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DILATION THEORY FOR SUBALGEBRAS OF AF ALGEBRAS

MICHAEL THELWALL

INTRODUCTION

W. B. Arveson has shown in [1] that a (Hilbert space) representation of an alge-
bra has a Stinespring dilation if and only if it is complétely contractive. Since then .
steps forward in dilation theory have been made by P. S. Muhly and B. Solel in [4]
and by V. I. Paulsen, S. C. Power and J. D. Ward in [7]. These were positive results
about the existence of dilations for contractive representations of a class of structured
algebras. V. 1. Paulsen, S. C. Power and R. R. Smith in [6] studied representations of
unital subalgebras of matrix algebras which are spanned by the matrix units which
they contain. These are called finite-dimensional CSL algebras. For a large class of
algebras it was shown that all contractive representations are completely contractive
and that all representations which are contractive on a’set of matrix units are con-
tractive on the whole algebra. Examples of other algebras with contractive but not
completely contractive represeﬁtations were given. In this paper we identify a class of
subalgebras of AF algebras for which all contractive representations are completely
contractive, based on a criterion on the fundamental relation, a concept introduced
by S. C. Power in [9]. It is also shown that all ultraweakly continuous contractive
representations of certain atomic CSL algebras are completely contractive. These

results are generalizations of the finite-dimensional CSL result in [6].

The definition of a chordal graph is given in Section 2. A subalgebra of an AF
algebra is chordal if it has a fundamental relation with chordal underlying graph. The
result in [6] that contractive representations of chordal finite-dimensional algebras are

completely contractive is extended in Section 2 by showing that all chordal subalgebras



276 MICHAEL THELWALL

of AF algebras are limits of finite-dimensional chordal subalgebras. 'fhis has to be
proven in several steps due to the complexity of the process of increasing a non-chordal
graph into a chordal graph.

This paper is taken from my thesis and I would like to thank my supervisor,

Professor S. C. Power for all his help, encouragement and advice.

1. PRELIMINARIES

Let B be an AF C*-algebra, the closed union of an increasing chain B;, By, ...
of finite-dimensional *-subalgebras. For a subspace N of B write N, for N N B, and
N for the union of all these. We say that N is inductive if Ny, is dense in N. Let
C be an inductive masa in B such that each C, is a masa in B,,, called a cannonical
masa. Let M be a C-bimodule in B. (CM C M, MC C M and M is closed.) It is a
key result of S. C. Power [8, Lemma 1.3] that all C-bimodules are inductive.

A partial isometry v in B is said to be C-normalising if vCv* C C and v*Cv C C.
For a functional z in the maximal ideal space #(C) of C and a C-normalising partial
isometry v, another functional z, is defined by z,(c) = z(vcv*) for all ¢ in C. The
fundamental relation of the C-bimodule M is the binary relation defined on &(C) by
zR(M)y if there js a C-normalising partial isometry v in M such that y = z,. This
was introduced in [9, Chapter 6] to study subalgebras of AF algebras.

It is always possible to specify a set of matrix units for each B, such that they
are all C-normalising and the matrix units for B, are all sums of matrix units for
By 1. We shall fix such a system. It is shown in [9] that in the above definition of the
fundamental relation, if the‘partial isometries are replaced with matrix units from any
chosen system then the new definition is equivalent to the old. This is used to relate
the fundamental relation, which is dependant only on M and C, to finite-dimensional
spaces. In fact zR(M)y if and only if for all large enough n there is a matrix unit
of B, in M implementing this relation. A result in [11], the AF spectral theorem,
states that a matrix unit w is in M if and only if whenever = and y are functionals’
with y(c) = z(wcw*) for all ¢ in C then zR(M)y.

The binary relation R(M) also defines a directed graph with vertices ¢(C) and
arrows (z,y) for z and y with zR(M)y. The underlying graph of R(M) is the under-
lying graph of this directed graph, with the same vertices and arcs {z,y) for all z and
y with zR(M)y.

All of the above holds for finite-dimensional CSL algebras since they are bimod-
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ules for a masa in the containing matrix algebra.

A representation p of a subalgebra A of a C*-algebra is an algebra homomorphism
taking elements of A to operators on a Hilbert space, H say. It is completely con-
tractive if the induced maps p(ny: A® M(n) — L(H) ® M(n) : (ai;) — (p(aij)) are
contractive for all positive integers n, where the tensor product algebras are treated

as algebras of n x n operator matrices on the direct sum of n copies of H.

2. CHORDAL BIMODULES

In [6] it was shown that any Hilbert space representation of the chordal finite-
dimensional CSL algebra which is contractive on the matrix units is completely con-
tractive and therefore has a Stinespring dilation. We shall see that this result extends
to bimodule algebras which have a fundamental relation, with respect to some canon-
ical masa, which has a chordal underlying graph.

A cycle (of length r) in a graph G is a finite sequence z, . .., z, of vertices with
the first equal to the last, z1,..., 2, all distinct and consecutive vertices adjacent in
G. A chord for the cycle is an arc between two non-consecutive vertices. ‘The graph
G is a t-cycle graph if every cycle in G of length at least ¢ has a chord in G. Similarly
a binary relation is a t-cycle relation if its underlying graph is a t-cycle graph. G is
chordal if it is a 4-cycle graph.

In the finite-dimensional case, if N is a Cp-bimodule in By, then it is spanned by
the matrix units of B, which it contains, and the fundamental relation of N over C,

corresponds to exactly these matrix units.

LEMMA 2.1. Let N be a Cn-bimodule contained in M,. If R(M) is a t-cycle
relation then for every k-cycle in N with k>t there is an integer m > n such that

M, contains a chord for all copies of this cycle in the Cy,-bimodule generated by N.

Proof. Suppose that R(M) is a t-cycie relation and- k is the length of the longest
chordless cycle in N with k£ >¢. The arcs in the graph of N correspond to matrix
units. Fix a cycle of length & in the graph of N, this corresponds to a sequence
v1,...,vx of distinct matrix units of B, with vy ---v; = v} and for each i, one of v;
or v} isin N.

Let z be a functional in ¢(C) with z(viv}) = 1. Set = z;. Define functionals -
zy,...,Zx inductively as follows. Let z;.,(¢c) = z;(vicv?) for all ¢ in C, and for

i=1,...,k Now z;R(M)z;y) or z; 1 R(M)z; fori = 1,...,k—1 and since z44; = =,
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it is also true that z;R(M)x or zzR(M)z,.

The k-cycle z;,...,z; has a chord in R(M) so for some integers i and j with
|# = j1>2 and {i,5} # {1,k} there is a matrix unit v(z) in M so that z; =
= (%j)u(z)- Assuming that v(z)v(z)" is a subprojection of vjv} let e(z) = vivy---
- -vj_1v(z)v(z) vy - -v3v] so that z(e(z)) = 1. If y is another functional in ¢(C)
with y(e(z)) = 1 then the cycle y;,...,y: defined as in the above paragraph has a
chord in R(M) between y and y; since 3 = (¥j)u(z)- The space v;v}C is unital
so its maximal ideal space is compact, hence by an identification with the subspace
{z : z(v1v]) = 1} of $(C) this is also compact. With E(z) = {y in ¢(C) : y(e(z)) =
= 1} the set {E(z) : z(v1v}) = 1} is an open cover of the above compact space.
Let E(z,),...,E(x,) be a finite subcover. Now e(z) ot e(z,) > vyv}, and the
multiplicities can be eliminated by finding matrix units ey, ..., e, which sum to v, v}
with e; < e(z;) for all 7. Reversing the process used to obtain e(z;) from a matrix
unit, a partial isometry finite sum of matrix units v; in M can be obtained from e¢;
for all i. For every functional y with y(viv}) = 1 if the cycle y,. ..,y is produced
as in the second paragraph then there is exactly one of vq,...,v; which provides a
chord for it. The number m greather than n can be chosen large enough so that all
of vy,...,vs are in My,. In the Cp,-bimodule generated by N and these matrix units

the original k-cycle is split up into many k-cycles but each one has exactly one chord.

The above lemma is not enough to ensure that a bimodule with a t-cycle funda-
mental relation is the limit of finite-dimensional -cycle bimodules, as a chord for a
k-cycle might generate a longer chordless cycle.

Suppose that N is a C,-bimodule in B,. As a finite dimensional C*-algebra, B,
is isomorphic to a direct sum of matrix algebras, say for some r the sum M(3,)®- - -
M(i,), with the isomorphism carrying C, onto the diagonal. With respect to this
we can also write N as the direct sum, N = frBlN(i) where N(i) is the part of N in

i=

M(i). Considering the minimal projections in Cy, for some m > n the C,,-bimodule
r J(i)

generated by N can be written as @ @ N(, j) where for all j the bimodule N(z, 5)
i=lj=1

‘ s(i)
is isomorphic to N(3), which is a subspace of € N (3, 7).
: . i=1
LEMMA 2.2. Let n be a positive integer. If R(M ) is a t-cycle relation then there is

an integer m and a *-algebra D which contains DNC as a masa, with B, C D C Bn,
and M N D has a t-cycle graph.
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Proof. We define inductively, an increasing séquence of finite-dimensional
C"-algebras, at each stage splitting the algebra up into factors. If the part of M
in a factor has a t-cycle relation then we leave this factor unchanged for the next
stage. If there is a cycle of length at least ¢ then we shall use Lernma 2.1 to replace
this factor with a direct sum of factors of the same size in such a way that the part
of M in each one has an extra chord for a cycle in its relation. The notation is
complicated. Let B, = D(1) ® ... ® D(s) be the decomposition of B, into finite
dimensional factors. Let S(1) = {(1),...,(s)}, let D(S(1)) = Ba, let D((?)) = D(:)
and let m(1) = n. Define a sequence of *-subalgebras of B inductively as follows.

Suppose that D(S(r)) = @D(€) is a direct sum of finite-dimensional factors in
By(r) indexed by a set S(r) of finite sequences ¢ of length », with masa D(S (1)) ncC.
If D(¢) is in this direct sum then N = M N D(¢) is a D(S(r)) N C-bimodule. If it
does not have a t-cycle fundamental relation then let m(§) be the integer obtained
from N by Lemma 2.1. Since S(r) is finite we can let. m(7r -+ 1) be the largest of all
the m(€) for § in S(r). .

Suppose that £ = (ty,... ,tr) is a sequence in S(r). If D(E)NM is a t-cycle
bimodule then let D((t1,..., t,, 0)) = D(¢) otherwise, with k the multiplicity of the
bimodule generated by D(€) in Bu(41) let D((t1,. .., tr, 1)),. .., D((t1,. - 1y, k)) be
defined to be the k full factors in that bimodule. Notice that if ¢ > 1, M N D((¢y,. .

.-+, tr, 1)) contains at least one more matrix unit of By(r41) than M N D((ty,. . ., ¢,))

]

does of By(r). Let S(r + 1) be the set of all sequences £ of length n + 1 for which
D(£) has been defined, and D(S(r + 1)) the direct sum of all of these. The sequence
D(S(1)), D(S(2)),. .. is now well defined.

Suppose that &€ = (i,11,...,1¢,, 1)' is in S(r + 2). By construction D(£) is iso-
morphic to D(i) and since the sequence ¢ does not end in 0, the bimodule MnN
ND((z,1y, - ..,1)) does not have a t-cycle relation. In fact none of AN D((7)),..., MN
ND((i,t1,.-.,t.)) have a t-cycle relation, so by construction M N D(€) must contain
at least 7 + 1 more matrix units of By(,42) than M N D(7) does of B,. However,
M N D(€) contains at miost dim D(7) matrix units of Bp(r42) so r+1 < dim D(3). Let
m = m(max{dim D(1),...,dim D(s)}) and let D = D(S(m)). Since the sequence is

constant at S(m), M N D must have a {-cycle fundamental relation. |

THECGREM 2.3. If R(M ) is a t-cycle relation then there is an increasing sequence
of positive integers m(1), m(2),... and a sequence Dy, D, ... of *-subalgebras of B
with B, C Dn C Bjpny forn =1,2,... and M N Dy, has a t-cycle graph.

Proof. Apply the lemma to get D; and m(1) with B; C D; C By and M N D,
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has a t-cycle graph.
If Dy,..., Dy have been defined then apply the lemma to Bp,(n)4+1 to get Dnyy
and m(n + 1) with the required properties. |

If M is an algebra containing C' and R(M) is a chordal relation then by the
theorem it is the limit of an increasing sequence of finite-dimensional chordal CSL
algebras. If p : M — L(K) is an algebra representation which is contractive on the
matrix units then p is completely contractive, since it is completely contractive on
the finite-dimensional chordal subalgebras from [6].

We will construct an example of a subalgebra of an AF algebra with a chordal
fundamental relation, writing it as the limit of non-chordal subalgebras with respect
to some increasing sequence of finite-dimensional *-algebras with closed umion the
whole AF algebra. Thus the fundamental relation can be used to see through an
éppavrantly non-chordal situation.

Let D, be the finite-dimensional *-algebra which is the direct sum of D(n, 1), ...
..., D(n,2n) where each of these subalgebras is a copy of the 4 x 4 matrix alge-
bra M(4). Embed D, in D,y as follows. Let D(n + 1,i) = D(n,i) fori =1,...,
.o+;2n — 2. Let D(n,2n — 1) be embedded in D(n 4+ 1,2n — 1) ® D(n + 1,2n) and
~D(n,2n) in D(n+1,2n+1) ® D(n+1,2n+2) both using standard embeddings. Let
D be the limit algebra of this sequence. )

Define the following subalgebras of M(4) as the span of the matrix units which
they contain: T = (e13, €93,€24),U = (T €14),W = (U,e12), Z = (U,ex). These
algebras will be used to define a chordal bimodule. The graph of U is not chordal but
the graph of all of the other algebras is chordal. '

Define a chordal algebra N by specifying that

NN D(n,i)is a copy of W if i< 2n — 2 and ¢ is odd,

NN D(n,i)is a copy of Z if i< 2n — 2 and 1 is even,

NNnD(n,i)isacopy of Uifi=2n-1or,

NN D(n,i)is a copy of T if i = 2n.

Each N, is isomorphic to the direct sum of 2n — 2 copies of W and Z with a
copy each of U and T so it is not chordal for any m.

Let Gp = D(n,1)®...® D(n,2n-2)® D(n+1,2n~1)® D(n+1, 2n)® D(n, 2n).
The algebra G, N N is always chordal and the increasing sequence Gy, G5, ... has
tlosed union D. This shows that N is chordal, and in fact this sequence is the one

produced by the proof of Theorem 23.
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3. CHORDAL ATOMIC CSL ALGEBRAS

Let L be an atomic CSL on a Hilbert space H. (A lattice of commuting pro-
jections contained in an atomic von Neumann algebra.) Let {.} be a sequence of
mutually orthogonal rank one projections which are atoms of a von Neumann masa
containing L. Let @ be the binary relation defined on N by Q7 if there is an operator
a in alg L such that g;ag; is non-zero. Let A be the set of all operators in L(H) with
giaq; = 0 if iQj is false. Since an atomic CSL is synthetic (see [3] for this and general
CSL theory) and the algebra A is ultraweakly closed coi’1taining a von Neumann masa
with latA = L it follows by definition that A =algL. .

We say that the atomic CSL algebra A is chordal if the underlying graph of Q

is chordal. In fact this is a property of L not dependant on the particular choice of

{qn}'

PropPosITION 3.1. If A is chordal and p is a contractive ultraweakly continuous

representation of A then it is completely contractive.

Proof. The space (q1 + - + ¢a)A(q1 + -+ + ¢a) is chordal if A is and then

p is completely contractive on it. For any operator a in A, the sequence (q; + - -
“+ qn)a(q1 + - - - + gn) converges ultraweakly to a. Now for any operator matrix
(ai;) in A® M(k) the sequence of operator matrices ((q1 + - - -+ 4¢n)aij(q1 +- - -+ ¢n))
converges ultraweakly to (a;;). This means that p must be completely contractive. W
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