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INVARIANT SUBSPACES FOR MULTIVARIATE
BISHOP-TYPE OPERATORS

GORDON W. MAacDONALD

In [3], the‘author showed that many Bishop-type operators have nontrivial hy-
perinvariant subspaces. A Bishop-type operator is a weighted translation operator
of the form M,U, where ¢ € L*[0,1) and « is an irrational number, defined on
f e L¥0,1) by / '

(MpUaf)(2) = p(2)f(z + a)

where addition is modulo 1. ‘

In particular, it is shown in [3] that if ¢ is the restriction to [0, 1) of a function
which is analytic in some open neighbourhood of [0, 1] then M, U, has a nontrivial
hyperinvariant subspace for almost all «. This entended a result of Davie [2], who
showed M. U, has a nontrivial hyperinvariant subspace for almost all .

In this paper, we are interested in the following multivariate generalization.
The measure space is ([0,1)",du), where n € N and dpu is the product measure
dzydzy - - -dz,. Consider the point transformation 74: [0, 1)" — [0,1)" defined by

Ta(l‘l,:cz‘, cey Tn) = ({z1 + a1}, {z2 + @2}, ..., {zn + @n})

where & = (ay, @2,...,a,). This will be a measurable, measure-preserving transfor-
mation with measurable inverse. Let Uz denote the unitary operator induced by 75.
Then for ¢ € L*®[0,1)", M Uz defined by

(M, Usf)(&) = ¢(&)f(7a(F)) for all f € L*[0,1)"

is a weighted translation operator which we shall refer to as a multivariate Bishop-type
operator. (Hefe, Z denotes a point in [0,1)".)

We shall try to emulate the methods of 3], to obtain nontrivial hyperinvariant
subspaces for M, Uz € B(L%[0,1)"). In the one variable case, 7(z) = {z + a} was
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ergodic if and only of a was irrational. In the multivariate case, the analogous re-
sult is that the translation 7 is ergodic if and only if {1,a1,a2,..., s} is linearly
independent over Z.

In fact, 75 will be uniquely ergodic when it is ergodic. We shall only consider
the ergodic case. In the non-ergodic case there are many invariant subspaces.

The existence of nontrivial invariant or hyperinvariant subspaces for M, Uz is
easily established in some special cases. If ¢ is equal to zero on a set of positive
measure, the M, Uz has a nontrivial kernel which provides a hyperinvariant subspace.
Thus, we shall assume that pu(p~1(0)) = 0. We also obtain an invariant subspace in

one other special case.

THEOREM 1. If 75 is ergodic and

o(@1,%2, ., Zn) = Y(&5,, Zj5, - )0 (Tjgrs Tingar -+ -1 Tjn)

where MyU(o;, a,,...05,) € B(L?[0,1)*) has a nontrivial invariant subspace, then

M,U; has a nontrivial invariant subspace.

Proof. If M is a nontrivial invariant subspace for My, U(,,,,.l Gigrnn@iy ) then the set
of all f € L?[0,1)™ such that f is independent of (zj,,,,...,j,) and f (considered as
a function of (z;,,...,%;,) is in M will be a nontrivial invariant subspace for M,Us.

Hence, if ¢ is independent of z; for some j or more generally ¢ is of the form
o(z1,22,...,2n) = ¥(2;)0(z1,...,Zj=1,%j41,.-,%n) and MyU,; has a nontrivial
invariant subspace then M, Uz has a nontrivial invariant subspace.

As in [3], the following two theorems are the bases for showing the existence of

nontrivial hyperinvariant subspaces.

THEOREM 2. (Wermer [5]). If T' € B(H) is invertible and satisfies

oo

1 113
& sl
14 n?

n=-—00
and if o(T') is not a singleton, then T has a nontrivial hyperinvariant subspace.

In [4), Parrott shows that the spectrum of a weighted translation operator with
ergodic translation is circularly symmetric about the origin and hence is never a

singleton unless the weighted translation is quasinilpotent.

THEOREM 3. (Atzmon [1]). Let E be a Banach space and T' € B(E). Suppose
there exist sequences of vectors {z,}nez € E and {yn}nez € E* with the following

properties
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1) T2n = Zag1, T*Yn = Yoy for alln € Z (zo # 0 and yo # 0);
ii) There exist {pn}nez C R such that ||z,|| < kpn and ||yn|| < k1pn for some
constants k, ky € RY and po =1, p, 2 1, Prtm < PnpPm and ‘
— logp
n .
Z 14 n2 < 005

n=—00

1) For
‘ Zz_nz"_l if|z] < 1
Gz(Z) — n=1 0

- E 2" |z > 1

z:y_,,z""1 if|z| < 1
=1

Gy(2)={ """ o )

- Z Yon2" " if|z|> 1

\ n=-0oo

two vector valued analytic functions defined for {z € C | |z| # 1}, the union of the
singularity sets of G; and Gy is not a singleton.

Then T has a nontrivial hyperinvariant subspace.

We shall show that for certain ¢ and &, M, Uj; satisfy the conditions of Wérmer’s
theorem or Atzmon’s theorem. Actually, to be more precise, a scalar multiple of
M,Ug does. By Proposition 1.3 of [3], when ¢ is "nice”, the spectral radius of M,U;

is e 1081919k e normalize to an operator of spectral radius one by setting
T, = floglwlduMan'

We first consider the case where log |¢| is the characteristic function of a very simple
set.

NOTATION. Let @ = (a1, as,-..,a0), b = (b1,b2,...,b,) and & = (21,22, .., Tp)
denote points in [0, 1i)". We shall say @< (resp. <)Z if a; < (resp. <)z; for all ¢ =
= 1,...,n. Similarly, @+ b will denote coordinatewise sum, and {@} will denote
coordinatewise modulo one, and any other such operations will also be coordinatewise

operations. Then I= (@, l-;) will denote the "hyperrectangle” which is
{fe0,1)"|a<F<b).

Let o(Z) = X125 We begin with bounds on the norms of certain powers of
n

T,. To simplify notation, let H g; denote H q;-

i=1
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LEmMa 4. If {1,01,02,...,an} Is linearly independent over Z and there exist
{pi}?., and {q;}7,, integers such that ged(qi,q;) = 1 for all i # j and such that for
t= l)"')n, %?2; ng(Qi,Pi) =1 and

71
|oigi — H -
o
then for all Z € [0,1)"

n (ITe:)-2 n
H(‘Ii(bi —a;)—2) < Z X[a,g){5+ ja} < H (gi(bi —a;) +2).

i=1

Proof. Fix £ € [0,1)" and for j =0,..., (H q,-) — 1 set

g - '~.i‘
S; _{{i}l + 8 ez B }

where T = (1,1,...,1).
Then
1) The S; are disjoint for j =0,..., (H (Ii) -1
([Te:)-1
2) U si=h,n~

j=0
3) Each S; contains exactly one {£ + ja}.

Proof of 1): If {t} is in Sj, N Sj, then

.> - ': 7} i’
i+ Phi<i+ PP k=12
q q
© where 7y = (ng, ng, ..., np).

This implies that Z + j1§,+ i =5+ j2§,+ 7z, 50 if j1 # j2 then Bt = 32_——;’3
i ' qi N =72
Now, ged(p;i, ¢i) = 1 so ¢; must divide j; — j», and this must be true for all ¢;. The

¢; are relatively prime, so Hq, must divide j; — 72. But j; — j2 < qu, so we have

reached a contradiction. Thus j; = j» and the {S]}(l—I #)-1 are disjoint.

n

Proof of 2): The measure of each S; is H l, so the result follows from 1).
iz &

Proof of 3): If ’Ei <&then £+ j2 <7+ jG@andfor j=0,..., (Hq,-) ~1
q

1
Qi

zi+ B = (2 + jou)| <G B
qi q;
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—

and thus {£+j&} € S;. The cases where I—_), £ & follow similarly.
q

e o JP+1
soi’+1a<w+]p;.-

(M) _
Now Z X[a,E){f'*' ja} counts the number of {Z + ja&} in [, 5) and, since
=0
each {Z + j&} is contained in a single S;, this sum is greater than or equal to the

number of "hyperrectangles” S; which intersect [d, 5)
. . . b — ks ‘
If (k1, k2, ..., ks) in N” issuch that fori = 1,2,...,n, ki1 <bi—a; < —, then

i 1

the number of ”hyperrectangles” completely contained in [, l-)’) is at least H(k; -2)

i=1
n

and the number of "hiyperrectangles” which intersect [@, b) is at most H k; + l)
i=1

Since ¢;(bi — a;) < ki € qi(bi — @;) + 1, the lemma is established. n
We shall not show that M,Ujz has a hyperinvariant subspace for the largest class
of ¢ and & possible, since to do so would introduce many complications and we shall
see that the set of & for which the analysis is possible is already a set of measure zero.
The following corollary will be used to simplify the calculations as well as the
statement of the results. However, it is easily seen that some generality is sacrificed

by using this crude inequality.
COROLLARY 5. For &, &, b and {pi}iz1, {a:}i, as above

n
([19:)-1 H g
S xeperh-[lati-e)] <

o1 _min g;

i=l,...n
o0

Proof. From Lemma 4

(ITe:)-
Z X[ab){x+]a} Hq.(b —a;)| <

< max {H (qi(b; — a;) +2) — H qi(bi — ai)-
i=1 i=1

~ T (i — @iy = 2) + [ ] astbs - a,-)} :
i=1 i=1

Now

':j:

(qi(bi — @) +2) = [ asbs — as) <
=1

.,._
1

1
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< - 2 ki -a)< > MJa<

sc{1,2,..n},5#0 igSs sc{1,2,..,n},5#0 igs

n
14
ISt ¢ o92n i=1
M« S 28I :
max i
SC{12 'n}S;thQS Sc{1,2,...,n},5#0 SC{l,?,...,n),S#(DqI

We can obtain a similar bound for

- II (gi(bi —ai) —2) + qu'(b" ~ i)

so the corollary is established.

!
This generalizes quite easily to functlons of the form S = E kg, ) Asin the
k_
single variable case, we shall refer to such functions as step functions. The following
corollary is a direct consequence of Corollary 5 and the triangle inequality.

!
CoOROLLARY 6. For &, {pi}’.;, and {q:}7=, as above, and S = Zrkx[ak‘;k) ,

k=1
where r;, € R,
(IT#) ! 1— &
Sor’ q,/Sd/A < YR R —
Z I ="

So if S is 2 step function and m = (H q;) r + s where s < H q; then

(2 ml) o Llai

min q.
ITeell® <o s llles

iz < o3|

, |
(L ml) R
=1 ~min g, e”S”“’(H q.‘).

1,...,n
<e =

Thus, we will need to be able to choose {q;}I-, satisfying the above conditions
and arbitrarily large in order to apply Wermer’s theorem or Atzmon’s theorem. This
condition alone ensures that the set of & for which our analysis can continue will be
a set of measure zero when n > 1.

However, we need an even more stringent condition on &.
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DEFINITIONS. Consider the set of all & such that there exist {p;}7=; and {g:}-;
integers with {g;}?_, arbitrarily large such that gcd(gi,q;) = 1 for all i # j and such
that for all = 1,...,n, ged(g;, pi) =1 and

1
loigi — pil < —
- Gk

uma

Then for & > 0, ¢ < 1let A be the set of all &@ as above such that there exist
positive constants K; and K so that for all m € N, there exist {p;}}-, and {g:}7,
as above with I{iym* L q; foralli=1,...,n and Hq,- < Koym®.

Again, it is not at all obvious that A . is nonempty. After the statement and
proofs of the main théorems, we shall construct some explicit & in Ay ..

We shall ﬁrst look at the cases where M,Usz is invertible. The following defini-

tions are multivariate versions of similar definitions from [3].

DEFINITIONS. For M € R define

3 !
stn) — {S = Z reXf, | 7k € R, Ir hyperrectangles and Z fri| € M} .
=l k=1

Then set L™ to be all functions f € L°°{0,1)" such that f is real valued and there
exists ¥ > 0 and a constant K such that
. 1‘

We shall show that L™ contains many well known functions, but first we shall

proceed to one of the main theorems.

THEOREM 7. If & € Ay, for some k£ > 0 and ¢ < 1 and log|p| € L™ then

M,Us has a nontrivial hyperinvariant subspace.

Proof. We shall apply Theorem 2. First, we fix a few constants. Since log|p| €
€ L™ there exists a constant K and y > 0 such that inf{||log|p| — S|le|S €
e s} Kﬁl;.

1) Fix such a K and +.

2) Fix & and ¢ so that & € A, c.

3)Fix§sothat 0 < § < &

4) Fix p so that

1-éy<p<l1

l-k+b<p<l1

c<p<l
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Form >0

_ I -m | log|pld —
72| = ”e [rogle uM(w)(WT&)_,(W;_,)“ =

= He_m flogl‘pld“(go)(gp orz) - (pory 1)”

m—1
—mfloglcpldu-i— Z log|wor]|

—_— 1=0

€

0

m=1
“—mfIOglvldH Y loglwor;l
j=o0 had
~

Similarly, for negative powers

—-m| _ log|tp|d;t _
175 ”_"ef ((wor Y(pory?)..(porz ™))" “_

= | s (o Yo7 (pora™) 7 =

™
J1ogleldu—3" loglworS?|

e i=t <

00

! m
Hmfloglwldu—zloglwwg’l
s e j=1 bt

¢

and making the subsitution & — 72*(£) we obtain that

‘ —nlflog|;a|du+ z log|¢or’|
IT ™ <e 7=

—mflog|cp|du+2]og|qpor J|

i=1

So we just need to bound

m—1 . i "
E loglpo | — m/ log ||dp
j=0 oo
For S a step function,
m~—1 ) m-1 ) )
Z log |p o 7%| - m/log|go|d/,/. = Z (loglgoorél—SorJ&)-i-
j=0 j=0

(o)
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m-—1 m—1

+m/(s-1og|¢|)dp+ Zsorgl—m/Sdu <Y ”loglgporQ—So'r;;

j=0 j=

+

[e0]

| o0

IN

m—1
J+m./(5—log|<p|)du‘ + Z Sorh - m/Sdp
=0

m~1 .
< 2ml|log | = Slleo + Z Sor} = 171/Sd[l
j=0 co
i i '
Now log || is in L™ so we can choose S = Z kX, such that Z |7i] <m? and
k=1 k=1 ‘

o
| 1og |l — S)|eo < K 5 Hence,

1 1o
2m||log |¢| — Slleo < 2mK1—n&—7 SKm!=%7 g

< Km? by the choice of p.
If 'we choose {p:i ?:1 and {q;}?, as in the definition of Ak, and write m =
= (Hq,-) r+ § where s < Hq.- then m > (Hq;) r so
m~1 ) (Hq.‘)—l .
ZSoré—m/Sdu <r Z Soré—Hq;/Sdu + 25(|S]|o0 <
j=0

j=0
oo o0

1 H .
q:
< 92n (Z |7’k|> TT + 28”5”00 <

k=1 n g by Corollary 6

1vey

< 22nm6Ti:1n_q + 4Hq,~ ||log |<,o|”oo <2"KymPm!~* 4 4K, ”log |<p|“°°m° <
i=1,..n i ‘ )

<22Kym’ + 41&'2”log |<p|||°om” < by the choice of p

< Kam’ for some constant Kj.
Thus, there exists' a constant {4 > 0 such that

m—1
Z log |<p‘ o ré] - m/log lpldpl| < Kgm? for all m > 0.
j=0

(o]
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Therefore,
7| <™ forallmeZ

so the result follows by Theorem 2. [ ]

We now consider the case where M, Uz is not invertible. We shall construct
functions f and g such that T* f and T;™g satisfy the proper bounds.
The following technical lemmas are needed. The proofs are identical to the one

variable case and can be found in [3].

LEMMA 8. If g € LP([0,1)*,R) for p > 1 and é > 0 such that p-é > 1, there

exists a constant K independent of t such that
. - K
i) p{z €[0,1)" | 9(t7) < —tm® for some m € N} € m

and
K
i) u{€ € [0,1)" I g(r3™) > tm® for some m € N} < -
hold for all t > 0.

LEMMA 9. If"g € LP([0,1)*,R), p> 1 and § > 0 then

gl _ 1
/ l-q'd"‘t < (tp_l Tﬂ&(p_l)

{7€[0,1)~ | 9(2)<~tm*}

llgllpy 1
/ 'g'd“ S (tp_l 17'16(”‘1) M

{£€[0,1)" | 9(2)>tm¢}

DEFINITION. For 0 > 0, set Mg") to be the set of all measurable real valued
functions f on [0, 1)" such that there exists positive constants v, ¢; and IK; depending
only on f such that

. n .1
inf {Jl(=N)V AN = Slloo | S €8} <Ky 7

whenever M > ¢y N%.
We are now ready to state our theorem for the noninvertible case.

THEOREM 10. If & € A, and loglp| € LP N Mg") for some p, r,c, 8, satisfying

p > max 19
! “li-c¢'«

then M,Uz has a nontrivial hyperinvariant subspace.
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Note that since ¢ < 1, the conditions of Theorem 10 imply that p > 1. This will
be needed in the proof.

Proof. To apply Theorem 3, we must show three things.

1) That there exists f # 0 such that ||T]|| satisfies the bounds in Theorem 3
(and of course T f € L? for all n € Z).

2) That there exists g # 0 such that [|7;" f|| satisfies the bounds in Theorem 3
(and T""g € L? for all n € Z).

3) That the union of the two singularity sets is not a singleton.

We shall take

f= Hx{zllso(f'"f)kan} H Xz llpGpo)l> i)

n=1 m=1
and
00
H X{z|lp(r2~'z)I<an} H X{z|lo(rg ™ 2)|> 5 _ren)
= m=1
where a,, = ¢ t and § chosen as follows

We shall only show the bound for [|T* f||, and only positive powers of m. The
bound for negative powers and for ||T;™g|| follow similarly.

First we must fix a few constants.

1) Fix 6 > 0 such that ! < é <min{l —¢, g}

2) For § as in 1). by Leﬁlma 8 we can fix t > 0 large enough that f #£ 0.~

3) Fix 6; such that 60 < é; < .

4) Fix v as in the definition of Mg").

5) Finally fix p such that

1-k+6 <p<l

l-hy<pxl
1-8(p—-1)<p<1
b+c<p<l.

Now we must bound ||[T7f||.

Fix m > myp (yet to be specified); then

m=—1 .
Y logleori]

e~ ™ flog lpldu ei=0 f o T&n

T3 1l =

ng“f”?.;
2
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where

m-1
Z loglwory)
—mfloglgo[dy eJ=0

L,, = ess sup{e }
support for*

Now z € support f o 77" if and only if 7*(z) € support f. By the definition of
f,if 72'(z) € support f then I(,D(Tgk(fg'(l)))l < a for k =1,...,m. Our sequence

{am}neN Is increasing, so setting m — k = j we get that
Igo(‘ré(z))l <gj <@y forj=0/1,...,m-1
Since a,, = etm’ (8,1 as chosen above), taking logs yields
loglep o Tf;| <tm® on support for® forj=0,1,...,m—1.

Hence

me-1
Z Iog]qporéll\tms
Ln <esssupie ™ J o8 loldug j=o

<
support for
m-—1

z logli,pO'r"s'th‘s
- I du =
<ess sup{e "‘f og |l Hei=0 } <

m—1
ess sup{—mfloglwldy-&-'z: log|:,poréll\tm5}
<e <

m—1
ess sup{—mfloglwldp-}- Z —tmsvlogwor;l/\tm‘}

<e B <

l oo

m=1
u—mflog|9|du+ z —tmsvlog|gpové|/\tm‘s

1=0
L€

m~1
So, we just need to bound ——m/log leldu + Z —tm’ Viog|p o ‘rg[ Atm?

=0
7 . oo

We have log |¢] € Mg"), so there exists a step function S = Z riXf, such that
k=1 .

|| = tm?® Viog|p| Atm? — Sljeo < Kom™87

!
and Z [ri| <mP . (Here, M = m%, and N = (tm)?, so our conditions ensure that
k=1

M > ciog)p|N?, for m > my large enough.)
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Now,
m~1

—m/log lpldp + Z —tm® Vlog|<por’|Atm =

i=0 0o

" /Sdu+ Zsoﬂ + (—m/(log|¢|_§v)d“) .

m~—1 ) )
+Z(—tm‘Vlog]cpor‘H/\tm"—So-r-(’;) <

j=0 oo

, . m-—1 .
< —m/Sdu+ESor§ +m'/(log|go|—5)d,ul+
j=0 o .

m-—1
+ Z || —tm® Viog|p o ri| Atm® — S o m||e.

j=o
We shall bound each term separately.

First we bound
m-1
-—m/.S'd,u-{- ZSOTé
j=0

Since & € A, we can find {p;}*, and {q:}"; such that K;m* <¢;, for all i =

1
=1,...,n, Hq,- < Kom® and |qio; — pi| < m— Hence, by Corollary 6,

n

([ 4)- ! - e
T] i < - n i=1 ]
> 5 o [ st < (hl): vy
00 ey

Soif m = Hq;r'-}- s with s < Hq; then m > Hq,-r,

nin .

m—1 nqi—l
—m/Sd,u+ZS'orf; <r —Hq,-/Sd;z+ Z Sorz’;. + 25]15]|e0 €
ji=0 o j=0 .
. . o0
’ ILar
(Z |7k |) gn A1 - + 25]|S]|o0 < (Z m) p L +2Hqt||5||°o <

2211 2n
< — I 6‘mm"‘ + 2Kom®2tm® < 2K =5 L f1K,mete g
1 1
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92n
< X, m? + 4tKym?f by the choice of p

< Kam? for some constant K.

The second item is

| [ Gog ol - S)au] <m| [ Gogll - (<tm Vool mtm)a| +

+m \/(—tm& Vlogle| Atm? — S)dp| €

<m /  |log lpl|dp+

{z|loglp(z)|>tm?}u ] log vl < ~tm?)
+m|| — tm® Vlog |p| Atm® — S)|es-

By Lemma 9, the first part is bounded by mK4/m*®P=1) and the second part is
bounded by mKsm=%7 by the choice of S above. (K4, K5 are two positive constants
depending only on ¢ and t.)

Thus _

m '/(log || = S)dp} S Kgm* -1 4 ym!=87

< Kym? + Ksgmf by the choice of p
< Kgm? for some constant Kg.
The third term is
m-—1 . . .
Z || —tm® Vioglpo k| Atm® — S o r|le <
j=0

<m|| —tm® Vlog || Atm® — Slee <
<mKsm™%Y < Ksm?,

by the choices of S and p made above.
Hence, there exists a constant K > 0 independent of m such that,

T2 flla < 5™ | £ll2 for all m > my.
So there exists another constant C > 0 such that,

NI fll2 < CeX™ || f|l2 for all m > 0.



INVARIANT SUBSPACES FOR MULTIVARIATE BISHOP-TYPE OPERATORS 361

As mentioned previously, similar bounds for negative powers and the‘adjoint
follow from an almost identical argument. Thus we have shown i) and ii) of Theorem 3
are satisfied with pg, =eKIml® '

To show iii) of Theorem 3 is satisfied, first note that T,, is unitarily equivalent
to e2miax T, via the operator Mzrix, , and note that if we replace f by e"** f in the
above argument we change nothing. If Sing(Gy) denotes the singularity set of Gz in
Theorem 3 with &, = T™ f, then, as in proof of Theorem 2.6 of [3]

Sing(Garizy ;) = €™ **Sing(Gy).
Thus if Sing(G)U Sing(G,) is a singleton, then Sing(G ;2viz, JU Sing(G,) is not
a singleton. The proof of Theorem 10 is now complete. - [ |

'Now we shall give a few concrete examples of & and ¢ for which Theorems 7 and
10 are valid.

Let us first consider the question: ”Which & are A, 7"

Let ry,...,r, be any relatively prime set of natural numbers, each r; for i =
= 1,...,n strictly greater than 2. Fori =1,...,n, let {a;;}52, be a sequence such
that each a; ; is either 1 or 2. Let t be a natural number yet to be determined. Then
set )

00 1 t’
o = E a; j (;;) .
j=0

CLaIM. Ifk > 0 is small enough, and ¢ < 1 is large enough, then & = (ay, ..., )
is in Agc.

Proof of Claim. For our approximants to «; we shall take the &** partial sum

E 2
1 _Dik _ Pik
Sas(y) =hE-tt

=0 i r gk
So gik = rfk and it is easily scen that each of the fractions above is in lowest from
and that ged(gi, &, gi,1) = 1 for iy # 45.

Also, fori=1,...,n,

}a,. _ Pk
ik

k 1 t7 00 1 ¢
= leys — il = - i l= <
- ,-Zoa ! ("-‘) Z o (?‘i) s

PR T k

‘ k41
i t 00 "t t
. Ty j=kt1 s ry i,k
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i gkt

o0
1 . .
(We have that Z (—) < 2 since this sum converges even faster than a
j=k+1 T

geometric series.) -

Thus .
\a;—g"—k < - ; fori=1,...,n.
%k (. min g¢;1)

7j=1,...,n

So, if we choose t large enough that (i_rilin . gGixe) 2 4H gi,k, then

1 .
|igik — pik| S = fori=1,...,n

H i,k
To show that & € A  for some &, ¢ it only remains to show that for any m > 0
we can take a partial sum up to k so that the {g; }7=; chosen as above satisfy the

appropriate bounds.
° It is easy to see that given € > 0, we can choose Ki,...,Kn in the interval (0,¢)

such that

|~

1

L3¢
LSt

s
2 :...:rn"_

=7r

8 ox

Now consider a generic r and k. Partition [0, 00) into intervals Jo =[0,7%) and

o0
for k = 1,2,..., Jp = [r**"", r*"). Then [0,00) = U Ji, so m € Ji for some
k=0
k. This implies that m < 1'117'k, som* < rt" = qr- Also, if m is greater that some
- - -_— 3 t-l -
constant (r¥) then r%" ' <m, so mEerttT = PO % = ¢'”'. Hence,
1 k
qr < m~*.

Applying this to r; and &; chosen above we obtain that

mf g Emtt fori=1,...,n
for m sufficiently large. Hence,
mmin K < i k and Hq:‘,k < mntmax

If we choose ¢ sufficiently small (so that ent < 1) then there exist constants K; and

Ky and & > 0,c < 1 such that

Kym* < qix and Hq,-,kusnf

for some kand alli=1,...,n. Thus @ € A, and the claim is established. B
In fact, given & as constructed above in A, , if I—_), = (&, ?—3, ,p—") then
r L T Tn

—

&+ I—_), is also in A . for all p € Z". Hence, for & small enough, and ¢ large enough,

E
Ax,c is dense in [0, 1)".
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The above @ actually provide an uncountable subset of A .. Obviously there
are uncountably many sequences {a; ; }]°-‘_’_=o so to conclude that A, . is uncountable, it
only remains to show that for ¢ large enough all the & constructed above are unique.

We will use the elementary fact that given r € N

&Y
.t Z & —
' Z (1) Sintlnr

forallteNand k=0,1,.... A
This allows us to fix ¢ large enough (¢ > e%v) that

00 t
d } : 1
T . (;) <1
1
forall k=0,1,.... Then if
00 t 00 17
1 1
Ya(s) =xu(7)
j=0 »

we obtain that
00 1 t7 ® 17,
ao—b(,:rZ(aj—bj) (;) STZ(;) <1

j=1 j=1

's0 ag = by.

Suppose that a; = b; for j =0,1,...,1—1. Then

, & 1 t7 ., = 1
ar — by =1t Z@f'bf)(:) <t ) (‘) <!

j=k+1 i=k+1
so ap = by.

Hence, by induction, a; = b; for all j = 0,1,... and therefore for a given
P1,72,...,n, each different set of n sequences generates a different number & in

An_c. Thus A, . is an uncountable set.

Now we consider the question: “For which ¢ do Theorem 7 and 10 apply?”, or
more specifically: “Which ¢ are such that log || is in L_(")?”

LEMMA 11. If p is the restriction to [0,1)" of a function which is analytic is some
open neighbourhood of C™ containing [0,1]" and () # 0 for all £ € [0,1]", then
log |¢| € L.
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Proof. The conditions of the theorem imply that log|¢| is differentiable and

continuous on [0, 1]*, so, by the Mean Value Theorem,

log |¢(Z1)] — log |(Z2)| = (Vlog |¢])(Z) - (21 — &2)

of o)

where £ is a point on the line segment joining £, and &5 and Vf = (5—, oy
L) Tn

Thus
Jlog l(#1)] — log li(£2)I| < max_[IV1ogle|(@)ll,, max losi -zl =

= K max |z1; — &2
i=1,...,n

for some constant K > 0.
Now, given £ > 0 partition [0,1)" into "hypersquares” of size ]E—, So we get
K
K\" ~ . - .
(—;) squares Ij. Pick &; € I; and set r; = log|p(Z;)|. Then, if S = Erjxl-j,
: j

from the above inequality we see that

IS —loglel]|,, <

and

Z Ir;] < “log |go|||°o{the number of hypersquares} <

2
1/ n
<loglell, (%)

Thus log || € L. (]

COROLLARY 12. For ¢ as in Lemma 11, there exist an uncountable dense set of

& such that 75 is ergodic and M,Uj has a nontrivial hyperinvariant subspace.

Proof. Theorem 7 and Lemma 11 imply that M,Us has a nontrivial hyperin-
variant subspace for all & € A .. The above construction shows that for £ > 0 small

enough and ¢ < 1 large enough, A, . is an uncountable dense subset of [0, 1)". |

Unfortunately, I can not say whether every function on [0, 1)" which is the re-
striction of some function analytic in some open neighbourhood in C” of [0, 1]" is in
Mg") for some §. However, in many special cases,‘this is the case.

Note that Mz, z,..5, Uz has a nontrivial invariant subspace for almost all & by
the remarks following Theorem 1. Theorem 10 easily implies that My, z,...., Uz has

a nontrivial hyperinvariant subspace for a dense set of & Rather than showing this,
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consider a similar class of operators, which are another possible multivariate gener-
alization of Bishop operators. We shall show that operators in this class also have

nontrivial hyperinvariant subspaces, at least for some &.

THEOREM 13. The operator My yz,+..+z,Us has a nontrivial hyperinvariant
subspace for an uncountable dense set of &.

Proof. To avoid technical difficulties, we shall only prove this for the case n = 2.
The proof for arbitrary number of variables, although more intricate, has no significant
variations from the following.

Note that log(z; + z2) € L?[0,1) for all p < co. So to show this result, by
Theorem 10 and the comments on the properties of A, . given above, it is enough to
show that log(z; + z2) € Mgz) for some 6. ’ )

Fix N € N. Then the range of (—N) V log(z; + z2) is [-N,log2). Fix ¢ € (0,1)
and divide this interval into subintervals J; of length €. So J; = [i¢, (i + 1)¢) where
i = [g] ey [10%2] Then (log(z; + z2))~" (Ji) are strips at an angle of 45
degrees which get narfower as i gets smaller. We can approximate these strips by

rectangles as follows.

Set
I,',j = {(1‘1, Zg)leis S Ty < e(i-H)c, and ej‘ S Ty < e(j'H)E}
.. -N log 2 L . \
where i,j = [T] e [ 05 ] This divides [0, 1)? into rectangles of various sizes.

CrLAM. Each I;; intersects at most two (log(z1 + :1;2))_l (Jr)-

Proof of Claim. From the geometric picture, it is enough to check the south-
west northeast corners of the rectangles I; ;. These are (e*,e/¢) and (eli+1)e el +1)e)
respectively.

If (¢, e7¢) € (log(xy + z2))™" (Ji) then

e <eff + e < e(k+l)‘
so, multiplying by €€
elk+D)e ¢ olitl)e 4 o(i+1)e o o(k+2)e
and we obtain that
(€%, +10) € (log(z1 +22))™ (Jesr).

Hence Y;,j C (log(z1 + 31:2))_l (Jx) N (log(zy + zz))—l (Jk+1) and the claim is
established.
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Therefore, (and this shall be a rough approximation), if we assign r; ; the value

of log(z1 + 2) for some point (z1,22) € I; ; and set

[=52]
S = Z riiXy,
i,j:[-eN
then ||S — (—N) Vlog(z; + 22)||eo < 2¢ and
log2
[ « ] N 2 N3
> Irisl < (max e K —) K7
=[]
- A3
for some constant K > 0. Hence, setting M = , we obtain

1 n > 1
inf {[[(~N) Vlog(a1 + 22) = Sll | S € 847} <K 7

whenever M > Clog(z,+x,)N3~ Thus log(z + z2) € Mgz) and the result follows from
Theorem 10. ' .

These results are much less general than those for the single variable case for
two main reason. First, the conditions required of & are much more stringent, and
restrict us to a set of measure zero. Second, in the multivariate case, the basic sets
(the "hyperrectangles”) are not as general as intervals in the single variable case. For
example, for an analityc real valued function on some open interval containing [0, 1],
the inverse image of an interval is a finite union of intervals. In the multivariate case,
no such result is true.
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