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MINIMAL PROJECTIONS IN THE REDUCED GROUP
C"-ALGEBRA OF Z,+Z,

JOEL ANDERSON, BRUCE BLACKADAR and UFFE HAAGERUP

INTRODUCTION

There are several important unsolved problems concerning equivalence and com-
parability of projections in simple C*-algebras. Some of the most important of these
can be combined into a single question, which may be called the Fundamental Com-

parability Question for projections in simple C*-algebras:

(1) If A is a simple C*-algebra, p and q are projections in A with

7(p) < (1)

for every nonzero trace 7 on A, is p equivalent to a subprojection of ¢? (Note that <
cannot be replaced by g, even in AF algebras [1, 7.6.2]).

If A is a stably finite simple unital C*-algebra, then K¢(A) is a simple ordered
group with its natural ordering. A tracial state 7 on A induces a state (i.e., a normal-
ized order-preserving homomorphism ) 7. : Ko(A) — R. Two natural questions arise
in this setting:

(2) If z is in Ko(A) and 7.(z) > 0 for every trace 7, is > 07 (Is Ko(A) weakly
unperforated and does every state on Ko(A) come from a trace on A?)

(3) If z is in Ko(A) and 0 < = < [14], is there a projection p in A with z = [p]?

Question (3) is a weak form of cancellation (if [p] = [q] in Ko(A) then p ~ q).
The questions (2) and (3) are consequences of (1). See [1] for a complete discussion
of these and related questions, and of ordered Kp-groups.

The present state of knowledge about these questions is rudimentary. It is
straightforward to verify (1) for simple AF algebras and factors using known structure



4 JOEL AND®XRSON, BRUCE BILACKADAR and UFFE HAAGERUP

results (sec {1] for more details). In addition Rieffel [8] has recently shown that (1)
holds for zimple (and even nonsimple, nonrational) noncommutative tori. Question
(1) is also true for the Cuntz algebras [5]; if A is not stably finite then (1) simply
says that every nonzero projection in A is infinite. Counterexamples to the analogous
questions for non-simnple C*-algebras have led some experts to doubt the validity of
(1); but evidence in favor of (1) has been gradually zccumulating, to the point of
being at least suggestive.

The results of this paper add to the empirical evidence for (1). We study pro-
jections in the C*-algebra C}{(7, + Zy), the reduced group C*-algebra of the free
product of two finite cyclic groups. Recall that C}(Z, * Z,,) is a simple unital C*-
-algebra with unique trace if n,sn > 2 and » + m > 5 [6]. We write v and v for the
unitary gerecrators of C}(Z, * Z,,), so that «® = v™ = I, and denote the minimal
spectral projections of u (resp. ») by p1,...,po (resp. ¢z,...,qm).

Cuntz '4] showed that K¢(C? (2, +Z,,)) is generated by [p1],...[pa], [01], -, [gm]
subject to the single (obvious) relation |

Pl + .-+ [Pl =[]+ + (gl

Thus
Ko(C!(Za % 1)) = 2™ L 27t™/2(1,...,1,-1,...,-1)

where there are n 1’s and m — 1’s in the denominator. Several interesting properties
of C! (2, *1,,) are implicit in this result. For example it follows that the p;’s and ¢;’s
are pairwise inequivalent. Since 7(p;) = 1/n and 7(g;) = 1/m we also get that the
range of 7, on Ko(C} (Zn *Z,,)) is (1/p)Z, where i = £em(n, m) is the least common
multiple of # and m. Hence if r is a nonzero projection in C#(Z, * Z,,), then 7(r) is
a multiple of 1/, and therefore C}(Z, * Z,,) contains minimal projections.

If n = m, then each p; and ¢; is a minimal projection, and Cuntz [4] conjectured
that the p; and ¢; are also minimal when n # m. This conjecture was inconsistent
with (1), which says in the case of C;(Z, * Z,;,) that a projection is minimal if and
only if its trace is 1/p (and that every element of Ko(C*(Z, * Z,,)) of trace 1/p is
the image of a projection in C;(Z, * Z,,)). While we cannot completely verify (1)
{or even (2) or (3)) for these algebras, we do show that many of the e¢lements z in
Ko{C}(Z,,%L,,,)) with 0 < 7.(z) < 1 are represented by the projections in C*(Z, *Z,,,)
and are therefore positive. We also verify some of the comparability relations implied
by (1). In particular, we show that there always exist projections of trace 1/u under
any p; and g¢;; so these projections are not minimal if » # m. We believe that (1)
is true (at least) for these algebras, and a modification of our techniques may be
sufficient to prove it. {Note that by the results of [12], [13], and [14], =, is the only
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state on Ko(Cy (Zy, * Z,n)), so that if z € Ko(C? (2 *Zy,)) with 7,.(z) > 0, then some
multiple of z is positive, i.e. represented by a projection [1, 6.8.5].)

QOur results are obtained by explicit norm and spectrum calculations for certain
operators which we believe may be of independent interest (cf. Section 2). These
calculations are inspired by the work of Cartwright and Soardi [2] in which the spec-
tra of related operators in C;(Z,, * Z,,,) arc computed by a different method. Also,
although not explicitly stated, our work in Section 2 uses Voiculescu’s notion of the
reduced free product of C*-algebras introduced in [10]. Finally we note that related

results have been obtained (via different techniques) by Voiculescu in [11].

1. MINIMAL PROJECTIONS IN CHOI'S ALGEBRA

In the case n = 2, m = 3 the algebra C}(Z, * Z,,) was studied in detail by Choi

[3]. He showed that one may assume the unitary generators have the form

( 0 1 ) ( 0o v )

U= , v =

10 s ts*

where s and ¢ are isometries satisfying ss* +¢t* =1 (i.e., s and ¢ generate the Cuntz

algebra 03). We write
C= C:(Zz * Za).

Note that since lem(2,3)=6,
7 (Ko(C)) = %z

and if e is a nontrivial projection (e # 0, ¢ # 1) in C then

r(e) € {1/6,1/3,1/2,2/3,5/6}.

The spectral projections of u (resp. v) are p; and p; (resp. ¢1,¢2 and ¢3) and we have
that

wu=py—p2, v=q+wg+wigs,

where w is a primitive third root of unity. Thus 7(p;) = 1/2 and 7(g;) = 1/3, since
7(u) = 7(v) = 0.

In the next section we shall analyze (among others) elements of the form p;q;p;
in detail. In particular we will compute the spectrum of such elements exactly and
show that 0 is always an isolated point. From this it follows easily that C contains
projections of trace 1/6. This calculation is somewhat involved, however. Our purpose
here is to show that for Choi’s algebra one may exploit the fact that 2 and 3 are “small”
to get the existence of projections of trace 1/6 quite easily. We begin by presenting
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two easy (known) results. We use A to denote the C*-algebra obtained by adjoining
a unit to the C*-algebra A. ’

ProPosITION 1. If e and f are projections in C*-algebra A with
llefe—e)l < 1,

then e is homotopic to a subprojection d of f. Hence e and d are unitarily equivalent
in A. Moreover, e is orthogonal to f — d.

Proof. For 0 <t < 1 write
€y :te+(1-—t)f

and note that
[|eese — €] < llefe —¢]| = a < 1.

Put

a; = \/(eece)!

where the inverse is taken in eAe. We have then that |ja;|| < (1 — «)~(/?) and
therefore the map

tv——»a,

is continuous in norm. Now set b; = \/é; and put
W = bta,.

Note that ¢ — w; is continuous, w;w; = ¢ for all t, wowy = d £ f and w; = wiw] =e.
Henece ww) gives a path of projections from d to e and the first part of the proposition
is proved.

Since norm close projections are unitarily equivalent, the second part follows from
the first in conjunction with a routine compactness argument. For the final assertion
note that

ede = ewowge = ef(efe)™ fe = efe

so that e(f — d)e = 0. |

PRoOPOSITION 2. Suppose A is a C*-algebra containing projections p and q such
that A is gencrated (as a C*-algebra) by p, q and families {z.}, {yp} of positive

clements. If in addition

i) llpall =1,

i1) pzo = 0 for all o and qyg = 0 for all §,
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then there is a complex lomomorphism ¢ on A with ¢(p) = ¢(q) = 1.

Proof. We have that ||pgp|| = ||pq||* = 1 and therefore there is a state ¢ on A
with ¢(pgp) = 1. As pgp < p < 1 we get that ¢(p) = 1. By the Cauchy-Schwartz
inequality ¢(pzp) = ¢(x) for all z in A. In particular ¢(q) = 1 and ¢(qyq) = ¢(y)
for all y in A. Hence ¢(zo) = ¢(pzo) = 0 for all @, ¢(ys) = 0 for all B and ¢ is
multiplicative on A. ]

THEOREM 3. Suppose A is a simple, unital C*-algebra containing the nontrivial
projections p and q. If A is generated by p,q and some other positive elements each
of which is orthogonal to either p or q then q is homotopic (hence equivalent) to a

subprojection of 1 — p.

Proof. By Proposition 1 it suffices to show that ||g(1 — p)g — q|| < 1. Suppose
this is not the case so that

lpgll® = llapall = lla(1 — p)a — ql| = 1.

Then by Probosition 2 there is a complex homomorphism on A. As A is simple we
must have that A = C, the complex numbers. Since p and ¢ are nontrivial projections

this is impossible. ]
CoRoOLLARY 4. C contains projections of trace 1/6.

Proof. Since C is simple and generated by {p1,p2, ¢1,¢2,¢3} the hypotheses of
Theorem 3 are satisfied with p = py and q = q;. Hence there is a subprojection s of
p1 = 1 — po that is homotopic (hence equivalent) to q;. Therefore 7(s) = 7(q;) = 1/3.
So if we put »r = p; — s, then 7(r) =1/2-1/3 = 1/6. u

REMARKS. 1) Clearly, the argument in Corollary 4 works for any pair (p;, ¢;). It
follows that the elements in Ko(C) corresponding to

(1,0,-1,0,0), (1,0,0,~1,0), (1,0,0,0,-1)

and
(0,1,-1,0,0), (0,1,0,-1,0), (0,1,0,0,-1)

are all represented by projections in C.

2) Suppose r, s,p; and ¢; are as in the proof of Corollary 4 so that » +s5 = p,, s
is equivalent to ¢; and (by Proposition 1) r is orthogonal to q;. We have that

llrgaril = [[rprgaprr|l < llpraapall < 1.
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As 7 is orthogonal to ¢; we get that r is equivalent to a subprojection of g3 in the
(*-algebra generated by 7, g2 and ¢3 (with unit g2+g3). Thus g, majorizes a projection
r2 with ra ~ r. Hence in Ko(C) we have

[r2] = [r] = [p1] = [gq1]-

Note that 7(g2 —r2) = 1/3—1/6 = 1/6 so that g —r; is also minimal in C?!(Z,, *Z,,).
Moreover,

lg2 — r2) = [g2] + [@1) = [p1} = [p2) — [g3)-

Arguing in like manner with ¢; and g3 interchanged we get that ¢» also majorizes a

minimal projection s, such that
[s2] = [p1] - [gs] and [g2 — 52} = [p2] — [a4].

3) By applying the argument of 2) to the remaining g;’s one obtains 2 orthogonal
decompositions of each ¢; into minimal projections r;, ¢; — r; and s;, ¢; — s; such
that for each i these 4 projections determine distinct elements of Ko(C). Thus the
identity in C' decomposes as the sum of 6 orthogonal minimal projections in several

different ways. Note that

[r1+ 72 + 73] = [p1] = [ga] + [p1] ~ [q1] + [p1] = [g2] = (3,0, -1, -1, -1)

and so (2,-1%,0,0,0) = (3,0,~1,—1,—1) is positive; in fact it is represented by a

projection in C.

4) Write e), ez and f;, f» for the projections giving the two orthogonal decom-
positions of ¢; in 3) above. We claim that each compression of the form e; fje; or
fieif; has full spectrum in C*(ey, fi,1). Indeed, we must have that ||e; fie;|| = 1.
For otherwis¢ ¢; would be equivalent to a subprojection of f, and since f; is mini-
mal ¢; and f, would be equivalent. This is impossible since [e;] # [f2]). Similarly
fler(qr — fr)es|] = |lerfzea]l = 1 and it follows that 0 and 1 are in the spectrum of
ey fiey. If this spectrum were disconnected then e; would not be minimal. Hence
ey fiey has full spectrum. Similarly all compressions have full spectrum. As we shall

see in the next section it follows that
C*(e1, fr,q1) ~ Gy (22 % T).
Arguing in like manner for ¢; and ¢3 we get

C: (Zg * Zg) @ C;(Zz * Zz) D C: (Zz * Zg)
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embeds unitally into C'.

5) It is possible to get an upper bound for the norm of pyq;p; as follows. We

have
_l+w 14+ v+ 02
n= ) ——3

or in terms of Chol’s matrix representations for v and v

1 s+t )
s+t 14 st*+ts*)

Y it =

n=0/(]

If we conjugate p; and ¢q; by the unitary

x:(l/\/i)(i —11)

(o o)
T =
n 0 0

and that the (1,1) entry of zpiq1p1z is

we get

24 s+ 1"+ 5" +t+1s" + st
5 =
_ 14+ 2Re(s+1)+ (14 st* +ts*) _
= 5 =

_ 14 2V2Re(w) + 2ww*
- 6

where V2w = s+t and w is an isometry. Hence

3+2v2
lip1q1p1]] € T 97 < 1.

We shall see in the next section (Remark 15) that the spectrum of pyq1p; is
{0yu {t:(3-2v2)/6 <t < (3+2V2)/6}).

so that in fact this estimate is sharp.

2. THE GENERAL CASE

Throughout this section n and m will denote fixed integers such that n > 2, m >
> 2 and n+ m > 5. We «enote the unitary generators of C*(Z, + Z,,) by u and v so
that

=" =1



10 JOEL ANDERSON, BRUCE BLACKADAR and UFFE HAAGERUP

We shall view C; (2, *Z,,) as acting on £2(Z,, *Z,,) via the left regular representation.
If £ denotes a linear combination of words in « and v then z simultaneously determines
an element of C}(Z, * Z,,) and £2(Z,, * Z,»). As usual we use the same symbol for
both. We write [|z||2 for the norm in £2(Z, * Z,,) and (z,y) for the inner product.
Recall that {z,y) = r(y*z).

Throughout this section p and ¢ will denote fixed spectral projections of u and
v, respectively. Set

T(p)=a and 7(g) =0

We are intercsted in studying C*(p, ¢, 1), the C*-subalgebra of C} (I, *Z,) generated
by p, ¢ and 1. Replacing p by 1 - p and ¢ by 1 — ¢ if necessary we may assume that

a < 1/2 and B < 1/2. Also, we may assume 8 < a. So from now on we assume
d<B<axgl)2

We now construct an orthonormal subset of £2(Z, * Z,) that will be useful in

the sequel. Put

1 1
a= —\/&ﬁ(p —al) and b= —\/E(_Y_—;T)(q — B1).

Note that since p is a spectral projection of u and 7(p) = o we have

Similarly,

Thus @ (resp. b ) is a linear combination of nonzero powers of u (resp. v ). Let B
denote all words of the form 1, (ab)¥, (ab)¥~‘a, (ba)* or (ba)k~'b for k =1,2,....
Note that if w # 1 is a word in B then w is a linear combination of products of

nonzero powers of u and v and thercfore 7(w) = 0. It is easy to check that

(1) " a®=qa+1, where v = (1 -2a)/(a(l - a))'/>.
and
(2) b = 8b+1, where 6= (1-28)/(B(1 - ﬂ))llz-

If w € B then we write for the “adjoint” word in B. Thus

((ab)®)* = (ba)*, ((ab)*~'a)* = (ab)*~la, etc.
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LEMMA 5. Ifk > 1 then
k . k
(3) (ab)¥(ba)t =6 (Z(ab)z"l) aty | Y (@) a+1
i=1 j=1

(4) . (ab)*a(ab)*a = y(ab)* a + (ab)* (ba)*.

Analogous formulas hold for (ba)¥(ab)* and (ba)*b(ba)*b.

Proof. We proceed by induction. Using (1) and (2) above we have
(ab)(ba) = ab®a = baba + a® = 6(ab)a + ya + 1

and so the first equality is true for & = 1. Suppose that it is true for k > 1. For k +1

we have

(ab)f+(ba)**+! = (ab)*(ab%a)(ba)* =
= 6(ab)*(aba)(ba)* + y(ab)* a(ba)* + (ab)*(ba)* =
= §(ab)®**1a + y(ab)?* a + (ab)¥(ba)*
and the first formula follows from the induction hypothesis. For the second we have
(ab)*a(ab)*a = (ab)*a®(ba)* = y(ab)**a + (ab)*(ba)*.
The analogous formulas follow by symmetry. |

LEMMA 6. The set B is orthonormal in £2(Z, * 1,,).

Proof. Fix w in.B. If w = 1, then ||w||} = 7(w*w) = (1) = 1. If w # 1, then as
observed above r(w) = 0. This together with (3) and (4) (and their analogues) imply
that ||w||3 = 1. To see that B is orthogonal it is necessary to examine various cases.
Since the proofs are similar we shall only treat the case w = (ba)* in detail. Fix z in
B with z # w. We must show

(w,z) = r(z*w) = 0.

If x begins with a then z* ends with a and z*w is in B. Hence we are reduced to the

case where « begins with §; i.e.,
z = (ba)’ or z = (ba)’b.
Suppose = = (ba)’ and j > k. In this case we have

z*w = (ab)’ (ba)¥ = (ab)! ~*(ab)*(ba)* = (ab)’ ~*(a[+] + 1) by (3)
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and therefore r(z*w) = 0. The proof is similar when z = (ba)/, j < k or z =
= (ba)’b, j > k. We are left with the case z = (ba)’b, j < k. With this choice we get

z*w = (ba) b(ba)* = b(ab)! (ba)! (ba)* ¢ = b(a[*]a + ya + 1)(ba)*~7
and so
r(z*w) = 7(b(ba)*~7) = 7(b*(ab)* "I~ 'a) = 7((ba)*~9) + 7(((ad)¥~7~})a) = 0.

|

Write M for closed linear subspace of ¢2(Z,, * Z,,,) spanned by B and note that

(by (1) and (2)) H is left invariant by multiplication by @ or b. Thus restriction to
H gives a representation of C*(p,¢,1). We next show that the matrix for ably has

surprisingly simple form. Define a partition of B as follows. Set
By = {1JU{(ab)* :k=1,2,...}, Ba={(ab)!la:k=12,..},
Bs = {(ba)* :k=1,2,...) and By={(ba)*'b:k=1,2,..])
and write H; for the subspace of /{ spanned by B;; i =1,2,3,4.

LEMMA 7. The matrix for ab|y in the descomposition defined above has the form

S 0 *x =*
0 S *x %
biny =
=14 o s o
o.0 0 S

where S denotes the unilateral shift and the %’s stand for unspecified entries.

Proof. 1t is clear that ab acts as the shift on the elements of B; and B,. Hence
the first 2 columns are as asserted. Similarly, (ab)* = ba acts as the shift on Bz and
B4; hence the bottom 2 rows are asserted. . ]

REMARK. In fact a more careful analysis shows that

S 0 65+9P 1-P
0 S 1-P 6S+q1
o0 S 0 ;
0 0 0 s

ablu =

where P = S5*. Thus the restriction of ab to H is equivalent to an element of

M4(C*(5))-

THEOREM 8. The spectral radius of ab in C}(Z, * Z,,) is 1. Moreover, the

spectrum of ab contains the unit circle.
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Proof. As noted above, restriction to H gives a representation of C*(p, ¢, 1). Since
the trace 7 is faithful and B contains 1, this representation is faithful on C*(p,q,1);
so we may calculate the spectrum of ab in H. It follows from Lemma 7 that, on X,

' _(T X)
PIM=\o )’

where T is an isometry. An casy induction shows

(s =)
o 7

Hence, the spectral radius of ab is at most 1. To complete the proof it suflices to

ab has the form

ll(abla)*|| = < L+ E|l=]|-

show that the spectrum of ab contains the unit circle. By Lemma 7 we have that the
restriction of ab to H; is the shift S. Recall that the unit circle is in the approximate
point spectrum of S. That is, if A is a complex number of modulus 1, then there is a

sequence of unit vectors {n,} such that
(S = Al)na|| — 0

as n — oo. Hence ab also contains the unit circle in its approximate point spectrum.

As this point it is convenient to record some (well known) facts about C} (Z;+Z).
It is an easy exercise to construct an invariant mean on £2(Z * Z») using a Banach
limit. Hence Z3 * Z5 is amenable and C}(Z; * Z3) is isomorphic to the full group
C*-algebra of Z; xZ5 [7, 7.3.9]. It follows that C¥(Z3 #Z3) is the universal C*-algebra
generated by 2 projections and the identity in the sense that if A = C*(e, f, 1) where ¢
and f are projections, then A is a quotient of C}(Z2*Z3). Let us denote the canonical
projections in Cy(Z2 *x Z3) by P and @ so that

CH(Zy* 1) = C*(P,Q, 1).

We shall be interested in the irreducible representations of C7(Z2 * Z2). It is clear
that C}(Z; * Z;) has 4 one-dimensional representations; we denote them by

9,0, 0,1, T1,0, and y ;.
Here the subscripts indicate the effect of the map on P and Q. So [or example
mo(P)=1 and m0(Q)=0.

For 0 < ¢t < 1 we define the two dimensional representation m; by

Mm:(lo) M®=(1—t ﬂfﬁ).

0 0 t—t2 t
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It is a stroightforward exercise (using [9, p. 306-8] for example) to check that
{m0,0,mo,1, m0, 1} U{m: 0 <t <1}

forms a complete set of representatives from the equivalence classes of irreducible
representations of CF (Z * ).

If e and f are projections then as noted above C*(e, f,1) is a quotient of
C:(Z2 * Z3). Hence the irreducible representations of C*(e, f, 1) determine a subset
of those of C(Z2 * Z3); this subset, in turn, determines the structure of C*(e, f, 1).

DEFINITION 9. If 7 denotes one of the irreducible representations of C}(Z3 *Z5)
defined above we say that 7 is in the support of C*(e, f, 1) if there is a representation
p of C*(e, f,1) with

p(e) ==(P) and p(f) = =(Q).

Also we write

o(e, f) = {t : m is in the support of C*(e, f,1), 0 <t < 1}.

Note that o(e, f) is relatively closed in (0,1); also if O (resp. 1) is in the closure of
o(e, f) then mo o and ) ) (resp. mo,; and my o ) are in the support of C*(e, f,1). Since
the reduced atomic representation is faithful (7, 4.3.15], it follows that C*(e, f,1)
is isomorphic to C}(Zy * Z3) if and only if o(e, f) = (0,1). In particular C?(Z, *
*Z3) is isomorphic to the subalgebra of M,(C([0,1])) consisting of the matrices that
are diagonal at 0 and 1. Also C*(e, f,1) = C}(Z> * Z5) if and only if each of the
compressions efe, ¢(1— fle, fef, f(1 —e)f have full spectrum.

PropositioN 10. If 8 = 7(q) < 1/2 then the representation mg o lies in the
support of C*(p, ¢,1). If B < a then o also lies in the support of C*(p,q,1).

Proof. For the first assertion it is sufficient to show that ||(1-p)(1-g)(1-p)|| =1
when 8 < 1/2. For then, as in the proof of Proposition 2, it follows that the required
complex homomorphism exists. If ||(1-p)(1-¢)(1-p)|| = l(1-p)e(1-p)-(1-p)|| < 1,
then by Proposition 1 1 —p would be equivalent to a subprojection of ¢ and we would

have

1/2<7(1-p) < 7(g) < 1/2

which is impessible. Hence if 8 < 1/2 then mq g is in the support of C*(p,¢,1). The
proof of the sccond assertion is easier, since my g is the only irreducible representation

7 of C}{Z3 * Z3) for which Tr(7(Q)) < Tr(w(P)). [ |
REMARK. We shall see later that if o = 8 == 1/2 then C*(p, q,1) = C} (Z2 * Z5).
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Our main goal in this section is to show that
o(p,q) = [t1,t2]N (0, 1),

where 0 € t; < t3 < 1. (See below for a precise definition of the t.-’s.)'
We shall now analyze the spectrum of (p — a1)(¢ — 81) in some detail. Write

ol ) = V/aB(l = @)1 = B)
and for 0 < ¢ < 1let A_(t) and A, (t) denote the eigenvalues of
| m((P - a1)(@ - A1)
with the convention that |A_(t)] < |+ (£)]. Define real numbers t; and ¢, as follows
t; = (VI = o)A = ) - Vah)? = aB+ (1 - a)(1 - B) — 2y/aB(1 — a)(1 - B)
and
t2 = (VL= a)(1 = B) + VaB)? = af + (1 - a)(1 - ) + 2\/ep(1 - o)(1 - B).

Note that 0 < t; € t2 < 1. In fact if we select @ and ¢ so that & = sin?8 and
B = sin® p then we have

t; = cos’(0 + ) and t2 = cos?(8 — ).
Alsot; =0ifandonlyifa = 8=1/2and t; = 1 if and only if &« = 8.
LEMMA 11. Fix 0 <t < 1. Ift <t; ort >ty then
M- @) < (@, 8) < P @)

Ift; <t £tz then
A () = e(a, B)e*?,

where 0 € 0 € 7 and 0 is related to t by the formula
(*) t=af+(1-a)(l-pB)—2cosbc(a,B).

Thus as 0 varies from 0 to =, t increases fromt; to t5.

Proof. We have

wr-ano-m=('3* ) (17558 720")
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Note that since the entries are real the eigenvalues must be real or else complex
conjugates. A calculation shows that the determinant of this product is af(1 —
—a)(1 — p) for all t. Hence

(%) A-(OA+(t) = aB(1 - a)(1 = B) = c(a, B)?

for all ¢ and therefore

A1) = A2(2)] = ¢(a, B)
if and only if the eigenvalues are equal or complex. Now A4 (t) satisfy
(% % *) M —(af+(1-a)1-8) -t +af(l-0a)(1-8)=0.
Thus the eigenvalues are equal or complex if and only if
40B(1 — a)(1 - B) > (@B + (1 - a)(1 - B) — t)2.

Another calculation shows that this inequality is satisfied if and only if t; < t < 2.
Hence if ¢ < #; or t > ta then the eigenvalues are real and distinct and our first
assertion follows from (*x). If ¢t and 6 are related as in () then from (* * *) we get
that Ay (t) satisfy

: A% — 2cosBc(a, B)A + ¢(a, B)® = 0.

Hence,
Ay (t) = e(a, B)(cos @ £ isinf).

THEOREM 12. a) If 8 < athen 0 <t; <13 <1 and

a(p.q) = [t1,%a).

Moreover, mo,1 and 3 are not in the support of C*(p,q,1).
b) Ifa=f<1/2then0<t =(1-2a)% t =1 and

o(p,q) = [t1,1).

Moreover, my,y is not in the support of C*(p,q,1).
¢)Ifa=p=1/2, thent; =0, t2=1 and

o(p,q) = (0,1).

Hence C*(p, ¢, 1)~ Cr (L2 T3).°
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Proof. First suppose 0 < f € @ € 1/2 and fix t in o(p, ¢). If p is a representation
of C*(p, q,1) with p((p—al)(¢g—pB1)) = m((P—al)(Q—p1)) then the spectral radius of
p((p—al)(g—p1))is < ¢(a, B) by Theorem 8. (Note that (p—al)(¢—F1) = ¢(a, B)ab.)
Hence t € [t1,12] by Lemma 11 and therefore o(p,q) C [t1,22] N (0,1) for all cases.
For the reverse inclusions it is enough to show (#1,12) C o(p, q) because o(e, f) is
relatively closed in (0,1). So fix ¢ in (t;,?2) and select 8 so that 0 < ¢ < = and

t=af+(1—a)(l-p)-2cosfc(a, ).

In this case c(a,B)e!® is complex and by the Theorem 8 it is in the spectrum of
(p— al)(g— B1); hence there is an irreducible representation p of C*(p, ¢, 1) such that
c(a, B)e'’ is a eigenvalue for p((p — a1)(q — B1)). If p were one-dimensional then we
would have that p((p — a1)(g — 81)) = c(a, B)e" is real; so p must have dimension
2. Hence p is equivalent to m, for some 0 < s < 1. By Lemma 11, s = ¢ and so
t € a(p,q)-

Now suppose 8 < a. If w3 were in the support of C*(p,gq,1) then —a(l — 3)
would be in the spectrum of (p — a1)(q — $1) and by Theorem 8 we would get

a(l - p) < (e, B)
so that '
a(l-8)<(1-a)B
and this would imply that o € # wich is not the case. Similarly, 71, is not in the
support of C*(p,¢,1) if B < 1/2. A |

REMARK. Note that our calculations show that the spectrum of (p — a1)(q — 1)
is
{eB,—B(1 — a)} U {c(e, B)e? : 0 <0 < 2}

when 0 < 8 < a € 1/2. In the case where 0 < # = « < 1/2 the spectrum is

(@} U{e(l —a)e? : 00 <27}

THEOREM 13. a) If @ < « then
C*(p,q,1) = COM(C([ts, 22])) ® C,

where

10

1—t t —12)1/2
Y
0 0

1 d ~0
)@ an q e((t—tz)llz ¢

sz@(
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(Here t denotes the identity map in C([t1,12))). Moreover,

PrAg=pAg=0,

PAGH, PE ATt €CH (g, 1)
and
rpAgt)=0-8, T(p*Agt)=1-a~8.
b If = a < 1/2 then t; = (1 - 2a)%,t2 = 1 and

C*(p g, 1) = Co 4,

where A denotes the subalgebra of Ma(C[ty, 1]) of matrices that are diagonal at 1.We

have
pR0® ((1) 3) and ¢q=0® ((t 1;;/2 (t—i2)1/2> )
Moreover,
PrAq=pAgt =pAg=0,
ptAgt €C*(p,q,1) and T(pt Agl)=1-2¢c.
c)Ifou: §=1/2, then

C*(p,q,1) = C;(Z2* I>).

Proof. Due to Proposition 10 and Theorem 12 everything is clear except the
assertions concerning the trace. In the case 8 < o, let A1, A2, A3 be the traces of the
three central projections ry = p+ Aqt, ro=1—pAqt ~-ptAgt,andrs=pAqt
from the isomorphism in a). Then A\p/2 = fand A\2/2+ Az3=a,s0 A g=a—F; 1=
=M+A+A3=A +8+a,s0 ) =1—a—F. The proof in part b) is similar.

SOROLLARY 14. The spectrum of pgp|pn = {0} U[1 — 12,1 — ;] (so that 0 is an
isolated point when f < a) and jjpgp|| =1 - 1,.

Proof. This is immediate from the preceding results. n

REMARK 15. Note that if p and ¢ are in Choi’s algebra C and o = 1/2, 8 =1/3,
then

ilpapli = 1=t1 =1 = (/1/3 - /1/6)% = 3+2f

and thcrefore the estimate in Remark 5) of Section 1 is sharp.

We are now in a position to verify that (1) of the introduction holds for spectral
projections of v and v. If ¢ and f are projections in a C*-algebra and e is equivalent
to a subprojection of f, we write e < f.



REDUCED GROUP OF C*-ALGEBRA 19

COROLLARY 16. a) If f < « so that q has smallest trace among p, q, 1 —p, 1—¢q
then within C*(p,q,1)

q<Dp, q<1-—P, P-<1-—q and l—p-(l-—q;

hence, ¢ <1 —q.
b) If « = 8 < 1/2 then within C*(p,q,1)

p<1—q and ¢q<1-p.

Proof. This follows immediately from Theorem 13. ]

COROLLARY 17. If ¢ and f are spectral projections of u and v respectively and
T(e) < 7(f) then e < f. If 7(f) < 7(e) then f < e.

Proof. This follows by examining all possible cases and using Corollary 16. W

REMARK 18. (a) If B < a then p is not equivalent to a subprojection of 1 — p
within C*(p,¢,1). If &« = B then it is also the case that ¢ is not equivalent to a
subprojection of 1 — ¢ within C*(p, ¢,1). However, if & < 1/2, then p < 1 — p within
C:(Zyn * 1,). Tor if we let w = v*uv, then u and w generate a subgroup of Z,, * Z,,
isomorphic to Z, ¥ Z,,. If r = v*pv, then r is a spectral projection of w,and p < 1—r
within C*(p,r,1) by Corollary 16 (b), and hence p < 1 — p = v(1 — r)v*. Similarly,
ifa = 3 < 1/2 then ¢ < 1 — ¢ within C}(Z, *Z,,). The same argument shows more
generally that if e and f are spectral projections of u (or of v) with 7(e) < 7(f), then
e < f within C}(Z, xZ,,).

(b) Note that if e and f are spectral projections of u and v respectively such that

T(e) + 7(f) < 1,

then |lef|| < 1. Indeed, if 7(f) < 7(e) then 7(f) < 1/2 and 7(f) < 7(1 — €) so that
we may argue as in the proof of part a) of Corollary 16 withg= fandp=—cor 1 —e.
If 7(e) < 7(f) then the same reasoning applies after interchanging n and m (and e
and f). If 7(e) = 7(f) = B, then B < 1/2 and we may use the argument in the proof
of part b) of Corollary 16.

LEMMA 19. If n and m are positive integers with least common multiple . and

v is a integer such that 1 < v < u, then there are integers i and j such that
0<i<n, 0Kj<m

and either

A

i
== or —-—=—

n m

(
—
|

:ls.
§|u.
=

wiw
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Proof. We have
p=kn—Im

for some positive integers k and I. Since p is the least common multiple of n and m,
k and { are relatively prime. Hence there are integers ¢ and j such that

tk—jl=v.
Write
i=1i +in and j=j + jam,

where
0 <n and 0K j; <m.

We have now that
hhk—jil=v+ (ig - jz);l.

By our assumnptions the left hand side is the difference of 2 non-negative integers that

are strictly less than g, Hence i3 — j» = 0 or —1. Replacing i by 7, and j by j) we get

nom B uop

To complete the proof note that if

then we may replace 7 by n — ¢ and j by m — j to get the desired equality. |

THEOREM 20. If pu denotes the least common multiple of n and m and v is an
integer with 0 < v < u then there is a projection r in C¥(Z, * L) with 7(r) = v/p.

Proof. By Lemma 15 there are integers i and j with 1{i<nand 0 j<m

such that either . . . )
2 J _v 7 7 v

-l =2 RAN A

n m p n m B

Select spectral projections e and f of u and v respectively such that r(e) = i/n and
7(f) = j/m. By Corollary 18 there is a projection s in C*(p,q,1) such that s < e

and s is equivalent to f. So if we write r = e — s,

T(r) = #

Sle

Ifi/n— j/m = v/p, we are done. If i/n — j/m = 1 — v/p, the proof is completed by
using 1 — r in place of r. |
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Note that if question (1) in the introduction is true for C}(Z, * Z,,) then every
minimal projection has trace 1/u. By Theorem 20 we know that C}(Z,, *Z,,) contains
projections of trace 1/u. In our final result we show that every spectral projection of
u and v majorizes such a projection. We need the following simple lemma.

LEMMA 21. If u denotes the least common multiple of n and m then there-are
integers i and j such that
i 1
0<i<n, 0<j<m and ———=-.
n m p
Moreover we have that either j/m 2 1/2 or else i/n < 1/2.

Proof. If py = n the result is trivial. If g > n, Lemma 19 yields ¢ and j with
i/n—j/m=1/porl—1/pand0<i<n, 0K j<m Buti/n—j/m=1-1/pis
impossible since i/n L (n —1)/n<1-1/p,s0i/n—j/m=1/pand i > 0.

For the final assertion note that since p = kn and g # n, k > 2. On the other
hand if we had

i 1 _ 3

*) "3
then ) ) ) -

=2_J2 r_ -

bn-n mo n 2 >0

and :

0< k(2{—n)< 2.
But in this case k = 1, which is impossible. Hence (%) cannot occur. |

THEOREM 22. Each spectral projection of u and v majorizes a (minimal) projec-
tion of trace 1/p in C¥ (2, * 1,). ‘

Proof. It suffices to show the result for a minimal spectral projections. Fix a
minimal projection go of v. We first show that there is a projection r in C7 (Z, * Z,,)
with » < go and 7(r) = 1/u. Note that if 4 = m, then go is itself minimal in C}(Z,, *
*Z,,). Hence we may assume p # m. Also, if p = n (so that n > m) then applying
Corollary 16 with 7(g0) = 1/m = & and 7(p) = 1/u = B (and n and m interchanged)
we have that p is equivalent to a subprojection of gop. So we may assume that ;2 # n, m.
By Lemma 21 there are } < i < n and 0 < j < m such that

1

R
m

S| e

and i/n < 1/20r j/m > 1/2.
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Select a spectral projection f of v with 7(f) = j/m and such that fgo = 0. We
are assured that f exists because j/m < i/n < 1. Also pick a spectral projection
e of u with 7(e) = i/n. Since j/m < 1/2 or i/n > 1/2, either j/m or 1 — i/n is
the smalles’ of the four numbers {i/n,1~i/n,j/m,1~ j/m}, and so by Theorem 13
[if(1—e)||* = ||f—fef|| < 1. Thus by Proposition 1, f is equivalent to a subprojection
s’ of ¢ with s = ¢ — s’ orthogonal to f. Write f’ = 1 — f — go and note that

re)+7(f)=14+1/p-1/m<1
because g > m. Hence by Remark 17 |lef’|| < 1 and since s < e, ||sf’|] < 1. Thus
llsqos — slf = lls(1 = £ ~ qo)sll = Ilf's]|* < 1

because s € 1 — f. By Proposition 1, s is equivalent to a subprojection of q5. We
have shown that every spectral projections of v majorizes a projection of trace 1/p.
That the saine is true for spectral projections of u follows upon noting that n and m
may be interchanged in our argument. |

3. OPEN QUIESTIONS

Questions 1-5 below concern Choi’s algebra C. Analogous questions hold for
C;-l (Zn * Zm)ﬂ
1) ¥ (4,5, k,1,m) € Z° and

iy k4l
z+J+++m

0<2 3

then is there a projection p in M, (C) such that [p) ~ (i, j, k,1,m)?

Equivalently: if 2 € Ko(C)4+ with 7.(z) > 0, is z represented by a projection in
a matrix algebra over C? (By [12], [13], [14], some multiple of z is represented by a
projection in a matrix algebra.)

2) If « € Ko(C) and 0 < 7u(z) < 1, is there a projection p in C with [p] = z7
3) Is there a projection p in C with [p] ~ (2,-1,-1,0,0)?
4) Does  contain an infinite number of inequivalent projections?

5) What is the maximum number of orthogonal equzvalent projections in C? (By
K-theory there are at most 5.)
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10.

11.

12.

13.
14.
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