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A FAMILY OF DILATION CROSSED PRODUCT ALGEBRAS

BERNDT BRENKEN and PALLE E. T. JORGENSEN

§0

ABsTRACT.. We study a one-parameter family of crossed product C*-algebras associated
with antomorphisms of certain solenoids. A canonical set of topological conjugdcy invariants
of the dynamical system (which are also known to be isomorphism invariants of the associated

C*-algebra) is shown to contain the entropy of the dynamical system.

We introduce a family of C*-algebras B, parametrized by strictly positive real
numbers a € R* = {z € R | z > 0}. Each B, is defined as the crossed product C*-
-algebra C(A4)XZ arising from an abelian dynamical system, namely an action of Z
on a compact space /ia As the notation suggests this dynamical system is obtained
by dualizing a group automorphism of a discrete abelian group A,.

We show that certain topological conjugacy invariants (including the entropy)
involving the periodic points of the dynamical system are isomorphism invariants of
the C*-algebra. '

A study of periodic points has always been an important part of the theory of
dynamical systems. It seems well known that the number of points fixed by ¥* (v a
homeomorphism of a compact space X) is recoverable as an isomorphism invariant
of A = C(X)xZ . Only some knowledge of the structure of the A, (n € N), the
space of unitary equivalence classes of n-dimensional irreducibile representations is
needed. Asshown later an easy application of multiplicity theory provides the required
information. Actually more than what is needed is true, namely A, is homeomorphic

with O, x T where Oy, is the space of orbits in X consisting of n distinct points [5].

Of course this information may also exist in other algebraic objects associated
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with the dynamical system. In the special case of a zero dimensional compact metriz-
able space X (we will note that the dimension of A, is the degree of the irreducible
polynomial of a over @) it is shown in [10] that this information is recoverable from a
certain ordered group associated with the dynamical system. As an unordered group
it coincides with the (unordered) Ko group of the crossed product algebra (again for
X zero dimensional). '

For the dynamical system under consideration, (/i.,, Z), it is possible to compute
the number of periodic points of period n, thus obtaining a sequence of (computable)
isomorphism invariants of the algebra B,.

For some dynamical systems it is known that the entropy coincides with the
growth raie of the periodic points [11]. The entropy for a class of dynamical systems
(including (A4, Z )) was,computed by Yuzvinskii [8]. Comparing the entropy with
growth rate of periodic points for (/ia, Z ) we see that they coincide. This is far from
true in general, even within the class of dynamical systems considered by Yuzvinskii.

There are many obvious questions and generalizations which are not addresed
in what is to follow. For example, the invariants provide an indispensable tool for

classifying the algebras B,. These and other considerations will appear subsequently.

NoTaTION. If K is a Hilbert space, B(H) is the algebra of all bounded operators
on H and Idqg is the identity of . The unit circle in the complex plane C is denoted
by T. f X = C™, B(H) = Mx(C) and if A is an abelian algebra of operators,
Mm(A) = M,(C) ® A. Where convenient (,) : G x G — T denotes the duality
between the locally compact abelian groups G and G. '

)

§1

For a € Rt let A, denote the additive subgroup {3} a"im; | n;,m; € Z ,m; non
zero for finitely many i} of R and G, the semidirect product of Z where Z acts on A,
byn-A=a"A(n€Z, X € A,;). Unless a € Z, the group A, is dense in R so the
subspace topology of A, is not one in which A, is a locally compact group. Endow
Aq and G4 with the discrete topology.

DEFINITION. For @ € RY denote by B, the C*-crossed product algebra
C*(Aa)nZ.

Note that both Z and A, sit naturally in B,. Since Z and A, are amenable the
regular representation of B, induced by the left regular representation of C*(A4s) on
£2(A,) is faithful and B, = C*(Ag)Xreal (see [9]). Also since G, is amenable the
(right) regular representation of C*(G.,) is faithful and it easily follows that B, is
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isomorphic to the group C*-algebra C*(G,). Note that the algebras B, are nuclear.
The group G, (a # 1) is an infinite conjugacy class group so the von Neumann algebra
generated by the left representation of B, is a type II; factor, namely the matricial
I, factor (since B, is nuclear).

Although the connection may seem spurious to some we think it is worth noting,
if only to expose our original motivation, that the algebras B, may be contrasted with
the irrational rotation algebras. The later arise as (an infinite dimensional and simple
quotient of) the group C*-algebra of a discrete Heisenberg group while the former
are group C*-algebras of subgroups of the az + b groups (with the discrete topology).
Recall that the az + b group is the semidirect product R* xR with multiplication
defined by (a,b)(d’,¥’) = (ad’, ab’ +b). For a # 1, we éee that G, is isomorphic to the
subgroup generated by the elements (a,0) and (1,1). The irrational rotation algebras
are simple while the B, are far from simple. The primary means used to classify
the rotation algebras are K-theoretic while the entropy of the underlying dynamical
system is zero in all ¢ases. For the algebras B,, our preliminary calculations seem
to indicate that K-theoretic invariants are of limited use while the entropy (more

precisely, the zeta function [1]) is the useful invariant.

§2

Several aspects of the representation theory of B, are considered below.

The dual group A is compact, it is the Bohr compactification ba R of R ([3]).
Since A, is torsion free A, is connected. The map dual to the inclusion i : A, —
— R is a continuous group homomorphism ¢ : R — Aq with dense image such that
@(r)(A) = exp(ird) for. X € A4, r € R. If C*(A,) is identified with C(A,) via the
Gelfand isomorphism, the element A € A, is identified with the function in C(4,)
mapping z to z(A) (z € A,). The action of Z on A, by group isomorphisms yields
an action, denoted n — a” (n € Z ) of Z on Aq by group isomorphisms. Note that
a™(p(r)) = p(a™r) for n € Z , r € R. The uniqueness of the Haar measure v on Aq
ensures that v is invariant under o. The corresponding dual action & of Z on C(A,)
agrees of course with the action of Z on C(A,) defined by the Gelfand isomorphism.
For A € A, viewed as ah element of C(/ia) we have &*(A) =n-A =da"A

The C*-algebra C(/ia) may be identified (via the map f — fo) with an algebra
of almost periodic functions on R, namely those functions with frequencies in A,.

PROPOSITION 1. For a # 1 the action  of Z on A, is ergodic.

Proof. By a result of Rohlin and Halmos, ergodicity follows by showing that the
trivial character is the only character A € A, of /ia satisfying n-A = X for somen € N
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({11]). However n- A = X if and only if (a® ~ 1)A = 0. Sincea € R* and a # 1, a is
not a root of unity and X = 0. ‘ [ ]

Let M be the multiplication representation of C(A,) on the Hilbert space
L*(A4,v), Ms€ = f - € (pointwise product for f € C(A,), € € L¥*(Aq,v)). U
is the unitary operator actil{g on L2(A,,v) mapping € to £ o a we obtain a covariant
representation (M, U) of the dynamical system (C(A,), &,2) and thus a representa-
tion 7 of B, on Lz(/i,,, v). Note that the’weak closure of the image of M is a maximal
abelian *-subalgebra of B(L2(A,,v)) and thus, if the action of « is ergodic (ensured

if @ # 1), it easily follows that 7 is an irreducible representation.

THEOREM 1. For a # 1 the irreducible representation = of B, on L?*(Aq4,v)
defined above is faithful.

Proof. Since any closed two sided ideal of C(A,)xZ contains elements of the
form fp(g) (f € C(Aa)), g € €(Z ) with p : £1(Z ) — B, the integrated representation
of the natural inclusion of Z in B, it is sufficient to show that 7(fp(g)) = 0 implies
fe(g) = 0 ([6]). The functions A € A, form a complete orthonormal system in
L2(A,,v) (recall L3(A,,v) = £2(A,)). For each A € Aq, UM(X) = Aoa™ = a™) and
since a # 1, {U™()) | n € Z } is an orthonormal set for nonzero A. Let £, denote the
element 7(p(4))(\) of L%(da, ). For A # 0, [l6al} = IS g(m)a"ME = T lo(m)? is
independent of A. , ,

If 7(fp(g)) = 0 then Myoonn(p(g)) = Urn(f)m(p(g))U~" =0 for all n € Z and
(foa™)n = Mpoanm(p(g))(X) = 0 (ae. v)foralln € Z and A € A,. It follows -
that if X = U{a"(support(f)) | n € Z} then & = 0 (a.e.v) on X. However X is a
measurable a-invariant subset of A, so either v(X) = 0 or ¥(A,\X) = 0. Thus either
f =0or & =0 (a.e.v). Since ||€x]|z = 0, for any nonzero A, implies g = 0 we must
have fp(g) = 0. [ ]

The functions A and Ao = a) € A, map ¢(r) in A, to exp(ir)) and exp(irad)=
=exp(irA)® respectively. Thus we may view the unitary operator UMU ™! = M,y
as (M),)®, an a-th power of M). If V denotes M, then the previous theorem shows
that the C*-algebra generated by the unitary operators V and U on L%(A,,v) is
isomorphic to B,. Loosely speaking, we have U"VU~" = V" forn € Z and My = V*
(A € A,). This relation seems to echo the universal property for irrational rotation
algebras. It does not however, suffice to define such a property (for the algebras B,)
as can be easily seen by reflecting on the constraints (described below) imposed on
representation of B, by multiplicity theory.

A representation of A = C(X)xZ where Z acts by a homeomorphism v of a

compact Hausdorff space X is just a covariant representation of the dynamical system
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(X,v,Z). Thus a representation p of the abelian C*;algebra C(X) can be extended
to a representation of A if and only if the representations p and p o ¥ are unitarily
equivalent. This occurs if and only if p and p oy have the same null ideal sequence or
equivalently, have the same multiplicity functions ([4]). It is straightforward to check
that, if A{Nj | 7 € N} is the null ideal sequence for p, then {y(Nj;) | j € N} is the null
ideal sequence for p o v; or equivalently if m is the multiplicity function for p then

mo+y~1! is the multiplicity function for poy. Thus p can be extended to A if and only

ifm=movyt

If p is representation of uniform multiplicity n then p is unitarily equivalent to
élaM on H = élaL?(X, p) for some uniquely determined regular Borel measure p on X.
In this case it is straightforward to conclude that p is unitarily equivalent to p oy if
and only if g is equivalent to o ™! (i, the measure y is quasi-invariant). In fact
any unitary in B() implementing the equivalence is of the form b,(U ® Id¢c~) with
Ug = (dpy/dp)/2g 0 4= (for g € L2(X, 1)) and b, a unitary in M, (L% (X, 1)). For
fixed p, the equivalence classes of the possible representations of A extending p are

in a one to one correspondence with equivalence classes of the unitary 1-cocycles of
. [
Z in M, (L (X, p)) determined by b; ([2]).

Let p be a representation of uniforin multiplicity. one on L2(X, 1) for some quasi-
invariant Borel measure g on X. A representation of A extending p is irreducible if
and only if p is ergodic with respect to the automorphism ¥ (for the dynamical system
(Aa, @, 7 ) the representation x introduced above (with 4 = v =Haar measure on A,)
is an example). Also any quasi-invariant point measure supported on the orbit O, =
= {y"(z) | » € Z} of a point z in X, is ergodic. In this case the Hilbert space
L?(0,, p) is isomorphic to £2(Z) or, if O is finite, C? for some p € N. Restrict-
ing attention now to the finite orbits, it is easy to check that equivalence classes of
unitary l-cocycles in L°(O,, ;) (= CP) are parametrized by T. Standard multiplic-
ity theory shows that (up to unitary equivalence) all finite dimensional irreducible

representations of A are accounted for in this manner (cf. {5]).

We shall see in the last section how many finite orbits there are in A,. In any
case there are xhany finite dumensional (irreducible) representations of By, so there
are many traces on B,. Also any a-invariant Borel probability measure on A, with
support A, gives rise to a faithful trace on B,. The Haar measure on A, is one such,
and the representation associated to this trace is the left regular representation of G,
on £2(G,) discussed above. We show below that if @ is algebraic (¢ # 1) and n € N,
the set of points of period n under o is finite and the set of all periodic points is dense
in A,. This gives rise to another a-invariant probability measure with support A, so

a faithful trace on B,.
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We describe in more detail the dynamical system (/ia,'a). The discrete space
A, is the ring of Laurent polynomials in a and ¢7!, Z [a,a'l]. If a is transcedental
then A, is isomorphic as a group to EgZ, so A, is a countably infinite product of tori,
TZ. The action of @ on A, is the shift (a(t))(n) =t(n+1)fort € A, n€ Z . If
a is algebraic, denote by f € Q[z] the monic irreducible polynomial of a over the
field of rational numbers Q. If ¢ is the content of f then f = c- £ with £ € Z{z].
The coefficients of £ have greatest common divisor 1 and the ideal generated by ¢
in Z[z] is prime. If d is the degree of £ then the set of d elements (each of infinite
order) {1,a,...,a% '} is a maximal independent set in the group A,. Thus A, has
torsion free rank d and the dimension of A, is d, ([3) 3.11, 24.28). Note also that

Aq = Z[z, 271/ (8).
For {(z) = zd: ajz’ let F = [f;] be the d x d matrix with integer entries fx

j=0

- d
defined by aga? = Y fira*~1, (a < j < d).

k=1
The matrix F has the form

0 aq 0o ... 0

. 0 .

: . .0

0 ) 0 a4
-ayp -—ai; ... ... QGgdui

Let & be the shift of (Td)l and define K to be the connected component of the identity
of the closed o-invariant subgroup {y = (yn) € (Td)l | agynyr = F y,,}. In the
terminology of [7], K is the generalized solenoid group of type (d, F, aq). By Lemma
17 and Theorem 19 of 7], there is an isomorphism (of topological groups) ¥ : Ae = K
such that (o|K) oy = ¥ o a. It follows also that a is an expansive automorphism if
and only if F has no eigenvalues of absolute value a4, or equivalently a;lF has no

eigenvalues of absolute value 1 ([7]).

PROPOSITION 2. The characteristic polynomial ofa-glF (viewed as a linear map
of R%) is f. '

Proof. Let ¢ € Q[z] be the characteristic polynomial of a;lF. By definition ¢ is
monic and has degree d. If ¢ is the characteristic polynomial of I we have g € Zz]
and g(F) = 0. Thus g(aqeo|K) = 0 and since g € Z[z], g(aaa) =0on A,. 'This occurs
if and only if g(aga) = 0. Since ¢(z) = a;%(aqz), c(a) = 0 and f must divide c.

Since f is monic and degree d it follows that f = c. _ | |
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Thus « is expansive if and only if f (or equivalently £) has no roots of absolute
value 1. Since the irréducible polynomial of a root of unity (a cyclotomic polynomial)
has no positive real roots (except for g(z) = z — 1) it follows that if a # 1, € has no
root of unity as a zero.

Since A, C Qd the automorphism N, of A, defined by A — aX (A € A,) extends
to an element (also denoted N,) of GL(d,Q). Since g(a) = 0 if and only if g(N,) =
= 0 (g € Z[z]) it follows that f is the characteristic polynomial of N, (or one can
check that the transpose of the matrix of N, is a;'F). A result of Yuzvinskii [8]
shows that the (topological) entropy h(a) of the automorphism o of A, is equal to
log s + Z log |r;| where {r; | i=1,...,d} are the roots of f (eigenvalues of N,)

|rif>1
and s is the least common multiple of the denominators of the coefficients of f. Since

f= a;'lZ and the coefficients of £ have 1 as a common factor it follows that s = |ag].
Thus k(a) = log |ad| + Z log |r:| where {r; | i=1,...,d} are the roots of £. In the
ril>1
case that a is t;ranscede‘ntlal, o is the shift on xT and it is well known that A(a) = 0
([11]). Note that if @ =1 then h(e) = 0. Conversely suppose h(c) = 0, so @ must be
(real) algebraic. If € € Z[X] is irreducible in Q[X] with £(a) = 0 it follows that £ is
monic and all roots of £ lie in the closed unit disk. However g(z) = z%¢(z~1) € Z[X]
(with d = degree of £) is irreducible in Q[X] with g(a=*) = 0. Since (a~') = 0 where
a~! is the dual of mul;tiplica,tion by a=! on A -1 = A, it follows that g is monic and
all roots of ¢ lie in the closed unit disk. The roots of £ therefore lie in T. Since ¢ € Rt

we have a = 1.

§4

For A = C(X)xZ where Z acts by a homeomorphism ¥y of a compact Hausdorft
space X we have noted that the number of points in X having orbits (under +y)
of length n is recoverable from /in and is thus an isomorphism invariant of A. In
particular i{(A);, the cardinality of the set of points in X fixed by 4™ is information
contained in {A4 | d € N, d|n}. The sequence i(A) is an isomorphism invariant of A.

The first named author is thankful to D. Lind for a comment which led to a

substantial simplification of our original proof of following result.

PROPOSITION 3. L‘;et a € R*, a # 1 be algebraic. Then

n

i(Ba)n = H £ (exp(2mijn~1))

j=1

where ¢ € Z[z] is irreducible and ¢(a) = 0.
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Proof. By definition i(B,), is the cardinality of the group {z € A, | a”z =z} =
={z € Aa I z((a™ - 1)(X)) = 1, (X € Aq)}. This is the cardinality of the dual group
(Aa/(a™ — 1)A4)" ([3]). It will turn out that A,/{a” — 1)A, is a finite group, so it
has i(Ba)n elements. If g(z) = 2™ — 1 then z is invertible in the ring Z[z]/gZ[z] = R
s0 Ag/§Aa = Z[a,a"1}/g2Z[a,a™!] = R/ER where §, € is the class of g, £in A, R
respectively. As an additive group R is just Z". Since £ and g have no cormmon factors,
£R is a rank n free submodule of R. The cardinality of R/ZR is | det M,| where M, is
the linear map of R defined by r — Cr. If M, denotes the map of R defined by r — Zr
then M, = £(M,). Since M; is the cyclic shift on Z" it has spectrum {o; | 1<j < n}
with ¢; = exp(2mijn~!). The polynomial spectral mapping theorem implies that M,
has spectrum {€(c;) | j € N} and the theorem follows. |

Under the hypothesis of the theorem it follows that 0 < i(B.:)a < o0.
An alternante expression for i( B, ), is available. Let {r; | k=1,...,d} bethed

d
roots of £ in C. Then £(z) = aq4 H(z —ry) and
k=1
n n d d n
i(Ba)a = [] (e = ] |aa (H(Uj - "k)) = laa|* [T [T los -7l =
j=1 j=1 k=1 k=1j=1
d n d
= laa* [T | TTC1 = ree) | = leal” TT 11 -2}
k=1]j=1 k=1

since " — b" ='H(:c - boy).
Jj=1

COROLLARY 1. With the hypothesis of the previous theorem,

d
i(Ba)n = laal” [] 11 =l

k=1

d .
where £(z) = Zaj:z:j has roots {r | k=1,...,d}.
j=0
THEOREM 2. Let a € R*. The entropy h(a) of the dynamical system (Aq, ) is

an isomorphism invariant of the C*-algebra B, = C(A,)»4Z .

Proof. For a algebraic in R*, @ # 1, lim n~!logi(B,), is an isomorphism
n—oo

invariant of C*-algebra B,. This is equal to

d ‘ d
nlglgo n~!log (Iadl" H |1 - 11‘|> = ”liglo [log |aa + Z n~tog|l — 11‘]} =

k=1 k=i
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=loglaal + D log|r]
» [rel>1
which by Yuzvinskii’s result =h(a).

For a transcendental all the algebras B, are isomorphic. The dynamical system
(A4, @) with a transcedental are exactly those with infinite entropy. Also for each n
(B,)n is nonempty and is not a finite union of tori for these a.

The algebra By = C(T x T) is the only abelian algebra in {B, | a € R+} Also
the dynamical system (Aq, @) has zero entropy if and only if a = 1 and (Bi)n =0
forn > 1. |

The proof of the theorem yields a little more, namely each of the three assertions
h(a) = oo, a is transcendental, (B,), is not a finite union of tori for each n, are
equivalent. Also each of the three statements h{a) =0, a =1, (Bo)n = @ for n > 1,

are equivalent.

PROPOSITION 4. The subgroup F = {z € A, | o™(z) = z for some n € N} of

periodic points is dense in A,.

Proof. This is clear for @ = 1 or a transcendental. Assume a is algebraic and let
£ € Z[z] be irreducible with £(a) = 0. The group F is dense in A, if and only if the
subgroup G.= {A € Ay | (F,A) = 1} of A, is zero. Since a”(F) = F it follows that
a"G = G (n € Z) and G is an ideal in the ring 4,. If we assume G is nonzero there is
g € Z[z] with g(a) = X nonzero in G. Since £ is also irreducible in Q[z], ¢ and £ have
no common factor in the principal ring Q[z] and there are p,q € Z[z] and a nonzero
r € N with pf + qg = . Thus rA, C G and F may be identified with a subg.roup of
the dual group (Aa/rAq)". In particular each element of F is a torsion element and
has order dividing r.

IHfmeN is prime to the leading and constant coefficient of £ then A,/mA, is a
finite group isomorphic to (Z/mZ)¢. The dual group (As/mA,)" may be identified
with the subgroup Fy, = {z € A, | (x,mAq) = 1} of A,. This is a finite a-invariant
group so F,,, C F. Since there are clements of F,, with torsion order m this contradicts

the conclusion that m|r. Thus G must be zero. L
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Addendum. Proposition 3 in a mote general setting of n commuting automor-

phisms but with .an additional assumption on expansiveness is essentially contained in
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a preprint of D. Lind, K. Schmidt and T. Ward entitled Mahler measure and entropy
for commuting automorphisms of compact groups. We received this after our work

was completed.
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Note added in proof. Professor J. Tomiyama has informed us (1992) that he has a
general framework which includes the crossed product from our Theorem 1, and also yields
the faithfulness; ~— this is in his recent book (World Scientific Publ. 1987), and in a set of
his lecture notes from the Seoul Nath. University (1992).



