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A SPECTRAL THEORY OF THE KLEIN-GORDON EQUATION
INVOLVING A HOMOGENOUS ELECTRIC FIELD

K. VESELIC

1. INTRODUCTION

The Klein-Gordon equation describing the motion of a relativistic spinless

charged particle in a static electric potential ¢ reads formally

: (70 2 ‘
(1.1) (1h§ —q) v'= (p? + m?c?) ¢.
Here ¢ = q(z), ¥ = ¢(z,t) where t is the time, £ € R" the space variable, and
p = iky. The constants k,m,c > 0 denote the Planck constant, the mass of the
particle, and light velocity, respectively. The substitution :

— 0
Pr=1vY, V2= (lh'é? —JI) P

transforms (1.1) to the Hamiltonian form:

T g 1
1.2 Wh =AW, Ag= ( ) ,
(1.2) 0 °= ey o

where

e(p)’ =c*p? +mict, W= (%) :
()

The operator Ag is not symmetric in Ly (not even for ¢ = 0). Consider the scale of

Hilbert spaces H,, defined by the scalar products

(1.3) (¥, D)o = (6%_01/11, €%_a<P1> + (5_%_01#2, 5_%_()‘%2) )
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where @ € R and (-,-) denotes the Lj-scalar product. The most interesting scalar

products are given by

= —% (“energy” norm)

(“negative energy” norm)

R R R
i

0  (“number” norm)
L
2

The number norm is of particular interest because of its connection with the
number operator in the second quantized theory. Najman [5] showed that an appro-
priate extension of Ay generates a uniformly bounded group with respect to any of

the scalar products in (1.3) if, for example
(14) lovll <bllevl, 0<b< 1)

(See [1], (3], [4], (5], [6], [7], (8], [9], [10], [11), [12] for earlier results also in the second
quantized case.) The condition (1.4) in fact insures the positive definiteness of the
energy form c2p? + m?c* — ¢2, a key technical tool of the theory. Independently of ¢
the operator Ag is formally symmetric with respect to the indefinite form

(¥, 8] = (Y1, 92) + (¥2, p1)-

Now, just in the number-norm space Ho(%, ¥) gives rise to a Krein space structure
since

(¥, 8] = (JY, ®)o,

where J is a selfadjoint operator in Ho with J2 = I (see e. g. [11]).

If the condition (1.4) is violated then the evolution group may fail to be uniformly
bounded in all spaces H,. Indeed, then a ¢ from the Schwarz space 8 of smooth
functions can be found such that the operator Ag has an eigenvector in §? with a
non-real eigenvalue. A construction of such g follows a well-known calculation in [14],
made for the square well potential.

We are interested in the question: what properties of the potential ¢ are re-
sponsible for the breaking down of the uniform boundedness in time. Simplest
¢- unbounded potentials ¢ are those for which ¢(z) is unbounded at infinity.

In this note we consider the potential

(15) a(z) = nex

* .
) In fact, the substitution ¢ — e'¢t/h) in (1.1) shows that (1.4) can be replaced by
[l(g = a)¥|| < blled]| for a real a. '
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where, for simplicity, n > 0. This potential cannot be considetred as e- small in any

sense.

In Section 2 we present the spectral theory of the Klein-Gordon operator in some
detail since it defines the unperturbed dynamics in a Stark effect theory and gives a
spectral theoretic interprétation e. g. of the “eigenvalue approach” of the resonance
theory as developed by Graffi et.al. [2].

Our main result is that in a homogenous electric field (1.5) the Klein-Gordon
operator generates a uniformly bounded group with respect to the number morm
(a = 0) and none else from (1.3). Since the energy form ¢2p? + m?p* —n?z? is deeply
indefinite, we were not able to use common operator theoretical tools, based on any
form of selfadjointness. Instead, we apply oscillatory integrals as they are used in the
asymptotics of functions of parabolic cylinder ([13]). In fact, our key technical result
can be interpreted as a series of uniform asymptotic estimates for such functions.
The mentioned Kreinl—spa,ce selfadjointness played only a minor role - it was used to

rule out all spaces Hy for o # 0. (Lemma 2.3).*

Our result seems to suggest that the uniform boundedness in time will hold (at
least in Hy) if the potential has no strong local oscillations. To prove or to disprove

this conjecture more powerful spectral theoretical techniques seem to be needed.

If we interpret the norm [|¥]], as the number of particles in a state ¥ then our
result means that the total number of created pairs is bounded through the whole time
history. In fact, according to the machinery of our proof, the increase of the number
normn is caused by the acceleration of the classical relativistic particle (see (2.32)
below). The existence of a limiting velocity (velocity of light) now implies that the |
acceleration goes to zero for |t| — 0. This gives a certain physical plausibility to our

result.

On the other hand, in Section 3 we show that the obtained evolution group is
not implementable in the second quantization theory, so that it is not clear at present
whether or in which form this result will enter a definite rigorous quantum field theory

of the homogeneous electric field.

Aknowledgement. The author would like to thank B. AsmuB and A. Wiegner,

Hagen, who read the manuscript and corrected some errors.

*) In fact, the operator shows to have a “highly mixed spectrum” i. e. the form {-,-]
is indefinite on any spectral subspace. The general spectral theory of such operators in Krein
spaces is rather poor and it would be interesting if the Klein-Gordon equation would offer the
possibility to define abstract classes of such operators enjoying a stable spectral theory.
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2. THE SPECTRAL DECOMPOSITION

Instead of working with one operator Ag in the family of scalar products (1.3)

we can equivalently consider the family of operators

(2.1) Boa = 45" AvZa,
g3t
(22) : Zo = Za(l)) = ( 0 e_;..q.a)
defined on the Schwartz subspace § of L5
Lo -ito
_ (€77 %73 €
(2.3) . Boa= ( . 5_§-aq£%+q)

Using (1.5) we have, at least on §,
eAmonoie e = oy +i (-] + ) 2L

R T S(L gc21’1
1T1€ _-n:c1+1(2 +_a)n ok

Thus,
By = Ho+ K

- 2 /-1 0
Hoz('lzl €>,:K=ih17££26—< ;ta 1 )
€ I € 0 5+o

Here obviously Hg is symmetric and K is bounded.

2.1. LEMMA. The operator Hy is essentially selfadjoint on C§° in the momentum

space.* ) The operator

(2.4) B, =H+K
generates a strongly continuous group. of bounded operators. Here B, H are the
closures of Bye, Ho, respectively.

Proof. Here z is represented by ik 8/0p,. Set

P

«(2.5) ¢=£() = / e(pr,7) dpr,

*)

From now on all our considerations are made in the momentum space.
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where we use the notation
(p,P)=p, P ER™L
Then

(2.6) Ho = Uopnz1Ug ", Us(p) = exp (1—5 (0 ;)) = Uo(£).

Now ) is essentialy selfadjoint on C§° since this subspace is invariant under the

p1-translation group ,
. s 8
elf].‘l.‘li/h — e—tﬂ:g,—l'

(cf. Reed and Simon [8], Theorem X. 49). Since C§° is also invariant for Up the

essential selfadjointness follows. The rest of the proof is trivial. Q.E.D.

The proof of the Leinma 2.1 contains already the idea of the spectral decompo-
sition of the operator B,. We shall show that

(2.7) B, = Van:clVa_l

where z; = ih 9/0p, and V, is the multil;lication operator defined by a matrix valued
function V,(p). Because of the non-commutativity of the matrix functions entering
(2.4), Vo will not be a simple matrix exponential but a solution of an appropriate
differential equation. Indeed, let V,(p) be the solution of the differential equation

8Va(p) [ 1 (0 6) cpy (1,— 20 0 )]

2.8 = Ve
@8 i =m0 +2 2\ 0 -1-24)] %@
with the initial‘ condition
(2.9) - Vo(0,p") = 1.

Since (2.8) has real analytic coefficients, the solution is real analytic on R™. By
(2.8) we have, at least on C§°

- 0 :
1 : i
Vo ' BoaVa = Va(p) ™! (Ihn 3171) Va(p)+

0 142 0 .
-1 ‘ plc -
+Va(p) {(e 0>+1h 22 ( 0 1+2a)}v°(p)“

=ihny —.
dp:1
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Thus, with V, defined by (2.8), (29) the relation (2.7) is valid at least on C§°.
Clearly, B, will generate a uniformly bounded group if both V,(p) and Vu(p)~! are

bounded on R™. More precisely, we have

2.2. LEMMA: The group exp(—itBy) is uniformly bounded if and only if the

suprema
sup ||Va(p)ll, sup [|Va(p) ™
reR” reR"

are finite. Here || || denotes the operator norm of a matrix.

Proof. We prove first the identity
(2.10) exp(—iB — at/-ﬁ) = Vyexp(—izitn/h)V; 1. -

Indeed, the right hand side of (2.10) is defined at least on Cg°. For ¥ € C° we have

immediately
(2.11) (Vo exp(=iz1tn/R)V; 1 ¥) (p) = Va(p)Valp + e1nt) ™ ¥ (p + exnt),

with eI = (1,0, ---,0). Thus, the right hand side of (2.10) maps C§° into C§°.
Differentiating (2.11) with respect to ¢ we obtain

i% (Vo exp(—iz1tn/h)V;1 ¥)(p) =

= V,(p) (in%) Va(p) " WVa(p)Valp + emnt) ' ¥(p+ent) =

= (Ba Vo exp(—izitn/h)V, ) (p) .

Since the functions V,, V1, ¥ are smooth and the support of ¥ is compact,
the above differentiation is valid in the Hilbert space L;. By the uniqueness of the

solution of the differential equation
iX = BaX
in Ly we conclude that (2.10) holds. We have
(2.12) |lexp (—itBa/k) ¢||:' = / |Va (p — exnit) Valp) ™} Lv(p)||2 dp.
The uniform boundedness of the group exp (—itBa /ﬁ) means

(2.13) M = sup "Va (p—-eint) Va(p)'lll < 00.

reR
teR
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Taking here p; = 0 we obtain

(2.14) sup |[Va(p)ll € M
PE

whereas 7t = p; gives

(2.15) | sup ||Valp)™}|| S M.
peR"

Conversely, let (2.14) and (2.15) hold for some M > 0. Then, by (2.11),
||exp (=itBq /h) || < M2,

This proves the lemma.
23 LEMMA. The group exp (—itBa/ﬂ) is uniformly bounded for no o # 0.

Proof. Note first the following two identities

(2.16) | Va(p) = [€(0,p")/e(p)]* Vo(p)
and

(2.17) Vo(p)™! = JVa(p)*J
with

(2.18) J= ((1) ;)

The identity (2.16) is verified by a direct substitution into (2.8) whereas the iden-
tity (2.17), which is called the J-unitarity of Vy, follows again from (2.8) and the
J—hermiticityf of the; coefficient matrix of the equation (2.8)

| 1 /0 e\ icXp /1 O
2.19 -= e
(219) nh(e 0)+2 €? (0 —1)
for the case o = 0. From (2.16) and (2.17) it follows immediately

(2.20) C Valp, 07 = (1,02 Va(p1, 00T/ (me?)

and
2a

Va (p1,0)7|| = £4p1,0)% [IVa (1, 0)11/ (mc?)

" - -
) A matrix A is J-hermitean if A* = JAJ
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for any p;. The simultaneous boundedness of V,, and V;! would imply e. g. for
a>0
Va(Pl;O)—"O; |p1|—>00

and then also by (2.16)
Vo(p1,0) =0 |p1| — oo.

This is impossible by the estimate

IVo(@)l 21

due to the J-unitarity of V5. The reasoning for & < 0 is analogous and the lemma is

proved.

Thus, the only case which remains to be studied is that of the number norm,
characterized by a = 0.

We make the following substitution

(2.21) Vo(p) = S(p)W(2)
where
1 0
(2.22) S(p) = ) ,
inﬁ———plc
2¢(p)?

and z = z(p) = (£(p),p'), and € is given by (2.5). Inserting (2.21) into (2.8) we
obtain the following differential equation for W (the calculation is a little tedious,
but straightforward)

ow 1 /0 1 — 0 0
2.23 l— + — W = nhh W,
(2.23) 16z1+nh(1 0) 7 (z)(l 0)
(2.24) \ W0, 29, -+, 2q)=1
with

h(z) = > 5pict _ ce(0,p)?  3pict
T 2e4 4e6 T 9e6 4¢6

and

7 2¢ c oc¢ 5
) < = < .
(2.25) / W) dz1 < 75— + £(0,7)? ~ 3¢(0,p)?  3m2c3
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We now use the standard conversion of (2.23), (2.24) into an integral equation. We
put
W = U() W1 N

where Up = Uy(2) is given by (2.6) and obtain

(226) Wl(z) =174 nTh/’l (61,2’,) 00 (—fl) ((1) g) ﬁo[/Vl (61,2,) (161
0 .

The iterates of this integral equation converge uniformly for z; from any compact

interval and for all z/ € R*~! and its solution W, satisfies the inequality
(2.27) WL (A < explih(z),  h(z) = / Ih (€, ') | dé.
. 0 ‘

Thus, by (2.25)

IW (@) = Ul < &7 — 1gePme/30)" _ 1 ¢

2.28) . -
( ) ' Seth/3n12c"’ -1

and, by (2.21), (2.28)
2¢3

; ’ H 2 .
IVolp) = Us(p)]| < (1 + ﬂ_&) T

nhpyc? 5nhe/3€(0,p')? '
< (14 === ) eBnhe/3e(0p)® _ 1 ¢
\( +26(1))3)e S

' N N2 Eplc2 R 2,3
2.9 . < Snhc/3E(0,p’)° _ 1 n Snh/3m2c <
(2.29) ¢ + 2(p)3 € ]

5nhe nhpyc? 5n7/3m2e
< nh/3m?c <
= (36(0,1)')2 2¢(p)® e =

phe  sii/amee Th sokjameed
e S K e
with
5 1
2.30 . K=>-4-"_
(2:30) o 3 14/3

" We have therefore immediately the

2.4. THEOREM. The operator By from (2.4) generates a uniformly bounded

group. More precisely, a new scalar product, topologically equivalent to the number
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norm can be introduced in which By is selfadjoint with an absolutely continuous
spectrum covering the whole real axis. An upper bound for exp it By /h in the number

operator norm is given by

. - - 3 " 2,3
(2.31) |lexp it Bo /2| < (1+1\ -—"’1720.,35’7"/3m ¢ )

The key quantity in the estimate above is
/
(2.32) a=— =1

where A = -ﬂ% is the Compton wave length. Obviously o is dimensionless and mea-
sures the classical acceleration of the field in the natural unit ¢2/X.

So, if the field is weak or the mass is large, the growth of the number norm in
time will be small. A more careful inspection of the chain of inequalities (2.29) reveals
that the states with a large transversal momentum p’ behave as if they had the larger,

“transversal mass” m’' deflined by

1/2
(2.33) m' = (m2 + ﬁ)
: . — .

For a state v having its transversal momentum support outside the ball of the
radius [p’| the estimates (2.29) yield

ot

(]

ok
2

m'‘e

e5nF/3m' 23 _

=

= N snRe/3eop’)y
€(0,p')?
Thus, for particles with a large transversal momentum the increase of the number

norm is small.

REMARK. The result contained in Theorem 2.4 can be also derived by comput-
ing the eigenfunctions of the equation (1.1). This leads to the investigation of the
asymptotic behaviour of the functions of the parabolic cylinder. However, in order to
insure the uniformity of the asymptotic estimates with respect to several parameters

involved a transition to an integral equation equivalent to (2.26) is needed there, too.
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3. PROPERTIES OF THE EVOLUTION GROUP
Define the orthogonal projections
1
(3.1) Py = 5(I1£J)
where J is given by (2.18). Then

Pi+P.=1, Pi-P_ =1

!
As it is well known (see e. g. [9]) the unitary implementability of the group

exp (—itBo /E) in the second quantized theory is equivalent to the Hilbert-Schmidt
property of both of the operators l

(3.2) Py ‘exp (~itBo/R) P, P_ exp (=itBo/T) Py
or of ,
‘exp (-—i:cltn/ﬁ) P4 exp (—itBo/ﬁ) Px.
The latter are multipli‘cation operators by
PiVo(p—eint) Vo(p)'qu;

and can be obviously Hilbert-Schmidt only if they vanish i.e. if
Vo (p — exnt) Vo(p) ™

commutes with‘ J for any p € R™. Taking p; = 0 it follows that

(3.3) _ Vo (=nt,p')J = JVo (—nt,p') = 0

for all P € R*™!. Now V; being a real analytic function of p € R", (3.3) can hold
either for a discrete set of ¢’s or for all real t’s. The latter posibility contradicts the
non-hermiticity of the coefficient matrix (2.19) occuring in (2.8) for @ = 0. Thus, the
operators (3.3) are Hilbert-Schmidt for at most a discrete set of t’s.
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