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FUNCTIONS OF GENERALIZED BOUNDED TYPE IN SPECTRAL
THEORY OF NON-WEAK CONTRACTIONS

G. M. GUBREEV and A. M. JERBASHIAN

To M. M. DJRBASHIAN

INTRODUCTION

The aim of the present paper is to show a way of application of the factorization
theory of M. M. Djrbashian in the spectral theory of non-weak contractions. We mean
the factorization theory of classes N4 of meromorhic functions, which have Nevanlinna
characteristics of power growth near the boundary of the unit disk [5, Chapter IX] (for
further development of this theory see [6, 7]). We shall consider analytic functions of

classes N, with a > 0 — those analytic functions f in the unit disk, for which

T

1+
sup / [D""log | f(re'®) I] df < +o0,
0<r<1

-

where

D% log | f(rei®)| = ﬁ / (r - 1)*~" log | f(te'®) | dt
0

and the standard notation (u)* = max{u, 0} for the function u(r,8) = log | f(re'®)|
is accepted. Note that we avoid the notation A, adopted for the subset of analytic
functions of N, [5, p.655].

It is important to point out that the application of M. M. Djrbashian’s factoriza-
tion results is a long standing interest for operator theory specialists. For example,
soon after the monograph [5] was published, M. G. Krein mentioned at Moscow Ma-
thematical Congress the necessity to find spectral interpretations of its results. Fur-
ther, M. S. Livsic [18]) and his pupils (L. Megrabian, Do Kong Khan and others)
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realized the meromorphic functions of classes Ny as transfer functions of some special
linear systeins in a series of works. In this paper we find a different way to theory of
classes N, in the operator theory and we hope this wey may turn out more reasonable.

We start with the analytic function
Dp(z) == dety, We(2)Wr(Z)

constructed for an invertible contraction T, for which 7 -- 7T belongs to the ideal
S, (p is natural). We denote this class of operators by C,. Note that Wy is the
characteristic operator-function of 7” and det, is the regularized determinant {12,
Chapter IV, It is well known that if p = 1 the function Dy is bounded in the disk
Jz1 < 1 and has a canonical multiplicative representation, which plays a significant
role in the spectral theory of weak contractions (20). The major problem we are
connected with is: what factorization may be taken as an analogue of the canonical
multiplicative representation of the fumction Pp in the case p > 2 and how such kind
of factorization may be applied in the spectral theory of non-weak contractions?

In Section 1 it is shown that the regularized determinant Dy of the operator
T € Cp belongs to Ny, for any « > p — 1. Further, zeros of the function Dt are taken
off in succesive order by special elementary factors. Each of them turns out to be a
regularized determinant of an operator-valued Blaschke dual factor connected with an
eigenvalue of T'. The factorizations of M. M. Djrbashian classes N, are now applied
for the function which do not vanish in the unit disk. As a result, in Thoerem 1.2 we
come to the multiplicative representation

Dr(2) = Defe)exp § o | 12 lj TR S

N U 2x J (1l —e ¥z)ite e ’ P

and the full description of its parametors.

In Section 2 the previous results are used to illustrate a class of non-weak contrac-
tions in term:s of the regularized determinant Dy and its factorization. To be precise,
we mean the connection between the radial behaviour of the function Dp and the
spectral propertics of the operator 7 € Cp. The formulas obtained may be considered

as analogues of the trace formules [13. 137 in the case of non-weak contractions.

In Section 3 it is considered in the region Imw < 0 an analytic function D4 (w),
connected with a dissipative operator A, which is the Coyley transform of an operator
T € . The multiplicative representation of the function Dy is obtained now by the
help of come factorization theorems for functions of generalized bounded type in
the half-plane [8, 9]. It is established a criterion of ropresentability of a dissipative
operator A s a Gy-perturbation of some self-adjoint operator and the size of this

perturbation s calenled by the paramcters of the factorizaton of the function Dg4.
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In Section 4 we discuss the possibility of the application of the factorization
techniques, worked out for regularized determinants, in the completness problem of
root subspaces of contractions and dissipative operators. Here a theorem is proved,
which in case of dissipative operators essentially strenghthens the well-known result of
M. V. Keldych [14], which states that an &,-perturbations of a self-adjoint operator
with discrete spectrum is complete.

The authors dedicate this paper to M. M. Djrbashian, whose fundamental works
on the theory of functions find their applications in different fields of mathematics.

We hope that the present paper will extend the sphere of such applications.

1. FACTORIZATION OF REGULARIZED DETERMINANTS OF CHARACTERISTIC
OPERATOR-FUNCTIONS OF NON-WEAK CONTRACTIONS

1.1. For any p2> 1 we denote by C, the class of continuously invertible contrac-
tions T in a separable Hilbert space §, for which the operator D% = I — T*T belongs
to Neumann-Schatten ideal &;. Thus the set C) coincides with the class of invertible
weak contractions [20]. The characteristic function Wr of the operator T' will be
defined as in [2]:

Wr(2)Wr(0) = [I — Dr(I - 2T)"'Dr] | Dr,
Wr(0) = (T°T)"*|Dr, Dr =DrH.

It is easy to verify, that the operator-function Wy (%) differs from the characteristic
function ©r(z) of B. Sz.-Nagy and C. Foiag {20] only by a constant isometric factor.
Let us recall from [20, 2], that Wr(z) is analytic in |z| < 1 and its values are

two-sided contractions in Dp:
Wi(2)Wr(z)<1, Wr()Wr(z)<I (2] <1).
Since
1-wgi(0) = Wi (o) (7T - 1] |Dr =
=wi'O [1+ @] @ T - DDy
and
I—Wr(2) = 1= Wz 0)+ Dr(I - 2T)"'DrWzl(0), Dr € Gy,
the operator I — Wr(z) belongs to &, for any z € o(T~!). Hence for each p> 1 the

regularized determinant

(1.1) dr(z) = det, Wy (z) = H/\k(z) exp {i 31-[1 - /\k(z)]j}
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1s enalytic wherever the operator-function Wr is analytic {12, Chapter IV]. In the
formula (1.1) {Ax(2)} is the set of eigenvalues of the operator Wr(z). Further the
functions D defined by

(1.2) Dr(z) = det, Wr(z)Wi(z)

will play an important role.
Thus the formulas (1.1) and (1.2) state a correspondence between operators T' €
€ Cp (p is natural) and functions d7 and Dr analyticin |z| < 1.

1.2. "The main result of this section states that functions d7 and Dr (analytic
in [2#] < 1) belong to classes N, of M. M. Djrbashian [5, Chapter IX]. As it is well
known, the functions dr and Dr are bounded in |z| < 1, when p = 1. For the

general case we have

THEOREM 1.1. If p>2 is an integer and T € C,, then the analytic functions dr
and Dy belong to the class Np_14. for any € > 0.

To prove this theorem we need the following
LevMa 1.1, If p> 2 is any integer, then
, 1 - (-
a3) 5 / |D2( - 21) D 1dz| <1 - )@=V [DRJE (0 < r< 1),
lzl=r
where [|-1|, is the Gy-norm.

Proof. [irst suppose p = 2% (k> 1). It follows from the elementary properties of
cigenvalues (A;) and singular values (s;) of compact operators [12, Chapter II], that

[D2(I = 2T)"1Dr |} = 3 &§/*(Dr(1 - 2T)"* D}(I - 2T*)~*Dr) =
j
= 5" X/*(Dr(I - :T)"'D3(1 - 2T*)"'Dr) =
J
= 3 NHD(I - 2T) DI - 7T €

J
< Yo DR(I - 2T) T DRI - T

J
< (@ =zr) P23 £3(DR(1 - :T) D} <
j
<(1-7r)~?/2 || D3(I - zT)-1D;||§j§ (1z| =r).

Now we use these relations & — 1 times and obtain

k-1

2 .
zkml zk—l

-j "DT (I-2T)"'D%

|2
2

, -rY,
WDr(I = 2T)7'Dr? <(1-7) 3=
= (1-7)"C-D QU - T)q|3,
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where Q = Dg./ 2 Further, since

QU - 27)~'Q|% = Sp(QU - 2T)~'Q*(I - T*)~'Q) =
= ) Sp(QTIQXT")*Q)- 7,

k2o
we have

| Dr(1 = 27)~'Dr||; |dz| <

|z|=r

(1 —r)7e=? / Y- Se(QTIQ(T™)FQ)rithelUi=+)1dg =

Zr k20

= 27(1 — r)~=2) io:Sp(QTjQz(T*)jQ)ij :

j=0

Recalling the definition of @ we get now

Sp(QT'Q*(T"Y Q) = Sp(Q°T! Q*(T"Y) <IQ*TY |l fIQ*(T* Y 2 <
<NQ?lZ = DI = IDFIIE
and we easily come to (1.3) in the case when p = 2% (k> 1).

Let us note that the above presented proof will remain valid if we replace Dr by

any normal operator © with spectral decomposition
9=Z<Pi(',ek)ek, {pi} CC, Z|‘P-‘|2p<+°°~
i i

This will be used further.

To prove (1.3) for any p> 2, we shall use the well known Hadamard theorem
on three lines and some techniques similar to one worked out in the proof of the
Riesz-Thorin theorem on interpolation of operators [1].

First note that if the values of the function F(yp) are in &,, then

- i/p
= { / IIF(<P)II§dso}

where supremum is taken over all &4-valued functions G(y) satisfying the condition

(1.4) sup U Sp{F(¢)G(p)}dp
G ™

T 11
G idp=1, -+-=1
_[u @lide=1, >+
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Of course, we suppose that F' and G satisfy the standard conditions in which the
integrals of (1.4) exist. It is easy to check that (1.4) is an immediate consequence of
the precise estimate |Sp{FG}| <{|F||,|IGllq (see [12]) and Holder inequality.

So, the inequality (1.3) is proved for p = 2¥~!, 2%, Now it will be interpolated
for all p € [25-1,2%]. We denote po = 2!, p, = 2%, then we put, as in the proof of
the Riesz-Thorin theorem,

1 1-2 =z 1 1-2z =z 1

1
—_—= , 3 +—, —+—=1 (=0,1
p(z)  po P’ az) @ @ P g G )

and consider for any n > 1 the operator-function

u(z) = 3 s (- en)er,
k=1

Galpr2) = 30T (), vi @)y (9),

1
+-=1,
ji=1 9

S|

where {er}, {u;(9)}, {vj(¢)} are some weak measurable orthonormal sets of vectors,
sy > 0 and a;{(yp), [ej{p)]~! are nonnegative bounded measurable functions. In

addition, we suppose that for any fixed integer n>1
(15) sk =1, /Z al(p)dp = 1.
: J =
Now we introduce the entire function
1 kg
£2) = 52 [ SpOI = re# )™ 8,(2)Gn (i, )} =

1 (= z [ q{z
=5 Y P [P (o) Pumitorde,

k,m,j=1

where P m j(0) = (ex, v;(9)) (4 (9), em )(I — reYT) " Yem, ex). Since (1.3) is true for
p = po and for the normal operator @,(z),

P 1/po
| £Giy) | < (@m)Pe? {-2—1,; [ 12t - re‘*’T>-‘¢n(iy)||z:dso} x

T 1/q0
x { 16t dso} <
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n t/4o
< 2m) 500 )l (1 — 7)o { [ 16te, iy)nz:d<p} =
-

Po 1/po . T on go 190
} (1-r)" 5 /Z dy =
e im

" 1/po T 1/
=(2w)‘a‘6{2si”} (l—r)‘%{/_za;w)dso} -

—x J=1

2
0y)

St

= (2n)"% {Z a7 ()

k=1

= [2n(1 - )V,

Similarly, we take p = p, and come to the inequality |f,(1 + iy)| < [2#(1 — »)] "1/ 9.
Consequently, it follows from Hadamard theorem that

I50)<2r(l-n]" % "% (0gog1).

Now let p € (2¥~1,2*) and the corresponding 6 € (0, 1) is choosen by

1 1-0 6 1 1-6 8 1 1
s = +—, == +— [(=+==1).
P P P 4 @ @ \p 4

Then it is obvious, that

n n

(1.6) B.(0) =Y _sk(-rex)er, Gale,0) =D ai(9)(,vi(0))u;(p)

k=1 j=1

and therefore

<lem(l-np/e

51; / Sp {8n(0)(I = reT) = 8,(6)Gn(,60) } do

for any n > 1 and any functions @, (), G.(¢p, ) satisfying (1.5). If we use (1.4) instead
of the first condition of (1.5), then it will follow from the last inequality that

1 / |
27
And if we take now @,(0) to be the n-th sum of Schmidt series of the operator Dr
and let n — oo, then we shall come to (1.3).

1 P
@, (0)(I - rel‘PT)-IQ"(G)"p dp < |12 (B)IF (1 = r)= @D,

Proof of Theorem 1.1. We deduce from (1.1) by using a simple inequality for
regularized determinants [10, Chapter XI, Section 22], that log* | dr(z)| < m,||I —
~Wr(2)|5 (12| < 1). Therefore

log™ |dr(2)| <2 Mp{|I1 — Wz (O)IIE + IWr ' (O)|P| Dr (I ~ T)~* Dr|If}.
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Consequently, (1.3) gives

T

/ [D~log |dr(r=*)[] T do < / D=“log* |dr(re'®)|do =

T

= D¢ {/log+ {dT(rew)[dH} <D™ [C1+ Ca(1 —7)™PH] <C < +00

for any o > p— 1. Hence dr € Ny (@ > p—1). To prove that Dy € N, for any
« > p -1, note that
log* [Dr(2)| S Mp|lT — Wr(2)W3 (BB < 2P My, {||I — Wr(2) |2+
I - Wwr@|E Y SC+ C2 {||\Dr(I - 2T) ™' Dr|l} + || Dr(I - 2T*) ' Dr |} .

Now it is enough to apply the inequality (1.3) again.

COROLLARY. Ifp2 3isaninteger, T € Cp and I-T*T € &, for any a € [p—1,p),
then dp, D1 € Np_;.

Proof. Since Lemma 1.1 is true for every p > 2, which may be not an integer, we
use the previous notations and obtain

\Dr(I - 2T)'Drllf = sf = £7%s2 <
i J

J
< ||Dr(I - 2T)~ Dy~ Z s < 2P7°||Dr(I - 2T)~' Dr||2.
j

Thus

1 - 2r-e - a
5z [ 1P =) Dripiesl < 5= [ ID2(1 - 1) Driglaz <
l2j=r

|z|=r
<2 DRNIG( - 1)~ D,
Now it is encugh to recall the proof of Theorem 1.1 and take into account that the
classes Ny arc monotonly increasing [5, Chapter IX].

1.3. It is easy to come from Theorem 1.1 to the following, which will be used

further.

ProrosrTioN 1.1. Let {z;} be a sequence in | z| < 1 (here and further we accept
a sequence of complex numbers enumerated in accordance with their multiplicities),

such that for a given integer p> 2

(1.7) Z(l — |z])? < +oo.
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Then the functions dy and Dy defined by the formulas

o) = T[bun(2)exp {i) to- bn(z)r'} ,
k kp'—;ll
(1.8) Do(2) = [ [ Be(2) exp {Z %[1 - Bi(2)) }
k , k=1
ber(e) = 2222 Ly (a) = b, 0 0

are analytic in |z| < 1 and belong to the class N,_14 for every € > 0.

Proof. Consider in the Hilbert space $ the normal operator T' with spectral

decomposition

T= ka(-,ek)ek.
k

The condition (1.7) gives T € Cp. For any z € o(T~!) U o(T*~!) the operators
Wr(z) and Wr(2)Wy(Z) are normal and the sequences {b,,(z)}, {Br(2)} are their
eigenvalues. Thus do(z) = dr(z), Do(z) = Dr(z) and the proposition follows from
Theorem 1.1.

Now we shall see how precise Theorem 1.1 is. First, it is easy to see that the
discrete spectrum of the operator T' € C), satisfies the condition (1.7). Thus the
functions dr and Dr do not belong in general to M. M. Djrbashian class N, with
a < p— 1. To check it, note that the set of zeros of the function dr is the discrete
spectrum of the operator T*. Indeed, it follows from (1.1) that dr(z) = 0 if and only
if the operator Wr(z) has zero as an eigenvalue. Since I-Wr(z) € &,, it is equivalent
to noninvertibility of Wp(z). On the other hand, we may apply the equalities [20, 2]

Wr(z)Wi(Z™) = Wr(Z )Wr(z) = I, z¢0o(T"), |z] <1,

and conclude that the operator Wp(z) (| 2| < 1) is invertible if and only if 2 ¢ o(T*).
Similarly, it is easy to verify that the set of zeros the function Dz is the sequence
{zx} U {Zi}, where {2} is the set of eigenvalues of T. Now if dr (or Dr) belongs to
N, for some o < p — 1, then, according to the property of zeros of functions of the
class N, [5, Chapter IX], we have

Z(l — |z )M < 4o0.
k

The last conclusion is obviously not true for arbitrary operators T € C;.
We do not know if the functions dr,Dr belong to the class N,_; for every
operator T € Cp. It is not known also if the products do, Do, constructed by any
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sequence which satisfy (1.7), belong to N,_;. But we can state the existence of a
sequence {zp}§°, which satisfy (1.7), and for any € > 0 also the condition

=5
S (1= [z = +oo,
k=1

such that the corresponding products do, Do € Np~1.
It is signifiant to note that the preciseness of Theorem 1.1 is not important for
the problems considered further.

1.4. Now we shall find factorizations for the functions dr and Dz and we shall
pay the main attention to the function D as it shall play further an important role.
Note the following simple property of this fun¢tion

(1.9) 0<Dr(z)g]; -1<z<1,

which is an immediate consequence of Wr(z)Wi(z) < 1.

THEOREM 1.2. If p2>2 is an integer, T € C, and {z} is the discrete spectrum
of this operator, then for any € > 0

(110)  Dr(s)=Do(sexp{ ~5= [ Sporacle O i 121 <1,

Here v is a real-valued continuous function of bounded variation in [—w, 7], Dq is
defined by (1.8) and

Spm14e() = o+ ) { oz =1

Each factor of this representation satisfies the condition (1.9) and if it is normed
Ye(—m) = 0, then the factorization (1.10) is unique for any € > 0.

To prove this theorem we need the following

LEMMA 1.2. Let A and B be nonnegative contractions and moreover, let A = I —
AP, where A € (0,1) and P is an one-dimensional orthogonal projector. If I — B €
&, for an integer p2 2, then

|~

(1.11) Sp {H [(I-A}+{I-B}-(I- AB)k]} >0.

k=1

Proof. We shall first consider the case when A and B are acting in a finite-
-dimensiona: space and B is continuously invertible. Let {A:}7, {ux}} and {1}] be
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the sets of eigenvalues of the operators A, B and AB correspondingly, enumerated in
decreasing order (note that the spectrum of the operator AB is positive). It is well
known [11, addition], that

HV] H/\]p] (1sm<n-1), Hu, H/\jpj.
. j=1

j=1 j=1

In terms of these sequences the inequality (1.11) becomes

n p-1
ZZ%{(I—’\i)k+(l_ﬂj)k_(I—Vj)k} >0.

j=1lk=1

Further, since

EZ% (=2 +(1—p) -1 -y} =

n
= E log Aj +log pj —log vj) = —log H
the inequality we prove is equivalent to

(1.12) ZZ {A= XN+ (1= -1 —vy)*} <0,

j= lk—p

We put now
1

B(2) = / (1—e=®)P~1dz  (¢30)
0
and note that
~log =

_ k l-x _
Z(l ) - / T / (1= e=¥)P~1dy = &(—log ).

0

So, if we denote —log A; = a;, —log p; = bj, —logv; = ¢; (1< j<n), then the
inequality (1.12) may be written as

D o {B(a5) +8(55)} < D &(cs)-
j=1 j=1

Since A = I — AP, where P is an one-dimensional orthogonal projector, we have
a1 =a3=...=an_1 =0, a, = —log(l — A) and also

ibj=—l°g ﬁﬂj < —log ﬁVj =§"_::cj (1gmgn—-1),
j=1 ji=1 j=1 j=1
a,,-}-z:bjzzc]‘.
i=1 i=1



166 G. M. GUBREEV and A. M. JERBASHIAN

Therefore
n n G

> (o)~ o)) =Y [a-epie,

j=1 =13,
where ¢; 2 b; (1< j<n) and ¢p 2 ap, since for each k (1< k < n) we have v; <A and
v, < i [11, addition). Let us note that at least the first n—1 intervals (3;,¢;) (1<j <
€n — 1) are disjoint. Indeed, let £ be the linear hull of those eigenvectors of AB,
which correspond to the eigenvalues vy,vy,...,vj-1, and P = (-,e)e. Then, by
help of minimaximal properties of eigenvalues [12, Chapter II], we obtain for any
Fign-1)

{ABx, . (Bz, Az) ax (Bz,z)

¥; = max =123 max = Max ———= 2 41,

zLL (.’L’, 1’) zil,e (IL‘, 1?) ’ zlLl,e (1‘, :L')
and so ¢; < bj41. Further, since the intervals (bj,¢;) (1< j < n) are disjoint and the

sum of their lengths is equal to gy,
7 n @n
Yo iete) -0} =Y [(-epides [(1-epide = 0(an).
FED je=1 bs )

So, we come to the inequality {1.11) in the case when operators A and B are acting
in a finite-dimensional space. It is clear that (1.11) is valid also in the case when B
is not invertible.
It follows from the formula
det, AB == (det, A)(det, B) x

p--1
(1.13) X eXp {—Sp (Z 71: (T-AF+I-BF-(I~ AB)"]) }

k=1
and other simple properties of regularized determinants [12, Chapter IV] that the
left-hand side of (1.11) depends on operators I — A and I — B continuously in &,
metric. Consider 2 monotonly increasing sequence of orthogonal projectors { P, }$°,
which strongly tend to I and P,A = AP, (n>1). Since (1.11) is already proved for
A, == P,AP, and B, = P,BP,, we let n — oo and come to (1.11) in the general

case.

1.5. Proof of Theorem 1.2. As we have proved, the function Dy has zeros
{zx} U {Z1} and belongs to Np_y4. for any € > 0. It follows from Proposition 1.1,
that the procuct Dy constructed by the sequence {21} also belongs to Np—_14.. Thus
the function Dr(z)/Do(z), which does not vanish in |z | < 1, also belongs to Np_14.

and allows a representation

Dp(2)/Do(z) = ¢ exp -2—1; / Sp—14c(€7¥2)dec () (lz] < 1),
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where Im+v, = 0 and ¥, is a real-valued function of bounded variation in [—=, ] [5,
Chapter IX]. But Dr(0), Do(0) > 0, so v = 0 and the formula (1.10) is obtained.

We will show now that the function ¢, is continuous. Suppose the power series
of the analytic function log(Dr /D) is

log [Dr(2)/Do(2)] = dezk (z] <.

k=0

But the expansion of the kernel Sp_14. gives

g Dr(e)/Dote) = LEEEL 252 T ed (/ e'f“dmo)) "’

s

Hence
I'(1+k)

1
- km= ;/e_'kodvl);(ﬁ) (k2 1).

-
Since the same equality is true for any &; (0 < & < ¢), we have

I'(1+k)
I'p+e+k)

F(1+k) I(p+ei+k) _
I'p+e, +k) F(p+e+k)

= / e~ dyp., (9) H = o(1)

| di | = |dy|

™

when £ — 00, i.e. the Fourier coefficients of ¥, tend to zero and hence 1, is continuous
on [—=, 7] [21, Chapter III] (note that it may be said more about differential properties
of ¥, ). The uniqueness of the function 3 immediately follows from the results of [5,

F
] dé,

be(0) = i (0) — ¥ (0) (~n <0, <O <, —n<OLKT, a=p—1+¢).

Chapter IX]. Moreover, the following inversion formulas are true:

Dr(re'?)

‘2 )
g1 — s B e = 1 —ap,|Dr(re)
#90) — 200 = tim, [ [ 1og| D)
9,

(1.14)

Here wﬁ*)(o) are nonnegative continuous increasing functions defined as the positive

and the negative variations of v, on [—=, 6]
YE(0) = sup Y [he(aj41) — Ye(a))*
j=0

where supremum is taken over all partitions ¢ = —7v<a; < ... €ap-1<a, = 0 of

[—=,d].
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Finally we shall show that each term of the factorization (1.10) satisfies the
condition (1.9). It is well known [2] that to each invariant subspace ), of the operator

T, on which T is invertible, corresponds a factorization of the characteristic function
Wr

(1.15) Wr(z) = Wi(2)Wa(z),

where W, W, are analytic contractions in |z| < 1. Now let 2 be the first eigenvalue
of T, Tey = z1€1, lier}] = 1, and let §; be the one-dimensional invariant subspace
born by ¢;. We take into account (1.15) and (1.13) and obtain

Dr(z) = det, Wi (z)Wa(2)Ws (Z)W (Z) =
= det, W Z)W,(2)Wa(2)W5(2) =

(1.16) = det,_,_[II/Vf(I:'}:WI(z)]det-p[Wg(z)Wz" (@)]x
X exp {=Sp (Z }1; (I~ Af+I~-B)f ~-(I- AB)"']) },
k=1

where A = W} {Z)W;(z), B = Wa(2)W5(Z).
To calculate the elementary factor corresponding to the eigenvalue z;, we note
that
det, W7 (2)W1(2) = det, W, (2)W] (Z)

and use the formula for Wy (2)W (2) [2]:
W ()W (@) = I - (1= 22YDr Pi(I - zT1)"'(I - #T7) "' P\ Dr,
where P is the orthogonal projection on $; and 71 = T'| $;. Since for any h € H,

(1-1=z Iz)h = (I - T;Tl)h =P(I- T"T)Plh = PlD%-Plh,
(l’ — le)"lh = (1 - zzl)‘llh, (I _ len-)-lh =(1- 271)_1’2,

the spectrum of the operator Wi (z)W7 (%) coincides with the spectrum of the operator

I-(1=-22)1-210)"YI -2T7)"'PD:P; =
=1-(1=22)1—z2z)" A —23)" (1 = |2 |D)Py,

which has only one eigenvalue vy (z), different from 1 and equal to

n(z)=1- (1-2)(1-]al®) _ (-au)z-7) _
! (I-z2)1=271) (1-2z2)(1-2%)
= b;,(2)b7,(2) = Bi(2).
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It immediately follows that the elementary factor we need is

det, Wy (z)W;(Z) = Bi(z)exp Z %[1 - By(2))

Now we denote by @4 (z) the elementary factor corresponding to eigenvalue z;,. Then
(1.16) gives

(1.17) Dr(z)/P1(z) S det, Wa(z)W5(z) (-l<z<]1).

Here we used (1.11) with A = W{(z)Wi(z), B = Wa(z)W5(z). It is easy to see that
in the considered case A and B satisfy the conditions of Lemma 1.2.

Since W, is also a characteristic function of a contraction from C, (2], we may
do the same with Dy(z) = det, Wo(z)W5 (Z) and it will follow from (1.17), that

0< Dr(z)/[B1(z)Ba(z)] S det, Ws(2)W3 (z) <1 (-1<z< 1),

since W3 is an analytic contraction. In such a way we take off zeros of D1 and come
to the statement needed. Now the proof of Theorem 1.2 is complete.

The following question naturally arises: when the exponential factor in (1.10) is

absent? The answer is given by

PROPOSITION 1.2. Let T be a completely non-unitary contraction from Cp(p 2 2).
Then its regularized determinant Dr is exactly the product Dy of (1.10) if and only
if T' is complete and normal.

We omit the proof of this fact, since it will not be used in the future.

Note that, as it was stated in the proof of Theorem 1.2, each discrete factor of
factorization (1.10) is a regularized determinant constructed by a divisor of character-
istic operator-function Wr, corresponding to an eigenvalue of T. So the elementary
Blaschke-type factors considered have a definite spectral interpretation and their
application is reasonable in operator theory.

In [5] M. M. Djrbashian used Blaschke-type factors of different nature, which
permit to obtain inversion formulas (1.14) without division by Dy. Note that elemen-
tary factors of nearly the same type as in (1.10) have been introduced in early works

of M. M. Djrbashian [3, 4] on factorization of meromorphic functions.
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2. BOUNDARY BEHAVIOUR OF REGULARIZED DETERMINANTS OF
CHARACTERISTIC OPERATOR-FUNCTIONS

In this section it is stated a connection between the behaviour of the function
Dr near the boundary point z == 1 and spectral properties of the operator T' € (.

Namely, it is proved

THzorEM 2.1. Let p > 2 be an integer, let T € Cy, for which 1 is not an eigenvalue
and let D be the regularized determinant (1.2). Then the following conditions are
equivalent:

)Drssc(I-1*)9 and (/1 -T*)"!'Dr € Gyp;

2) sup (1 1) = Wr (W3 (r)lp < +oo;

3) sup (1—r)"P[1 - Dr(»)] < -~oc;
0<Lr<i
4) If {z;} and ¢, are the parameters of the factorization (1.10), then

(2.1) Z (%:%::7) < +cc, /S —14e(e7¥r)de (8) = O((1 — r)P)

when r -+ 1=0;

5) The following limits exist

lun (1 =) P — Wp(r)Wy (7)“ r_lj{rlo(l - r)7P[1 - Dr(r)],

hino /(1 =) P Sy 14e (e_w”)di/)@ (9)-
relm
Moreover, if any of conditions 1)-5) are satisfied, then the following equalities
are true
(= 7)Y Drl = 270 tim (1= )P = Wr ()W ()L =
= p27P ﬂim (1 - 7)P[1 = Dr(r)] =
(2.2) ~
p2" Pt

= ; (1; = ) + lim ——— /(1"?“) ?Sp-14e (€7 1) (0).

FEPAE A

1. To prove Theorem 2.1 we need some simple lemmas.

LrEMMA 2.1, Let the condition 2) of Theorem 2.1 be satisfied. Then

(2.3) log Dr(r)l < Mp||l - W (r)Wr(r)|lf (0<m<r<1).
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Proof. It follows immediately from (1.1), that

o]

[log DT(’")I = ZZ ]l[l — Ak(r)]j =
=Z[1—/\k(r)p2§ [1 = Ae(r)F~,
k i=p

where {Ar(r)} is the set of eigenvalues of the operator Wr(r)Wy(r). Further, if r is

sufficiently close to 1, then

> = M) = I = Wr()Wi(r)|E < My(1—7)P <6 < 1.
k

Thus 1 — M\i(r) < ¥/ for each k, and we get

llog Dr(r)l < [p(1 = YOI Y [1 - M)l = Myl|lT - W (r)Wi(r)|fE-

LEMMA 2.2. If Dy is the product (1.8), then the following conditions are equiva-

lent
a) sup (1- r)"’[l = Do(r)] < +o0;
0 r<!
|z | >
< +00.
) Z ( 1- 2k |
Proof. If a) is true and r is sufficiently close to 1, then clearly
1
> -l-Bi(nF< ZZ =[1 = By(r))’| = Jlog Do(r)] <
k p k ]--p
<C[1 =Do(r)) <C1(1 = )P,
Thus

Y (1=l - Bi(r)P<Ce
k=1

for any n> 1. But
_ol- 2 |2

d
= Bi(r) st 13 0
dr r=1 |1"Zk |2

and so, we let » — 1 — 0 and deduce

k=1
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which implies b}, since n> 1 is arbitrary. Conversely, since

(1)1~ jz}?)

1-Bi(r) = ll—zk|2

and |1 —zr| 227 1=z | (Jzx] <1, 0<r < 1), we have

-1 N RN
(2.4) (1=7)7" 1= Be(r)] = (1 +7) 7 S E
11— 2 |1 2]

Thus b) implies that
| D[t = Bu(r)P Co(L = r)P

E
and therefore
llog Do(7)] < M, Y [1 — Be(r)JF.
k

Finally
1 = Do(r) < |log Do(r)] £ CaMp(1 ~r)?.

LEMMA 2.3. If the condition 1) of Theorem 2.1 is satisfied, then

s-.l}mo(l ~T)I-rT) ' =1, s—l{mo(l ~TYI-rT*)" ' =1

Proof. It is easy to see that, for example, the left relation is a consequence of
(2.5) s-lim (1~ r)(I - rT)~t = 0.
r—1—
To prove this relation, note that for every h €

| (I = rT)~* Drh - (1 - T)"* Drh| <
< |1 = T = rT)" (1 - T)* Drh| < (I - )7 Drh|

and consequently
lim (1-7)(I-rT)"*Drh=0.

r—l1-0

Thus
lim (1-r)(I - Ty 1f=0

for any vector f of the form

f= Y T'Drhy  (n20, {h}2, C 9).

k=-n
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But ||(1 — r)(I — rT)~}} <1 (0 < r < 1), and so (2.5) is proved for completely non-
unitary operator 7' [20, Chapter 1]. The relation (2.5) is also true in the case when
T has a unitary component U. Indeed, 1 is not an eigenvalue for U, as it is not an
eigenvalue for T. Thus, it follows from the spectral decomposition of U that

s—].}rno(l -r)(I-rU)t=0.

2.2. Proof of Theorem 2.1. To prove the implication 1)=>2), we shall write out

the following equalities for characteristic operator-functions [20, 2]:

Wr(mWr() =1 - (1 - n€)Dr(I —nT)~Y(I —€T*) ' Dr,
(2.6)
W3 (&Wr(n) = I — (1 — n€)W7*(0)DrT* (I — ET*)~Y(I - nT) "' TDr Wz (0).

Hence we conclude
I—Wr(r)Wy(r) = (1=r?)Dr(I—rT)" NI -rT*)"'Dr (0<r < 1)

and therefore

I — Wr(r)Wi(r _ - — e\
W= Wi — Dy (1 = 1Ty~ (1 =) Dally = I = r7")~* Dr .

On the other hand,

(I —+T*)"'Dr — (I - T*)"' Drll2p <
<= =TI = T Drllap I = T)™* Dr iz,

so ||(I —rT*)~'Dr||zp < C < 400 (07 < 1) and 2) follows.
2)=3). By Lemma 2.1
1—Dr(r) < |log Dr(r)| < Mp||lI - Wr(r)Wr(r)|If <
SMy(1-r)P (ro<r<1l),

3)=2). If {Ax(r)} is the sequence of eigenvalues of the nonnegative operator
W (r)Wg(r), then

= [log Dr(r)] <

» §[1 WO

}, S - M) <
k k j=p

<M -Dr(r)]<Mi(1-7r) (0r<).




e G. M, GUBRERY onud A, M, JRRBARTL
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Now it sufiices 1o observe that

~ W)Wl = 3l - )P
k

2)=51). It follows from 2), thas

”I - Wy (3 )VV;- ?)”p <K HFI - Li}(V)LVT\?)I

e e — e e e (o en 13
( )P 3 (‘ﬁr)p <1< (7\,<7’<1)
Thus we ob%ain using the formulas (2.6)
(2.7 WI=rT*) ' Drls, < K1, [T~ rT) D Wi (0)]|2p < K1

and moreover, for any vector i ¢ Dy we have

sup ||[(I =rT*) 'Drh! < 400,  sup |[(I=+T)"'Drh|| < +oo.
0 rgt 0 r<1

Since 1 is not an eigenvalue for 77, the well-known theorem of B. Sz.-Nagy and Foiag
{20, Chapter 1V] gives that

(2.8) Dr9Cc(I-T")H, DrHc(I-T)%.
Morcover, by the same theorem the strong limits exist
slim (I~ rI*) 1Dy = (I - T*) Dy, slim (I - rTY'Dp = (I -T)"'Dr
and we deduce using (2.7), that [12, Chapter III]
(2.9) (I-T*)"'Dy € Gop, (I-T) 'Dy € Gy,

i.c. 1) is satisfied.
To prove the equivalence 3)¢34), we write out (1.10) in the form

(2.10) Dr(z) = Do(2)C(2),

where Dy and G are the Blaschke-type product and the exponential factor correspond-
ingly. Theoremm 1.2 indicates that the condition 3) is equivalent to the following pair

of conditions

(2.11) sup (1 =#)"P[1=Do(r)] < +00, sup (1-7)"P[1-G(r)] < +oc.
L r<1 0L r«t

But it is clear that the second condition of (2.11) is equivalent to the second condition

of (2.1). Thus Lemma 2.2 completes the proof of the equivalence 3)¢34).
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1)=>5). By Lemma 2.3
slim (1= T*)(I - 1T*)"(I=T*)"'Dr = (I - T")"* Dr,
slim (I = T)(I = rT)~(I-T)"*Dr = (I - T)™' Dr.
Consequently, [12, Chapter 111]
lim | = rT)" Dy — (I~ T)" Drllzy =
= r_l.i{{l-o (I —7T*)" Dy — (I =T*)"'Drll2p =0,

which gives with the equalities (2.6)

lim [I(7 = rT)"'Drllg, = lim (1) 1T = Wr(r)Wi(r)llp =

(2.12)
= ||(I ~T*)~*Dr|l3,.

Further, if {A;(r)} is the set of eigenvalues of the operator Wr(r)Wz(r), then

> Z —[I—Ak(r)]’<~—z Z (1= d(r)) =

k J-p+1 k j=p+1
Z[Ak(r)] L= ()P < C - max{l = M (r)] E 1- M(r)P =

=C'|I = Wr(r)Wi(r)l| - |IT - WT(")WT(T)Ili-

p+1

Here we used the equivalence 1)&2) which we have already proved. Thus when
r — 1 — 0 the condition 2) gives

Sa-n {log M)+ i M(r)r‘} -

—EZ (1= 7)P[l = M(r)P —2:—,(1—r)-P[1—Ak(r)]P+

k ]—p k

(1= 7)7" |log Dr(r)| =

+y Z —(1 — )Pl =N (r)) = -(1 — )P = Wr(n)Wr(n)ll + o(1).

k J—P+1

Now (2.12) implies the existence of the limits

- r r I —-Wr(r)Wr(r
(2.13) pr-l.iillo 1(1 ?:)(P) = prléilio ll(g ?:gl’)l = r—lé{rlo ” ('1"(_)1‘),)7‘( )”p

If we take By (r) instead of Agx(r) and do the same, then the existence of the following
limits and their equality will appear as a strict analogue of (2.13):

p lim (1-7)7?[1=Do(r)] = lim 0ij(l = 1)7P[1 = By(r)}P.
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Now we usc the factorization (1.10) and its properties given in Theorem 1.2 and obtain

p lim 1-Dr(r) =p lim L — Do(r)

) . 1-G(r)
r=i-0 (1—r)p ~ “rei-o (1—17)? +p lim

r=1-0 (1=r)p "’

But since the inequality (2.4) is true,

P
i - )3 1- |z )?
lim 1 = )"P{1 - BL(r)]P = 2P
rﬂlﬂo;( g Ko (“—Zk |2

E
Thus
1- 212\
im (1 - 7)"F[1 -~ Dy(r)] = 2P i L +
pr—»l—o( ) [ T( )] Xk:(ll_zk|2>
(2.14) .
. P _ -

+r,l."1110 5_1;/(1_ r) 7P Sp-14e(¢7 r)de (9)

-1

and the implication 1)=>5) is proved. The converse implication is an obvious conse-
quence of previous results. Futher, the formula (2.2) follows from (2.12) (2.14) and

the proof of Theorem 2.1 is complete.
We close this scction with two remarks concerning Theorem 2.1.

REMARK 2.1. Theorem 2.1 remains valid if we add to 1)-5), for example, the
following conditions
6) sup(1 — | 2] )" H|I = Wr(2)W7 (2)lp < oo,
zeIl
7) sup(l - |z2])"? |1 — Dr(2)| < oo,
zel
where I' is an angular opening < 7 in |2} < 1, symmetric with respect to the real
axis and with vertex at » = 1. Moreover, all the limits of Theorem 2.1 exist when z
tends to 1 by any non-tangential way.
The proof of such extension of Theorem 2.1 do not need any new idea and there-

fore we do not give it.

REMARK 2.2. We shall discuss the formula (2.2) again in Section 3. But we note
now, that the formula (2.2) may be observed as a regularized trace formula for the
operators of classes C, (p>2). The previous considerations may be used to obtain
essentially more general relations of (2.2)-type, which are called trace formulas in the
case when p = 1 [15]. The existence of € in (2.2) brings to some dissatisfaction. The
way in which € appears was explained in Section 1. We may get rid of it by letting
¢ —» 0. But it is unknown what properties has the limit function g (which may be
even a distribution). At last, note that Theorem 2.1 was proved earlier in [13] for the

case p = 1.
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3. &p-PERTURBATIONS OF SELF-ADJOINT OPERATORS

We will show in this section that the condition 1) of Theorem 2.1 is more clear for
dissipative unbounded operators A whose Cayley transforms belong to C,. It appears
that the condition 1) is equivalent to representability of A as a sum of a self-adjoint

operator and an operator from &,.

3.1. We denote by @, the set of thosc operators A, whose Cayley transforms
T = (A —iI)(A+1I)~! belong to Cp. It is easy to see that A € Q, if and only if:

1) +i ¢ o(A),

2) Im(Af, f)> 0 for all f € D(A),

3) The operator iR_; —iR%; — 2R*;R_; (where R) = (A~ AI)~1) belongs to &,.

It is clear that an operator T' € C, is the Cayley transform of an operator from

Q, if and only if 1 is not an eigenvalue for T'. It is true

ProposITION 3.1. Let A € Q, be an arbitrary operator and let T be its Cayley
transform. Then the operator T satisfies the condition 1) of Theorem 2.1 if and only

if A is representable as
(3.1) A:AR+iA],

where Ap = Ay and Ay is nonnegative and belongs to &,.

Proof. Let T satisfies the condition 1) of Theorem 2.1. Then it will follow from
(2.8) that

(3.2) I-T'T)%HC(I-T99, (I-T'T)%cC(-T)%.

Since I -T*T = 2(iR-i—iR*;—2R*,R_;), D(A) = (I-T)9 and D(A*) = (I-T*)9,
the inclusions (3.2) mean that iR_; —iR*;—2R* ;R_;)$h C D(A) and (iR_;~iR*; —
—2R*,;R_;}$ C D(A*). It follows from the first of these relations that R*;Th € D(A)
for any h € $. And since T is invertible, D(A*) C D(A). Similarly, the second relation
gives D(A) C D(A*) and so D(A) = D(A*). Now we can write

i(A* —i)R_; —il = 2R_; = 27Y(A* —i)(I - T*T) = 27 Y(A* —iI) D}.
Thus, if we take h = (A +1I)f (f € D(A)), then
27YHA* —i)DE(A+iDf = i(A* =i f —i(A+iD)f —2f =i(A* - A)f
and so
A-— A

(3.3) A= — =(I-T)"'Di(1-T)".
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It follows from the left relation of (2.9} that Ay € &,. In other words, the closure
of Ay (which was initially defined on ID{(A)) is 2 nonnegative operator from &;. We
shall show now that the operater Ag = (A+ A*)/2 is self-adjoint. Since A is a closed
symmetrie operator, it suffices to show that its defect index is (0,0). If we suppose

that its defect index is (i, m) (n -+ m > 0), then we introduce the operator
A=A {(-A)=RAp+if;, Ra=Ap©(-4Ar), B;=Ar&(-Ar)

acting in the space H = H© 9 and find that the defect index of Ag is (n+ m, n+m).
Thus Ag has an extension in H. Furtber, since Aj is bounded, A also has an extension.
But it is impossible, since A and honce A have o pair of regular points :+i.

Suppose now that A is reprosentable in the form (3.1). Then by the same way
we shall obtain Ay f = (I = 7Y " D3I =Tt f for avy vector f € D{A) (= D(A*)).
Yurther, since Ay is bounded, we have for any f € D{(A)

[Dr( = T) AP e (2 DR = TY ) = (A, D S M

Consequently, the operator S = Dyp(f -~ T)™* may be extended by taking its closure
to a continvous operator in H. Now, since A7 € &, and Ay = S*S, it is easy to
deduce that Dr$H C (I~ T*)H and S* = {I - T*)" Dy € Sy,

3.2. Here will be given a re-ferinulation of Theorem 2.1 for operators A € Q.

It will be needed to connect such overators with the functions

(3.4) Da(w) = Dy (lfwu-) i T=(A-iNA+i)™ Imw <0

=

analytic in che lower half-plane. The factorization {1.10) implies the representation
(3.5) Dalw) = Dy(w)g(w),

where the function ¢ does not vanish in the lower half-plane and corresponds to the
exponential factor of (1.10), and Dj is the product

pe-l

(3.6) Do(w) = [} Bulwhexp{ 5 %[1 = Bo(w))

k Fe=1
Here By (w) are constructed by the discrete spectrum {A;} of A:

\ U/ ﬂ "ﬂ' A[ ’M
3.7 = a I hy > 0.
(3.7) Bi(w) = - ,\ Soll v T Tis Ay >0
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Note that the formal representation of the function g may be obtained from formulas

(3.8) g(w) =G (:—w> » G(z) =exp {—-217; j Sp—1+e(e'ioz)§¢c(9)} :

w

But in contrast with the case of weak contractions, we do not observe such a repre-
sentation as a natural one for problems connected with unbounded operators. Qur
nearest aim is to find a representation of g as an exponent of an integral with a ker-
nel specified for the half-plane, i.e. a kernel which distinguishes the boundary point
w = co. So, we shall use some methods of [8, 9] and additionally assume that the
behaviour of the function D4 near the infinity is sufficiently regular. More exactly,
we shall suppose that the operator A € @, is continuously invertible or, which is
the same, —1 ¢ o(T"). By the way, this is the reason why in (3.4) we have used a
conformal mapping which moves the point w = oo into z = —1.

The analogue of Theorem 1.2 for non-selfadjoint operators is

THEOREM 3.1. If p>2 is an integer and A € Q, is an arbitrary continuously
invertible operator, then for any € € (0,1/2)

(3.9) Da(w) = Do(w)exp § — / [l(jli‘t(;])p_l_c ; Imw<0.

Here Dy is the product (3.6)~(3.7) constructed by the set {Ar} of all non-real eigen-
values of A and p, is a real-valued function of bounded variation in any finite interval
from (—o00, +00), which satisfies the condition

+o00
dpe(t)
/ O+ 1tz <+

-0

3.3. To prove Theorem 3.1 we need the following purely technical result on
exchange of variable in an integral. We shall formulate it without proof.

LEMMA 3.1. Let the function G(z) # 0 be analyticin |2| < 1 and also in a

neighbourhood of the point z = —1, where it may be written as
o0

(3.10) G(z)=1+2ak(z+1)" (P22, |l24+1| <rp< ).
k=p

Further, for any a € (p — 1, p) let

(3.11) 1= / / (1= 112" floglg()|do(2) < +oo,

|z]<1
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where do(2) is the area element.
Then the function g analytic in the lower half-plane, connected with G by the
first of equalities (3.8), satisfies for every ¥ € (a — p + 1,1) the condition

Imw|*~?
. J = —_— |} d .
(3.12) 1= [[ {5 R leelotullideu) < +eo

Im w<0

Proof of Theorem 3.1. Since the operator A is continuously invertible, —1 ¢ o(T")
(where T' = (A —1I)(A +1iI)~!). If now we use for T the analogue of Theorem 2.1 for

the point z = —1, we will have

x_}i_nllw(l +z)P[1-Dr(z)) =bp, (0<b, < +00)
and moreover

z-.li-nf+o(1 +z)P1-G(z)]=a, (0<ap< +00),

where G is the exponential factor (1.10). But in our case G is analytic in a neigh-
bourhood of the point z = —1. So it allows the representation (3.10). Further, for
any @ > p—1 and r € (0, 1) we have

F(%) 0/ (r — )21 (l log* |G(tei0)|d9) 1t <

kg
< /D“’ logt |G(re®)|df < M < 00
m

where M does not depend on r, as it was seen in the proof of Theorem 1.1. Thus

0<r<gl

sup / / (r —1)*log* |G(te'?)|tdtdo < M.
0 ~7

Further, since G(z) # 0in {z| < 1, we use the equilibrium relation for Nevanlinna
characteristics of G {19, Chapter VI, Section 2] and come to (3.11). Thus the function
G satisfies the conditions of Lemma 3.1.

It follows from (3.10), that the inequality |log |g(w)|| <C|w|™? with some
constant C is true in a neighbourhood of the point w = co. Suppose now a =
= p—1+4+¢ (0 < & < 1/2). Then from Lemma 1.9 of [8] it follows that for any
w (Imw < () with sufficiently large modulus

(3.13) W= log [g(w)|| €C1|w] ™",
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Here C; is a constant and by W~ is denoted the operator of H. Weyl
WU (u+ iv) = ‘rﬁ / (v - "1V (u+it)dt.
It is easy to deduce from (3.13) and (3.12) (with 4 = 2¢) that for any v < 0

/|W °log|g(u+1v)|| 2t<

v<0

1 du
< sup —— —t"“ldt/ lo u+i)|| ———— =
pr(a)/(v ) logla(u-+i0ll
- 00 -0
=TI"Ya)J < 400.

On the other hand, (3.12) gives

. 1 [ - -8 : _
RHTN = / |W = log |g(Re~%)|| sin 646 = 0.
0

But the function W~*log |¢| is harmonic in the lower half-plane {8, Lemmas 1.5 and
1.8]. Therefore the results of [9] bring to the representation

(3.14) W™%log|g(w)]| = 1(p+€) / o= de (2) (w=u+iv, v>0),

t)Z + v2

where the measure y, has the needed properties. It is not difficult to check that [9]

+o0
—(p~a F dy, (t) dpe (t)
(315) W )3711 (p+e)z / (u—1)2+v w_fZ+sZ = Re / [1(w e

On the other hand, the properties of G imply that the analytic function log(g) may

be represented in a neighbourhood of w = oo by the series
(3.16) log g(w) = th(xw)"

But

w-(-

°)aa W'“(lw)' —(1w)' (k=p)
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and so, if we apply subsequently the operators W=, 9P /8w? and W=~ to both
left and right parts of (3.16) (the uniform convergence will not fail) and take the real

parts, we shall obtain
w- (- “)(;9 W= %log|g(w)| = log|g(w)|; Imw=wv<0.

Thus it follows from (3.13) that

dpe(t .
g(w) =exp < — /[m(wlit()])l’+€+lc ; Imw <0,

where C is o real number. But, since g(w) — 1 as w — oo and also

: y dﬂe(t) —
ovlfl-zzo / (|v! —it)pte 0,

we have ( =z 0 and the theorem follows from (3.5).
3.4. Previous results of this section infer

TurOREM 3.2. If p> 2 is an in tcger,\then the following conditions are equivalent
for any operator A € Qp:
1) A is representable as
A= Ar+1i4;,

where Ag =: Ay, Ar20 and belongs to &,;
2) sup |v|TP[1=Da(iv)] < +oo;
-1<0<0
3) T he following limit exists
lim o] 7P[l = Da(iv)].
Comr = ()
If, additionally, A is continuously invertible, then the conditions 1)--3) are equi-

valent to

4) z(lm Ap)P < 400 and the following limit exists
i

400
m P dpe (t)
v—=0dra [ Ju[P(fv] ~itypte’
-00

where {A;} and p. are the parameters of the factorization (3.9).
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Further, if A is invertible and any of conditions 1)-4) is satisfied, then the fol-

lowing equalities are true

A7l = £ limy——o |v|7P[1 = Da(iv)] =
+0c0
(3.17) T dpse(t)
- Zk:(lm/\k) Y / [v]P(Jv] —it)p+e’
—00

The proof follows immediatly from Theorem 2.1, Proposition 3.1 and Theorem

3.1, if we use the formulas

(l—z) P[1 -Dr(z))=(1—-v)?(2|v|) Pl -Da(iv)];, v<0,
Ae—i 1= |z|?

-, =ImA
A 1z .

Zp =

and the equality (3.3) which implies
147} = (2 = T*)~* Drli;
Note that the equality (3.17) improves the well-known (at least for bounded
dissipative operators) inequality

> _(ImX)? < lAslp.

k

In the case p = 1, Sp(As) was calculated by the parameters of the factorization of a
bounded analytic function in the half-plane in [13)].

4. COMPLETENESS OF SOME OPERATORS FROM C)

In this section we give an application of previous notions in a completeness prob-
lem for non-weak contractions. We shall not try to formulate maximally general
results. The aim will be simpler: to show how may be applied the properties of the
regularized determinant D7 in the questions of completeness. Remind that an oper-
ator is called complete if the closed linear hull of its root subspaces corresponding to

its eigenvalues coincides with the whole space.

4.1. The following theorem strenghthens in the case of dissipative operators a
well-known result of M. V. Keldych [14, or 12, Chapter V].

THEOREM 4.1. Let p21 be an integer and let T € C, be an arbitrary operator
for which 1 is not an eigenvalue. Further, let the spectrum of T be a sequence {z;}
with the only limit point 1 and let

Dr(r)
(4.1) l,l_rf“Pf log Do(r) =0
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for the functious Dy and Dg defined by formulas (1.2) and (1.8). Then the operator

T is complet:.

Before we prove this theorem, we shall show that it is really a generalization of
the mentioned result of M. V. Keldych. Indeed, (4.1) is satisfied “with a considerable

reserve” if

sup (1 —-7¢)7P[1 - G({r)l < +00; G(2) = Dr(2)/Do(z).
0gr<l

And if we demand in addition

sup (1 - r}™P[1 — Dg(r)} < 400,
0<r<l

then

sup {1 —r)"P[1 = Dr(r)] < +o0
0<r<1

and the conditions of Theorem 2.1 will be satisfied. Thus, by Theorem 3.2, the
correspondirg operator A (the inverse Cayley transform of T) is representable as
A = Ap +iA; where Ap = A}, A;20 and Ay € S,. Further, since compact
perturbations do not change the continuous spectrum, the continuous spectrums of
the operators A and Agp are the same. Thus, by a condition of Theorem 4.1, the
continuous snectrum of the operator Ap is located in oo, i.e. Agr has only discrete
spectrum. So, in this particular case Theorem 4.1 states: an G,-perturbation of a
self-adjoint operator with discrete spectrum is a complete operator. Namely this was
stated first by M. V. Keldych [14].

If we put p = 1 in the formulas for Dr and Dy, then Dr(z) will become the usual
determinant of Wr(2)W;.(Z) and Do(z) will become a Blaschke product. Thus the
condition (4.1) is also necessary for completeness of the operator T, if it is a weak con-
traction. The last fact is an immediate consequence of the well-known completeness

criterion for weak contractions [12, Chapter V].

4.2. Proof of Theorem 4.1. Suppose the statement is not true. Then it is clear
that 9; =Closspan{L; : |zx | < 1} £ 9 and if we denote $H, = H © H,, then it will
be true the following triangulation given by the invariant subspace 9;:

n I
T=(1 ,); T1=T|ﬁ1,T-;=T'ﬁ2-
0 1%

Here 1% is an operator whose spectrum is only the point z = 1, which is not an
cigenvalue of 73. Thus the characteristic function Wy (z) allows the factorization [2]

(4.2) Wr(z) = Wi(z)Wa(z)
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the factors of which are defined by the formulas

Wi(2)W; (0) = I - DrP(I - 2Ty)" P, Dr,
Wa(2)W;5(0) = I — W Y(0)Dr Po(I — 2T) "' P, Dy W3~ 1(0),
W (0) = Wi (0)Wr(0),

where W1(0) is any invertible solution of the equation [2]
Wi ()W () =1- DpP,Dr.

In these formulas P, and P, are the orthogonal projections on £; and £, corres-
pondingly. Since the operator T} is complete, its characteristic function W; may be

represented by the product
Wl(z) =W, (Z)le(z) T Wzn(z) = H Wik(z):
k

where W, (z) are operatorial Blaschke factors. This may be checked by standard
methods introduced into operator theory by M. S. Livsic [17]. Note that this infinite

product is convergent in the sence that the operator-function

An(z) = (H wzk<z>) Wi(2)
k=1

uniformly converges to I on any compact from |z| < 1 in &p-norm:
H = An(2)lp —0; n— oo

Thus from (4.2) it follows that when n — oo

n -1 - .
Wq(‘ﬂ)(z)déf (H W.. (z)) WT(Z) = n Wzk(Z)WZ(Z) — WZ(Z)
k=1

EZ2n+l

in &p-norm, uniformly in {z| < 1. Consequently, the properties of regularized deter-
minants [12, Chapter IV] give that uniformly in |z] < 1

(4.3) det, WM ()W (2) — det, Wa(2) W3 (2).
We shall show now that

(4.4) " Dr(z)/Do(z) < det, Wa(z)Ws(z); -l1<z<l.
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Indeed, Lemma 1.2 and the relations from the end of the proof of Theorem 1.2 give
that
Dr(z) = det, Wy (z)Wi(z) = det, W,, (2) Wi ()W (2) W7 (z) =
= det, WS, ()W, () W1 (@) Wf" (2) < 81 det, WD (@) WH" (2),
where, as before, @, is the elementary factor of the product Dy, corresponding to the

cigenvalue z3. It is clear that we can do the same also with the term det, W;l)(:v) .
-W,}l)'(:l:) and so on. Thus for each n 21

Dr(z) < H &1 (z)det, WS (2) W ().

Letting here n — oo and taking into account (4.3), we come to (4.4). Now we

introduce the notation
D2(2) = det, Wo(2)W5 (2).

If {A\x(2)} is the sequence of eigenvalues of the operator W(z)W; (), then it is easy

to see that

Nog Do)l = 3> -]17{1 - M=) =

(4.5) o0 T
=Y I - Wa@WE @Y I > 3 2l - Wale)W3 I
i=p i=p

Further, it follows from inequality (4.4) and the second condition of our theorem that

o0
i = | z i —
lim_flog Da(r)| = _lim Z (11~ War) W3 ()P = 0
and consequently
(46) lim 1= Wa(r) W5 ()] = 0

We shall denote by I' the angle with vertex z = 1, defined by the inequality

|1—-z]
1-:—';]-’<(! (Jzl <1, a>1).
Suppose z € I' and observe that by formulas (2.6)
(T — Wa(@)W5 ()b, h) = (1 - |2 DI~ =T3) ' Qahlf;  h € Dr
where Q2 = P, Dr Wf—l(O). Further, since

(12T @ah—(I=rT*) "1 Qoh = (F—0)T3(I=ZT3) Y (I-rT3)'Q:h  (r = |2])
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and
lz—r] 1=7  |1-2]
+

I—r T 1-—r -7

it will follow that

<l4+a=K (z€l),

. (1 = 2T5) ' Q2N < (I - #T5) ™' Q2] 1+
+(1 =)z = r| I = T3) T Qb S KT ~ rT3) 7' Q2.

Thus for any h € Dr
(T = Wa(2)W; ())h, h) < K (T = Wa(r)W;3 ())h, )
and so, by (4.6)
lim [T~ Wo(2)W3(2)l| = 0; €l

Therefore we have in any angle I" the inequality

. o0

(Wa(2)W5 ()T Y I = Wa(2)W5 (2)]IF < Ca < +00,
k=0

where the constant C, depends only on a. We shall suppose further that the opening
of I' is > n(1 — 2/p). Now we may state that for any h;,hy € Dr the function
f(2) = (W5 1(2)hy, h2) is analytic in the whole closed complex plane, except of the

point z = 1, and bounded in I'. Further, the entire function
F(w)=f(z); z=(w-i)/(w+1i)

is bounded in upper half-plane, except of two angles < m/p adjoining the real axis
(because W5(z) is an unitary operator when |z| =1 [2]). As the aim is to apply
Phragmén-Lindelof principle in mentioned angles, we shall show that F' is of order p.

First we note that for any z (Jz| < 1)

W @l = W E OIS CL+ Coll(T-271T3) 7| =
=C + Colz| - (T2 — D)7
Now we introduce the operator A; € J, which is connected with T5 by the equation

Ty = (Ay—iI)(A2+iI)~1. If we put z = (w—1)/(w+1), then an elementary calculation

will bring us to the equation
(T> — 2)7 = (20)~Hw + )T + (20) "N w + i)(i — w)(42 + wI)~

On the other hand, if By = A;', then By = —i(I — T3)(I +T>)~! and B, — B} € &,,
since By — By = =2i(I + T2)~'(I — T>T3)}(I + T3)~!. Since the operator A; has
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an empty spectrum, the operator Bz is quasinilpotent and thus it is compact {12,
Chapter I). But then, according to a theorem of V. I. Macaev, B; € G, and, as it
is well known, the order of the resolvent (A — wI)™! is equal to p [12, Chapter IV].
Hence the function F is of order p. Now we apply Phragmén-Lindelof principle and
conclude that the function F is bounded in the upper half-plane. It follows from
clementary properties of characteristic operator-functions [2], that F is bounded also
in the lower half-plane. Consequently the operator-function Ws is a constant in the
unit disk, i.e. T is a unitary operator. Since o(T3) = 1, we come to the equality
Ty = I which contradicts the conditions of theorem.

4.3. It we carefully examine the proof of Theorem 4.1, we shall see that a more
general result is true. Namely, instead of the condition (4.1) we may ask the function
[log(Dr(z)/Do(z))| to be bounded by a constant depending on p (which may be
calculated). Of course, stronger criterions of completeness formulated in terms of the
regularized determinant Dy are possible. They may be obtained using more delicate
Phragmén-Lindelof type theorems. For example, the following result is true for the

case p = 2 nresenting a considerable interest.
4

THEOREM 4.2. Let T' be a contraction from C» for which 1 is not an eigenvalue.
Further, let the spectrum of T be a sequence {z;} with the only limit point 1 and let

Dr(r)

Do(r) = 0.

(4.7) lim]ing(l —r)log

Then T is complete. Moreover, there exist non-complete operators from Cs, for which

the lower limit (4.7) is equal to any given number a < 0.

Proof. 1t follows from (4.4) that
limlinof(l ~r)log Dy(r) =0

where D, is the function introduced in the proof of Theorem 4.1. We suppose Da(r) =
= exp{-9{r)} (p(r) > 0). Then, according to Theorem 1.2, (1 — #)p(r) — 0 as
r — 1 — 0. Now note that (4.5) may be written in the form

p-1

p(r) > —log(1 = ||l = Wa(r)W5 (")) - ;III ~ Wa(r)W; (r)Il'-

i=1
We use it and come to the inequality (1—||I — Wa(r)Wy (r)]|)~! < C exp{e(r)} which
implies

W23 (7)) Ml < Z NI = Wa(r)W3 ()| < C exp{p(r)}
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and if we turn as earlier to the entire function F', then

(4.8) limsup v~* log |F(iv)] 0
v—+o0

and F is of second order and minimal type [12, Chapter V]. Now if Phragmén-Lindelof
principle will be applied to the function Fi(w) = F(w)exp{iw} in both quadrants of
the upper half-plane, then the result will be that F is of first order and, consequently,
it belongs to M. Kartwright class [16, Chapter V]. Thus (4.8) gives that the indicator
of F is non-positive and so F(w) = const. The end of the proof of completeness
is quite the same as that of Theorem 4.1 and we omit it. Now we introduce an
obviously non-complete operator T' € C, as an orthogonal sum T = T} @ T, where
11 is a complete operator from Cj, for which (4.7) is true, and T3 is a contraction

with one-dimensional defect, the characteristic function of which is of form

Wz(z)zexp{gifz}; a<0.

Then Dy (z) = Dr,(2)Wa(2) exp{l — W2(z)} and consequently

: Dr(r)
limsup 1
piyir S Do(r)

= li{no(l —r)log W2(r) =a < 0.
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