algebra A is called completely UMF if the defining property holds for matrices
over A, i.e. given m X p and m x n matrices a = [a;;] and b = [b;j.] over A, respectively,
such that aa® < bb* there is an n x p matrix ¢ = [c;;] over A such that ||C|| < 1 and

a = bc.
THEOREM 4.1. Any unital (PC) algebra is completely UMF.

Proof. Let a, b be as in the definition of completely UMF. Then the partial matrix

r o» 7
(4.1) b b a
?7 a1
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is partially positive (indeed,

(1 —:a) (bb* a)( I 0)_<bb*—aa* 0)
0 I at I/ \-a" 1)~ 0 1/}’

which is positive). As (4.1) is subordinate to a chordal pattern, there is X such that

I » X
b bb* a |20
X* a* I
Now by [4] we have
b X 0 0 0
0< b b a f—= b (I 0 X)=]0 0 a—bX
X* a* I X* 0 a* - X" I-X*X
Consequently, a —bX =0 and I — X*X > 0, and we are done. n

The compact operators are a (PC) algebra which is not UMF. Indeed, assuming
for simplicity that H is separable infinite dimensional, let D be any compact diagonal
operator with strictly positive diagonal entries. Setting @ = b = D, we find that
aa® < bb* but there is no compact ¢ such that a = be. We do not know if every
completely UMF is (PC).

It was communicated to us by L. Fialkow [10] that for a separably acting C*-
-algebra A the conditions

(a) A is MF;

(b) A is completely UMT;

(c) Ais AW"
are equivalent. For the definition and theory of AW*-algebras see [2]; in particular,
every AW"-algebra is unital. In connection with that the following question arises
naturally: Is every separably acting AW™-algebra (PC)? The affirmative answer would -
imply that the classes of separably acting AW"-algebras and separably acting unital
(PC)-algebras are the same.

We introduce now the quasifactorization algebras (QF algebras). Given a C*-
-algebra.A C B(H) (non-degenerately), its multiplier algebra M(A) is defined by
M(A) = {X € B(H) | XA C A AX C A}. When A is unital M(A) = A, but
for A non-unital A (A) is in some appropiate sense the universal unital C*-algebra
which contains A as au ideal. If A = Co(X), the Co-functions on a locally compact
Hausdorff space, then M(A) = C,(X), the continuous bounded functions on X, which
can be identified with C(8X), where 8.X denotes the St‘one-(vlech compactification of
X. A Cr-algebra A C B(H) will be called QF algebra if for any triple of matrices
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20

P, B, C of sizes 1 x 1, 1 x p, p x p, respectively over, A such that (; g)
there is D € Mixp(M(A)) such that ||D}] < 1 and B = P¥DC?. Thus, for unital
algebras the QI property is merely a factorizaton property, inside the algebra, while
for non-unital algebras it is a factorization property relative to this universal algebra.
For examples, von Neumann algebras are QF. To see this, note that for any
£>0,(P+eD~ B(C +§I)‘,)-Tl is a contraction. If D denotes any weak®-limit point
as £ tends to 0, then B = P¥DC#%. On the other hand, algebras of continuous or
Co-functions are only QF when the underlying space is very disconnected. To see
this, let f be a continuous (respectively, Co-function) on X and set p =1, B = f,
P = C = |f] in the above definition. If C(X) (respectively, Co(X)) were QF then we
could find d in C(X) (respectively, C,,(X)) such that f = d|f| for every function f.

The following results is our main motivation for introducing this concept.
THEOREM 4.2. Any QF algebra is (PC).

Proof. Let A be a QF algebra. Using Lemma 2.2 it is suflicient to show that
given matrices a,b,¢,d,e over Aofsizes 1 x 1,1 xp, pxp, px 1,1 x 1, respectively

a b ¢c d .
such that b 20, 2 0, there exists z € A such that
c e

dl‘l
a b =z
(4.2) . ¥ ¢ dj=0
¢ d* e

Using the definition of a QF algebra find b, dy € My, (M(A)) with b, ]|da]] < 1,
b= a%blcil', d= cédle%. It is easy to check that z = a3bydies is in A and makes
(4.2) positive. ]

A C*-algebra A is called o-unital (see [19]) if there is a countable approximate
unit [E3]aea, i-e., a countable net A and an clement I, € A for every A € A such
that the following conditions are satisfied:

(i) Ex 2 0,||Ex|| < 1forall X € 4;

(i)A<pu=>E,—E\ 20

(iii) for every a € A we have |la — Exa|| - 0, |la — aE)]| — 0.

For example, all separable C*-algebras are o-unital.

Our next result concerns corona algebras, that is, algebras of the form C(A) =
= M(A)/A. If A = Co(X) for some locally compact Hausdorff space X, then M(A) =
= Cuy(X) = C(BX) and C(A) = C(BX)/Co(X) = C(BX/X). Our next result shows
that corona algebrs are QT, so in particular we see that SX/X is very disconnected.

Many of the ideas for this proof can be found in [20}.
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- THEOREM 4.3. Let A be a o-unital C*-algebra, A C B(H). Then the corona
algebra C(A) = M(A)/A is QF (and hence (PC)).

Proof. Let Cp = [c,]]

ii=10 Bo = (b11,...,b1p) and ag be in C(A) so that Py =

B
= (;(1 Co> is a p051t1ve P+ x(p+ 1)—ma.t1'ix over C(A). Choose an arbitrary
0 0

positive lifting of this to elements C' = [C};]7 =1 B=(Bu,...,B1,) and a in M(A).
1 B
So that, P = (B* C) is a positive (p + 1) x (p + 1)-matrix over M(A) and has

image P, in C(A4).

Set Ty = a¥(a+ k™3)¥B(C + k=3)~#C*% — B, which is 1 x p. We may by [20]
choose an approximai:e unit {E,}2%, for A such that for all n.

8) Bnt1Bn = Bn; [|Ball < 1

b) "E B - BE(p)” <2 where E denotes the diagonal p x p matrix with
diagonal entries E,; |

¢) ||E a* — a3k, | <27

d) ”E,(,”)C'z _ 3E(”)|' <2

&) | BaTi — TLEP|| < 27" for all k < n + 1.

Formally we put Eo = 0. Since |(a +n~2)2B(C + n‘3)_Tl|| < 1, we have that

Z(En - E,_ 1) (a+n=3)7 =2 B(C + 1L_3)_T1(E,(f) - E,(,p_zl)% converges strongly in

M(A) to an element D in M(A), see [20]. (Here by strong convergence in M(A) of a
sequence { X, }59_, to D in M(A) we mean that X,,Y — DY and Y'X,,, — Y D in the
norm topology for every ¥ € A.) We claim that aDC% — B is in A. To see this we
use the fact that for P > 0, ||[PX — X P|| < ¢ implies that | P2 X — X P3 | < (lIX]le)3,
see [20].

Thus,

|(Bn = Bn-1)* B~ B(EP — E2) 7| < @IIBlI(27" +27"+1)3,
and hence,

|(Ba = Ba_0)}B(EQ) ~ 5O,)¥ — BE®) - E®)][ < 6.

o<
where Z b, 1s finite.
n=1
We therefore have that the series

o
> (B = Bac) B - ED)E - B(EY) - E9,)]

n=1
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is norm convergent to a 1 x p matrix over A. We have

o0

S (En— Easi) B(EQ) - E®)* _ B =
n=1
@) =3 [(Ba- B B(EP - B}~ B(EY - 50,)] +

n=1
[}

+|5° B(E® - EP,) - B|.

o0
Since E B(ES”)—ES,”_)I) converges strongly in M (A) to B, the second bracketed term

in thenr_ifght-hand side of (4.3) goes strongly to 0. The first series in the right-hand
side of (4.3) is norm convergent and each term belongs to A. We obtain therefore
that the left-hand side of (4.3) converges strongly in M(A) to a 1 x p matrix, call it
Y, over A. Note that

o0
S [03(Bn - Baba+n7) 3 B + 09 F (B - £ ot -
n=1
~(Bn = Ba-y)¥ab(a+ 0?3 B(C +n7)F CH(EP - ED))| =
=3 [a%(za" —En_1)t — (Ea - E,,_l)%a%] :
(44) n=1 ’ )
@+ n)F BC =) F (B9 - BR,)FcH] +

+ i [(E,, —E._)iad(a+n" )T BC+ n-a)‘T‘] :
n=1

(B9 - BD) Rt - or (e - £2)2]
An argument similar to the one used above shows that

had 1
S~ [64(Bn = Bao1)¥ = (Ba = Eaoi)¥an)

n=1

and

[

> [ch (s - 5

n=1

1

(r) _ p(P) Fl

- (En En—l)cﬂ
are norm convergent series. However, since the terms

n-1

|[@+n=F BC+nF - (B9 - 52 CH]

and _
| [(Bn - Ba-otad @+ 0 F BC + 07 ] |

are uniformly bounded, each of the two sums in the right hand side of (4.4) is norm

convergent.
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Thus, the sum (4.4) converges in norm to a 1 x p matrix X over A. Since the

series

Y- [a4(Bn = Ba-)i(a+07%) 3 BC +n7)F - (B9 - B2),) 3]

n=1

converges strongly in M(A) to a2 DC? we have that

[o0]
a¥DC% — B= X+ (Ba - Ea1)T (EP) — EP) 4
(4.5) - n=i ,
+3 (Bu — Bao)¥B(EY) — E®) )7 - B.

o]

Next, we shall show that Z”Tn “ is a convergent series, from which it follows

n=1
| ]_
that E (E En_l)%Tn (E,(f) - E‘,(,p_)l) ? is norm convergent to a 1 X p matrix, call it

Zz, ove1 A
To estimate ”T ",, note that there exists a 1xp matrix F over B(H) with || F|| <
such that B = a3 FCz. Hence,

T, =ala+n"3)F F(C+n"3)TC-afFC? =

=a(a 4+ n"s):'éiF[(C'+ n"3)_TlC - C%] + [a(a + 71'3)_Tl - a%] FC3.

Note that the function I(t+n‘3);21't —t2[ < n=32fort > 0, so that by the functional

calculus,

"T"” < n-3/2 [”a(a+ n—s)_TF l”] < n=3/2 [”aél

dl

which is a summable series as claimed.

We return now to (4.5). As we have shown above,
o 1
Y (En— En_1)iB(EP) - EP)7 - B

converges strongly in M(A) to a matux over A. Tt follows that the entries of a? DC'% —
B are in A. Now we have ag DoCo — By =0 in C(A), where Dy is the 1 x p matrix
over C(A) whose entries are the images in C(A) of the entries of D.. ,



250 VERN I. PAULSEN and LEIBA RODMAN

5. CONTRACTION COMPLETIONS

A partial m X n matrix over a C*-algebra A is, by definiton, an m x n matrix
whose entries are either specified to be elements in A or are unspecified and de-
signated by a question mark. We define a completion of the partial m x n matrix
Q = [Qijhigigm,1¢jgn over A to be any m x n matrix Z = [Zij]igigm,1¢ign With
entries in A such that Z;; = Q;; for every specified entry Q;j of Q. .

We consider completions which are contractions (i.e. with norm less than or
equal to 1) or strict contractions (i.e. with norm less than 1). Problems concerning
contraction completions and strict contraction completion have been studied a lot in
the literature (see, e.g., [7), [15], [13], [5], (3], [16], [21]).

An obvious necessary condition for existence of a contraction (resp. strict con-
traction) completion for a given partial m.x n matrix @ over A is that every fully
specified rectangular submatrix of @ is contraction (resp. strict contraction). Partial
matrices with this property will be called partial contractions (resp. partial strict
contractions). We characterize the patterns for which every partial contraction (resp.
partial strict contraction) admits a contraction (resp. strict contraction) completion.
Here, a pattern is, by definition, an m x 1 matrix each entry of which is either * or
?, and a partial m x n matrix @ over A is said to be subordinate to the pattern P if
the (i, j) entry of Q is specified precisely when the (i, 7) entry of P is *.

Two partial m x n matrices (or patterns) ¢; and @2 over A are said to be per-
mutation equivalent if one may be obtained from another by independent reordering

of rows and columns.

THEOREM 5.1. Assume A is a unital C*-algebra. Let P be an m x n pattern

which is permutation equivalent to the following block diagonal form

Bl 7 ... 7
? By ... 7
(5.1) .
? ? ... B
possibly bordered by rows and/or columus of question marks, in which
lel ? T ?
Bj21 Bj22 7. ?
Bjp1 Bjp2 ... ... Bipp

and the (possibly rectangular) blocks Bj,, consist entirely of +’s. Then every strict

partial contraction with specified entries from A subordinate to P admits a strict
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contraction completion. Conversely, if P is not permutation equivalent to a block
diagonal form (5.1), then there exists a strict partial contraction subordinate to P
which does not admit any contraction completions (let alone strict constraction com-

pletions).

Proof. Without loss of generality we assume that P is indecomposable, i.e. is
not permutation equivalent to any pattern of the form (5.1) with » > 2. Let Q be

a strict partial contraction subordinate to P. Form the (m + n) X (m + n) partial

In Q
QI

is permutation equivalent to (5.1) it is easy to verify that the graph G to which @ is

Hermitian matrix Q = ( ) Clearly, Q is strictly partially positive. Since P

subordinate 1s chordal. Now apply Theorem 2.1.
For the proof of the converse statement apply the argument used in the proof of
Theorem 1 in [14] together with the following lemma.

. : 7 % *
LEMMA 5.2. Let P be the 2 x 3 pattern ( o ) Then there exists a partial
* 7 x

strict contraction Q subordinate to P which does not admit contradiction completion.

G )
G G

|

where 6 > 0 is sufficiently small. Arguing by contradiction, assume that
1 1 :
z — =4 —= =4
= F9 G
1 1
| —=—6]e ? ——4)e
(=) (#-°)

is a partial contraction for some x € A. The first row then gives

ef-+(-9)

On the other hand, the matrix

Proof. Take

(5.2) llz)f? = ||zz* = —6— 26
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is not a contraction. Hence for ||z|| sufficiently small the matrix

)
(-9 ()

is also not a contraction. Taking 6 > 0 small enough, in view of (5.2) we obtain a

contradiction with Q being a partial contraction. |

For the case when A is the algebra of all n x n matrices, or, more generally, the
algebra of all linear bounded operators in a Hilbert space Theorem 4.1 (as well as
Theorem 5.3 below) was proved in [15], see also [16).

For contraction completions we have the following result.

THEOREM 5.3. Assume that A is a unital (PC) algebra. Let P be anm x n
pattern which is permutation equivalent to a block diagonal form (5.1). Then every
partial contraction with specified entries from A subordinate to P admits a contraction

completion.
The proof is analogous to the proof of Theorem 5.1.

The first author was partialy supported by a NSF Grant.
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