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IDEALS IN THE
MULTIPLIER ALGEBRA OF A STABLE C*~-ALGEBRA

MIKAEL RORDAM

1. INTRODUCTION

G. Elliott proved in [6] that if B is a stable non-elementary matroid C*-algebra,
then M(B) contains exactly one non-trivial ideal apart from B: the norm closure of
the set for all X in M(B) where X*X is of finite trace. H. Lin [8] extends Elliott’s
result to more general simple AF-algebras B, and he proves for example that if B is
stable and has exactly n distinct extremal traces (with respect to some normalization),
then M(B) has precisely 2" — 1 non-trivial ideals apart from B, each being the norm
closure of the set of X in M(B) with 7(X*X) < oo for some trace 7 on B.

Elliott extends these results further in [7], where he proves that the lattice of
ideals of M(B) is isomorphic to the lattice of ideals in D(M(B)), the abelian local
semigroup of equivalence classes of projections in M(B), for all separable AF-algebras
B. For simple B, this again is related to traces on B (however, in general in a more
complicated way than above, where the set of extreme traces was assumed to be
finite). These results have been further generalized by S. Zhang [10] to include all
C*-algebras B with property FS.

~ This paper concerns the ideal structure of M(A ® K) for unital C*-algebras

A. Given a bounded sequence {z,}3%; in (a matrix algebra over) A, one can in a
natural way associate a “diagonal” element X = Diag(z;, z2,...)in M(A®K)‘ Given
another diagonal element Y = Diag(y1,y2,...) in M(A® K), it is determined when
Y belongs to I(X), the ideal in M(A ® K) generated by X, in terms of asymptotic
comparison in A ® K of the sequences {z,}3,, and {y2}3%, (see Theorem 2.6).

In Section 3, it is proved that for unital C*-algebras A, the corona algebra
M(A® K)/A® K is simple if, and only if, either A =M, (C) for some n € N or
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A is a purely infinite simple C*-algebra. (Recall that a unital simple C*-algebra A,
different from C, is said to be purely infinite if for all non-zero z € At there is r € A
such that r*zr = 1.). In Section 4 it is proved that two ideals of M(A ® K) both
arising from traces, as described above, are equal if and lonly if the traces are ma-
jorized by a multiple of each other. Moreover, it is proved that all non-trivial ideals
in M(A ® K) apart from A ® K arise from a trace, under the assumptions that A
has only finitely many extremal traces and the comparison theory of A is determined
by the traces on A. -
I thank J. Cuntz and U. Haagerup for helpfull discussions.

2. IDEALS OF M(A ® K) AND ASYMPTOTIC COMPARISON THEORY

Following the lines of J. Cuntz [3], [4], [5] and B. Blackadar [1] we consider
below comparison theory of positive elements (rather than the projections) in a
C*-algebra.

For each € > 0 define continuous functions f, : Ry — Ry and g, : Ry — Ry by

0 tsf -1 1<
f@)=( e l(t—¢c) e<t<2, g (t) = {:_1 t;s
1 1> 2% ¢

In the following, let A be a unital C*-algebra. Let z,y € A*. Write y i,. z if

n

L

y< E TjET;
j=1

A

for some r; € A, and let y < z denote that y il z. Let further y % z and y én z
denote that f.(y) 2 z, respectively fe(v) Rn z, for every € > 0. Write z ~ v,
respectively z. ~ y, if z < yandy < z, respectively z 2 yand y = z. Let C(y, z)

denote the least integer n for which y %, z,and put C(y, z) = oo if no'such n exists.

LEMMA 2.1. Let z,z0 € At with z <z and put r5 = :ﬁgg(zo),é > 0. Then

lim ||z — rszorj|| = 0.
§—00

" Proof. Put t5 = z3(1 — g5(z0)zo)%. Then
z — rszory = t4t;,

and ‘
tits = (1 - g5(20)z0) 72(1 — gs(z0)20)* <



IDEALS IN THE MULTIPLIER ALGEBRA OF A STABLE C*-ALGEBRA 285

< (1 - gs(z0)zo) Fzo(1 ~ gs(z0)zo) .
Hence
lim ||z = rszor§|| = lim [[¢35]] = 0.
[ ]

LEMMA 2.2. Let z,y € At with ||z — y||<e. Then foc(y) K rar* for some r € A
with ||r]| <e?.

Proof. Since y —€ - 1<z, we get

ef2e(8) < Foe (1) ( = €1) fae ()% < fre(9) 22 foc (0) 5,

and so we may take r = e"%fk(y)%. m
i .

LEMMA 2.3. Let z,y € At, let ¢ > 0 and § >0, and assume that y 2. Fa5(x).
Then |

F )< rifs(@)rs
J=1
for some r; € A with ||rj|| < (e7Y|ly|| + 1)%.
Proof. We have

n
y<yo = ) 5jf26(z)s]

j=1
for some s; € A. By Lemma 2.1, there is t; € A such that ||y — t1yot}||<e/2,
and from Lemma 2.2 f,(y) < tatiyotits for some t3 € A with ||ta]| ge"%. Put r; =
= tztls]' fgg(z)% Then
r fs(z)r] = tat1s; fas(z)sjtits,

n

and so f.(y) < er fs(z)r]. Also rjri <tatiyot]t;, whence
ji=1
75117 < tell? - Nlewwotill < €™ 3 (lyll +€/2).
|
LEMMA 2.4. Let z,z0 € At with z < zo, and let € > 0. Then fa.(z) = fe(20).

Proof. Put r = z3(1 — f.(20))%. Then

rr*t = — a:gf,(:co)'z%,
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and

r*r = (1 - fo(z0))?2(1 - fo(20))? <
(1= fe(zo))Fzo(1 — fe(zo))¥ <26 1.

Thus, from Lemma 2.2,
fae(z) 2 x%fe(zo):c% 3 fe(zo).

Let I4(z) — or just I(z) — denote the closed two-sided ideal in A generated by
z €A

LEMMA 2.5. Let z,y € A*. Then y € I(z) if only it for each ¢ > 0 there are
6 > 0 and n € N such that f.(y) 2 fs(z).

Proof. Clearly fs(z) € I(z) for all § > 0, and so if f,(y) 3 f5(z) for some 6 > 0
and some n € N, then f,(y) € I(z). Furthermore, if f,(y) € I(z) for all € > 0, then
y € I(z).

Suppose now that y € I(z), and let € > 0. Approximate y? closely enough with

an element z in

U rs(ss(=))

§>0

where I?'8(f5(z)) denotes the algebraic ideal in A generated by fs(z), to obtain
|y = 2*2|| <€/2. Now, z*z € I*'8(fs(z)) for some § > 0, and so

m m 1 m
= erfg(:c)Sj (S % erfﬁ(x)r; + §Zs;f6(:c)s]') ,
j=1 i=1 i=1

for some m € N and rj,s; € A. Hence, from Lemma 2.2,

fe(y) R 2%z Rom fo(z).
[ |

Let {f.} be an approximate unit of projections for K, the C*-algebra of com-
pact operators, where fo = 0 and f, — f,_1 is one-dimensional. Let A be a unital
C*-algebra, and put e, = 14 ® fa, so that {e,} is an approximate unit-for A ® K.
Call an element X € M(A ® K) diagonal (with respect to {e,}) if there is a strictly
increasing sequence {a(n)} of integers with a(0) = 0 such that

[X,ea(n) = €a(n-1n] =0, n€N.
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Write X = Diag(z,, z,...), where
Tn = X(ea(n) - ea(ﬂ—l))) neN.

Conversely, if {z,} is a bounded sequence with z,, € M, (A), then upon identifying
Mkn(A) with
(C‘a(n) - ea(n—l))M(A ® I()(ea(n) - ea(n—l))

for appropriate a(n), we have X = Diag(z, z2,...) for some X € M(A® K).

A finite segment Diag(zn,Znt1,-..,2Zm), m2n, of a diagonal element may be
viewed as an élement of A ® K, or as an element of M (A) for suitable k.

Let {z;} and {yj} be sequences of positive elements in matrix algebras over A.
Write {y;} ~n {z;} EVm IRV K 2EIm >m:

. . < .
Dla‘g(yk) Ye41,-- -, yk’) ~n Dlag(wm; Tm4ly-- oy wm’)-

(The comparison of the diagonal segments is relative to A® K or to some large enough
matrix over A.)

THEOREM 2.6. Let A be a unital C*-algebra, and let X = Diag(z1,za,...)
and Y = Diag(yi,vs,...) be positive diagonal elements of M(A® K). ThenY €
€ I(X)+ AQ® K, if and only if for each € > 0 there are § > 0 and n € N such that
{Fe(9i)} = {f5(z5)})- |

Proof. Fix increasing sequences {a(j)} and {8(;)} of integers such that

oo o0
X =3 wi(cat) —eag-n), Y =3 _vilepi) = esi-1)-
ji=1 Jj=1
Suppose that Y = I(X)+A®K. Upon replacing X by Diag(14, 21, z, . ..), which
does not alter the equivalence class of {z;}, we way assume that, in fact, Y € I(X).

Let ¢ > 0. From Lemma 2.5 there are § > 0 and n € N such that

fe2(Y)SYo = Z R;fs(X)R;,

i=1

for some R; € M(A®'K). Put p = E [|[Ri]|. For each m € N there is & € N such
i=1

that :
“(1 - eﬂ(k—l))Rieor(m—l)" < (64")—1) t=1,...,nm

and for each &' > k there is m' 2 m such that
|

||ep(k';/)R,-(1 —‘ea(m:))H < (64,u)"1 i=1,...,n.
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Put
zi = (ep(r) — ep(k-l))Ei(ea(m') - €a(m-1)),

y’ = (ep(k:) - Cp(k-l))YO(ep(k’) - eﬂ(k—l));

v' =) zfi(X)z
i=1

<= EziDiag(fo(zm), fs(zmt1), -+, fé(icm’))zf> .

i=1
Then Diag(f./2(yx), fej2(ve41), - -, fey2(un)) <o/, and a brief computation shows
that

Y — "Il < D 2Rl [II(1 = epgi-1)) Rieaqm-1)ll + llesny Ri(1 = eamn)ll] <

i=1
<1/16.

Hence, from Lemma 2.2, fy/3(y') 2 ¥"’. Using Lemma 2.4 and the fact that
Je < fiy2 0 fey2, we get

Diag(fe (yr), fe(We+1), -+ - fe(urr)) < fry2(Diag(fepa(un), fep2(ursr), - ooy fepo(unr))) 2

’i-fl/S(y’) 2 ‘!/” i“ Diag(fa(:cm), fJ(zm+1)» ERE) f6(1'm')),

and so {f(y;)} 2 {fs(x;)}-
Suppose conversely that {f. (y;)} 2 {fs(x;)} for some ¢,6 > 0 and n € N. Find
integers my, k1, Iy, k2, ma, k3, l2, . .. (in that order), so that

l=m <my<...,

l=hi<h<...,
by <ka<...,

and
Diag(fe(¥i.): - - fe(Ya=1)) <n Diag(fs(z1), .-, f5(Tmy=1)),

Diag(fe (Ui, ), - - -+ fe(Uks-1)) ~n Diag(fs(z1),- -, folzi, — 1)),

Diag(fc(yka)) ceey fs(yk.—l)) :'n Diag(fa(l‘m;), sy f6($ﬂ13-1))’
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By Lemma 2.3 and because fgg < fijz20 fe, there are elements r; j and s; 5,1 =.1,.. n.
and j €N, in A® K with |[ri ||, l}s: ;1| < QIY| + 1)3 such that

n

Diag(f?t(ykl)a <y fz:(?/k,-l)) $ Z ri,lDia'g(f6/2(1"1)) ceey f6/2(1'mz—l))"’:,11
i=1

Diag(f2€(yk:)) LR f2€(yk3—l)) < Zsi,lDiag(fa/z(icl), ceey fﬁ/g(zlz_l))sz‘-'!l,

i=1

and such that the sums

8
3

j=L i=1

are strictly convergent in M(A ® (). Hence
(1= ep(iy 1) e (Y)Y Rifspa(X)RY + ) Sifsy2(X)S;,
i=1 i=1

which proves that fao (V) € I(fs/2(X))+ A® K (C I(X) + AQ® K). |

COROLLARY 2.7. Let A be a unital C*-algebra, and let X = Diag(z1,z2,...) be
a diagonal element in M(A® K)*. Then I(X) = M(A® K) if and only if there are
6§ > 0 and n € N such that for each m € N there is m' > m with

14 < Diag(fs(zm), - .-, fs(zm?))-

Proof. Set y; = 14 for all j. Then {y;} 2 {fs(z;)} if and only if for each m €
€ N there is m' <m with 14 i Diag(fs(zm), ..., fs(xm:)). Since Diag(yi,¥2,...) =
= 1; fs(y;) = y;,0 < § < 1; and since {y;} 2, {fs(z;)} implies I(fs5(X)) = M(AQ®
®K), the corollary follows from Theorem 2.6. |

We end this section with a result, rephrasing G. Elliott [6], stating that M(AQK)
has a large supply of diagonal elements.

PROPOSITION 2.8. Let A be a unital C*-algebra.

(i) Forevery Y € M(A®K), there is a diagonal element X € M(A® K)* such
that [ X)+AQ@K =IY)+AQ®K.

(ii) Assume I and J are ideals of M(A ® K) both containing A® K and such
that I ¢ J. Then there is a positive diagonal element in I\J.

Proof. (i) We assuine that Y ¢ A ® I’ (otherwise, take X = 0). As in Elliott’s
proof of [6, Theorem 3.1 ], we have

Y=y+Y1+Y2+7Y;
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with yo € A® K;Y; € I(Y) and

Y; = Diag(y1j,92,---), 3=1,2,3,

diagonal with respect to some fixed approximate unit {e,} for A® K. Put

X = Diag(y1,1,%1,2, 1,3, Y2,1, - - -)-

Then
I(X)=1I"1,Y2,Y3) CI(Y)C I(y0,Y1,Y2,YV3) CI(X)+ A® K,

which proves I(X)+A® K = I(Y)+ A® K. (Replace X by X* X to get X positive.)
(ii) Choose Y € I\J and use (i) to find a diagonal X € M(A ® K)t with
I(X)+A®K=IY)+ AQ K. Then X € I\J. |

3. SIMPLICITY OF M(AQ K)/A® K

It is decided in this section for which unital C*-algebras A the corona algebra
M(AQ® K)/A® K is simple (Theorem 3.2). Recall that A is finite if u*u = 1 implies
uu* = 1 for u € A, and that A is stably finite if M,(A) is finite for all n € N. A
simple unital C*-algebra A is purely infinite if A # C and for every z,y € At with
z # 0 there is r € A with y = r*zr. If A is purely inﬁpite and simple, then so is
M, (A) for all n.

LEMMa 3.1. Let A be a unital simple C*-algebra which is neither purely infinite
nor finite dimensional. Then there is a sequence {z,}3, in A% satisfying

(1) znzm =0, n#m, .

(i) [lzall = 1,

(1) C(la,za) 22",

(iv) 7(f:(za)) 27" for each normalized positive trace T on A and each € > 0,
and

(v) DT Rz, for alln and all m>n + 1.
j=n+1

Proof. From the hypothesis that A is not purely infinite and A # C, there is
Yo € A% with ||yo|l = 1 and C(14,yo) > 2. We construct for each n € N, z,,y, and
zn in AT and u,, € U(A) such that

(2) Zn,Yn € fi/3(yn-1)Af1/3(Yn-1),
(b) zn, =zp2z, and yp2z, =0,

(C) Ty = unynuz

(d) |lzall (= llyall) = L.
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Indeed, let y,_1 € AT with ||y,—1]| = 1 be given and note that J173(yn-1) # 0.

Since A is simple and not finite dimensional we can find

: +
'y € f173Wa-1)Af173(Yn-1)

with ||z']| = ||y|| = 1 and 2’ Ly'. Put 2z, = 1—- f1/6(y') and ¥ = f1;3(y') (# 0). From
[9, Lemma 3.4 ] ther¢ is u, € U(A) such that

(B =) 2'Az’ Nu,y” Ay ul, # {0}.

Choose z,, € Bt with ||za|| = | and set y, = ulz,u,. It is now easy to check that
T, Yn, 2n and u, satisfy (a) to (d).

We prove next that {z,} satisfy (i) to (v). Note that &, ym € f1/3(yn)Af1/3(vn)
if m>n+ 1, and so (using(d)),

‘Um»ymgfl/G(?/n); m2n+1.

In particular, z,, Lz, for m2n+ 1, wich proves (i). Also, for m>n + 1,

»m

7 2 < fryolun) = uhfijs(Ea)un X zn,
j=En+1

and this proves (v).

We also have fe(wm)Lfe(ym) and fe(zm), fe(ym) < fiy6(bn) for m>2n+1 and for
all € > 0. Let 7 be a positive normalized trace on A, and put o, = 321(1) T(fe(xn)).
Then

200 K T(f176(Un-1)) S an-1, (o =1),

which proves a € 27" and (iv) follows.
Put k, = C(1a,2,) and ko = C(14,y0) (=2). Let I, be the least integer > k,, /2.

Then there are elements ry,...,7, and s1,..., s, in A such that
In n
14< E 7'j:c,,r; + 5 sjz"s}'.
j=1 ji=1

Put t; = rjzn + sjzpu),. Then
ti(zn + yn)tj = riTar] + 5;T0s],
and so C(1a,2n + ¥,) < In. Since

Tn + Yn < f176(Un-1) = W fry6(Zn—1)un R ey,
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we find that
2knc1=2C(14,20-1) €204, 20 + yn) €2 <kn + 1.

This proves that k, > 2", and hence (iii). [ ]

THEOREM 3.2. Let A be a unital C*-algebra. Then M(A® K)/A® K is simple
if and only if either A =M, (C) for some n € N or A is a purely infinite simple
C*-algebra.

Proof. If A =M,(C), then A® K =K and M(K)/K =B(H)/K is simple.
Assume that A is simple and purely infinite, and let I be an ideal of M(A @ K)
properly containing A® K. Then from the Proposition 2.8, there is a positive diagonal
element X = Diag(z;,z2,...) € I\A® K. Now since llr&“z,” # 0, there is § > 0
such that fs(z;) # 0 for infinitely many j € N. Hence, f(]n' each m € N there is m’ > m
such that f5(z;) # 0 for some j with m < j <m’, and since A is purely infinite,

14 N Diag(fé(-'cm)) BT fé(l'm’))'

From Corollary 2.7 it follows that I(X) = M(A® K), and so I = M(A® K), and
this proves that M(A ® K)/AQ® K is simple. '

Suppose now that A is not simple, and let J be a non-trivial ideal in A. Then
J ® K is a non-trivial ideal in A ® K, and

L={XeMA®K)|X(A® K)CJ® K}

is a closed two-sided ideal in M(AQ® K). Put I = Iy+ A® K. Choose « € J*,2 # 0,
and put X = Diag(z,z,...). Then X € [ CITbut X ¢ A®Q K,andso I # AQ K.
Assume — to reach a contradiction — that I = M(A ® K). Then

Lmagry = X +y

for some X € Iy and y € A® K. Let {f,} be an approximate unit of projections for
K, and put e, = 14 ® fn. Choose n large enough such that ||[(1 — e, )y(1 —e,)|| < 1.
Then

(1—en)=(1=e)X(1=en)lf <1,

and since 1 — e, is a projection, there is Z € M(A ® K) such that 1 — e, =
=Z(1-e,)X(1 —ey). Thus 1 — e, € Iy, contradicting the fact that

em —€n=en(l—e)gJOK

for m > n. Hence I # M(A® K) and M(A® K)/A® K 1s not simple.
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Suppose finally that A is simple, but not finite dimensional and not purely in-
finite. Let {zn} be the sequence in A% constructed in Lemma 3.1, and put X =

= Diag(z, 2, ...). Then for every § > 0,m € N and m’ > m we have

C(La, Diag(fs(zm), -, folem) = C | 1a, Y fo(z;) | >
| j=m

'
m

2C 14, ) 25| 2C(1a,2m-1)22™".

| j=m
From Corollary 2.7, this implies I(X) # M(A ® K). Since ||z;|| = 1 for all j € N,
X ¢ A® K, and it follows that A® K C I(X) C M(A® K) and I(X) # AQ®
K, M(A® K). ‘"

REMARK 3.3. The class of C*-algebras B with M(B)/B simple, when B is not
assumed to be isomorﬁhic to A® K for some unital C*-algebra A (in particular, when
B is non-stable), is more complicated to describe:

If B is a simple AF-algebra and all traces on B extend to bounded traces on
M(B), then M(B)/B is simple (see [6] and [8]). ‘

If B is such that M(B)/B is simple and C is unital, then M(B® C)/B& C =
= M(B)/B is simple.

Let A be a simple unital C*-algebra which is not finite dimensional or purely
infinite, so that M(A ® K)/A® K is not simple. Let I be a maximal proper ideal of
M(A®K). Then AQK CI,AQ K # I and M(I) = M(A® K). Hence M(I)/I is

simple and I has non-trivial essential ideal.

REMARK 3.4. In [2] it is proved that A ® K is algebraically simple if and only if
A is simple and not stably finite. It is not clear whether this relates to simplicity of
M(A® K)/A® K (this certainly is not the case for AQ K = K ). Still, it appears to
add the mystery of the (maybe vacuous) class of simple C*-algebras which are neither

stably finite nor purely infinite (see also Remark 4.6).

4. IDEALS IN M(A ® K) AND TRACES ON A

Let A be a unital C*-algebra, and let 7 be a (positive, normalized) trace (or
quasi-trace) on A. Extend 7 to a semi-finite trace on A ® K, and to a trace function
on M(AQ® K)* by

7(X) = sup 7(en Xen)
where {e,} is any approximate unit for A® K. As in [6,8], define I, to be the closure
of the set of all elements X in M(A Q@ K) with 7(X*X) < oo. It is easily checked
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that I, is a closed two-sided ideal in M(A® K). Note that if X € M(A® K)*, then
X € I if and only if 7(f. (X)) < oo for all € > 0 (use Lemma 2.2 for this).

Let T(A) denote the set of all positive normalized traces on A. If m, 7, € T(A),
then write 7, 3 79 if there is ¢ > 0 so that ¢cry <73, Write 1y ~ 7 if 1y 2 79 and

<
To ~ T1.

ProrosITION 4.1. Let A be a unital C*-algebra, let T and 7' be in T(A), and
let I, and I+ denote the corresponding ideals in M(A ® K). Then

() A®K CI, and I, £ M(A® K),

(i) I, C L. ifand only if 7' R 7,

(i) Iy = I ifand only if T ~ 7/,

(iv) ifI, is a maximal ideal in M(A® K), then 7 is an extreme point in T(A).

Proof. (i) obvious.
(it) If er’ < 7 for some ¢ > 0 then

T'(fe(X)) <7 (fe(X)) < 00

for each X € I} and each ¢ > 0, and so X € I+. Thus I, C I+.

Suppose now that ' X 7. Let M = (p, & @r)(A)', where ¢, is the
GNS-representation of A with respect to 7, and note that 7 and 7’ extend to traces
7 and 7 on M with 7 2 7 For each n € N find a projection p, in M with

2-(n+1r1(p.) > #(p,). Put 6, = ;’(p,,) and choose m,, € N such that

*) %6" B (%)"‘ 1,

—_— T 2 500
-Gz
2

From Kaplansky’s density theorem, (¢, @ ¢./)(A; N At) is strong operator dense
in My N M*; and since the maps z — #(z) and ¢ — 7/(z™") are strong operator
continuous, we can find z, € A; N AT with

|:’:(pn - (‘PT ® ‘Pr’)(mﬂ))l < 2_(n+l)6m

bn.

LW =

7' (pn = (7 © 2 )(2a) ™) <

Then 7(z,)< 2" "6, and 7'(2*")> ;6,,. There is a probability measure g on [0,1]
such that

1
"(f@) = [ 100, fec(on).
0
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It follows from () that ;4([%, 11)>(1/2)6a, and so 7'(fi7a(zn)) 2 (1/2)6n. Let kn be
an integer with 1< k.6, €2, and put

X = Diag(z1,...,21,22,...,22,...).
e et N

k, times k. times
Then - -
T(X) =) kat(za) < D 27" knbn <2,
n=1 n=1

and so X € I-. On the other hand,

“ = 00,

thkﬂ

©0
7' (fiya(X)) = ZL 7' (f174(2a)) 2 Z
n=l1 n=1
whence X ¢ I,» and so I; € I,..
(iii) follows from (ii).
(iv) Assume that 7 is not extreme in T'(4). Then M = ¢,(A)” is not a factor.

Choose a non-trivial central projection p in the center of M and put

n(z) = 7(p)"'r(pe), 2(x) =(1-p)~'7((1 - p)z).

Then r, 7 € T(A), 11 # T2 and 75 X 7. Hence, by (ii) and (iii), I, C I;; and I, # I,,
and so I, is not maximal. ) [ ]

REMARK 4.2. If A is a unital simple C*-algebra which is not finite dimensional,
and 7 € T'(A), then one can use Lemma 3.1 (iv) to prove ihat A® K # I,. One has

I, # A ® K under more general assumptions on A.

REMARK 4.3. If 7 and 7’ are distinct extreme points of T((A), then 7 #£ 7/ and so
I, # I/ If T(A) has precisely n extreme points, then T'(A) contains exactly 2" — 1
equivalence classes, and there are exactly 2* — 1 distinct ideals of M(A ® K) of the

form I, for some 7 € 7(A).

For each 7 € T'(A) associate a dimension function d; (cf. Cuntz [4]) on (A® F)t,
where F denotes the algebra of finite rank operators on a Hilbert space, by

d-(z) = cl_i}g 7(fe(x)).

We say that A has comparison given by its traces if for z,y € (A® F)*t,d,(z) <
< d.(y) for all 7 € T(A) implies z 2 y (see also B. Blackadar [1]). It is known that
von Neumann algebras, AF-algebras and purely infinite simple C*-algebras have this
property.
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The following theorem which extends Theorem 2 of H. Lin (8], states that the
lattice T(A)/ ~ is isomorphic to the lattice of ideals in M(A ® K) under certain

(rather strong) assumption on A.

THEOREM 4.4. Let A be a simple unital infinite dimensional C*-algebra which
has comparison given by its traces, and assume further that T(A) has only finitely

many extreme points. Then

(i) Iis a maximal ideal in M(A ® K) if and only if I = I, for some extremal

trace T,

(i1) if I is a proper ideal in M(A ® K) properly containing A® K, then I = I,
for some T € T(A), '

(1i1) there are exactly 2" — 1 proper ideals in M(A ® K) properly containing
AQK.

Proof. Let {71, 72,...,7a} denote the set of extreme points T(A).

(1). From (iii) of Proposition 4.1, I,, € I, if k # I. It suffices therefore to prove
that if I is an ideal in M(A ® K) not contained in any I, then I = M(A® K).

Let I be such an ideal, and find ¥; € I\ I;,Y;20. Put Y = Y1+ Yy + ... +
+Y,, and find a diagonal X = Diag(z;,z2,...) in M(A ® K)* with I(X) = I(Y)
(cf. Proposition 2.8). Then X € I'\ I;;,j = 1,2,...,n, and so, for some § > 0,
7j(fs(X)) = oo for j =1,...,n. Hence

Y dr(fo(m) =00 j=1,..m.

Using the comparison property of A and Corollary 2.7, we find that I D I(X) =
=M(AQ K).
(ii) and (iii). For each non-empty subset o of {1,2,...,n} (= Z), set

-1
I, = J_rewal,j, 7o = |o| Z‘rj,
j€ao
and note that I, = I,. From (i) and the Chinese Remainder Theorem,

M(A® K)/Iy = élM(A ® K)/1I,..
]:

Hence, if I is an ideal in M(A® K') and Iy C I, then I = I,(= I;) for some 0 C T;
and I,, # I,, if 01 # o2. It therefore suffices to prove that Ig/A ® K is simple.
Assume that I is an ideal properly containing A ® K. By Proposition 2.8 we can

find a positive diagonal X = Diag(z;,z2,...)in I\ A® K. Assume — to reach a
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contradiction — that Iy € I. Then again by Proposition 2.8, there is a positive
diagonal Y = Diag(y1,¥2,...) in Iz\I. Since X ¢ A ® K, there is § > 0 so that
Js(z;) # 0 for infinitely many j € N, and 7;(f.(Y)) < oo for j = 1,2,...,n and for
all € > 0 because Y € Is. Hence

S dy(sz) >0 j=1,.,m,

for all m € N, and
kllrgo;d,j(fe(y;)) =0 j=1,...,n

From the comparison property of A we conclude that {f. (%)} < {f5(z:)}. This holds
for all € > 0, and so fiom Theorem 2.6, Y € I(X) C I, a contradiction.’ ]

REMARK 4.5. It is not true in general that maximal ideals of M(A® K) are of the
form I, for some extreme trace 7. Indeed, if T(A) is not the norn closure of conv E,
where E is the set of extreme points of T'(A), then there is 7 € T(A) for which 7 < 7/
for all ' € E. From Proposition 4.1, I, € I+ for all 7’ € E and so , if I is a maximal
ideal in M(A ® K) containing I, then I # I,: for 7/ € E (or for ' € T(A)).

REMARK 4.6. If A is a simple unital C*-algebra which is neither stably finite
nor purely infinite, then by Theorem 3.2, M(A ® K) has a proper ideal properly

containing A ® K. However, A has no traces (and even no quasi-traces).
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