J. OPERATOR THEORY © Copyright by IMAR, 1991
25(1991), 309-318 ;

SUBNORMALITY FOR THE ADJOINT OF A COMPOSITION
OPERATOR ON L?

MARY EMBRY-WARDROP and ALAN LAMBERT

1. INTRODUCTION

Consider a composition operator C on L%(X,Z,m): Cf = foT where T : X —
— X. In the recent past, special operator properties of C have been characterized
by measure theoretic properties. In [18] Whitley shows that C is quasinormal exactly
when h = h o T, where h is the Radon-Nikodym derivative dm o T~ /dm, and that
C is normal exactly when hoT and T77'Z = X. Similar results are found in [12],
(16] and [17]. Lambert shows in [11] that C is hyponormal exactly when h > 0 a.e.
and E(I/h)<l/hoT a.e., where E is the conditional expectation with respect to the
o-algebra T-'Z, and in [12] that C is subnormal exactly when for almost all ,
{ha(z)} is a moment sequence, where h, is the Radon-Nikodym derivative
dm o T~"/dm. In [3] Dibrell and Campbell investigate hyponormal powers of C.
Finally in (8] the authors show that C is centered exactly when h is measurable with

. o0
respect to the o-algebra (| T-"2.

Less attention has rl;eén focused on the special properties of the adjoint C*
of C. In [9] Harrington and Whitley show that C* is hyponormal if and only if
HNEX CT 'Y and hoT > h ae. and C* is quasinormalifand only if HNE Cc T~ %
and hoT = h a.e., where H is the support of A. In this paper we shall continue-the
study of special prope"rties of C*. In particular we show that C* is both centered
and power hyponormal when C* is hyponormal. Additionally we show that C* is
subnormal exactly when C is centered and {h, o T"} is a moment sequence a.e. dm.
A straightforward application of this last result yields Berger’s characterization of
subnormal weighted shifts.

2. NOTATION AND TERMINOLOGY

Let (X, 2, m) be a complete o-finite measure space and let T be a measurable
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transformation from X to X such that m o T-! &« m. Then composition with T

defines a linear transformation on the space of all measurable function. Under the

. dmoT-! . .
assumption that ——— € L, this linear transformation acts on L?(X, £, m).

m
We shall refer to this operator as C, the composition operator induced by T'. The
following notational conventions will be used throughout this article:

b — dmoT™ "

o h, = —am

e E, is the conditional expectation operator with respect to T™"% : E,(f) =
= E(f]IT-"%).

o All set and function statements are to be interpreted as holding up to sets of
measure 0.

e H, is the support of h,.
[o o]
e No= T2

n=1

We shall make use of the following general properties of measurable transformations:

e Each T~ !X-measurable function F has the form f o T for some measurable
function f. Further if foT = go T, then f = g on H. Therefore, even when
T fails to be invertible, h - (Ef) o T7! is well-defined. In fact, C*f =
=h-(Ef)oT™1. (See [l] and [12].)

o C"C*""f = (hp o TM)E, .

e {H,} is a decreasing sequence of sets ([8]).

o T-'H =X ([8]).

e hpy1 = h-(Ehy)oT™t = h, - (Egh) o T7™ ([11]).

In this paper the term moment sequence will always refer to a Hausdorff moment
sequence. Recall that a numerical sequence {a,} is a Hausdorff moment sequence if
there is an interval I = [0,a] and a Borel probability measure p on I such that for

each integer n 20, a, = /t"dy. Similary a sequence {A,} of operators on a Hilbert

1
space is called a Hausdorff moment sequence if there is an interval I = [0, a] and an

operator-valued measure g such that for each integer n 20, A, = [ t"dp.

1
We shall use the following standard terminology for special Hilbert space oper-
ators. An operator A is positive if (Af, f) > 0 for each f; A is hyponormal if A* A—
—AA* is positive; A is normalif A*A— AA* = 0. Also A is quasinormal if A commutes
with A*A and subnormal if A is the restriction of a normal operator to an invariant
subspace. An indepth discussion of these classes is found in [2]. The hierarchical
relationship between the classes is as follows:

A normal = A quasinormal = A subnormal = A hyponormal.
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3. HYPONORMALITY AND SUBORMALITY OF ¢C*

We begin our investigation by establishing a series of results when C* is hyponor-
mal. We shall refer frequently to Harrington and Whitley’s characterization in [9]:

(1) C* is hyponormal if and only if ENH C T~ 'X and ho T 2 h.

LEMMA 1. If C* is hyponormal, then T™1X2 = £,

Proof. If AC X — H, then T7'4 = (. Assume that A C H. By (1) there is
a set B with A = T7!B. Therefore, T-'A € T-2%. Thus T~!5 = T-2%, which
yields the asserted equality. » B

In [14] B.Morrell and P. Muhly introduced the concept of a centered operator. A
is centered if the family {A** A", A" A*™ : n,m > 0} is commutative. Note that A is
centered if and only if A* is centered. In general the composition operator C need not
be centered. We shall make use several times of the following characterization in [8]:

(2) C is centered if and only if h is Loo-measurable.

LEMMA 2. If C* is hyponormal, then C is centered.

Proof. By (1) and Lemma 1 every measurable subset of the support H of h is
XYeo-measurable, and so & is Zo-measurable. Thus by (2) C is centered. |

One useful conseqence of C being centered is that for each positive integer n we
“have

hpoT™ = HhoTk.

(This is easily verified using the recursion for h, mentioned eatlier in the paper and
the Z-measurability of h.)

We note that there are many examples of hyponorma! operators A, for which
some higher power of A fails to be hyponormal. (Indeed, examples of such composition
operators are known; sce [3] and [11].) The next result shows that if C*'is hyponormal,
then all its powers are hyponormal, i.e., it is power hyponormal.

THEOREM. 3. If C* is hyponormal, then C* is power hyponormal.

Proof. Let. g, = hn oT". Then g, = H hoT* since C is centered. Suppose that
C*"is hypon01ma.l for some n > 1. Then g,1 > hy by (1), so that for every measurable

set A,
/gndm2 /hndm. :

A A
Let A be in 2. Then

n+1 ’ n4l

/g"Hdm:/HhoT"dm:/hoTHhoT"'dm)‘

A a k=1 A Tk=2
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n n
z/h-Hhodem—_- / HhoTk'Hdm;
A k=1 714 k=1

n
> / [[hoT dm = m(T-"T14) =

k=1
= / h,‘.Hdm‘

A

T-'A

Thus, hpyy 0 T"H 2 h,yy. Since C is centered, hnyy is Too-measurable. Since also
Lo = T~ then hpyy is T-(*+1) L-measurable. It follows from (1) that C*n+1
is hyponormal. Thus by induction we see that all powers of C* are hyponormal if C*
is hyponormal. a

THEOREM 4. If C* is hyponormal and irreductible, then either X consists of a
single atom (equivalently, L? is one dimensional) or T-'X = £.

Proof. By Lemmas 1 and 2, C is centered and T-12 = 5. It follows
from [8] that L%(Ly) reduces C. Thus, Ly, is either trivial or all of £. Suppose
T-'2 = {0, X}. Since C is centered, It is L,-measurable, so that H € 7-1X and
either H = @ or H = X. The first case, H = @, leads to X having measure zero.
Assume now that H = X, or h > 0 a.e. dm. In this case m(T~1A) = 0 only when
m(A) = 0. Assume that X = A; U A, where A; and A, are disjoint sets. Then
T-'X =T 'A)UT 1A and T"'4, N T~ 'A; = @. Consequently, T-1A; = @ or
T-'A; = @, resulting in A; = @ or A; = @. This argument shows that X is an atom.

|

We are now able to completely characterize those transformation T" for which C*

is subnormal. ,

THEOREM 5. C* is subnormal if and only if C is centered, T-'Y = £, and
{(hn o T™)(2)} is a moment sequence for almost all z in X.

Proof. Suppose that C* is subnormal. By [10] we know that {||C*"f||?} is a
moment sequence for each f in L2(X, 2, m). Also C* is centered by Lemma 2 and
E, = FE, n21, by Lemma 1. A straightforward computation now shows that for
n2>l.

C* A = / w0 T*|Ef|2dm.
X

We note that Ef is an arbitrary L2(X, £, m) function and conclude that

/h,. o T"|g|%dm
J

is a moment sequence for each g in L*(X, £o,m). In particular let G = y4, where
A is a subset of X of finite measure. Then

/h,1 oT"dm = /t"d;z,

A I
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where /t"dy is the moment sequence ||C*"x4||>. Observe now that if Za,,t" is
: 1
a polynomial which is nonnegative on I, then /Z hpnoT™)a,dm20. It follows

now for each nonnegative polynomial 3 a,t" that Y. an(hn o T*)(z)20 a.e. dm.
Therefore by the classical result in [19, Chapter III], Y (hn o T™)(z) is a moment
seqence a.e. dm. ‘

Now suppose the stated conditions hold. We shall construct a quasinormal exten-
sion of C*. Since this extension is itself subnormal and the restriction of a subnormal
operator to an invariant subspace is subnormal, we will have completed the proof.

We write h, o T"(z) = /t"dux(t).
1

dpre t
d t) = .
dyug ( hoT(z)

Indeed, since h is Lo-measurable, we have hpyy 0 T* ! = [hoT] [hn o T"| o T
and

ASSERTION. For each = in X, ur; « pz an

'

/t"td,u,(it) = /t';h o T(z)durs(t) aedm(z), n=0,1...

I I

Thus tdp, = ho T(aq)duTz. Since hoT > 0 a.e. dm, ur; < p, and the desired
formula holds. Let B be the collection of Borel subsets of I, let I' = £ x B and define

v(Ax J)= /yx(J)dm(:c,).

A

Essentially the same argument as in [13] shows that v extends to a o-finite measure
on I'. Define the weighted composition operator W on L%(X x I, I',v) by

t

(WF)(z,t) = Ao T(z)

F(Tx,t).

Then W 1s bounded since

“WF”2=:\’/I/(h—o;—(z—)->2IF(Tx,t)lzd/lx(t)dm(:c)=

- / / hT;(T)w(Tx,t)ﬁqM,(t)dm(r) =
X I

= [ [ 1P 0P @ime) <
H I

<lAlleoll £
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For G E‘L?,, let Gi(z) = G(z,t). Then

(WF,G) = / / ﬁ,—aF(Tz’,t)G(x_,t)'dy,(t)dm(z) =
X I

= / / F(T2,1)Gi(z)dprs(t)dm(z) =

X I

=//F(1: )hGi(z) o T~ dpg (t)dm(z) =

/ / F (e, )(C G @)dbe ()dm().

Thus (W*G)(z,t) = (C*G:)(z). Now we identify L?(X, L, m) with {FeL?(v) :
: F(z,t) = f(z)} and note that for such an F, ||F||, = ||f]lm. It then follows that W*
is an extension of C*. A straightforward calculation shows that WWW* is the operator
of multiplication by the second independent variable ¢, while W* W is multiplication
by t - xu and consequently W*(WW?*) = (WW*)W*, so that W* is quasinormal. M

To prove the necessity of the conditions for subnormality of C* in Theorem 5§,
we used the classical relation between moment sequence and complete positivity. It
should be noted that a more operator-theoretic proof can be given, using the fact that
A is subnormal exactly when {A*® A™} is a moment sequence of operator [4].

CoOROLLARY 6. If C* is subnormal, then the quasinormal extension W* con-
structed in Theorem §, is the minimal quasinormal extension of C*. Furthermore, W
is normal if and only if X = H.

Proof. The domain of the minimal quasinormal extension of C* by [5] is
Y = (WEW*E s fi € LE(m)).

But (W*W*k fi.)(z,t) = t* fi(z) for fi in L?(m) so that Y contains all functions of
the form xaxs with m(4) < co, A € £ and J € B. Therefore Y = L%(v) and W*
is the minimal quasinormal extension of C*. Furthermore if X = H, then W*W is
multiplication by t, as is WW*, n

The extension W of C, constructed in Theorem 5, is almost identical with the one
given in [13] to obtain a quasinormal extension of C' (when C is subnormal). There
the measure v is constructed using the moment sequence {h,(z)} and the extension of
Cis (WF)(z,t) = F(Tz,t), an unweighted composition operator. In [6] W is shown
to be the minimal quasinormal extension of C by an argument similar to that given
in Corollary 6.

It would be interesting to know if each subnormal C* admits a minimal normal
extension which is itself the adjoint of a weighted composition operator. We do not
know if this is the case. However, we can show that for C* subnormal, C* admits
a normal extension which is the adjoint of a weighted composition operator. This
particular construction does not in general lead to a minimal extension.
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THEOREM 7. W* has a normal extension whose adjoint is a weighted composition
operator. )

Proof. Let J be the countable direct sum of copies of L?(v) and let Z be the

operator on J deﬁneél by the matrix

w 0 0 0
v 0 0 0

0 Vv 0 0

where V f = Vix X f. Then direct calculation shows that Z* is a normal extension of

W*. Now let 4 be the counting measure on the nonnegative integers and let A = yx v.
For (f;) in J, let u(n, z,t) = fa(z,t). One verifies in a routine manner that u € L?(A)
and that ||(fi)|| = ||u|[L2(r). Let U be the isometry from J to L%()) so defined. U is
in fact surjective. We will show that U induces a unitary equivalence between Z and
a weighted composition operator. Define the transformation S on Z* x X x I by

(0,Tx,t) ;i n=0
S(n,z,t) =
(n-1,xz,t) ; n21

and let the function r be defined by

¢ .
r(n,z,t) = hoT(e) el
VE Xy g(2) 5 n2l

It follows that UZ = RU, where R is defined by Rf =r - fo S. |

The transformation S may be visualized as follows. Consider a tower of copies
X x I. S projects points vertically downward so long as there is a “downward”. A
point (0, z,t) on the bottom level is sent by S to (0,Tz,t). In some sense this is the
reverse of the more standard tower construction.

4. EXAMPLES AND APPLICATIONS

1. From the measure-theoretic point of view, one of the simplest examples of a
composition operator induced by a noninvertible transformation is that of the adjoint
of a unilateral weighted shift. (See [15] for a thorough treatment of weighted shifts.)
C. Berger has presented the following elegant characterization of subnormal weighted
shifts.

Y
ProrosiTioN (C. Berger; See [15]). S is subnormal if and only if {2} is a
moment sequence (where {8,} is defined below.)

This result follows as a special case of Theorem 5:
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Let S be the weighted shift on €i with weight sequence {c;, a2, ...} (all
n

weights positive) and let o = 1, fn = Ha,-, n> 1. S is unitarily equivalent to the
i=1

unweighted unilateral shift on the weighted €% space with mass m(i) = 8% at each
nonnegative integer i. Using functional notation rather than the more usual sequence
notation, we see that S* is given by the action (S* f)(k) = f(k + 1), that is S is the
adjoint of the composition operator associated with the transformation T: &k — k + 1
on Z*. One sees immediately that in this case T-!2 = £, and so S is subnormal if
and only if {h, o T"(k)}3%, is a moment sequence for each k in Z*. But

moT "{n+k} my _ B2,
m{n + k} T Mpgr B

hpoTH(k) =

It now readily follows from Theorem 5 that C* is subnormal if and only if { ﬂ,f} is a
moment sequence. n

2. A continuous semigroup of cosubnormal composition operators on L?(R*, dz):

Let
(@)
sh@ =4 Vee-n ' “7"
0 ;o Tt

where ¢ is strictly positive and continuous.

It was shown in [7] that this semigroup consists of subnormal operator if and
only if ¢ is the Laplace-Stieltjes transform of a probability measure; i.e. for some
probability measure p on RY,

Ol o) = [ e

. 1 .
Let v be the absolutely continuous measure: dv = —dxz. Then the canonical

@
unitary operator U from L?(dz) to L?(dv) is given by Uf = /g - f. Now direct
calculation shows that

_ ez +1) . 2
@) =[P 1@ 0; fe L)
It then follows that for f in L?(dv), (US;U~1f) (z) = f(z+¢). Thus for p as in
(%) and C, defined by (C.f)(z) = f(z+1t) on L? (—;—dz) , each Cy is subnormal. It may

prove informative to see how the characterization of subnormality given for general
composition operator adjoints applies in this particular case. We shall examine the
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. . . . 1
case t = 1, there being no substantive difference for arbitrary t. Here dm = ;da: and

T(z)=z+1onRt. Thus 7-'2 = X and H = {1, 00). Now

1
memt
h(z) = d:;; ={ AT
dz 0 ; 0z <l
p(z + k)

It follows that ko T*(z) = and consequently

p(z+k—-1)

oT™(z) = - oT*(x :‘P(m+n): 1 ooe("“""")‘( =
hn o T(z) = L hoT"(2) = = SO(w){ W)

=Ze-"‘dnx<t) (amet0) = 5000

A simple change of variables reduces this to a Hausdorff moment sequence. ]

REMARK. It is clear that when C* is hyponormal, C* resembles a weighted shift
in at least two ways: It is power hyponormal and it is centered. Since the kernel of
a hyponormal operator is a reducing subspace for the operator, and the kernel of C*
is L3(2) e LY(T-'2) = [L}(5x)]*, we may study C* in terms of its restriction to
L?(Z). When viewed as a composition operator, the underlying measure space for
the shift has X' = Z: Thus the resemblence of C* to a shift is strengthened. If the
transformation 7' is ergodxc (that is, the only sets invariant under 7% are @ and X
(mod 0)) and £ = L, there is a sequence of sets {K,} such that

X—H=Ky=T"'Ky=T"3%Ky=---, where K, C H,, n=1,2,... .

o0
Since T-1 K, = @, the ergodicity assumption guarantees that |J K, = X. It is

n=0
easy to verify that the K,’s are mutualy disjoint. It then follows that C* is unitarily
equivalent to an operator-valued weighted shift on 5% L?(K,).

3
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