IDEALS IN THE MULTIPLIER ALGEBRA OF A STABLE C^* -ALGEBRA

MIKAEL RØRDAM

1. INTRODUCTION

G. Elliott proved in [6] that if B is a stable non-elementary matroid C^* -algebra, then $\mathcal{M}(B)$ contains exactly one non-trivial ideal apart from B: the norm closure of the set for all X in $\mathcal{M}(B)$ where X^*X is of finite trace. H. Lin [8] extends Elliott's result to more general simple AF-algebras B, and he proves for example that if B is stable and has exactly n distinct extremal traces (with respect to some normalization), then $\mathcal{M}(B)$ has precisely $2^n - 1$ non-trivial ideals apart from B, each being the norm closure of the set of X in $\mathcal{M}(B)$ with $\tau(X^*X) < \infty$ for some trace τ on B.

Elliott extends these results further in [7], where he proves that the lattice of ideals of $\mathcal{M}(B)$ is isomorphic to the lattice of ideals in $\mathcal{D}(\mathcal{M}(B))$, the abelian local semigroup of equivalence classes of projections in $\mathcal{M}(B)$, for all separable AF-algebras B. For simple B, this again is related to traces on B (however, in general in a more complicated way than above, where the set of extreme traces was assumed to be finite). These results have been further generalized by S. Zhang [10] to include all C^* -algebras B with property FS.

This paper concerns the ideal structure of $\mathcal{M}(A \otimes K)$ for unital C^* -algebras A. Given a bounded sequence $\{x_n\}_{n=1}^{\infty}$ in (a matrix algebra over) A, one can in a natural way associate a "diagonal" element $X = \operatorname{Diag}(x_1, x_2, \ldots)$ in $\mathcal{M}(A \otimes K)$. Given another diagonal element $Y = \operatorname{Diag}(y_1, y_2, \ldots)$ in $\mathcal{M}(A \otimes K)$, it is determined when Y belongs to I(X), the ideal in $\mathcal{M}(A \otimes K)$ generated by X, in terms of asymptotic X comparison in $X \otimes K$ of the sequences $\{x_n\}_{n=1}^{\infty}$, and $\{y_n\}_{n=1}^{\infty}$ (see Theorem 2.6).

In Section 3, it is proved that for unital C^* -algebras A, the corona algebra $\mathcal{M}(A \otimes K)/A \otimes K$ is simple if, and only if, either $A \cong \mathcal{M}_n(\mathbb{C})$ for some $n \in \mathbb{N}$ or

A is a purely infinite simple C^* -algebra. (Recall that a unital simple C^* -algebra A, different from C, is said to be purely infinite if for all non-zero $x \in A^+$ there is $r \in A$ such that $r^*xr = 1$.). In Section 4 it is proved that two ideals of $\mathcal{M}(A \otimes K)$ both arising from traces, as described above, are equal if and only if the traces are majorized by a multiple of each other. Moreover, it is proved that all non-trivial ideals in $\mathcal{M}(A \otimes K)$ apart from $A \otimes K$ arise from a trace, under the assumptions that A has only finitely many extremal traces and the comparison theory of A is determined by the traces on A.

I thank J. Cuntz and U. Haagerup for helpfull discussions.

2. IDEALS OF $\mathcal{M}(A \otimes K)$ AND ASYMPTOTIC COMPARISON THEORY

Following the lines of J. Cuntz [3], [4], [5] and B. Blackadar [1] we consider below comparison theory of positive elements (rather than the projections) in a C^* -algebra.

For each $\varepsilon > 0$ define continuous functions $f_{\epsilon} : \mathbb{R}_+ \to \mathbb{R}_+$ and $g_{\epsilon} : \mathbb{R}_+ \to \mathbb{R}_+$ by

$$f_{\varepsilon}(t) = \begin{cases} 0 & t \leqslant \varepsilon \\ \varepsilon^{-1}(t - \varepsilon) & \varepsilon \leqslant t \leqslant 2\varepsilon, \quad g_{\varepsilon}(t) = \begin{cases} \varepsilon^{-1} & t \leqslant \varepsilon \\ t^{-1} & t \geqslant \varepsilon \end{cases}.$$

In the following, let A be a unital C^* -algebra. Let $x, y \in A^+$. Write $y \stackrel{\prec}{\sim}_n x$ if

$$y \leqslant \sum_{j=1}^n r_j x r_j^*$$

for some $r_j \in A$, and let $y \stackrel{\sim}{\sim} x$ denote that $y \stackrel{\sim}{\sim}_1 x$. Let further $y \stackrel{\sim}{\approx} x$ and $y \stackrel{\sim}{\approx}_n x$ denote that $f_{\varepsilon}(y) \stackrel{\sim}{\sim} x$, respectively $f_{\varepsilon}(y) \stackrel{\sim}{\sim}_n x$, for every $\varepsilon > 0$. Write $x \sim y$, respectively $x \approx y$, if $x \stackrel{\sim}{\sim} y$ and $y \stackrel{\sim}{\sim} x$, respectively $x \stackrel{\sim}{\approx} y$ and $y \stackrel{\sim}{\approx} x$. Let C(y, x) denote the least integer n for which $y \stackrel{\sim}{\sim}_n x$, and put $C(y, x) = \infty$ if no such n exists.

LEMMA 2.1. Let $x, x_0 \in A^+$ with $x \leq x_0$ and put $r_\delta = x^{\frac{1}{2}} g_\delta(x_0), \delta > 0$. Then

$$\lim_{\delta \to \infty} ||x - r_{\delta}x_0r_{\delta}^*|| = 0.$$

Proof. Put $t_{\delta} = x^{\frac{1}{2}} (1 - g_{\delta}(x_0)x_0)^{\frac{1}{2}}$. Then

$$x - r_{\delta} x_0 r_{\delta}^* = t_{\delta} t_{\delta}^*,$$

and

$$t_{\delta}^*t_{\delta} = (1 - g_{\delta}(x_0)x_0)^{\frac{1}{2}}x(1 - g_{\delta}(x_0)x_0)^{\frac{1}{2}} \leqslant$$

$$\leq (1 - g_{\delta}(x_0)x_0)^{\frac{1}{2}}x_0(1 - g_{\delta}(x_0)x_0)^{\frac{1}{2}}.$$

Hence

$$\lim_{\delta \to 0} ||x - r_{\delta}x_{0}r_{\delta}^{*}|| = \lim_{\delta \to 0} ||t_{\delta}^{*}t_{\delta}|| = 0.$$

LEMMA 2.2. Let $x, y \in A^+$ with $||x - y|| \le \varepsilon$. Then $f_{2\varepsilon}(y) \le rxr^*$ for some $r \in A$ with $||r|| \le \varepsilon^{\frac{1}{2}}$.

Proof. Since $y - \varepsilon \cdot 1 \leq x$, we get

$$\varepsilon f_{2\varepsilon}(y) \leqslant f_{2\varepsilon}(y)^{\frac{1}{2}} (y - \varepsilon 1) f_{2\varepsilon}(y)^{\frac{1}{2}} \leqslant f_{2\varepsilon}(y)^{\frac{1}{2}} x f_{2\varepsilon}(y)^{\frac{1}{2}},$$

and so we may take $r = \varepsilon^{-\frac{1}{2}} f_{2\varepsilon}(y)^{\frac{1}{2}}$.

LEMMA 2.3. Let $x, y \in A^+$, let $\varepsilon > 0$ and $\delta > 0$, and assume that $y \stackrel{\sim}{\sim}_n f_{2\delta}(x)$. Then

$$f_{\varepsilon}(y) \leqslant \sum_{j=1}^{n} r_{j} f_{\delta}(x) r_{j}^{*}$$

for some $r_j \in A$ with $||r_j|| \le (\varepsilon^{-1}||y|| + 1)^{\frac{1}{2}}$.

Proof. We have

$$y \leqslant y_0 = \sum_{j=1}^n s_j f_{2\delta}(x) s_j^*$$

for some $s_j \in A$. By Lemma 2.1, there is $t_1 \in A$ such that $||y - t_1y_0t_1^*|| \le \varepsilon/2$, and from Lemma 2.2 $f_{\varepsilon}(y) \le t_2t_1y_0t_1^*t_2^*$ for some $t_2 \in A$ with $||t_2|| \le \varepsilon^{-\frac{1}{2}}$. Put $r_j = t_2t_1s_jf_{2\delta}(x)^{\frac{1}{2}}$. Then

$$r_j f_{\delta}(x) r_j^* = t_2 t_1 s_j f_{2\delta}(x) s_j^* t_1^* t_2^*,$$

and so $f_{\epsilon}(y) \leqslant \sum_{j=1}^{n} r_{j} f_{\delta}(x) r_{j}^{*}$. Also $r_{j} r_{j}^{*} \leqslant t_{2} t_{1} y_{0} t_{1}^{*} t_{2}^{*}$, whence

$$||t_j||^2 \le ||t_2||^2 \cdot ||t_1 y_0 t_1^*|| \le \varepsilon^{-1} (||y|| + \varepsilon/2).$$

LEMMA 2.4. Let $x, x_0 \in A^+$ with $x \leq x_0$, and let $\varepsilon > 0$. Then $f_{4\varepsilon}(x) \stackrel{\sim}{\sim} f_{\varepsilon}(x_0)$.

Proof. Put $r = x^{\frac{1}{2}}(1 - f_{\epsilon}(x_0))^{\frac{1}{2}}$. Then

$$rr^* = x - x^{\frac{1}{2}} f_{\varepsilon}(x_0) x^{\frac{1}{2}},$$

286

and

$$r^*r = (1 - f_{\varepsilon}(x_0))^{\frac{1}{2}} x (1 - f_{\varepsilon}(x_0))^{\frac{1}{2}} \leqslant$$
$$\leqslant (1 - f_{\varepsilon}(x_0))^{\frac{1}{2}} x_0 (1 - f_{\varepsilon}(x_0))^{\frac{1}{2}} \leqslant 2\varepsilon \cdot 1.$$

Thus, from Lemma 2.2,

$$f_{4\varepsilon}(x) \stackrel{\prec}{\sim} x^{\frac{1}{2}} f_{\varepsilon}(x_0) x^{\frac{1}{2}} \stackrel{\prec}{\sim} f_{\varepsilon}(x_0).$$

Let $I_A(x)$ — or just I(x) — denote the closed two-sided ideal in A generated by $x \in A$.

LEMMA 2.5. Let $x, y \in A^+$. Then $y \in I(x)$ if only it for each $\varepsilon > 0$ there are $\delta > 0$ and $n \in \mathbb{N}$ such that $f_{\varepsilon}(y) \stackrel{\sim}{\sim}_n f_{\delta}(x)$.

Proof. Clearly $f_{\delta}(x) \in I(x)$ for all $\delta > 0$, and so if $f_{\epsilon}(y) \stackrel{\sim}{\sim}_{n} f_{\delta}(x)$ for some $\delta > 0$ and some $n \in \mathbb{N}$, then $f_{\epsilon}(y) \in I(x)$. Furthermore, if $f_{\epsilon}(y) \in I(x)$ for all $\epsilon > 0$, then $y \in I(x)$.

Suppose now that $y \in I(x)$, and let $\varepsilon > 0$. Approximate $y^{\frac{1}{2}}$ closely enough with an element z in

$$\bigcup_{\delta>0}I^{\mathrm{alg}}(f_{\delta}(x))$$

where $I^{\mathrm{alg}}(f_{\delta}(x))$ denotes the algebraic ideal in A generated by $f_{\delta}(x)$, to obtain $||y-z^*z|| \leq \varepsilon/2$. Now, $z^*z \in I^{\mathrm{alg}}(f_{\delta}(x))$ for some $\delta > 0$, and so

$$z^*z = \sum_{j=1}^m r_j f_{\delta}(x) s_j \quad \left(\leq \frac{1}{2} \sum_{j=1}^m r_j f_{\delta}(x) r_j^* + \frac{1}{2} \sum_{j=1}^m s_j^* f_{\delta}(x) s_j \right),$$

for some $m \in \mathbb{N}$ and $r_j, s_j \in A$. Hence, from Lemma 2.2,

$$f_{\varepsilon}(y) \stackrel{\prec}{\sim} z^* z \stackrel{\prec}{\sim}_{2m} f_{\delta}(x).$$

Let $\{f_n\}$ be an approximate unit of projections for K, the C^* -algebra of compact operators, where $f_0=0$ and f_n-f_{n-1} is one-dimensional. Let A be a unital C^* -algebra, and put $e_n=1_A\otimes f_n$, so that $\{e_n\}$ is an approximate unit for $A\otimes K$. Call an element $X\in\mathcal{M}(A\otimes K)$ diagonal (with respect to $\{e_n\}$) if there is a strictly increasing sequence $\{\alpha(n)\}$ of integers with $\alpha(0)=0$ such that

$$[X, e_{\alpha(n)} - e_{\alpha(n-1)}] = 0, \quad n \in \mathbb{N}.$$

Write $X = Diag(x_1, x_2, ...)$, where

$$x_n = X(e_{\alpha(n)} - e_{\alpha(n-1)}), \quad n \in \mathbb{N}.$$

Conversely, if $\{x_n\}$ is a bounded sequence with $x_n \in M_{k_n}(A)$, then upon identifying $M_{k_n}(A)$ with

$$(e_{\alpha(n)} - e_{\alpha(n-1)})\mathcal{M}(A \otimes K)(e_{\alpha(n)} - e_{\alpha(n-1)})$$

for appropriate $\alpha(n)$, we have $X = \text{Diag}(x_1, x_2, ...)$ for some $X \in \mathcal{M}(A \otimes K)$.

A finite segment $\text{Diag}(x_n, x_{n+1}, \dots, x_m)$, $m \ge n$, of a diagonal element may be viewed as an element of $A \otimes K$, or as an element of $M_k(A)$ for suitable k.

Let $\{x_j\}$ and $\{y_j\}$ be sequences of positive elements in matrix algebras over A. Write $\{y_j\} \stackrel{\sim}{\sim}_n \{x_j\}$ if $\forall m \exists k \forall k' \geqslant k \exists m' \geqslant m$:

$$\operatorname{Diag}(y_k, y_{k+1}, \dots, y_{k'}) \stackrel{\prec}{\sim}_n \operatorname{Diag}(x_m, x_{m+1}, \dots, x_{m'})$$

(The comparison of the diagonal segments is relative to $A \otimes K$ or to some large enough matrix over A.)

THEOREM 2.6. Let A be a unital C^* -algebra, and let $X = \text{Diag}(x_1, x_2, \ldots)$ and $Y = \text{Diag}(y_1, y_2, \ldots)$ be positive diagonal elements of $\mathcal{M}(A \otimes K)$. Then $Y \in \mathcal{L}(X) + A \otimes K$, if and only if for each $\varepsilon > 0$ there are $\delta > 0$ and $n \in \mathbb{N}$ such that $\{f_{\varepsilon}(y_j)\} \stackrel{\sim}{\sim}_n \{f_{\delta}(x_j)\}$.

Proof. Fix increasing sequences $\{\alpha(j)\}\$ and $\{\beta(j)\}\$ of integers such that

$$X = \sum_{j=1}^{\infty} x_j (e_{\alpha(j)} - e_{\alpha(j-1)}), \quad Y = \sum_{j=1}^{\infty} y_j (e_{\beta(j)} - e_{\beta(j-1)}).$$

Suppose that $Y = I(X) + A \otimes K$. Upon replacing X by $\text{Diag}(1_A, x_1, x_2, \ldots)$, which does not alter the equivalence class of $\{x_j\}$, we way assume that, in fact, $Y \in I(X)$. Let $\varepsilon > 0$. From Lemma 2.5 there are $\delta > 0$ and $n \in \mathbb{N}$ such that

$$f_{\epsilon/2}(Y) \leqslant Y_0 = \sum_{i=1}^n R_i f_{\delta}(X) R_i^*,$$

for some $R_i \in \mathcal{M}(A \otimes K)$. Put $\mu = \sum_{i=1}^n ||R_i||$. For each $m \in \mathbb{N}$ there is $k \in \mathbb{N}$ such that

$$||(1-e_{\beta(k-1)})R_ie_{\alpha(m-1)}|| \leq (64\mu)^{-1}, \quad i=1,\ldots,n;$$

and for each $k' \geqslant k$ there is $m' \geqslant m$ such that

$$||e_{\beta(k')}R_i(1-e_{\alpha(m')})|| \leq (64\mu)^{-1}$$
 $i=1,\ldots,n$.

Put

$$z_{i} = (e_{\beta(k')} - e_{\beta(k-1)})R_{i}(e_{\alpha(m')} - e_{\alpha(m-1)}),$$

$$y' = (e_{\beta(k')} - e_{\beta(k-1)})Y_{0}(e_{\beta(k')} - e_{\beta(k-1)}),$$

$$y'' = \sum_{i=1}^{n} z_{i} f_{\delta}(X) z_{i}^{*}$$

$$\left(= \sum_{i=1}^{n} z_{i} \operatorname{Diag}(f_{\delta}(x_{m}), f_{\delta}(x_{m+1}), \dots, f_{\delta}(x_{m'})) z_{i}^{*} \right).$$

Then $\operatorname{Diag}(f_{\epsilon/2}(y_k), f_{\epsilon/2}(y_{k+1}), \dots, f_{\epsilon/2}(y_{k'})) \leq y'$, and a brief computation shows that

$$||y'-y''|| \leq \sum_{i=1}^{n} 2||R_i|| \left[||(1-e_{\beta(k-1)})R_i e_{\alpha(m-1)}|| + ||e_{\beta(k')}R_i(1-e_{\alpha(m')})|| \right] \leq \frac{1}{16}.$$

Hence, from Lemma 2.2, $f_{1/8}(y') \stackrel{\sim}{\sim} y''$. Using Lemma 2.4 and the fact that $f_{\epsilon} \leq f_{1/2} \circ f_{\epsilon/2}$, we get

$$\operatorname{Diag}(f_{\epsilon}(y_k), f_{\epsilon}(y_{k+1}), \dots, f_{\epsilon}(y_{k'})) \leqslant f_{1/2}(\operatorname{Diag}(f_{\epsilon/2}(y_k), f_{\epsilon/2}(y_{k+1}), \dots, f_{\epsilon/2}(y_{k'}))) \stackrel{\sim}{\sim}$$

$$\stackrel{\prec}{\sim} f_{1/8}(y') \stackrel{\prec}{\sim} y'' \stackrel{\prec}{\sim}_n \operatorname{Diag}(f_{\delta}(x_m), f_{\delta}(x_{m+1}), \dots, f_{\delta}(x_{m'})),$$

and so $\{f_{\varepsilon}(y_i)\} \stackrel{\prec}{\sim}_n \{f_{\delta}(x_i)\}.$

Suppose conversely that $\{f_{\varepsilon}(y_j)\} \stackrel{\sim}{\sim}_n \{f_{\delta}(x_j)\}$ for some $\varepsilon, \delta > 0$ and $n \in \mathbb{N}$. Find integers $m_1, k_1, l_1, k_2, m_2, k_3, l_2, \ldots$ (in that order), so that

$$1 = m_1 < m_2 < \dots,$$

 $1 = l_1 < l_2 < \dots,$
 $k_1 < k_2 < \dots$

and

$$\begin{aligned} & \text{Diag}(f_{\epsilon}(y_{k_{1}}), \dots, f_{\epsilon}(y_{k_{2}-1})) \stackrel{\prec}{\sim}_{n} & \text{Diag}(f_{\delta}(x_{1}), \dots, f_{\delta}(x_{m_{2}-1})), \\ & \text{Diag}(f_{\epsilon}(y_{k_{2}}), \dots, f_{\epsilon}(y_{k_{3}-1})) \stackrel{\prec}{\sim}_{n} & \text{Diag}(f_{\delta}(x_{1}), \dots, f_{\delta}(x_{l_{2}}-1)), \\ & \text{Diag}(f_{\epsilon}(y_{k_{3}}), \dots, f_{\epsilon}(y_{k_{4}-1})) \stackrel{\prec}{\sim}_{n} & \text{Diag}(f_{\delta}(x_{m_{2}}), \dots, f_{\delta}(x_{m_{3}-1})), \end{aligned}$$

. . .

By Lemma 2.3 and because $f_{2\varepsilon} \leq f_{1/2} \circ f_{\varepsilon}$, there are elements $r_{i,j}$ and $s_{i,j}$, i = 1, ..., n, and $j \in \mathbb{N}$, in $A \otimes K$ with $||r_{i,j}||, ||s_{i,j}|| \leq (2||Y|| + 1)^{\frac{1}{2}}$ such that

$$\mathrm{Diag}(f_{2\epsilon}(y_{k_1}),\ldots,f_{2\epsilon}(y_{k_2-1})) \leqslant \sum_{i=1}^n r_{i,1} \mathrm{Diag}(f_{\delta/2}(x_1),\ldots,f_{\delta/2}(x_{m_2-1})) r_{i,1}^*,$$

$$\operatorname{Diag}(f_{2\epsilon}(y_{k_2}), \dots, f_{2\epsilon}(y_{k_3-1})) \leqslant \sum_{i=1}^n s_{i,1} \operatorname{Diag}(f_{\delta/2}(x_1), \dots, f_{\delta/2}(x_{l_2-1})) s_{i,1}^*,$$

and such that the sums

$$R_i = \sum_{j=1}^{\infty} r_{i,j}, \quad S_i = \sum_{j=1}^{\infty} s_{i,j}$$

are strictly convergent in $\mathcal{M}(A \otimes K)$. Hence

$$(1 - e_{\beta(k_1+1)}) f_{2\varepsilon}(Y) \leqslant \sum_{i=1}^n R_i f_{\delta/2}(X) R_i^* + \sum_{i=1}^n S_i f_{\delta/2}(X) S_i^*,$$

which proves that
$$f_{2\epsilon}(Y) \in I(f_{\delta/2}(X)) + A \otimes K \ (\subseteq I(X) + A \otimes K)$$
.

COROLLARY 2.7. Let A be a unital C^* -algebra, and let $X = \operatorname{Diag}(x_1, x_2, \ldots)$ be a diagonal element in $\mathcal{M}(A \otimes K)^+$. Then $I(X) = \mathcal{M}(A \otimes K)$ if and only if there are $\delta > 0$ and $n \in \mathbb{N}$ such that for each $m \in \mathbb{N}$ there is $m' \geqslant m$ with

$$1_A \stackrel{\prec}{\sim}_n \operatorname{Diag}(f_{\delta}(x_m), \ldots, f_{\delta}(x_{m'})).$$

Proof. Set $y_j = 1_A$ for all j. Then $\{y_j\} \stackrel{\sim}{\sim}_n \{f_{\delta}(x_j)\}$ if and only if for each $m \in \mathbb{N}$ there is $m' \leqslant m$ with $1_A \stackrel{\sim}{\sim}_n \operatorname{Diag}(f_{\delta}(x_m), \ldots, f_{\delta}(x_{m'}))$. Since $\operatorname{Diag}(y_1, y_2, \ldots) = 1$; $f_{\delta}(y_j) = y_j$, $0 < \delta < 1$; and since $\{y_j\} \stackrel{\sim}{\sim}_n \{f_{\delta}(x_j)\}$ implies $I(f_{\delta}(X)) = \mathcal{M}(A \otimes K)$, the corollary follows from Theorem 2.6.

We end this section with a result, rephrasing G. Elliott [6], stating that $\mathcal{M}(A \otimes K)$ has a large supply of diagonal elements.

Proposition 2.8. Let A be a unital C^* -algebra.

- (i) For every $Y \in \mathcal{M}(A \otimes K)$, there is a diagonal element $X \in \mathcal{M}(A \otimes K)^+$ such that $I(X) + A \otimes K = I(Y) + A \otimes K$.
- (ii) Assume I and J are ideals of $\mathcal{M}(A \otimes K)$ both containing $A \otimes K$ and such that $I \not\subseteq J$. Then there is a positive diagonal element in $I \setminus J$.
- *Proof.* (i) We assume that $Y \notin A \otimes K$ (otherwise, take X = 0). As in Elliott's proof of [6, Theorem 3.1], we have

$$Y = y_0 + Y_1 + Y_2 + Y_3$$

with $y_0 \in A \otimes K$; $Y_j \in I(Y)$ and

$$Y_j = \text{Diag}(y_{1j}, y_{2j}, \ldots), \quad j = 1, 2, 3,$$

diagonal with respect to some fixed approximate unit $\{e_n\}$ for $A \otimes K$. Put

$$X = \text{Diag}(y_{1,1}, y_{1,2}, y_{1,3}, y_{2,1}, \ldots).$$

Then

$$I(X) = I(Y_1, Y_2, Y_3) \subseteq I(Y) \subseteq I(y_0, Y_1, Y_2, Y_3) \subseteq I(X) + A \otimes K$$

which proves $I(X) + A \otimes K = I(Y) + A \otimes K$. (Replace X by X^*X to get X positive.)

(ii) Choose $Y \in I \setminus J$ and use (i) to find a diagonal $X \in \mathcal{M}(A \otimes K)^+$ with $I(X) + A \otimes K = I(Y) + A \otimes K$. Then $X \in I \setminus J$.

3. SIMPLICITY OF $\mathcal{M}(A \otimes K)/A \otimes K$

It is decided in this section for which unital C^* -algebras A the corona algebra $\mathcal{M}(A \otimes K)/A \otimes K$ is simple (Theorem 3.2). Recall that A is finite if $u^*u = 1$ implies $uu^* = 1$ for $u \in A$, and that A is stably finite if $M_n(A)$ is finite for all $n \in \mathbb{N}$. A simple unital C^* -algebra A is purely infinite if $A \neq \mathbb{C}$ and for every $x, y \in A^+$ with $x \neq 0$ there is $r \in A$ with $y = r^*xr$. If A is purely infinite and simple, then so is $M_n(A)$ for all n.

LEMMA 3.1. Let A be a unital simple C^* -algebra which is neither purely infinite nor finite dimensional. Then there is a sequence $\{x_n\}_{n=1}^{\infty}$ in A^+ satisfying

- $(i) x_n x_m = 0, n \neq m,$
- (ii) $||x_n|| = 1$,
- (iii) $C(1_A, x_n) \geqslant 2^n$,
- (iv) $\tau(f_{\varepsilon}(x_n)) \leq 2^{-n}$ for each normalized positive trace τ on A and each $\varepsilon > 0$, and
 - (v) $\sum_{j=n+1}^{m} x_j \stackrel{\prec}{\sim} x_n$ for all n and all $m \ge n+1$.

Proof. From the hypothesis that A is not purely infinite and $A \neq \mathbb{C}$, there is $y_0 \in A^+$ with $||y_0|| = 1$ and $C(1_A, y_0) \geq 2$. We construct for each $n \in \mathbb{N}$, x_n, y_n and z_n in A^+ and $u_n \in U(A)$ such that

- (a) $x_n, y_n \in \overline{f_{1/3}(y_{n-1})Af_{1/3}(y_{n-1})}$
- (b) $x_n = x_n z_n$ and $y_n z_n = 0$,
- (c) $x_n = u_n y_n u_n^*$
- (d) $||x_n|| (= ||y_n||) = 1$.

Indeed, let $y_{n-1} \in A^+$ with $||y_{n-1}|| = 1$ be given and note that $f_{1/3}(y_{n-1}) \neq 0$. Since A is simple and not finite dimensional we can find

$$x', y' \in \overline{f_{1/3}(y_{n-1})Af_{1/3}(y_{n-1})}^+$$

with ||x'|| = ||y'|| = 1 and $x' \perp y'$. Put $z_n = 1 - f_{1/6}(y')$ and $y'' = f_{1/3}(y') \ (\neq 0)$. From [9, Lemma 3.4] there is $u_n \in U(A)$ such that

$$(B =) \overline{x'Ax'} \cap u_n \overline{y''Ay''} u_n^* \neq \{0\}.$$

Choose $x_n \in B^+$ with $||x_n|| = 1$ and set $y_n = u_n^* x_n u_n$. It is now easy to check that x_n, y_n, z_n and u_n satisfy (a) to (d).

We prove next that $\{x_n\}$ satisfy (i) to (v). Note that $x_m, y_m \in \overline{f_{1/3}(y_n)Af_{1/3}(y_n)}$ if $m \ge n+1$, and so (using(d)),

$$x_m, y_m \le f_{1/6}(y_n), \quad m \ge n+1.$$

In particular, $x_m \perp x_n$ for $m \ge n+1$, wich proves (i). Also, for $m \ge n+1$,

$$\sum_{j=n+1}^{m} x_{j} \leqslant f_{1/6}(y_{n}) = u_{n}^{*} f_{1/6}(x_{n}) u_{n} \stackrel{\prec}{\sim} x_{n},$$

and this proves (v).

We also have $f_{\varepsilon}(x_m) \perp f_{\varepsilon}(y_m)$ and $f_{\varepsilon}(x_m)$, $f_{\varepsilon}(y_m) \leqslant f_{1/6}(b_n)$ for $m \geqslant n+1$ and for all $\varepsilon > 0$. Let τ be a positive normalized trace on A, and put $\alpha_n = \lim_{\varepsilon \to 0} \tau(f_{\varepsilon}(x_n))$. Then

$$2\alpha_n \leqslant \tau(f_{1/6}(y_{n-1})) \leqslant \alpha_{n-1}, \quad (\alpha_0 = 1),$$

which proves $\alpha \leq 2^{-n}$ and (iv) follows.

Put $k_n = C(1_A, x_n)$ and $k_0 = C(1_A, y_0)$ ($\geqslant 2$). Let l_n be the least integer $\geqslant k_n/2$. Then there are elements r_1, \ldots, r_{l_n} and s_1, \ldots, s_{l_n} in A such that

$$1_{A} \leqslant \sum_{j=1}^{l_{n}} r_{j} x_{n} r_{j}^{*} + \sum_{j=1}^{l_{n}} s_{j} x_{n} s_{j}^{*}.$$

Put $t_j = r_j z_n + s_j z_n u_n^*$. Then

$$t_j(x_n + y_n)t_j^* = r_j x_n r_j^* + s_j x_n s_j^*,$$

and so $C(1_A, x_n + y_n) \leq l_n$. Since

$$x_n + y_n \leqslant f_{1/6}(y_{n-1}) = u_n^* f_{1/6}(x_{n-1}) u_n \stackrel{\prec}{\sim} x_{n-1},$$

we find that

$$2k_{n-1} = 2C(1_A, x_{n-1}) \leq 2C(1_A, x_n + y_n) \leq 2l_n \leq k_n + 1.$$

This proves that $k_n \ge 2^n$, and hence (iii).

THEOREM 3.2. Let A be a unital C^* -algebra. Then $\mathcal{M}(A \otimes K)/A \otimes K$ is simple if and only if either $A \cong M_n(\mathbb{C})$ for some $n \in \mathbb{N}$ or A is a purely infinite simple C^* -algebra.

Proof. If $A \cong M_n(\mathbb{C})$, then $A \otimes K \cong K$ and $\mathcal{M}(K)/K \cong B(H)/K$ is simple. Assume that A is simple and purely infinite, and let I be an ideal of $\mathcal{M}(A \otimes K)$ properly containing $A \otimes K$. Then from the Proposition 2.8, there is a positive diagonal element $X = \operatorname{Diag}(x_1, x_2, \ldots) \in I \setminus A \otimes K$. Now since $\lim_{j \to \infty} ||x_j|| \neq 0$, there is $\delta > 0$ such that $f_{\delta}(x_j) \neq 0$ for infinitely many $j \in \mathbb{N}$. Hence, for each $m \in \mathbb{N}$ there is $m' \geqslant m$ such that $f_{\delta}(x_j) \neq 0$ for some j with $m \leqslant j \leqslant m'$, and since A is purely infinite,

$$1_A \stackrel{\prec}{\sim} \operatorname{Diag}(f_{\delta}(x_m), \ldots, f_{\delta}(x_{m'})).$$

From Corollary 2.7 it follows that $I(X) = \mathcal{M}(A \otimes K)$, and so $I = \mathcal{M}(A \otimes K)$, and this proves that $\mathcal{M}(A \otimes K)/A \otimes K$ is simple.

Suppose now that A is not simple, and let J be a non-trivial ideal in A. Then $J \otimes K$ is a non-trivial ideal in $A \otimes K$, and

$$I_0 = \{ X \in \mathcal{M}(A \otimes K) \mid X(A \otimes K) \subseteq J \otimes K \}$$

is a closed two-sided ideal in $\mathcal{M}(A \otimes K)$. Put $I = I_0 + A \otimes K$. Choose $x \in J^+, x \neq 0$, and put $X = \operatorname{Diag}(x, x, \ldots)$. Then $X \in I_0 \subseteq I$ but $X \notin A \otimes K$, and so $I \neq A \otimes K$.

Assume — to reach a contradiction — that $I = \mathcal{M}(A \otimes K)$. Then

$$1_{\mathcal{M}(A \otimes K)} = X + y$$

for some $X \in I_0$ and $y \in A \otimes K$. Let $\{f_n\}$ be an approximate unit of projections for K, and put $e_n = 1_A \otimes f_n$. Choose n large enough such that $||(1 - e_n)y(1 - e_n)|| < 1$. Then

$$||(1-e_n)-(1-e_n)X(1-e_n)||<1,$$

and since $1 - e_n$ is a projection, there is $Z \in \mathcal{M}(A \otimes K)$ such that $1 - e_n = Z(1 - e_n)X(1 - e_n)$. Thus $1 - e_n \in I_0$, contradicting the fact that

$$e_m - e_n = e_m(1 - e_n) \notin J \otimes K$$

for m > n. Hence $I \neq \mathcal{M}(A \otimes K)$ and $\mathcal{M}(A \otimes K)/A \otimes K$ is not simple.

Suppose finally that A is simple, but not finite dimensional and not purely infinite. Let $\{x_n\}$ be the sequence in A^+ constructed in Lemma 3.1, and put $X = \text{Diag}(x_1, x_2, \ldots)$. Then for every $\delta > 0$, $m \in \mathbb{N}$ and $m' \ge m$ we have

$$C(1_A, \operatorname{Diag}(f_{\delta}(x_m), \dots, f_{\delta}(x_{m'})) = C\left(1_A, \sum_{j=m}^{m'} f_{\delta}(x_j)\right) \geqslant$$

$$\geqslant C\left(1_A, \sum_{j=m}^{m'} x_j\right) \geqslant C(1_A, x_{m-1}) \geqslant 2^{m-1}.$$

From Corollary 2.7, this implies $I(X) \neq \mathcal{M}(A \otimes K)$. Since $||x_j|| = 1$ for all $j \in \mathbb{N}$, $X \notin A \otimes K$, and it follows that $A \otimes K \subseteq I(X) \subseteq \mathcal{M}(A \otimes K)$ and $I(X) \neq A \otimes \otimes K$, $\mathcal{M}(A \otimes K)$.

REMARK 3.3. The class of C^* -algebras B with $\mathcal{M}(B)/B$ simple, when B is not assumed to be isomorphic to $A \otimes K$ for some unital C^* -algebra A (in particular, when B is non-stable), is more complicated to describe:

If B is a simple AF-algebra and all traces on B extend to bounded traces on $\mathcal{M}(B)$, then $\mathcal{M}(B)/B$ is simple (see [6] and [8]).

If B is such that $\mathcal{M}(B)/B$ is simple and C is unital, then $\mathcal{M}(B \oplus C)/B \oplus C \cong \mathcal{M}(B)/B$ is simple.

Let A be a simple unital C^* -algebra which is not finite dimensional or purely infinite, so that $\mathcal{M}(A \otimes K)/A \otimes K$ is not simple. Let I be a maximal proper ideal of $\mathcal{M}(A \otimes K)$. Then $A \otimes K \subseteq I$, $A \otimes K \neq I$ and $\mathcal{M}(I) = \mathcal{M}(A \otimes K)$. Hence $\mathcal{M}(I)/I$ is simple and I has non-trivial essential ideal.

REMARK 3.4. In [2] it is proved that $A \otimes K$ is algebraically simple if and only if A is simple and not stably finite. It is not clear whether this relates to simplicity of $\mathcal{M}(A \otimes K)/A \otimes K$ (this certainly is not the case for $A \otimes K \cong K$). Still, it appears to add the mystery of the (maybe vacuous) class of simple C^* -algebras which are neither stably finite nor purely infinite (see also Remark 4.6).

4. IDEALS IN $\mathcal{M}(A \otimes K)$ AND TRACES ON A

Let A be a unital C^* -algebra, and let τ be a (positive, normalized) trace (or quasi-trace) on A. Extend τ to a semi-finite trace on $A \otimes K$, and to a trace function on $\mathcal{M}(A \otimes K)^+$ by

$$\tau(X) = \sup \tau(e_n X e_n)$$

where $\{e_n\}$ is any approximate unit for $A \otimes K$. As in [6,8], define I_{τ} to be the closure of the set of all elements X in $\mathcal{M}(A \otimes K)$ with $\tau(X^*X) < \infty$. It is easily checked

that I_{τ} is a closed two-sided ideal in $\mathcal{M}(A \otimes K)$. Note that if $X \in \mathcal{M}(A \otimes K)^+$, then $X \in I_{\tau}$ if and only if $\tau(f_{\varepsilon}(X)) < \infty$ for all $\varepsilon > 0$ (use Lemma 2.2 for this).

Let T(A) denote the set of all positive normalized traces on A. If $\tau_1, \tau_2 \in T(A)$, then write $\tau_1 \stackrel{\sim}{\sim} \tau_2$ if there is c > 0 so that $c\tau_1 \leqslant \tau_2$. Write $\tau_1 \sim \tau_2$ if $\tau_1 \stackrel{\sim}{\sim} \tau_2$ and $\tau_2 \stackrel{\sim}{\sim} \tau_1$.

PROPOSITION 4.1. Let A be a unital C^* -algebra, let τ and τ' be in T(A), and let I_{τ} and $I_{\tau'}$ denote the corresponding ideals in $\mathcal{M}(A \otimes K)$. Then

- (i) $A \otimes K \subseteq I_{\tau}$ and $I_{\tau} \neq \mathcal{M}(A \otimes K)$,
- (ii) $I_{\tau} \subseteq I_{\tau'}$ if and only if $\tau' \stackrel{<}{\sim} \tau$,
- (iii) $I_{\tau} = I_{\tau'}$ if and only if $\tau \sim \tau'$,
- (iv) if I_{τ} is a maximal ideal in $\mathcal{M}(A \otimes K)$, then τ is an extreme point in T(A). Proof. (i) obvious.
- (ii) If $c\tau' \leq \tau$ for some c > 0 then

$$\tau'(f_{\epsilon}(X)) \leqslant c^{-1}\tau(f_{\epsilon}(X)) < \infty$$

for each $X \in I_{\tau}^+$ and each $\varepsilon > 0$, and so $X \in I_{\tau'}$. Thus $I_{\tau} \subseteq I_{\tau'}$.

Suppose now that $\tau' \stackrel{\sim}{\sim} \tau$. Let $M = (\varphi_{\tau} \oplus \varphi_{\tau'})(A)''$, where φ_{τ} is the GNS-representation of A with respect to τ , and note that τ and τ' extend to traces $\tilde{\tau}$ and $\tilde{\tau'}$ on M with $\tilde{\tau'} \stackrel{\sim}{\sim} \tilde{\tau}$. For each $n \in \mathbb{N}$ find a projection p_n in M with $2^{-(n+1)}\tilde{\tau'}(p_n) > \tilde{\tau}(p_n)$. Put $\delta_n = \tilde{\tau'}(p_n)$ and choose $m_n \in \mathbb{N}$ such that

$$(*) \qquad \frac{\frac{2}{3}\delta_n - \left(\frac{1}{2}\right)^{m_n}}{1 - \left(\frac{1}{2}\right)^{m_n}} \geqslant \frac{1}{2}\delta_n.$$

From Kaplansky's density theorem, $(\varphi_{\tau} \oplus \varphi_{\tau'})(A_1 \cap A^+)$ is strong operator dense in $M_1 \cap M^+$; and since the maps $x \to \tilde{\tau}(x)$ and $x \to \tilde{\tau'}(x^{m_n})$ are strong operator continuous, we can find $x_n \in A_1 \cap A^+$ with

$$|\tilde{\tau}(p_n - (\varphi_\tau \oplus \varphi_{\tau'})(x_n))| \leq 2^{-(n+1)} \delta_n,$$

$$|\tilde{\tau'}(p_n - (\varphi_\tau \oplus \varphi_{\tau'})(x_n)^{m_n})| \leq \frac{1}{3} \delta_n.$$

Then $\tau(x_n) \leq 2^{-n} \delta_n$ and $\tau'(x_n^{m_n}) \geq \frac{2}{3} \delta_n$. There is a probability measure μ on [0,1] such that

$$\tau'(f(x_n)) = \int_0^1 f(t)d\mu(t), \quad f \in C([0,1]).$$

It follows from (*) that $\mu([\frac{1}{2},1]) \ge (1/2)\delta_n$, and so $\tau'(f_{1/4}(x_n)) \ge (1/2)\delta_n$. Let k_n be an integer with $1 \le k_n \delta_n \le 2$, and put

$$X = \text{Diag}(\underbrace{x_1, \dots, x_1}_{k_1 \text{ times}}, \underbrace{x_2, \dots, x_2}_{k_2 \text{ times}}, \dots).$$

Then

$$\tau(X) = \sum_{n=1}^{\infty} k_n \tau(x_n) \leqslant \sum_{n=1}^{\infty} 2^{-n} k_n \delta_n \leqslant 2,$$

and so $X \in I_{\tau}$. On the other hand,

$$\tau'(f_{1/4}(X)) = \sum_{n=1}^{\infty} k_n \tau'(f_{1/4}(x_n)) \geqslant \sum_{n=1}^{\infty} \frac{1}{2} k_n \delta_n = \infty,$$

whence $X \notin I_{\tau'}$ and so $I_{\tau} \not\subseteq I_{\tau'}$.

- (iii) follows from (ii).
- (iv) Assume that τ is not extreme in T(A). Then $M = \varphi_{\tau}(A)''$ is not a factor. Choose a non-trivial central projection p in the center of M and put

$$\tau_1(x) = \tau(p)^{-1}\tau(px), \quad \tau_2(x) = \tau(1-p)^{-1}\tau((1-p)x).$$

Then $\tau_1, \tau_2 \in T(A), \tau_1 \not\sim \tau_2$ and $\tau_j \stackrel{\sim}{\sim} \tau$. Hence, by (ii) and (iii), $I_\tau \subseteq I_{\tau_j}$ and $I_{\tau_1} \not= I_{\tau_2}$, and so I_τ is not maximal.

REMARK 4.2. If A is a unital simple C^* -algebra which is not finite dimensional, and $\tau \in T(A)$, then one can use Lemma 3.1 (iv) to prove that $A \otimes K \neq I_{\tau}$. One has $I_{\tau} \neq A \otimes K$ under more general assumptions on A.

REMARK 4.3. If τ and τ' are distinct extreme points of T(A), then $\tau \not\sim \tau'$ and so $I_{\tau} \neq I_{\tau'}$. If T(A) has precisely n extreme points, then T(A) contains exactly $2^n - 1$ equivalence classes, and there are exactly $2^n - 1$ distinct ideals of $\mathcal{M}(A \otimes K)$ of the form I_{τ} for some $\tau \in \tau(A)$.

For each $\tau \in T(A)$ associate a dimension function d_{τ} (cf. Cuntz [4]) on $(A \otimes \mathcal{F})^+$, where \mathcal{F} denotes the algebra of finite rank operators on a Hilbert space, by

$$d_{\tau}(x) = \lim_{\epsilon \to \infty} \tau(f_{\epsilon}(x)).$$

We say that A has comparison given by its traces if for $x, y \in (A \otimes \mathcal{F})^+, d_{\tau}(x) < d_{\tau}(y)$ for all $\tau \in T(A)$ implies $x \stackrel{<}{\approx} y$ (see also B. Blackadar [1]). It is known that von Neumann algebras, AF-algebras and purely infinite simple C^* -algebras have this property.

The following theorem which extends Theorem 2 of H. Lin [8], states that the lattice $T(A)/\sim$ is isomorphic to the lattice of ideals in $\mathcal{M}(A\otimes K)$ under certain (rather strong) assumption on A.

THEOREM 4.4. Let A be a simple unital infinite dimensional C^* -algebra which has comparison given by its traces, and assume further that T(A) has only finitely many extreme points. Then

- (i) I is a maximal ideal in $\mathcal{M}(A \otimes K)$ if and only if $I = I_{\tau}$ for some extremal trace τ ,
- (ii) if I is a proper ideal in $\mathcal{M}(A \otimes K)$ properly containing $A \otimes K$, then $I = I_{\tau}$ for some $\tau \in T(A)$,
- (iii) there are exactly $2^n 1$ proper ideals in $\mathcal{M}(A \otimes K)$ properly containing $A \otimes K$.

Proof. Let $\{\tau_1, \tau_2, \dots, \tau_n\}$ denote the set of extreme points T(A).

(i). From (iii) of Proposition 4.1, $I_{\tau_k} \not\subseteq I_{\tau_l}$ if $k \neq l$. It suffices therefore to prove that if I is an ideal in $\mathcal{M}(A \otimes K)$ not contained in any I_{τ_j} , then $I = \mathcal{M}(A \otimes K)$.

Let I be such an ideal, and find $Y_j \in I \setminus I_{\tau_j}, Y_j \geqslant 0$. Put $Y = Y_1 + Y_2 + \ldots + Y_n$, and find a diagonal $X = \operatorname{Diag}(x_1, x_2, \ldots)$ in $\mathcal{M}(A \otimes K)^+$ with I(X) = I(Y) (cf. Proposition 2.8). Then $X \in I \setminus I_{\tau_j}, j = 1, 2, \ldots, n$, and so, for some $\delta > 0$, $\tau_j(f_{\delta}(X)) = \infty$ for $j = 1, \ldots, n$. Hence

$$\sum_{i=1}^{\infty} d_{\tau_j}(f_{\delta}(x_i)) = \infty \quad j = 1, \ldots, n.$$

Using the comparison property of A and Corollary 2.7, we find that $I \supseteq I(X) = \mathcal{M}(A \otimes K)$.

(ii) and (iii). For each non-empty subset σ of $\{1, 2, ..., n\}$ (= Σ), set

$$I_{\sigma} = \bigcap_{j \in \sigma} I_{\tau_j}, \ \tau_{\sigma} = |\sigma|^{-1} \sum_{j \in \sigma} \tau_j,$$

and note that $I_{\sigma} = I_{\tau_{\sigma}}$. From (i) and the Chinese Remainder Theorem,

$$\mathcal{M}(A \otimes K)/I_{\Sigma} \stackrel{\sim}{=} \underset{j=1}{\overset{n}{\otimes}} \mathcal{M}(A \otimes K)/I_{\tau_{j}}.$$

Hence, if I is an ideal in $\mathcal{M}(A \otimes K)$ and $I_{\Sigma} \subseteq I$, then $I = I_{\sigma}(= I_{\tau_{\sigma}})$ for some $\sigma \subseteq \Sigma$; and $I_{\sigma_1} \neq I_{\sigma_2}$ if $\sigma_1 \neq \sigma_2$. It therefore suffices to prove that $I_{\Sigma}/A \otimes K$ is simple. Assume that I is an ideal properly containing $A \otimes K$. By Proposition 2.8 we can find a positive diagonal $X = \text{Diag}(x_1, x_2, \ldots)$ in $I \setminus A \otimes K$. Assume — to reach a

contradiction — that $I_{\Sigma} \not\subseteq I$. Then again by Proposition 2.8, there is a positive diagonal $Y = \text{Diag}(y_1, y_2, ...)$ in $I_{\Sigma} \setminus I$. Since $X \not\in A \otimes K$, there is $\delta > 0$ so that $f_{\delta}(x_j) \neq 0$ for infinitely many $j \in \mathbb{N}$, and $\tau_j(f_{\varepsilon}(Y)) < \infty$ for j = 1, 2, ..., n and for all $\varepsilon > 0$ because $Y \in I_{\Sigma}$. Hence

$$\sum_{i=m}^{\infty} d_{\tau_j}(f_{\delta}(x_i)) > 0 \quad j = 1, \ldots, n,$$

for all $m \in \mathbb{N}$, and

$$\lim_{k\to\infty}\sum_{i=k}^{\infty}d_{\tau_j}(f_{\varepsilon}(y_i))=0 \quad j=1,\ldots,n.$$

From the comparison property of A we conclude that $\{f_{\varepsilon}(y_i)\} \stackrel{\sim}{\sim} \{f_{\delta}(x_i)\}$. This holds for all $\varepsilon > 0$, and so from Theorem 2.6, $Y \in I(X) \subseteq I$, a contradiction.

REMARK 4.5. It is not true in general that maximal ideals of $\mathcal{M}(A \otimes K)$ are of the form I_{τ} for some extreme trace τ . Indeed, if T(A) is not the norm closure of conv E, where E is the set of extreme points of T(A), then there is $\tau \in T(A)$ for which $\tau \stackrel{\sim}{\sim} \tau'$ for all $\tau' \in E$. From Proposition 4.1, $I_{\tau} \not\subseteq I_{\tau'}$ for all $\tau' \in E$ and so, if I is a maximal ideal in $\mathcal{M}(A \otimes K)$ containing I_{τ} , then $I \neq I_{\tau'}$ for $\tau' \in E$ (or for $\tau' \in T(A)$).

REMARK 4.6. If A is a simple unital C^* -algebra which is neither stably finite nor purely infinite, then by Theorem 3.2, $\mathcal{M}(A \otimes K)$ has a proper ideal properly containing $A \otimes K$. However, A has no traces (and even no quasi-traces).

REFERENCES

- BLACKADAR, B., Comparison theory for simple C*-algebras, Operator Algebras and Applications (editors, D. E. Evans and M. Takesaki), Cambridge University Press, 1988, Volume 1, pp. 21-54.
- BLACKADAR, B.; CUNTZ J., The structure of algebraically simple C*-algebras, Math. Scand., 104(1982), 813-822.
- 3. CUNTZ J., The structure of addition and multiplication in simple C^* -algebras, Math. Scand., 40(1977), 215-233.
- CUNTZ, J., Dimension functions on simple C*-algebras, Math. Ann., 233(1978), 145-153.
- CUNTZ J., The internal structure of simple C*-algebras, operator algebras and applications, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, (1981), part 1, 85-115.
- ELLIOTT, G., Derivations of matroid C*-algebras. II, Ann. of Math., 100(1974), 407-422.
- 7. ELLIOTT, G., The ideal structure of the multiplier algebra of an AF-algebra, C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 225-230.
- LIN H., Ideals of multiplier algebras of simple AF C*-algebras, Proc. Amer. Math. Soc., 104(1988), 239-244.

9. RØRDAM, M., On the structure of simple C*-algebras tensored with a UHF-algebra, J. Func. Anal. 100(1991), 1-17.

 ZHANG, S., A Riesz descomposition property and ideal structure of multiplier algebras, J. Operator Theory, 24(1990), 209-226.

MIKAEL RØRDAM
Department of Mathematics,
Odense University,
DK-5230 Odense M,
Denmark.

Received October 4, 1989; revised December 21, 1989.