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ON THE POLES OF THE SCATTERING MATRIX FOR
ONE CONVEX AND ONE NONCONVEX BODIES

LEON S. FARHY

1. INTRODUCTION

Let Q@ C R® be an open bounded set with smooth boundary I". We set 2 = R3\Q
and suppose that {2 is connected. Consider the following acoustic problem with
Dirichlet boundary condition: . '

Ou=0 in £ x (=00, +00)

u(z,t) =0 on I x (—o0,+00)
(1.1) u(z,0) = fi(z) in 2

3—?(:,0) = fa(z) in £

3
where O = 82/0t2 — ) _ 6% /0z?.

- Denote by S(2) i;'he1 scdttering matrix for this problem. It is known [9] that S(z)
1s an unitary operator from L2(52) onto itself for all z € R and extends to an operator
valued function which is analytic in {Imz < 0} and meromorphic in the whole plane.
The purpose of the present work is to find a relation between the geometry of @ and
the location of the poles of the scattering matrix. When the obstacle @ is nontrapping
(for definition of trapping and nontrapping obstacles see [12]) it was proved that there
exist positive constants @ and b such that the domain {z € C ;Imz < a -log|z| + b}
is free from poles [11], [10], [14]. Lax and Phillips conjectured in [9] that for trapping
obstacles S(z) has a sequence of poles converging to the real axis. This hypothesis
was rejected by Ikawa who constructed a counter example. Namely, he showed that
for an obstacle which consists of two disjoint strictly convex bodies there exists a > 0
such that the domain {z € C ;0 < Im2z < a} is free from poles of S(z) [4], [3].

In [8] Tkawa stated his modified hypothesis: when Q is trapping there exists
" @ > 0 such that a slab domain {z € C ;0 < Imz < a} contains an infinite number of
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poles. This was shown to be true by Ikawa and Gérard in (6], [4], [5] and [2] under
the condition that the obstacle consists of two convex bodies. Moreover, these works
show how the location of the poles is connected with the type of the Poincaré map
for the periodic ray between the two bodies. In [§] Ikawa proved that his hypothesis
is also true if Q consists of several strictly convex bodies and Neumann condition is
posedlon the boundary. Lately he proved the same thing for acoustic problém with
Dirichlet boundary condition.

In this work we consider an obstacle which consists of two disjoint bodies. The
first body is supposed to be strictly convex. For the second we assume that the
principal curvatures of its boundary may be negative. So we have a new geometric
situation which differs from that in the works of Ikawa and Gérard. However we pose
conditions on the geometry of the second body in order to have only one hyperbolic
periodic ray. Our main result is that the location of the poles for such obstacle is
similar to the location found by Tkawa for the case of two strictly convex bodies [4],
[6]. Namely, we get one string of poles (the closest to the real axis). As we follow
the methods from [4], [7] and [6] we see that the main difficulties which we have
to overcome are due to the negative principal curvature of the boundary near the
periodic ray. Therefore, we have to investigate more carefully the dynamical system
connected with (1.1).

The paper is organized as follows. In Section 2 we state precisely the main result
and show how the study of the poles can be reduced to the analysis of the resolvent for
the stationary problem, corresponding to (1.1), with boundary data concentrated on
the convex boundary. In Section 3 we investigate the behaviour of the phase functions
and broken rays. Section 4 is devoted to the construction of an asymptotic solution
of (1.1) in such way that we avoid the consideration of solutions with caustics.

It is a pleasure to thank R. Denchev for his useful remarks and suggestions. I
am also grateful to P. Stefanov who read the whole text.

optrm 2. MAIN RESULT AND REDUCTION OF THE PROBLEM

In what follows we suppose that Q@ = Q1 U Q> and @, N Q2 = O, where @ is
strictly convex and Q is nontrapping. We set I; = 0Q;, j = 1,2; ' = I U I3 and
d = dist(Q1; Q2). We also pose:

Ki= zezT}21,zI<‘j(x)’

where K;;(z) are the principal curvatures of I at the point z € I;. Let h be a ray
which starts from z € I3 in direction & and after one reflection from I'; hits again
T;. Denote by H the set of all such rays, and by B the angle between £, and the.
inner normal of I'y at the reflection point y,. Pose:

=maxpf, and [y =max|zy — ynl.
A heH’Bh 0 heth unl
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Suppose that the following conditions are satisfied:

. K, '
(B1) lrxsulr; (K1 + P T 211(2) >0

(B2) Consider a ray k which starts from x € I'y and tangents to Iy at the point
y € I';. We assume that Ky5(y) > 0,5 =1,2and hnT = {g} U {y}. We also
assume @y N (convex hull of Q2 )= @.

REMARK. Condition (B2) garantees that the rays starting from Iy are not gliding
to I 2.

Now we state the main result in this work.

THEOREM 2.1. Let the obstacle Q satisfy (B1) and (B2). Then there exist
constants Cy, Cy > 0 such that:
(1) for any € > 0 the region

+00
{rimz<Cot+ Ci—e}\ U (=3 - sl<Clil+ D74

j=—00

contains only a finite number of poles of S(z), where
5 = iCo + (jm)/d

and C Is independent of ¢.
(i1) there exist infinitely many poles of S(z) in:

U {=: 12— 51<C051 + )-8

j=—0o0
with the same C.
The results of [9] show that Theorem 2.1 follows immediately from:

THEéREM 2.2. Suppose that Q satisfies (B1) and (B2). Denote by U(p)g the

solution in ﬂ H™(£2) of the problem:
m>0
2—Aju=0 in 2
@1) {(p )
u=g on -I
for Rep > 0 and g € C®(I'). Then U(p) is analytic in Rep > 0 as £(C*(I),
C>(92)) valued function and prolonged analytically into:

| v
D:={p; Rep> —Co-Ci+e}\ |J {p; lp—izl<C(il+1)7%)

j=-o00
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for any ¢ > 0, where C is independent of ¢. And for p € D, it holds:

m+7
sup  |DE(U(P)9)(z)| € Crome Y, IpVllgllarcry
18] < m 2€A0I=I<R} j=o

forany R>0ands=m+7—3j.
Moreover U(p) has an infinite number of poles in the region

+0o0

U {; Ip-izl<CUlil+1)7%).

j==-—o00

REMARKS. 1. The formulations of the theorems are exactly the same as in [4],
but here we have a new geometric situation which causes a lot of difficulties in the
proofs

2. The constants Cp and C; depend only on the geometry of Q.

3. Following the methods of [6] one can obtain more precise results on the loca.tlon
of the poles (see Theorems 1 and 2 from [6]).

Now we shall make an easy reduction of problem (2.1) which will be very useful
in the course of the proof of Theorem 2.2.
Denote by Us(p)g the solution in ﬂ H™ of the problem

m>0
(p"’ -Aju=0 in Rs\Qz
u=g on Iy for g€ C®(I2).
Set g = (91,92) for g € C®(I), where g; € C®(I3), i = 1,2 and let U(p)g be

the solution in ﬂ H™($2) of (2.1). Then we have for Rep 2 0:
m>0

U(p)g = U(p)(91,92) = U(p)(91,0) + U(p)(0, 92) =
= U(p)(91 — U2(p)(92)Ir,) + U2(p)(92),

where U (p): C®(IN) — C®(£2) is such that:

(2.3)

U(p)g = U(p)(g,0)-
We know [14] that Uz(p) can be prolonged analytically into:
{p; Rep> —b,|p| > Cs}

for any b > 0, where C is a constant depending on b. Hence using (2.3) we see that
it is sufficient to prove Theorem 2.2 only for U (p) instead of U(p) and in what follows
we shall consider only U(p).
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The advantage of the above argument is that now we are able to avoid considera-
tion of gliding rays (see the Remark after condition (B2)). This is important for the
proof of Theorem 2.2 because we have to construct a parametrix of the problem:

Ou=0 in 2xR
u=f on I'xR
supp u C £2 x [0, 00)

and on I'; we have gliding rays and inflection points.

3. PROPERTIES OF PHASE FUNCTIONS AND BROKEN RAYS

Following Section 9 of [4] (also in [6]) one can see how the proof of Theorem 2.2
is reduced to the investigation of the asymptotic solution of the problem:

Ou=0 in xR
3 1 u=e*@EA M-y t) on I xR
(3-1) u=0 on I xR

supp u C §2 x [0, 00)

where w(z,t) € C°(I) and ¢(z, #', n) satisfies:

[Vzo| =1
e(y(o),B', ) = B'{c,n)
Oy
n >0 on IN

Here 1 € §2, —28} <.B' < 28} for some small 8y and y(o) is a representation of I
near A;, where A; € I, i =1,2 and d = |A; — A,|.

REMARK. Lemma 3.8 from this section allows us to consider functions ¢(z, ', )
which are defined only in a small neighborhood of A; (see [3], Section 8).

As we build the asymptotic solution of (3.1) following the construction of geo-
metric optics, the investigation of this solution is closely related with the behaviour
of the broken rays and of the so called phase functions.

DEFINITION 3.1. A real valued smooth function ¢(z), defined in an open set
U C R3 is called phase function if [V¢| = 1in U. A surface B,(z) = {y; ¢(z) = ¢(y)}
is called the wave front of p(z) passing z.

Let so € I" and () and ¢(? be phase functions in U 3 sp such that:

o) = (@) on I'NU

) @)
agn >0, ?§T<o on I'NU,
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where n(z) is the unit outer normal at z € I'. In other words »(1) and ¢(?) are two
different solutions of the equation |Vy| = 1, ¢|r = f(z) (f(z) = pM(z) = ()
forz € 'NU). '

Let Kgl), Kgl) and I\’§2), ng) be the principal curvatures at so of B, (s0) and
B ,(2)(0), respectively (we consider the principal curvatures with respect to —Ve(y),
Y € By(s0)).

Lemma 3.2 ([3]). It holds that:
(3.2) jrg%uz KJO) +26 min Ki(so) € K},l) for j'=1,2,

where K1(so), K2(so) are the principal curvatures of I' at so € I', with respect to
n(so) and 6 = 1 for s € Il and § = (cos ﬂ)'l for so € I'. (B is defined before
Condition (Bl1).)

Note that if y = so + [V{!)(s0), then the principal curvatures of B, (y) at the
point y are given by the terms:

KM

(3.3) for j=1,2

N B

141K

(for example see [13]).

Let ¢g(z) be a phase function defined in U (U NI # @), such that %% > 0 for
(2

z € U NI, and the principal curvatures of By, (z) are non-negative at the points of
UnNTy. Let py(z) satisfy:

Ver| =1 n w

P1 = Po on wi NIl
/] i}

%:—% on w; NIy

where w is the set of all rays reflected by I, which start from points z € U N I in
direction ¢, = Vo(z). Fix § = (cos f)~1.

LemMMA 3.3. The phase function ¢,(z) is well defined on I't and for ¢\(x) we
can build a phase function py(z) following the above construction. Moreover, the
principal curvatures of B, at the points of I'; are positive.

Proof. From (3.3) we see that the principal curvatures of B, (z) at « € I, are
non-negative. Then inequality (3.2) shows that the principal curvatures of B,, at
z € I'; are not less than 26 K>. Hence the principal curvatures of B, at the points

of I'y are not less than
26 K5

1+ 261K,’
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where [ is such that y = z + IV (z), z € I, y € I'}. Condition (B1) shows that
the above fraction is well defined. Then ¢,(z) is well defined on I' [13] So we can
construct @o(z) near I.

Inequality (3.2) gives the minimal principal curvature of By, at the points of I'1:

26K,

20+ o,

and this is positive by (B1). Thus we have the assertion.

REMARK. The phase function ¢;(z) may be no well defined in some points
x € 2\ I' because of the existence of caustics.

CORLLARY 3.4. Following the procedure described before Lemma 3.3 we can
construct a sequence of phase functions {y;}3%o, which are defined near I'.

Now we prove a lemma which is crucial in order to apply the methods of [4] in
our case.

LEMMA 3.5. There exist N > 0, K > 0, depending only on the geometry of Q,
such that for j > N the principal curvatures of By, (z) at € I'.(;) are greater than
K, where () = 1 if j is even and €(j) = 2 if j is odd.

Proof. Denote by aj the minimal value of the principal curvatures of By, at the
points of I(;). Using (3.2) and (3.3) we get:

U2pn -]

@y, 2 2n = 261 + T loagn—s
2n—1

Q2n

'
a za =20Ky + ————
2n+1 = Y2n+1 2 1 T 100211

ag2ap=0; aj2a =26K,.

Consider the sequence {az;+1}52,. We have:

Qan , 2K + azn-1(1+ lpazn-1)™?
— = 2K+ - =
14 lpas, 14 200Ky + lpazn—1(1 + loazn—1)~!

A2n41 = 261\,2 +

2K (14 lpazn-1)+asm-1  _
(1 + 2101\,1)(1 + loavn 1) + 10(12,-, 1

261&2(1 + 210[\1)(1 + lpasy, 1) + 26 Kalpasn 1 + 2]\1 + 2101\1&2,, 1+ aon—1
1+ 200K, +lpazn-1 + 20EK1a3n—1 + loazn_y '

Hence we have azn41 — @2n—1 = A/ B, where:

=26K,+

B=142)K; 4+ lpas,_1 + 213[(1(12"_1 + lpasn_1

A=20K3+ 4o K1 K286 + 2K, + 28l K282,-1 + 46 K, 1(21(2)(12"_1 + 261{210a2n_1+
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+2lo K820 + aznoy — (1 + 200 K1 )azn—y = 2l0a%,_, = 23K a2,y =
= —a2,_12o(1 + o K1) + 408 K2azn1(1 + b)) + 26 K2 + 2o K1 K56 + K1) =
(1 + 26Klo) (K1 , b )] )

(1 + K1)l 14 266K,
=2o(1 + I K))(=a3,_, +26K2a24-1 + R) = 2o(1 + lo[K;)S.

= 210(1 + 101(1) [—a%n_l +20K9a9,., +

Here we denote:
R = (14 2K2610)[K} 4+ K26(1 + 2610 K2) " [lo(1 + oK)~}

S = —agn_l +28Ksa3n-1 + R.

We are interested in the sign of S (note that by (B1) R > 0). Let us solve the equatlon
S = 0 with respect to az,.;. We get:

a{’) = 6K, £ (K2 + R)3.

We have .
B =1+2K, + 2loazn-1 + 2l3aza1 K1 >

> 14 20K + 4610K, + 4612K, K5 =
= (14 26lp K2) + 2o (I; + 2810 K1 K + 6K5)

and by (B1) this is positive.
We have two possibilities:
(i) aznp-1> @)

(i) azn-1 < a(2 ) for all n.

Consider the first case. We have ay,, > 2K, and then

> 0 for some ny;

Gongtr > 26K + 2K1(1+ 20K,) > €1 > 0.

Denote K = mm(el,a., ),21\1) and for j > N = —no it holds that a; > K. Thus
the lemma. is proved in the first case.
Let as,_1<a ( ) for all n. Then, since a; © < 263 < @41 for all j, we have:
< azj41 € ag ) for all j.

Hence the sequence {az;+1}3%0 is mcreasmg and tends to a; O Thus the lemma

()

is proved.

Next, we introduce a terminology connected with the broken rays which satisfy
the law of geometric optics. We follow [3], [4] and [7].

For z € I' denote by n(z) the unit outer normal of I' at the point z. Set
Tt ={€ €8?%|¢| =1 and n(z) - £ > 0}. Denote by X(z,&) the broken ray, according
to the law of geometric optics, which starts from x € I in direction £ € L}, Let
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X1(z;€), X3(z,€),... be the pomts of reflection of X(z,£). By #X (z §) denote the
number of all such points.

LEMMA 3.6.. We can choose a sequence of neigbborhoods'
(‘) U(‘) c Iy U(i) (‘) cI3

{ A1 €U, A3 €UY) andfor j=1,2 and i — 0
max, |z — A,l-»O
seU'

such that there exist positive constants K® satzsfymg the properties:
() Ifz €1, € € B} and X(2,6) N (VY UUY) = O, then #X(2,6) < <K©;
(i) Ifz € U(')UU.‘SI) and€ € T} xssucb tbat Xi1(z,€) e (U (‘)\ (‘))U( (‘)\ (‘)) '
then #X(z,&) < K©).
Proof., Denote by « the line passing through A; and Aj;. Choose poxnts 0Oy and
O3 such that:
{01 €a, |01—A1|=1/K; and A; is between O; and A;
O:€a, |02—A4;|=1/K; and A, is between O3 and Ay
Then by (B1) O, # O3 and O, is between 03 and A;. We also choose the points:
01, 03 € «, # 0’
O} is between O; and Oy for i=1,2
O} is between O3 and  Of

figure 1

(1) Let z; € Il and consider the broken ray starting from z, and hitting I; at
z3. Let Vi = V1(03, z3) be the cone surface generated by rotation of O}z3 (we mean
the ray with origin O}) around a: We say that O%z; generates V3.
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Assume z, EI;I (‘;1 means the inside of Vi) and let
T3 = X3(:l:1, (.’L‘z - 1:1)/[1'2 - 1‘1]) e nI.
Consider the surface V3 = V(02, z3). Then using (B2) we have:

/ < — : /
R 1< 0= 00,

for some 1 > 8, > 0, where |2/} = dist(z,a). It is obvious that we can choose
6§, =const if |z]| > ¢ for some ¢ > 0 (6§; depends only on ¢ and on the geometry of
Q). By taking the projection of z;z, zoz3 and n(z;) onto the plane through o and
z2, and using (B1) and (B2) we get:

|z3] < (1 = 61)l=5].

Moreover, if V3 = V3(01, z3) then z2 € 133.
The same argument shows that:

|zh| < (1 — 62)|z}] for some 1> 6, > 0.

Therefore, by induction we conclude that after s reflections we shall leave I, where s
depends only on |z]].

(2) Assume z; € IN and U 3 A; is a neighborhood such that z; ¢ U. Let
X(z1,6)NU = @ for some ¢ € I} . Then we shall prove that #X(z;,6) < M for
some M depending only on rznea[}( |z'|. Assume the contrary.

Consider the surface V; = Vj(05, ;). Then (1) shows that z, 61;1. We also
get =3 61;2, where Vo = V,(0f,z3). Following the above construction, we build
Von—1 = Van—1(05, 22n—1) and we get 3, 61;2,,_1. The choice of Of and O} leads
to:

(Van41U ‘;2n+1) NI — A; for n— oco.

Thus we get a contradiction and the statement of (2) holds.

(3) Finaly we describe the construction of the neighborhoods.

Let {z;}72, be a sequence of points on I'i such that z; — A; and |z} > |z},].
Denote by {V;}$2, the sequence V; = V;(04,z;) for j = 1,2.... We have for a
suitable choice of z;: o o

Vit1CVj
1;,- N — Ay for j— o0
FzCl;l or INCW .
Let S be the sphere with center Of and radius |4, — Of|. Denote y; = V; NS and let
V] be the cone surface with peak in 05 and passing v;. Finaly we set for every j:

Uy =I;j nry; Uy =‘;j ‘"N,
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D =p;'an; v =v;nn

Usmg (1) and (2) we see tha.t the above neighborhoods satisfy the requirements
of the lemma.

REMARK. Note that using the proof of Lemma 3.6 one can prm’/e the result of
Section 2 of [6]. ~

PROPOSITION 3. 7 Let z,y € (Ul({) U Ug)) = Fy for some j and assume that
Xi(z,Von(z)) € Fy and Xi(y,Ven(y)) € Fy fori = 1,...,q, where the positive
integer N is the one of Lemma 3.5. Then there exists jo > 0 sucb that [z —y| < Calt
for j 2 jo and & < 1 (a is the one of Proposition 3.8 of [7); for {x;}3%, see Corollary
3.4).

Proof. Let z,y € Ug), zy = X1(z, Von(z)) and y1 = X1(y, Ven(y)). Suppose
that on(z1) < N (1) a.nd denote by z(l ) a point on the ray h = {z; + VN 41(21);
1'> 0} such that 4p~+1(z, ) = on(w).

figure 2

We shall prove that |z— y| < |y1.— ={7].
Set ¥ = Byy(z1) Nyy1. Choose jo so large that if 7> jo then the angle v,
between Ay, (A € h and |A — y;1| =dist(h, 1)) and z,y1, is so small that a~! =
= (cos 7)(1 +dK1) > 1. (Recall that U§) — A; for j — oo (Lemma. 3.6))
Using Lemma 3.6 of [7] we get:
|21 — ¥/ > (1+ dK1)Cx, |z -y,
where Ck, depends only on K. Hence:

Crilz—y|S(1+dK1) Yz — Y| S (1 +dK1) Yy ~ 21| =
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= [(cos 7)(1 + dKD)] M4 = 1| = o] A - ma] S elf” - wal.
Then following Proposition 3.8 of [7] we complete the proof.

CoRroLLARY 3.8. Let p(z) be a phase function and suppose that the principal
curvatures of By,(z) at the points of I'y in which ¢ is defined are greater than some
€>0. Then ifz,y € I and X (x,Vo(z)), Xq(y, Ve(y)) € I't we have for large q:

(3.4) lo - y| < Cadli=N-2t-1),

where k and C are independent of ¢ and « is fixed in Proposition 3.7.

Proof. We fix j = jo (see Propositin 3.7). Then using Lemma 3.6 we get
Xi(z, Vo(z)), Xi(y, Vo(y) € (UPUUS) for large g and i = K+1, ..., g— KU)-1.
Hence (3.4) follows from Proposition 3.7 and from the inequality:

Iz — y| S ClXnyxin (2, Ve(2)) ~ Xy (¥ Vo))l

Lemma 3.6 makes possible to prove (2.14) or [4]. Then following Section 3 of [4]
and Section 3 of [7] we have:

ProrosiTiON 3.9. It holds that:
Vg = V@elm(Te(q)) € Cmad Ve — VEm(1), m=12,..;em <],

where {¢,}32, and {$;}32, are built starting with phase functions ¢(z) and §(z)
(recall Corollary 3.4). The functions ¢ and @ are defined on Il and the principal
curvatures of B, and Bz are non-negative. (For definition of | - |m(Ic(q)) see [4]).

Using Corollary 3.8, Proposition 3.9 and Lemma 3.6 we follow Section 5 of [7] in
order to prove:

THEOREM 3.10 (convetgence of phase functions). Let po(z) be a phase function
defined on I'y such that the principal curvatures of B, are non-negative. Let {p;}$2,
be the sequence of phase functions constructed in Corollary 3.4. There exist phase
functions poo(z) and () such that:

0 lp2p = (o0 + 2dp + do)|m(I1) < Crma?

2641 — (Foo + (20 + 1)d + do) () < Cme®
where dp, (70 depend only on .

(ii) the principal curvatures of B, (B;w) atz € I (I';) are greater than K > 0

(K is defined in Lemma 3.5).

THEOREM 3.11 (convergence of broken rays). It hoids that:

1X_5(-, Vipzg) = X=; (-, Voo ) lm(I'1) € Cmar
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IX-29+j(' H V‘PZG) - X(A/) V<p0)|m(F1) < Cma%q

where a < 1 and A’ € Iy depends only on ¢y. Analogous inequalities also hold for
Poo ().

(X-j(z,V,) is the point y from which a broken ray must start in direction
Vq—;(y) in order to reach z after j reflections.)

REMARK. Some of-the above results and an outline of the proofs were announced

in [1].

4. ASYMPTOTIC SOLUTION OF (3.1) AND PROOF OF THEOREM 2.2

We should like to use the methods of [4] in the proof of Theorem 2.2. The
direct application leads to the fact that the asymptotic solution of (3.1) is defined
only in a small neighborhood of I' because the first N phase functions may have
negative principal curvatures at the points of their wave front set. In other words
the Lagrangian manifolds A; which consist of the bicharacteristics generated by the
equations |Vgg;| =1, j = 1,2,...,—1-N, have not proper projection on R3. It is
possible to look for an asymptotic solution in terms of Fourier Integral Operators.
But the fact that the region in which the phase functions are well defined includes Iy
(see Lemma 3.3) leads to a simpler solution.

The construction of an asymptotic solution of (3.1) consists of several steps [4],
[6]: ‘

(1) construction of the sequence of phase functions {¢p; 1520

(ii) introduction of the sums:

M
ug(z,t, k) = eif(v2q(2)-1) Z v gz, )k™"

r=0

M
Ug(e,1,k) = FP2en@-0 N5 (g )k

r=0
where v, , and U, 4 are solutions of the corresponding transport equations and M > 0

is a fixed integer.
(iii) the asymptotic solution is given by:

o

u(z, k) = Y (ug(e, b, k) — Uy, 1, k).

g=0
In our case the functions {uq(:c,t,k)}q%__l_\(’, are well defined in a neighborhood U

. ~ | S L.
of I; and I C U. Each of the functions ug,%,,¢=0,1,..., —2-N is an approximation



380 LEON S. FARHY

of a certain boundary value problem outside a nontrapping obstacle. We replace this
functions with the exact solutions ug(x,t), uy(z,t), ¢ =0,1,.... Then the asymptotic
solution is given by:

u'(z,t,k) = E(uq(z t) — wy(z, 1)) + Z (ug(z, 8, k) — Uy(x, 1, k)).

g=3iN+1

The second sum we treat in the same way as in [4]. The last step is to ob-
iN
2
serve that if we take the Laplace transform of the first sum we obtain Z(u’q (z,p) —
¢=0
—iy(z, p)), where

wmn) = [ e

¥ (z,p) —.—'/o e P (z,t)dt.

We know that u’q and ii; extend to meromorphic functions in the whole plane, which
are analytic in some regions:

{p;Rep> —b,|p|>Cs} forall b>0.

Here Cj depends only on b.
Hence only the second sum is important for the poles of the resolvent U(p) and
using the results of Section 3 we follow [4] in order to prove Theorem 2.2.

REMARK. After proving Proposition 5.6 of [4] we can also follow [6] and prove
Theorem 2 of [6] for the obstacle of this work.
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