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APPROXIMATIONS OF POSITIVE OPERARTORS AND
CONTINUITY OF THE SPECTRAL RADIUS

. F. ARANDIGA and V. CASELLES

1. INTRODUCTION

Let T = (aij){5=1 be an infinite matrix acting on some £ space, 1 < p < o0.

Let T, = (a7;){5=1 where a; = a;; if 1 < 4,7 < n, af; = 0 otherwise. We would

r
like the following formula: lim (7,,) = r(T) to be true. l‘\,/Iorever, if vp, v are vectors
in & such that T,v, = r(T:)vn, Tv = r(T)v when v converges to v in some suit-
able topology (coordinatewise or the strong topology)? These quesﬁions have been
adressed for stochastic matrices and many results can be found in [9]. We want to
adress this kind of problems in a more general setting. To be more precise, we set the
following framework: Let E be a Banach lattice and let T be a positive operator on
E, 0T € L(E). Let 0 < T, € L(E) be such that 0 £ T, 1 T i.e. T}, is an increa-
sing sequence with supremum T'. Let r(T5), #(T) be spectral radius of T,,, T respec-
tively. Let vn,v € E be such that T,v, = r(T,)vn, Tv = r(T)v. Can we give some
general results saying that r(T) = li'fn r(Tn) and v = li’r‘n up (in a suitable topology)?
Our purpose is to give some positive results to these questions under some technical
assumptions, the most essential one being “r(T') is a Riesz point of o(T")”. We remark
that 7,, need not be taken increasing. The precise assumptions and further conse-
quences of our results are discussed in the following sections. Finally, let us mention
that the continuity of the spectral radius in the order topology when T is a compact
operator was proved by A. R. Schep in [8].

2. PRELIMINARIES

A Banach lattice E is a Banach space with a lattice structure both compatible
in the sense that if z,y € E, |z| < |y|, then ||z|| < ||y|]. We write 0 € z € E to say
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that « is a positive element of £. The notation 0 € 2z, 1 (0 € z, |) is used as an
abbreviation for “z is an increasing (decreasing) sequence of positive elements of E”.
0 € zn T2 (0< 2zn | =) means that z, is an increasing (decreasing) sequence in E
with supreraum (infimum) z. We say that the sequence {z,} C E order converges to
z € I if there exists 0 € un | 0 such that |2 — z,,] < 4, for all m > n. A subset
of the Banach lattice E is called solid if z € A, y € F and |y| < |z| implies y € A.
A solid vector subspace I of E is called an ideal of E. Given a Banach lattice E,
a bounded linear operator 7' on E is called positive if Tz > 0 for all 0 < = € E.
This is denoted by 0 < T € L(F). A positive operator 0 < E € L(E) is called
irreducible if T has no invariant ideals except {0} and E, i.e. if I is a closed ideal
of E such that T(I) C J then I = {0} or I = E. Let us mention that the Banach
lattice E is called Dedekind-complete if any majorized subset of E has a supremum
supA € E. If E is Dedekind-complete, then the set LY(E) :={T €€ L(E): T =
=T} — Ty for some 0 < 71,13 € L(E)} is a Banach lattice which is also Dedekind-
complete. Finally, we say that a Banach lattice £ has order continuous norm if
the order intervals of E (sots of type [,y = {z € E : ¢ € 2 < y},z,y € E) are
o(E, E')-compact. Equivalenty, if 0 € =, 1 € E implies that lign"a:a -zjl=0
([7], Theorem IL.5.10). More information about the structure of Banach lattices and
positive operators can be found in {7] or [10].

Now we recall some definitions from spectral theory. Let be a bounded linear
operator on the Banach space E,T' € L(E). The spectrum of T, the set of z € C such
that z-I — T is not invertible in £(E) will be denoted by ¢(T'). The spectral radius of
T, »(T) is the number sup{|z}: z € o(T)} (= li'rlnHT,.Hl/"). If z € C—o(T) =: p(T),
the resolvent of T, R(z,T) := (z — 7')"! is an analytic function on p(T). A € o(T)
is called a Ricsz point of ¢(T) if A is a pole of the resolvent R(z,T) with a residuum

P = 5— / R(z, T)dz of finite rank (where C is a curve in the complex plane around
i

A conta.ini(;xg A as the only singularity of R(z,T)).

To finish these preliminaries, let us recall the following construction. Let us fixe
an ultrafilter 2/ on N containing the Fréchet filter and let £ be a Banach space. The
ultrapower of E with respect to U, denoted by Ey or simply by E, is defined by
£2(E)/cu(E) where £°(E) := {(Zn)r=1 : Zn € E, sup||za]| < oo} and cy(E) :=
= {(zn) € £XE) : lillln“:c"” = 0}. If £ is a Banach la,ttr;ce, then E is again a Banach
lattice. It is casy to comstruct a projection mg» from E onto E'. Ltz €E, p€E.
Then (mye (2), @) = libr(n(:cn, @) defines the desired projection mgn. If E is a dual
Banach lattice I/ = F’, we can define rap : E — E by (mg(%), ¢) = }i&n(a:,,, ®), TE

ek € }'. I E is a Banach lattice, m,», mpg are positive projections. Operators
’ ‘P ] B p p
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on E can be lifted to operators on E by T7 = (Tzo)u, T € E, T € L(E), in such a
way that o(T) = o(T) ([7], Theorem V.1.4). Notice that the approximate spectrum
of T is converted into the point spectrum of T. A basic idea which is exploited below
was elaborated in [1] and is contained in the following result ([1], Theorem 3.4).

THEOREM 2.1. Let E be a Banach space and let T € L(E). Let 0o (T) be the
exterior boundary of o(T) (= the boundary of the unbounded connected component
of p(T)). Then:

B0 0(T) N Gesa(T) = oo (T) N {z € C : dimKer(z ~ T) is infinite}.

If E is a dual Banach space and T is a dual operator, both sets coincide with
900 (T) N {z € C : there exists € E, §# 0, mg(§) =0 and T = 25}.

This result means that the eigenspace associated to a Riesz point in the exterior
boundary of o(T) is contained in E and cannot be enlarged by going to %. This is the
main idea which is exploited below. Let us mention that a special case of Theorem
2.1 can be found in ([6], D-III, Proposition 2.3). The precise statement of Theorem
2.1 is taken from [1].

3. THE MAIN RESULTS

First we prove the following result.

THEOREM 3.1. Let E be a Banach lattice. Let 0 < T,,, T € L(E) be such that
Tox — Tz for all z € E and ||(Tn ~ T)*|| — 0. Suppose that r(T) is a Riesz point of
o(T). Then r(T5,) — r(T).

Proof. First, we prove our claim under the assumption that 0 < T,, < T. Then it
follows that 0 < #(T%) < r(T). If r(T) = 0 we are done. Thus, suppose that r(T7) > 0
and r(Ty.) does not converge to r(T'). Passing to a subsequence, if necessary, we can
find A,e > 0 such that r(T,,) < A~e < A< 7(T) and A ¢ (7).

Let 0 < z € E’. We claim that R(A,T},)z is bounded in E’. Otherwise,

R\, T;)z|| — +oo. Let pp = [|[R(A, To)z||, zn := pstR(A,T.)z. Then 0 < z, €
€ E'. ||za|| = 1. From T R()A, T) = AR(\, T!) — I we get:

(1) Tz, = Az — p;lz.

Let U be a fixed ultrafilter on N containing the Fréchet filter. Let E' be the
ultrapower of E’ with respect to . Let Z = (zn)y. Then, since p, — +00, from (1)
it follows:

2 (Tyzn)u = AZ.



56 F. ARANDIGA and V. CASSELES

Hence AZ < T'Z. Let mg : E! — E' be the canonical projection defined in Section 2.
Since 7(T") is a Riesz point of o(T), »(T”) is a Riesz point of 6(T”). Then, using [7],
Theorem 5.5 and the refinement in {1], Lemma 4.4, all the points in 7o(T") := {z €
€ o(T") : |z] = »(T)} are Riesz points of ¢(7"). (Here we have used the posivity of
T") Let P be the spectral projection associated to the spectral set 7o(T). P’ maps E’

onto the finite dimensional space € Ker(A—T"). Let us suppose that mg:(2) # 0.
reo(T)

Then, Pz = 0 and
(3) (T - PT): =T — PT's =T33 A3.

This implies »(T" — P'T’) > X. Since we have freedom to choose A from the beggining
such that A < »(T — PT) we get a contradiction. Therefore, mg«(zZ) # 0. Let
0 < ¢ €F. Then:

(me(Tnza), @) = Hm(Tyza, ¢) = lim(zn, Tagp).
Since T, — T in the norm of E, we continue the chain of equalites to get:
@) (mE+(Thzn), @) = (me(2a), To) = (T'mps(zn), ).
Applying the projection mg: in (2) and using (4) we get:
(5) T'mg:(Z) = dmg:(Z) where mg:(2) #0.

This is a contradiction with our assumption that A ¢ o(T"). Therefore, R(A, T},)z is
bounded in E’. It follows that for all z € E’, R(), T,)z is bounded in E’. We can
define the operator R'(A) : B/ — E' by (R'(M)z, ¢) = Iigx(R(A,T,’,)z, p)z€FE, p€
€ E. Recall that

(6) | AR\ T))z =z +ToR(\,To)r z€E.
Since T,p — T in E for all p € E, then
(7) (TAR(A, To)z, @) - (R'(M)z, Te) = (T'R' (M=, ¢).
Letting n — oo in (6) and using (7) we get AR'(A)z = 2 + T'R'(N)z, ie., (A—
~T'")R'(\)z = , for all z € E. Since A & o(T"), R/(A) = (A — T")~1. But, notice

that R'(A) > 0. Hence (A—T")~! > 0. This is contradiction ([7], Chapter V. Exercise
5).
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Now, let 0 > Ty, T be such that T,z — Tz for all z € E, ||(T» — T)*|| — 0.
From T,, = T, AT + (T, — T)* it follows that (T, AT)z — Tz for all ¢ € E. The
above proof says that r(T, AT) — r(T). Now write:

(8) ToAT € Tn € Vo := T + (Tn - T)*.

Notice that V;; — T in norm and r(V,) 2 r(T). Let A > r(T"). Then p—T is invertible
for all p € [\, sup||Vnl|}. Since p~ V,, = p — T uniformly and the set of invertible

elements of L(E) is open, there exists ng € N such that p — V; is invertible for all
n 2 no and for all u € [A, sup||Vx||]. This implies that »(V,,) < A for all n > no. It

follows that r(V,,) — #(T"). From (8) and the above, we conclude that r(T,) — r(T).

REMARKS. (a) A particular case of Theorem 3.1 follows when we suppose that
E is a Banach lattice with order continuous norm and T, order converges to T with
l(Ta — T)*|| — 0. In this case, Toz — Tz in order for all z € E. Since E has order
continuous norm this implies that 7,z — Tz in the norm of E.

(b) Theorem 3.1 is not true without the assumption that r(T) is a Riesz point
of o(T). A counterexample is easy to construct using the following operator ([7].
Chapter V, Exercise 9(c)). Let E = LP(u, T) where p is the Haar measure on the circle
Tand 1< p< oo Let S: E — E be defined by Sf(2) := g(2)f(az), z€T, fEE,
where a is not a root of unity and g € C(T) is such that 0 < g(2) € 1, 2 # 1 and
vanishes sufficiently fast as z — 1 (tipically like exp(—1/(z — 1)%)). Then S is an
irreducible operator on LP(,T) 1 € p < oo (band-irreducible on L*®(y, T)). Let
T : E — E be defined by Tf(2) := f(ez), 2 €T, f€ F and a as above. We take a
sequence g, of functions having the properties of g above and such that g,(z) T 1 for
all z# 1. Let T, : E — E be given by T, f(2) := gn(2)f(az), z€ T, f€ E, and «
as above. Then r(T) =04 r(T) = 1.

(c) The assumption T,z — Tz alone is not sufficient to guarantee that r(T,) —
— r(T). For instance, let E = £2(N) and let T = [t;;] be any compact positive
matrix with #(T) > 0. Let the approximations T, be defined by T, = [tg.')], tg.‘) =
=tj, 1<i,j<n, tg:),zn = 2r(T), 0 otherwise. Then ||T,z~Tz||g — 0 but r(T,) =
= 2r(T) + r(T).

Before continuing whit the next theorems let us fixe some notation. Given two
sequences {z,}, {yn} of E, we write z, = y, (mod Co(E)) if ||zn — yn|| — 0.

Given an operator T : E — E, the peripheral spectrum of T, denoted by wo(T),
is defined as {z € ¢(T') : |z| = r(T)}. Finally recall that a positive operator T" defined
from the Banach lattice E into the Banach lattice F' is called AM-compact if T maps
order intervals of E into relatively compact subsets of F. A detailed study of them
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can be found in ({10], Chapter 18). Let us prepare the proof of the next results with

the following lemma.

LrMma 3.2 (Dini’s Lemma, [7], Theorem 11.5.9). Let K be a compact Hausdorff
space. Let I be a Banach lattice with order continuous norm. Let f,, f : K — K be

continuous functions. Suppose that “f, order converges to f”, i.e. there exist A4, €

€ C(K,E), An(z) | 0on E for all ¢ ¢ K such that |f(z) — fm(z)] € An(z), m 2 n,
z € K. Then f, converges to f uniformly on K.

Proof. By assumption, there exist some 4, € C(K,E), A.(z) | 0 on E such
that 0 < |f(&) — fm(2)| € 4n(z), forall m 2 n, z € K. Since E has order continuous
norm A (z) - 0 in the norm of ¥. Let K1 = K x (Ug:,, ¢(E',E)). Let F, : K1 —= N
be defined by Fu(z,u) = (Ap(2), u), z € K, u € Ug-',. First of all, notice that K,
is a compact space. Second, F,, are continuous functions. Moreover F,(z,u) | 0 for
all (z,u) € ;. Using the classical Dini’s lemma, F;, | 0 uniformly on K;. Thus,
given ¢ > 0, there exists some ng € N such that for all n > ng |Fu(z, u)| < € for all
(z,u) € K x Ug,. Hence ||Aq(z)l} < € for all z € K. Tt follow that f, converges to f

uniformly on K.

THEOREM 3.3. Let E be a dual Banach lattice with order continuous norm.
Let 0 € T € L(FE) be a dual operator which is ireducible and can be decomposed
as T = Ty + T2 with r(T1) < v(T") and T» is AM-compact. Suppose that r(T) is a
Riesz point of o(T). Let 0 < T, € L(E) be such that T, order converges to T and
I(T% = T)*|| — 0. Then for n sufficiently big, r(T},) is a Riesz point of o(T}).

REMARK. The assumption #(T1) < »(T) follows as a consequence of Theorem
4.3 in [1} and the rest of assumptions in the statment above.

Proof. We fix an ultrafilter &/ on N containing the Fréchet filter. Let Fp =
= Ker(r(1y) - Tn). Suppose that there is a subsequence of F, such that dim F}, = co.
Call it again F,. Let F = £2(F,)/Cu(F,) where £2(F,) = {(zn) : zo € F, :
sup |z} < oc}, Cu(F,) = {(zn) € £2(F,) : lim||zn]| = 0}. Then, one easily checks

that dim P = oco. Since dimF = oo, there exists some 7 = (%) € F such that
ot -~ 2 ~ -
v =@ #0, v =(97)#0, (7). Proposition I11.3.4). Let a > 0 be such that

li&nﬂi'ﬁ*lﬂ, lim!17;}] > @ > 0. Take a subsequence such that ||g}||, |[o7]| = ¢ > 0.

i U 3
Write 9, = (vu)r and choose for each n, wvs, such that jlvf. |, |jog; || > /2 >
> 0. Let vn = vy, . Therefore, we can choose v, € Ey, Jwafl = 1, |loF|, llvnll 2

= ef2 > 0, and such that ||T,v, ~ 2(T0)vnl] < €4, € 1 0. Let py 1= Tnvy — r(Th)vn.
Hence
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(r(Ta)vn)* = (Tava + pn)* < Tovd + o}
(r(Ta)va)™ = (~Tvn — pn)*) < Tn(~va)* + (—pn>+ = Tooj +47.

Let w, € {v},v7}. In any case:
(9) T(T )w" Thw, + lpﬂl B Thwn + |pn| + (Tn - T)+w,..

Let @ = (w,.)u Since || |pn] + (Tn = T)*wn|] — 0 it follows from (9) that

r(T)w < T. Let P be the spectral projection onto @ Ker(A—T). If mg(id) = 0
A€o(T)

then (T — PT)*®% = T*® > r(T)*® for all k € N. Since @ # 0, it follows that
r(T — PT) 2 r(T) which is a contradiction. Therefore, mg(w) # 0. Apply mg
on the inequality r(T)® < < T to get r(T)mg(®) € Tmg(®). Being T irreducible
and r(T) a Riesz point of ¢(T), there exist 0 < w € E a quasi interior point of E
and a strictly positive linear form ¢ € E’ such that Tw = r(T)w, T'¢ = r(T)ep. It
follows that Tmg(®) = r(T)mg(®). Hence, mg(®) € (w)y = {Aw : A 2 0}. Let
W4 = (vF), w- := (v7). By construction w4 # 0, @W_- # 0. We have proved that
mg(®4), me(0-) € (w);. Let B, ¥ > 0 be such that mg(@;) = fw, me(@-) = yw.
Let ¥ = (vn). Then mg(v) = (8 — y)w. Let z = ¥ — mg(?). Notice that

(Tnn)u = (Tavn = Tamg (@) = (r(Tn)on — (B = NTnw)u.

Since E has order continuous norm and 7;, — T in order, T,w — Tw in the norm of
E. Hence: ‘

(10)  (Tazau = ("(Tn)vn — (B = NTwh = r(T)(vs ~ (B — VYw)u = r(T)3

It follows that r(T)z* < (Tuz}) < (Tuz}) = T7+. Suppose that 2+ # 0. If
mg(3+) = 0, then (T — PT)kz+ = T*2+ > r(T)¥2+. Hence, r(T — PT) > ~(T),
a contradiction. Therefore, mp(2t) # 0. From r(T)z+ < Tz+ it follows that
r(T)mg(zt) < Tme(ZY). Hence r(T)mg(zt) = Tmg(z) and me(z) € (w)4.
Let 721 = 2t — mg(z*). Then

(T - PT)*z = T+5 = T*2+ — Tomp(34) > r(T)45).

If 7 # 0 we get r(T'— PT) > r(T), a contradiction. Thus, 2} =0, i.e., Z; < 0. This
means that 0 € 2+ < mg(z+). If Z+ = 0 also hold these inequalities. In any case,
0 < 7+ < me(zh). Similarly, 0< 2= < me(z7). Let z := mg(z¥) + mg(Z7). Let
ul,u, > 0 be such that 0 2% = (u,) < z, 0K 27 = (ul) € z. Since up, = up Az+
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+(un — 2)*, ||(un ~ z)¥|] = 0 we can take 0 € u, < z. Similarly, 0 < u} < =z
Let Sp =T, AT. Then 0 £ S, € T1 + T». Since E has order continuous norm, the
AM-compact operators are a band of L*(E), ([10], Chapter 18). Taking, if necessary,
Ty disjoint with this band, we descompose S, = Sn; + Sn2 by taking Spi := S, A
AT;i=1,2. Then 0 € S,; < T: and Sp; — T; in order, ¢ = 1,2. Moreover S, is also
AM-compact. Since Spa,T> are AM-compact, they define continous functions from
([0, z},0(E, E")) — (E,|| ||)- Since S,» order converges to T}, by Dini’s lemma S,2 —
— T uniformly on ([0, z],o(E, E’)). Using the ultrafilter I/ given at the beggining
of this proof and since [0,z] is o(E, E')-compact, the ultrafilter of [0, z] with basis
{(un :n € U) : U € U} converges to some point u € [0, z]. Similarly, {(u] : n € U) :
: U € U} converges to u! € [0,z). Let £ > 0. Since T3 : ([0,2],0(E, E")) = (E,|| |I)
is continuous, there is a o(E, E')-neighborhood V of u in [0, z] such that ||T2% —
~T5z|| < ¢/2 for all & € V. Let nyp € N be such that ||Spaz — Saz|| < g/2 forall z €
€ [0,z] and all n > ng. Let U € Y be such that u, € V foralln € U. Now, Uy =UN
N[ng,00) € U. Let n € Up. Then

[|Sn2ttn — Tou|| < ||Sn2tn — Tounl] + ||Toun — Toul| € €/2+¢/2=¢.

Therefore, I]gm”Sngun — Tul| = 0. Similarly, liLr{nHS,.gu; — Toul|| = 0. It is easy to

1

check that u -- u' = mg(Z) = 0. Therefore, lgn“S,,gz,.H = li&n”S,,g(un —ul)|| =0.

Now:
Thzp = Snzn + (Tn - T)+3n = Sn1zn + Snazn + (Tn - T)+zn =

= Sn1zZn + Sn22n (mod Co(E)),

ile., Sp12n + Sp2zn = r(T)z, (mod Co(E)). Let gn := Sn22,. Since

al hnd w Sfl:
r(Sa1) < PN < 7(T), 2p = (*(T) = Sa1) g0 = kZ_o ;W,:Hgn-

Now,

I1Sa1lgn! 1| 1T¥1gnl || Nl
llzn!] < = < 31 S : llgnll—0.
; r(T)k+1 ;§) r(T)k+1 kz?:or(T)"""1 u
This means that Z = 0. Therefore, v = mg(?) = (8 —y)w. f o > B then ¥ > 0.
If & < B then ¥ < 0. Both cases contradict our assumptions on 9. Thus, for some
no € N and all n > ny dimKer(r(1},) — 7,) < co. Theorem 2.1 proves that r(T,) is
a Riesz point of o(T,).

Our purpose now is to show that under the assumptions of Theorem 3.3, no(T)
converges to wo(T). We prepare the proof of this result with the following lemma:
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LEMMA 3.4. Let E be a dual Banach lattice. Let 0 < T € L(E) be a dual
operator. Suppose that T is irreducible and r(T) is a Riesz point of o(T). Let
0 < Tn € L(E) be such that T,z — Tz in the norm of E for all z € E and ||(T,, —
T)*|| — 0. Let 0 < vy € E, ||va]| = 1 be such that r(Tp)vn < Tnvn (MmodCo(E)).
Let ¥ = (vs). Then mg(?9) # 0 and Tmg(v) = r(T)mg(v).

Proof. By Theorem 3.1, #(T,,) — r(T). It follows that
(11) r(T)5 = (r(Tn)vn)u € Tavn)u = (Tn AT)va)u < T5.

Let P be the spectral projection onto € Ker(A — T') as in the proof of Theorem
A€o(T)

3.1. If mg(v) = 0, PT% = 0. Hence, (f - ﬁ)ﬁ = T%. By induction, one easily
checks that (T — ﬁ)’" = T*3 > r(T)*% for all k € N. This implies that r(T—-
—TP) 2 r(T), which is a contradiction. Therefore mg(9) # 0. Applying mg to (11),
we get r(T)mg(v) < Tmg(v). Since T is irreducible and r(T) is a Riesz point of
o(T"), there eéxists a strictly positive linear form ¢ € E’ such that 7" p=r(T)e ([7,
Corollary to Theorem V.5.2). Now, 0 < (Tmg(9) — r(T)ms(9), ) = 0 implies that
Tmg(v) = r(T)mg(v). The irreducibility of T implies that Ker(r(T) — T) = (v) =
= {Av: XA € R}, where v > 0 is a quasiinterior point of E. Thus mg(?%) = Av for some
A > 0. Notice that 0 < A = M||v|| = |me@)|| < |[7]| =1,ie. 0< A1

The next result will be used to prove Theorem 3.6 bellow. It is due to Moustakas
([5], Satz 3.2) in a more general form. Our statement is suitable for our purposes.
Since the reference may not be easily available and for the sake of completeness, we
include the main lines of the proof.

THEOREM 3.5. ([5], Satz 3.2). Let E be a Banach lattice. Let 0 < T € L(E) be
an irreducible operator with r(T) > 0 a Riesz point of o(T). Let 0 < S € L(E) be

such that 0 <'S < T. Then r(S) 7:’(.%) C no(S).

Proof. Without loss of generality we may suppose that »(T) = 1. Let o €
€ wo(T). Then dimKer(a — T) = 1 ([7], Theorem V 5.2,V 54). Let 0 # z € E
be such that Tz = ax. Let 0 € ¢ € E’ be the strictly positive linear form such
that T'¢ = ¢ ([7], Corollary to Theorem V.5.2). Since, |z| € T|z|, it follows from
0 € (T|z| — |z|,) = 0 that T|z| = |z|. Then |z| is a quasiinterior point of E, i.e.
{y € E : |y| £ nz for some n € N} is dense in E ([7], Theorem V 5.2). Then,
extending Proposition V 5.1 in [7], Moustakas ([5], Lemma 3.1) shows that there
exists a surjective isometry V € L(E) such that aS = V~1SV. It follows that
ao(S) = o(aS) = o(V-1SV) = o(S). Since r(T) € o(S), it follows that ar(T) €
€ no(S).
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THREOREM 3.6. Let E be a dual Banach lattice with order continuous norm.
Let 0 < T ¢ L(F) be a dual operator which is irreducible and can be decomposed
as T = Ty + Tp with r(T1) < »(T) and T is AM-compact. Suppose that r(T) is
a Riesz point of o(T). Let 0 < T, € L(F) with T, — T in order in L*(E) and
(T —T)Y)| — 0. Then no(T,) — 7o (T). Moreover, if Tpz, = azn (MmodCo(E)),
l|zall = 1, a;; — &, then o € mo(T) and z, norm converges to the unique normalized

solution of Tz = az.

Proof. Let a € 7o(T5). Since oy, is bounded, there is a convergent subsequence.
Call it {a,} and let @ == im a,,. We want to prove that a € wo(T). Theorem 3.3
tells us that for n suﬁicientlny big, r(T%) is a Riesz point of ¢(Ty,). Therefore, 7o (T,)
consists of Riesz points of 6(73,) ({7], Theorem V.5.5. and [1], Lemma 4.4). Then
ay € mo(1y,) is a Riesz point of ¢(T,) and there is z, € E, [|zp]| = 1 satisfying
the equation Tnz, == @n2z,. We can even supose that T,2, = a,2z,(mod Co(FE)).
(In this way we can avoid the use of Theorem 3.3 because ay, is in the approximate
spectrum of 1, and we can always found 2, such that |[7,2;, — anzal] < 1/n). Since
H(Tn = T)*| = 0, we have (ITn AT)z, = apza(mod Co(E)). Let Sy := T, AT. Let us
denote by z,, any subsequence of {z,}. Let Z = (z,)u. Let T = |2} — mg(|Z]). From
r(I3)|2n} € 4%)2zn| and Lemma 3.4 it follows that T'mp(|2]) = »(T)mg(|2}). Let P be
the spectral projection onto @@ Ker(A—T). Since Pt=0, (f—ﬁ)kfz #(T)* for

reo(T

all & > 1. If ¥ # 0, this implie; t)hat r(T — PT) > v(T), a contradiction. Therefore,
t+ =0, ic,7 < 0. It follows that 0 < |7] < mg(|Z]) S v where 0 K v € E, Tv =
= ¢(T)w, |lv|] = 1. Thus, there exists z} € [—v, v] such that Z = (z})y. Asin
Theorem 3.3, we decompose S, = Su1 + Sn2, 0 € Sni € T:, S,; order converges
to 1;, ¢ = 1,2 and S,» are AM-compact. Also, S,2, T define continuous func-
tions from ([--v, v}, o(E, E’)) into (E, || ||). Again, using Dini’s Lemma, Lemma 3.2
above, Sp3 ~> Ty uniformly on [--v,v]. Using again the ultrafilter &/, the ultrafilter
or [—v,v] with basis {(z} : n € U) : U € U} o(E, E')-converges to some eclement of
[~v,v]. Since ([-v,v], o(E, F)), ([~v,v], o(E, E')) are compact Hausdorff spaces
and o(E, F)|{-v,v] C 0(E, E')|{_y,v] both topologies coincide. Therefore, we can iden-
tify the limit of {(z} : n € U) : U € U} as mg(Z). Prove as in Theorem 3.3 that
Sn2z) — Tomg(?)|] = 0. Then the following equalities hold modulo Co(E) :

lim|

u
@y = @nzZy = Tnzp = Spzn + (Tn - T)+7-’n = Sp12n + Sn2zn.

Since lilllnﬁlzﬂ - 22| = 0, liLrlnHS,,zzn ~ Tomg(Z)|| = 0. Let uy, 1= Sp22,. Since

k
7(Sn1) S (1) < r(T) and o] = r(T), 2, = (@ = Sp1) " tu, = Z as;,:l Un,
k20
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Sy T¥
lza = (@ = T1) ' Temp(2)|| = E ++11 n = Z kHTz"w(Z)
k30 * k>0

s;ZﬁW“ﬂmm@.+zﬁ@mﬁ*ﬂm“®

k41 k41 =
k>0 ott k20 «
N 16k 2 k
] = [15a, Tome (2) = TiTame(2)||
u, — Tomg(2)|| +
< L fapeeriien = sl + 2 o

+ i IS8, Teme(2) - TETome G|

¥ o
k
The last term can be majorized by E %”szg(?)” < ¢ for N sufficiently

E2N+1
big. Moreover, S¥,u — Tf¥u for all k € N. This is easily proved by induction. Let us

do first step.

T u — Shyull | TPu — TuSarull + [T Snru — Sayull S Tl [|Tvw — Smull+
+”(T1 - Sﬂl)Tlu“ — 0.

This implies that, for n sufficiently big, the second term of the right hand side in the
above inequality is also € €. Taking a suitable U € U, the first term is also < ¢ for all
n € U. Putting all this together, it follows that hbrln”z,, ~(a—-T)"'"Tomg(?)|| = 0.
This implies that 7 = mg(%) = (a—T})~Tymg(Z) and (T, +73)7 = aZ. This implies
that there is a subsequence z), of {2,}, 2, — z where z is the unique normalized
solution of Tz = az. We have proved that any subsequence of the original {z,}
contains a further subsequence converging to z. Therefore, the whole sequence z, — 2
in E. We have also proved that a € wo(T). Now, let a € 7o(T). If e is not
an accumulation point of a sequence a, € wo(Ty,), then there is an open disc D
around « in € such that z — T, is invertible for all z € D and all n > ng (for some
no € N). Since (T, — T)* — 0 and the invertible operators are an open subset of
L(E), z — T, AT is invertible for all 2 € D and all n 2> n; for some n, sufficiently
big. But 0 € T, AT < T. Using Moustakas’ result Theorem 3.5 above, we know

wo(T)
that (T, A T (T) ——r(T, AT) € 1ra(T AT). But

r(T)
—_—T(I;'E;)T) — 1 (use Theorem 3.1). Hence A,a € wo(T,, AT)ND for n sufficiently

big. For such n 2> n;, Apa — T, AT is not invertible, contradicting our assertion

above. It follows that, given o € mo(T), there exists a sequence a, € 7o (Tn) such
that o, — . The theorem is proved.

COROLLARY 3.7. Let E, T, T,, be as above. Let 0 < v, € E be such that T,v, =
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= (15 )vn (mmod Co(E)), ||vn|| = 1. Then, v, norm converges to the unique normalized

positive eigenvector of T' associated to r(T), Tv = r(T)v.

REMARKS. (a) We used that 75, order converges to T to guarantee that (T,A
ATy)z converges to Thz uniformly on order intervals of E. Thus, both Theorems 3.3
and 3.6 are still true if we suppose that (T, AT2)z — Tz uniformly on order intervals
of E and ||(T, — T)*|| — 0 instead of Ty, order converges to T and ||(T, — T)*|| — 0.
The assumption that E has order continuous norm has been used to guarantee that
the set of AM-compact operators of E is a band of L7(E) and order intervals of E
are a(E’ , E)}-compact. Modifying suitably our assumptions we could avoid to suppose
that E has order continuous norin but we do not wish to take more complicated our

statments.

(b) The assumption that E is a dual Banach lattice excludes the interesting case
in applications when E = LY(X, X, ), (X, Z,p) is a o-finite measure space. To
include it with our type of proof we need to suppose that T : L}(p) — L}(p) is a
positive irreducible operator with r{T") a Riesz point of T' and "¢ = r(T)¢p for some
0 < 6 < p(s) € L=(p) (for instance, if T' is stochastic, T'1 = 1, r(T') = 1). Then, the
proofs of Theorems 3.3 and 3.6 can be adapted to this case. Now, one works with the
projection : B — E" instead of mg : E — E as above. For instance, if 0 < v, €
€k, jlun|| == 1 are such that T, v, = r(Ty)vn, then myn (v,) is again an eigenvector of
T associated to #(T'). Let & = (v, )u. Then »(T)o = (Thve) = (Tn AT)v,) < T9. Let

P be the spcctral projection onto @ Ker(A —T). If mgn (9) = 0, then PTH =0.
A€o(T)

Thus, (T = PTY*% > #(T)*5 for all k > 1. It follows that r(T - PT) 2 v(T), a con-
tradiction. Therefore, myn (V) # 0 and r(T)mEu (%) € T"'mgn (7). But (T" mgu (3)—
=v(TYmyn (), p) = 0. Since g is bounded away from zero, T mgu (3) = #(T)mpn (7).
But dimKer(r(T) -~ T) = dimKer(r(T) = T"). Therefore, m g7 (V) € F and
limge (B)l] = Hgn(v", 1) = 1. Thus, mp» () = v where v is the unique normalized solu-
tion of T'v = #(1")v. Also, inequalities like 0 < ¥ < mg« (2F) (or 0 < |2] € my- (|2)))
which appear in the proof of Theorem 3.3 (Theorem 3.6) are not an obstruction since
mpn (2+) € (w)4 C E. Since E has order continuous norm, E is an ideal of E” ([7],
Theorem I1.5.10). Then, the inequality 0 < Z+ < mgn(z*) holds in fact in E. Going
to £ is not a solution because we loose the irreducibility of T and, probably, the
AM-compactuess of Tj .

(c) One could drop the assumption of irreducibility of T in favour of the assump-
tion that @ is strictly positive, where Q is the spectral projection associated to r(T),
ie. if Tv = 7(T)v, T'p = r(T)p where v and ¢ are strictly positive, then Q = p @ v.
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4. APPLICATIONS

In this section we give three possible applications of our results in Section 3. We
start with an application to the transport equation. Then, we study the case of the
approximation of the leading eigenvalue of integral operators in L?-spaces. The last
one concerns the approximation of eigenvalues of infinite stochastic matrices and we
recover the results of [9], Chapters VI and VIIL

I. TRANSPORT THEORY. We situate ourselves in the context of [4]. Suppose that
1 < p < 0o0. Let D be an open, convex subset of R® and let V be an open subset of
R3 symmetric with respect to the origin. Let A, be the transport operator defined by

9y

D(Ap) := {¥(z,v) €LP(Dx V) : v =

eL?(D x V), ¢y|D- =0}
where D_ = {(z,v) € 8D x V : n(x) - v < 0} where n denotes the outward pointing
normal to 8D at the point = and

A :=—vyy—o()yY+ / k(v, v )Y(z,v')dv' =: Ty + K¢
: v

where 0 € L>°(V) and K € L(LP(D x V)), k(v,v') 2 0 almost everwhere. We call
A, the transport operator on L?(D x V) associated to ¢ and k. It is well known that
A, is the generator of a strongly continuous semigroup Tp(t) on L?(D x V) which
is positivity preserving. Moreover, if k(v,v’) > 0 a.e., then T,(t) is irreducible ([6],
C-III. Exercise 3.4).

Let G(t) be the semigroup with generator T = —v 7 —o(v). Suppose that
KG(t)K is compact ¥t > 0 and t — KG(t)K is continuous from (0, 00) into L(LP(Dx
xV)). Let A* = inf o(v). The set £’ = a(A4,)N{A € C: Re) > —A*} is a set of
eigenvalues of A, of finite multiplicity (eventually empty) independent of p with no
accumulation point except on ReA = —A*. In [4] conditions are given which imply
that £’ is not empty. In this case r(7},(t)) is a Riesz point of o(7T}(t))

Let § be a fixed ball of R3. Suppose that

(@) op — o in L®(V)

(B) Kn — K in L(LP(S x V))

() D is a sequence of convex subsets of § such that D, — D in the sense that

X(Da-D)u(D-D,) — 0 pointwise almost everywhere. Then,
ProprosITION 4.1 ([4], Corollaire 2). The leading eigenvalue of the transport

operator depends continuously on (o, K, D), i.e., if (0n, Kn, Dn) — (0, K, D) in the
sense given above then r(Tp (t)) — r(T,(t)) where T, o(t), T,(t) are the semigroups
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generated by Ay .., Ay are the transport operators associated to (¢,, Kn, D,) and
(o, K, D) respectively.

We want to mention that using the results of Section 3, the assumptions (), (8)
above could be weakened. For instance, they could be substituded by:

(¢) &, — o pointwise on V and (o ~ on)t — 0 in L®(V).

(B') Knz — Kz Vz € E and (K, — K)* — 0in L(LP(S x V)).

A result similar to Proposition 4.1 holds. This result could be complemented
with the corresponding result for the leading eigenvectors (using Theorem 3.6 above).

We leave the details of this to the interested reader.

II. APPROXIMATION OF THE SPECTRAL RADIUS OF KERNEL OPERATORS. Let
(X, X, 1) be a finite measure space. Let E = LP(X, X, u), 1 {p<oo. Let 0 T :
: £ — E be an abstract kernel operator, hence AM-compact ([10], Theorem 123.5).
If p = 1, we consider that T'¢ == »(T")y for some ¢ € L*(p), ¢ > § > 0 and some

8 > 0. Let &(s, 1) be the integral kernel of T, i.e., T f(s) = /k(s, t)f(t)dt, s € X. Let

X
P = {As,...,An} be a finite partition of X with a; = p(A4;) > 0. Let ; = xa,/a;.

Let ai; = (K¢, €j). Let kp(s,t) = Z @ijXa;xa;- Let
ij>1

Tpf(s) = / kp(s,0)f(t)dt = Y ai; / f(tydtxa;, s€X.
b ¢ Aj

ij=1

Let Ppf(s) = Z/f(t)dt/ajx,gj. Notice that TpPp = Tp. Thus, Tp : £ — E.
j=1AJ.

If |(Tp - T)")| = 0, Tp AT — T in order (which is the case) and »(T) is a Riesz
point of ¢(T), then r(Tp) — »(I'). To be sure that these conditions hold, we first
approximate X from below by &, =z kAn and then we approximate k,, by troncatures
like above: k.. If [(Kn ~ Kn)tj| - 0 then ||(K, — T)*|| = 0 and K, — T in order
at the same time.

Let us transform the calculation of #(T’p) in a problem for matrices. Let us

represent Tp as a matrix. Let Ep := Z(e,-,,)x,gj :f€E}. Since
j=1
n n
lvaslle = (A2 =205, D (e, fxa; = D Ailej, b
j=1 j=1
where

n

1/p
n n
hj = A;—le“ Ep = {Zazjhj txy € R} and Z:cjhj = (Z|"’j|p)
j=1 ji=1
P

i=1
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T(Ep) C Ep.

Notice that /h;c = u(A;)*~/P§;;. Thus

i=1

Tp (Z% )(s) Z(A 2 iz, )

Let tp : £; — £ be given by the matrix tp = (a;j/\,v\;"'l). Let hY := xa,/n(A)Y/9.
Then a;; ,\,-,\’."1 = (Th;,ht) (p~! + ¢~ = 1). Notice that

hih} =e;, Pphj=h;, Ppf= E(h‘ ® h;)(f), PeTpf=Trf.
j=1
It follows that Ppr = tp Pp. Check that ||TX|| = |it5]] for all £ € N. It follows that
r(Tp) = r(tp). To compute r(tp), suppose that T is irreducible. Then, tp is also
irreducible and we can compute r(tp) with the min-max formula: let

tijp= a.-_,-/\,v\’-"'l

r(tp) = mg())( min {Zt._,,pz,/z,} =

z#O i=1

= 1nf [ max {Zt‘l pa:_,/:c,} .

As we said before, if r(T) is a Riesz point of ¢(T), then r(Tp) — r(T').

III. TRUNCATIONS OF STOCHASTIC MATRICES. Now, we give Seneta’s results
([9]) in our framework. Let us start with an easy application of our results.

THEOREM 4.2. Let E = ?(N), 1 { p< oo. Let 0 < T = (t)ij>1 : #(N) —
— £P(N) be a positive matrix. Suppose that T is irreducible and »(T) is a Riesz point
of o(T). Let T, = (tij(n))i j»1 where t;j(n) = t;; for 1 <i,j < n, 0 otherwise. Then
r(Tn) — v(T) and if Tpv, = #(T)vn, va 20, {jva|| =1, then v, — v in the norm of

E where v is the unique positive normalized solution of Tv = r(T)v.

If we want to approximate the eigenvectors of T': Co — Co we can go to £}(N)
as we did with L! — L*. We need only that "¢ = r(T)p with ¢ > 0. This is the
case if T' is irreducible and r(T) is a Riesz point of ¢(T).

We are going to use our techniques developped here to approach some results in
Chapters VI and VII of [9] relative to the truncation of infinite stochastic matrices.
First of all we give our approach to
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TuroreM 4.3 ([9], Theorem 7.3). Let P = (pij)ijeN be an stochastic ma-
trix. Let us suppose that all elements of at least one column are uniformly bounded
away from zero. Let P(n) be the n X n truncation of P and let the stochastic
P(n) be forined from P(n) by augmentation of P(n), if necessary. Let n(n)P(n) =
= r(P(n))n{n), n(n)P(r) = m(n), *P = =n. Then, if we normalize ||x(n)|| =
= |[m(n)!| = 1, then m(n) — = in £} and 7(n) — = in o(£!, Co).

Proof. We suppose without loss of generality that p;, > 6 > 0 for all i € N and
some & > (. First of all, let us prove that 1 is a Riesz point of o(P). Let us write P
as P = d¢; ® e + R where e; = (1,0,0,...), e = (1,1,...) and e; ® e(f) = (e1, f)e.
From 1 == P1 = §1 4+ R1 we see that R1 = (1—6)1. Hence r(R)=1-6< r(P) = 1.
Since P - R = e; ® ¢ is a compact operator, r(P) = 1 is a Riesz point of o(P). Let
T be the operator on £1(N) such that 7" = P. Let us prove that dim Ker(I —T) = 1.
First of all, we remark that Ker(I — T) is a sublattice of £2(N), i.e., if Tz = z, then
Tlz| = j=|.

Second, since the first raw of T is strictly positive, given 2 2 0, 2 # 0, Te = ¢
then z; > €. Now, let 0 € z,y € Ker(I — T') both not null, then z1,y; > 0.
Mualtiplying @ by a > 0, if necessary, we may assume without loss of generality that
&1 2y Since T'(y—¢) = y—z, T'(y—2)* = (y--z)* and ({(y—2z)*), = (y1—z1)* = 0.
Hence, (y—z}4 =0, L., y < 2, Le. Ker(I —T) is totally ordered. Hence, Ker(I --T)
is one-dimensional (7], Proposition 11.3.4). Let T'm = w be its stationary distribution
normalized so that ||#ll, = 1. With E = £}(N) and T as above, T is not necessarily a
dual operator. Moreover r(T") == 1 is a Riesz point of o(T). Let T, be the operator on
£Y(N) such that 77 = P(n).0< 1, £ T, T, 1 T, T is AM-compact. Two remarks: T'
is not irreducible and is not a dual operator, in general. This is not a problem because
the only thing we need is dim Ker(I-7") = 1 and Ker(I--T') = (1) and (1,2) =0, 0 <
2 € E” implies that z = 0. In consequence, as in Theorem 3.6, if T,7(n) = r(T;,)7(n)
then m(n) — = in £1(N). Let P(n) = (7ij(n)) be constructed by adding to P(n) certain
amounts so that P(n) is stochastic. Thus 0 € P(n) < P(n) and P(n) A P = P(n).
Let T, = (#:;(n)) be the operator on £'(N) such that T, = P(n). Let n(n) 2
0, ffx()|j = 1, Tam(n) = 7(n). Then T, = T, + Ry and it may happen that
IRl # 0. Notice that T1;(n) = Fy;(n) > p1j > 6 > 0. It follows that 7(n); > 6 >

> (0. Thus, :ﬂ_:.)—

m(n),

P < % It follows that mg(m(n)) # 0. From T,m(n) = x(n) it

follows that T, m(n) < m(n). Apply mg on this inequality to get (x) me(T,7(n)) <
€< mg(w(n)). Let 0 € ¢ € Cy. Check that for all N € N,

N
(me(Tan(n)), #) 2D me(=(m)()T ¢(5).

i=1
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Since mg(w(n)) € £2(N) and T'p € £°(N), letting N — oo and using the inequal-
ity (x) we get (Tmg(n(n)), ) < (mp(n(n)), ¢) for all 0 < ¢ € Co. There-
fore, Tmg(x(n)) < me(r(n)). It follows that Tmg(w(n)) = mg(n(n)). Since

lme(x@))|| = lilrln(;_r_(_ﬁj, 1) = 1, then mg(n(n)) = x. Taking subsequences, if neces-
sary, we see that any o(£!, Co)-accumulation point of 7(n) is 7. Therefore, 7(n) — =
in o(£1(N), Co(N)). The theorem is proved.

THEOREM 4.4 ([9], Theorem 6.9). Let E be an atomic Banach lattice on N
with order continuous norm. Let 0 < T : E — E be an irreducible operator with
r(T) = 1. Let 0 < u € E, 0 < ¢ € E' be such that Tu = u, T'p = . We
suppose that u and ¢ are normalized in the sense that u(1) = 1, ¢(1) = 1. Let
0 < T, be the truncation matrices of T. Let un, p(n) be positive, normalized, i.e.,
un(1) = ¢pn(1) = 1, vectors such that Tou, = r(Tn)un, Tnpn = r(Tn)pn. Then
r(Tn) 1 »(T), up — u coordinatewise and ¢, -+ ¢ coordinatewise.

Proof. Let k > 0. Let 2% = up A ku. Then TpzF < (r(Th)ua) A ku. Let U be
an ultrafilter on N containing the Fréchet filter. Let 0 < ¢ € E’. Since the order
intervals of E are compact and T — T'¢ o(E’, E), letting 2* := llLIll'l z¥, we know
that for each ¢ > 0 there exists U € U and ng € N such that if n € U N [ng, 00) then
llz% — 2*|| < € and |(2*,T'¢ — T.¢)| < €. It follows that for all n € U N [ng, 00),
(2, T'0) — (z£, T2)) < ell T +¢. Hence

(T2*,¢) = in(Tzg, 0) = (mpo (Tazn), @) < (mpr (20),9) = (2F, ).
Therefore, Tz < 2% and because of the normalization condxtlon z¥ # 0. Since ¢ >
> 0, Tz* = z*. Hence, z* € (u). Since 25(1) = 1, Vk > = u Vk 2 1. Since
u(?) > 0 for all 4, taking k > 2, this means that {u,(:)} is bounded for each i € N. In
fact, if for some 7, some subsequence u,;(7) is unbounded, using u,; as u, above and
from mgn (un; A 2u) = u we get a contradiction. Fix ¢, take k such that u,(7) < ku(i)
to conclude from z* = u that u,(i) — u(i). Therefore, u, — u coordinatewise. Now
let 0 < ¢n € E’ be such that T\, = #(Ty)pn. Let k > 1 and let vF = @, A k. Let
0 < ¥ € E. Notice that T,9 — T in the norm of E. It follows that

(TlmE'(vfx)ﬂp) = (mE'(Trfnv:cl)d)) < (mE'(vﬁ)ﬂb)'
Therefore, T'mg:(vk) < mg:(vE). Since (1) = 1, mg:/(vF) # 0. It follows that
T'mg/(vE) = mp(vk), ie., mp(vE) € (@), Since vE(1) = 1 Vk 2 1, mp/(vF) = o.
Again (i) is bounded for each i and it follows from mg: (vE) = ¢ that @, (i) — ¢(7)
for each i. Let k > 1. Let e;(3) = 615, €1 € E. Let ro = lim r(T,,) € 1. Then
1= (p,e1) = (T'p,e1) = (T'mp:(vp), e1) = (me(Trvp), €1) <
S imp(r(Tn)pn Akp),e1) =limr(T)Ak=ro Ak 1
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Therefore, rg = 1.
Let us finish with the following:

THEOREM 4.5 ([9], Theorem 7.4). Let 0 < T : £2(N) — £(N) be irreducible and
stochastic (i.e. T'1 = 1). Let 0 < vp € £(N) be such that Tv, = r(T,)va with v,
tight (i.c. Jlvplly = 1, (vn, ) = (v,€;) Vi € N with v € ¢(N), ||v|| = 1) where T,
are the truncation matrices of T. Then v(T,) — r(T) and Tv = v.

Proof. Let ro := lim 7(T,). Since vy, is tight, (va,e;) — (v,€;) Vi € N. Fixe an
n
ultrafilter & on N containing the Fréchet filter. Write m = my(n). Let T = (v,)y.
Then m(?) == v. From (T, vn)u = (»(T0)vn)u = ro? we get for all 0 < ¢ € Co:

ro(m(v), @) = lgn(r(Tn)vn, Py = liLrln(T,,v,., P) = lilrln(v,.,T,',gp) =

N N
=l wn()Te) > lp 3 () Tre) = T lipoa(ITaels) =
1= j= ji=

N
=D _v(§)T'¢(5).
ji=1
Letting N — oo we get ro(m(?), ) 2 (v,T'p). But m(v) = v. Therefore, Tv <
Since T is irreducible and v # 0, then v > 0. Notice that ro < 1 and ro1 < T'1.
Then:

rov.

0 < (T'1 — rolv) = (1, Tv) — ro(1,v) = rp(1,v) — ro(1,v) = 0.

This implies that T'1 = r¢1. Therefore ro = 1 and Tv = v. The theorem is proved.
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