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THE BAND METHOD FOR SEVERAL POSITIVE EXTENSION
PROBLEMS OF NON-BAND TYPE

I. GOHBERG, M. A. KAASHOEK and H. J. WOERDEMAN

0. INTRODUCTION

There exists a large variety of positive extension problems for matrices, matrix
functions, integral operators, etc. These problems are mostly of band type. In the
matrix case the latter means that one has given a band matrix A and the problem
is to find positive definite matrices B such that B coincides with A on the given
band. In the.papers [3,4; 6,7,8] a general scheme, called the band method, has been
developed which allows one to solve these band extension problems from one point
of view. For finite matrices, as has been shown by R. Grone, C. R. Johnson, E. M.
de Sa and H. Wolkowitz [5], positive extension problems have similar results for more
general patterns than a band. The aim of the present paper is to develop further the
band method in order to cover examples of positive extension problems of non-band

type in different concrete algebras.

Recall that the band method concerns the following general structure. Let M

be an algebra with involution * and unit e which admits a direct sum decomposition

(0.1) M = MM+ Mg+ M3+ M,y
satisfying

(i) Ms = M3, M3 = (M3)*, Mg = Ma,

(ii) e € My.

The algebra M is called an algebra with band structure if, in addition, the following
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umltiplication table is fulfilled:

My MY Mg M My
M| My M My MM
Myl My MG MY M MO
Mg| My MY Mg M M,
Myl MG M. MG M M,
My M M My My My

(0.2)

Here MG = Mi4+M3, M® = MI+My and Mc = MI4My+M3. The pro-
jections of M onto M, along the naturrl complementary subspace in (0.1) is de-
noted by F,. Similarly, P>, P3 and Py denote the natural projections of M onto
Ma(= MY+My), Ma(= M34+Mq4) and Mgy, respectively. An element a € M is
called positive if ¢ = ¢*¢ with ¢ invertible in M.

The main results of the band method consist of three theorems. The first reads

as follows.

THEOREM 0.1. Let M be an algebra with band structure, and let k = k* € M..

Then there exists a positive element b in M such that
(0.3) P.(b) =k, b leM,
if and only if the equation

(0.4) Py(kz)=e

has a solution x with the following properties:
(i) x € Mp,
(ii) @ is invertible and = € My = M} +Maq,
(1ii) Pgz = d*d for some invertible element d in Mg.
In that case, b is given by a right spectral factorization, namely b = (u*)~1u~!

with v = zd~1t.

We call a positive element b € M with the properties (0.3) a (positive) band
extension of k.
Theorem 0.1 has a second version in which equation (0.3) is replaced by the

equation
(0.5) Psy(ky) = ¢

and the solution y is required to have the following properties:
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(i) y € M3,
(i)’ y is invertible and y~! € M.. = M+ My,

(iii)’ Pay = g*g for some invertible g in Mgq.

In this case, the positive extension is given by a left spectral factorization, namely
b= (v*)"tv~! where v = yg~!.

The second main theorem, which assumes that the equations (0.4) and (0.5) both
have a solution with the properties mentioned above, describes all positive elements
a in M with the property that P.(¢) = k by a linear fractional map. This second
theorem holds provided the algebra M satisfies some additional axioms (see [6,7) for
details).

The third main theorem, which also requires some additional properties for M,
identifies the band extension a.inong all positive extensions by an extremal property
of so-called multiplicative diagonals (see [8] for details).

An analysis of the proof of Theorem 0.1 shows that the requirements on the
multiplication table (0.2) can be relaxed considerably. In fact, in this paper we show

that Theorem 0.1 also holds if the table (0.2) is replaced by the following new one.
left\right| M; MI My M3 My

My My M My MAM; M
M$ M MG MY M. Mc+M,y

(0.6) * .
My M, My My M3 My
M3 My M M M2 My
My M MY My M My

This table is not symmetric anymore, and for the second version of Theorem 0.1,
which involves equation (0.5), one needs the reflected version of the table (0.6). With
the new table and the usual additional axioms on M the third main theorem also
holds. These results appear in Chapter I. By introducing additional axioms on M
the requirements on the multiplication table can even be weakened further to the
following table (0.7).

left\right M, M$ Mg M§ My

My M M, M M M

©7) M M M My M. M
My M, M3 Ma M3 My

M3 MG +M, M Mz ML My

M, M MpdME My MDD MO

This version also appears in Chapter I. In both these more general settings we cannot

give a description of all positive extensions.
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The new versions of Theorem 0.1, based on the tables (0.6) and (0.7), allows one
to solve new positive extension problems in which the given data do not have a band
structure. Infinite dimensional examples of such problems, both for the continuous
and discrete case, are treated in Chapter II. Included are extension problems for
semi-infinite operator matrices and for integral operators.

Chapter III concerns the case of finite operator matrices. It contains the appli-
cations of the general theory for this case and a further analysis of the multiplication
table in terms of the pattern underlying the set of given data and the associated
graph. To be more specific, let M be the algebra of all n x n matrices [A4i;]?;=,
whose entries are operators acting or. a Hilbert space H. The involution is the usual
matrix adjoint and the unit in M is the n x n identity operator matrix. In this case
the space M. is determined by an index set S of pairs (¢, 7). The set S is assumed
to contain all pairs (4,7), ¢ = 1,...,n, and is symmetric with respect to the main
diagonal. By definition the space M. consists of all matrices [A;]};~; such that
A;j = 0 whenever (i,j) € S. The spaces M, and M_ are usual spaces consisting of
the upper and lower triangular operator matrices in M, respectively. For the induced
decomposition of M the multiplication table (0.6) holds if and only if

(,j) €S, i<k<i = (L,k)€S.

In other words, the graph associated with index set S is a so-called interval graph.
In this way we show that Theorem 0.1 yields the construction of the band exten-
sion for patterns induced by interval graphs. For the induced decomposition of M
multiplication table (0.7) holds if and only if

(i,k)€S, (Jk)€S, i,i<k = (1)) €S

This corresponds precisely to the case when the associated graph is chordal. An
adjusted version of Theorem 0.1 yields now the construction of the band extension
for patterns induced by chordal graphs.

We like to mention that the recent paper of M. Bakonyi [1] triggered the research
which led to the present paper. In conclusion we wish to thank C. R. Johnson and

M. E. Lundquist for sharing their expertise on chordal graphs with us.
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CHAPTER I: THE GENERAL SCHEME

I.1. THE BAND EXTENSION

Let M be an algebra with a unit e and an involution *. We suppose that M

admits a direct sum decomposition of the form
(1.1) M = My+ M+ Ma+M3+Ma,

where M I,Mg,Md,Mg and My are linear subspaces of M and the following con-
ditions are satisfied:

(i) e € Mg, My = Mj;, M3 = (M3)*, Mq =M

(i1) the following partial multiplication table describes some additional rules on

the noncommutative multiplication in M:

left\right | M; M) My M$ My
. M,y My Mp My MM, M
0.7) M My MG M M. Mc+M,y
My My M Mg M My
M§ M M M M° My
My M ML My M° My

Here and in the sequel we use the notation

MY = My+M3, M2 = MIHM,,
M := M3+ My+MS,

My = Mg_-i—Md, M = MO 4 My

My = MIHMy, Mz = MI+Ma.

(1.3)

So, for instance, we require

MiMG C My, MIM; C MS.
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Recall that in earlier papers [6--8] the multiplication table was commutative and more
restrictive. If M has a decomposition (1.1) satisfying (1) and the multiplication rules
in (1.2) we say that M is an algebra structured by the multiplication table (1.2).

If A is an algebra with a unit and an involution *, we say that an clement a € 4
is nonnegative definite in A (notation: a > 40) if there exists an element ¢ € A such
that a = ¢*¢. The element a € A is called positive definite in A (notation: a > 40)
if there exists an invertible element ¢ € A such that a = ¢*c. We shall write b2 40
instead of b —~a > 40, and b > 4 a instead of b—a > 40. When A = M we shall omit
the subscript M.

If b € M is positive definite, then b is said to admit a right spectral factorization
(relative to the decomposition (1.1)) if b = b} by for some by € M, with b;l EMy.

We shall use the symbols P; (i == 1,2,3,4), P? (i=2,3), Pg, P, P. and Py to
denote the natural projections of A onto the subspaces of the same index along the

natural complement in M. For instance,
P.=P +Py, Pe=P)+Py+P;.

Let & == k* € M. An element b € M is called positive extension of k if P.b =k
and b is positive definite in M. A positive extension b of k is called a (positive) band
extension of k if in addition b=* € M.. In what follows we shall just speak about a

band extension and omit the adjective positive.

THEOREM 1.1.1. Let M be an algebra structured by the multiplication table
(1.2), and let k = k* € M. The element k has a band extension which admits a

right spectral factorization if and only if the equation
(1.4) Py(kz)=e

has a solutions © with the properties
() z € Ma,
(i1) = s invertible, z=1 € My,
(iit) Py« is positive definite in Mgy.
In that case such a band extension b is given by

(1.5) b=2*"}(Py)z™!
Moreover, all band extensions which admit a right spectral factorization are obtained
in this way.

LemMa 1.1.2. If by € My is invertible with inverse in My, and b = byb}
belongs to M., then by € M.
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Proof. Since by = bbrl, b€ M. and bf,_"l € M_, we get by the multiplication
table (1.2) that by € M+ M_. Consequently, by E My N(Mc+ M_)=M,. R

LEmMMA 1.1.3. Let 4 € M, with IL'_T_I € M. Then Pyz, is invertible and
(Paz4)™" = Pa(z3?).

Proof. Write z4 = Pazy + Pz and 23! = Py(z7') + PY(z3"'). Since
(1.6) e=z42y’ = (Pazy)(Pa(z3h) +md

with m$, = (Paz)(PY(e7)) + (P )(Pa(e) + (Pa+)(PR(z31)) € M3, we get
that m$ = 0 and e = (Paz4)(Pa(z31))- |

LEMMaA 1.1.4. If d € My is invertible, then d~! € Mg4.

Proof. Write d=1 = P;(d=') + P(d™!) + Pa(d=1) + P9(d~1) + P4(d~1). Writing
out e = dd~! = d~!d and projecting both side on My we obtain that e = dPy4(d™!) =
= P4(d~1)d, and thus Py(d~') =d~!. [ |

Proof of Theorem I.1.1. Let b be a band extension, and let b = bf,_b+(b$ € My)
be a right spectral factorization for b. Since b~! = b;lbrl € M. we get by Lemma
L1.1.2 that ;' € M,. Put z := b7 (Pyby)*~'. Then z € My, and z~! € M. Furt-
her, since Pcb = k, we have that b = Pyb+k+ P4b. So using multiplication table (1.2)

Py(kz) = Py(bz — (P1b)z — (Pab)z) =
= Pz(ba,‘) = P2 (bl(de.*.)*“l) =ée.

Thus every band extension b of k admitting a right spectral factorization appears as
in (1.5) where z satisfies (1.4), (i), (i) and (iii).

Conversely, suppose that a solution z to (1.4) with properties (i), (ii) and (iii)
exist. Let b be defined by b = b; + k + b}, where by = —Py(kz)z~! € M;. Then
bz = —Py(kz)+kz+bz. Since bjz € M® we get that Py (bz) = —Pi(kz)+Pi(kz) =0
and Pz(ﬁz) = Py(kx) =e. So bz € e+ M° . But then z*bz € Pyz*+M° = Pyz+M2.
Also z*bz is symmetric, which yields that z*bz = Pjz. But then

b=z*"Y(Pyz)a"

is a band extension of k, and since Pyz > 1,0 the element b admits a right spectral
factorization. |



198 I. GOHBERG, M. A. KAASHOEK and H. J. WOERDEMAN

1.2 A MAXIMUM ENTROPY PRINCIPLE

Let M be an algebra structured by the multiplication table (1.2). We introduce
the following notion. Let b be a positive definite element of M which admits a
right speetral factorization b = 0364, bfl € M. We define the right multiplicative
diagoual A,(b) of b to be the element

Ae(b) = bygbya,

where by =2 byg -+ by with byg € My and byp € Mg_. It is straightforward to check
that A(h) is independent of the choice of the spectral factorization (see also [8]).

Yote that we can write
(2.1) b= (e +60) 1A (b)(e + 83) 7Y,

where b4 = i);(}ibeg,@ € Mg It is straightforward to check that the factorization (2.1)
is unique (sce also [8]).

Reeall that an element ¢ € M is called nonnegative definite in M if there is an
cloment ¢ € M such that ¢ = ¢*c. In order to derive a ‘maximum entropy principle’

we reguire that M satisfies the following two axioms.
Axiox 1. The element Pg{c*c) is nonnegative definite for all ¢ € M.
Axion 2. If Pg(e*e) = 0 then ¢ = 0.

TursorsMm 1.2.1. Let M be an algebra structured by the multiplication table
(1.2}, and ossume that Axioms 1 and 2 hold true. Let k = k* € M. have a band ex-
tension b which admits a right spectral factorization. Then for any positive extension

« of kb which admits a right spectral factorization
(2.2) e (0) > Ar(a).

Fuasthermore, equality holds in (2.2) if and only if a = b.
Proof. Let k have a band extension b, let a be a positive extension of k, and
suppose that both admit a right spectral factorization
0= (64 ap) Ara)e +ag), b= (et by) Ac(b)(e +by),
with @y, by € M3, and (e +ay4)"t, (e +by)™! € My Since b~! € M, Lemma 1.1.2
fimplics that (¢ +b4)"! € M. Write @ = b+ a — b, and observe that

(e+b4) e +eu) Ara)e+ay)(e+by)™h =

(2.3
(2.3) = A (B 4 (e + by ) e —b)(e + by ).
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Since a and b are both positive extension of &,
a—b=m+mj,
for some r'nl € M;. Then (e +by)*"'m; € Mg_. From this we obtain that
Pa (e + b4~ (a = b)(e + b)) = 0.

Write (e + ay)(e + b4)~! = e + w, with w € M%. Applying Py on equation (2.3)

gives
A:(b) = Pal(e +w)* Aula)(e + v) = Ar(a) + Pa(wie(a)u’) 3 Arla).

Here we use that Pyg(w*A(a)) = 0, and Axiom 1. Furthermore, if A.(a) = Ar(b)
then Py(wA (e)w*) = 0. Since Ar(a) > 0, we obtain from Axiom 2 that this can only
happen when w = 0. But then a = b. [ ]

It is clear from Theorem 1.2.1 that uniqueness of the band extension with a right
spectral factorization follows. Indeed, if ; and b, are band extensions of k¥ € M.
which allow a right spectral factorization Theorem 1.2.1 yields that.

A,~(b1) 2 Ar(bz) and Ar(bz) 2 Ar(bl)
and consequently A;(b1) = A;(bz). But then by = b2. Thus we proved the following
result.

CoRroLLARY 1.2.2. Let M be an algebra structured by the multiplication table
(1.2), and assume that Axioms 1 and 2 hold. Let k = k* € M. Then k has at most
one band extension which admits a right spectral factorization.

The complete section allows a left analogue. In fact, they are the same results
only now one introduces the multiplication x,, defined by

anb:ba,

and make the assumptions (i) and (ii) on the *-algebra (M, x¢,* ). The details are
left to the reader.

1.3 AN ALTERNATIVE GENERAL SCHEME

In this section we present a version of the general scheme in which the require-
ments on the multiplication table are weakened. But, in order to obtain similar results
as in the previous sections, we need in this case to add additional axioms on M which

are automatically satisfied if the stronger table (1.2) holds.
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Let M be an algebra with a unit e and an involution *. We suppose that M

admits a direct sum decomposition of the form
M = M4 MIHMg+M3+M,,

where My, M3, My, M3 and M, are linear subspaces of M and the following con-
ditions are satisfied:

(1) e € Mg, M, = M, MY = (M3, My = M}

(ii) the following partial multiplication table describes some additional rules on

the noncommutative multiplication in M:

left\right M, M3 Mag MY My

M, M M,y M M M

07) M} MG M M} M. M
My My M Mg MJ M,

M§ MM, M M3 MD My

My M MpAME My M2 MO

We use the same notations as in Section I.1. Also the definitions of nonnegative/positi-
ve definite clements, spectral factorization, extensions, multiplicative diagonals re-
main the same as before. In addition to (i) and (i1) we require also M to satisfy

(iit) if @ € M. is a positive clement in M that admits a left spectral factorization
e == a* a_ then one may choose a_ € Mj.

(iv)if k = k* € Mc and = € M; with 27! € My and Paz > pq,0 then
Pa(kz) = 0 implies k = 0.

We now have the following results.

THEOrEM 1.3.1. Let M be an algebra structured by the multiplication table
(3.1) and assume in addition that (iii) and (iv) hold. Let k = k* € M.. The element
k has a band extension which admits a right spectral factorization if and only if the

equation
(3.2) Pylkz)=¢

has a solutions  with the properties
(i) TE MZ’
(i)  is invertible, z=! € My,
(iii} P.= is positive definite in Mgy.
In that case such a band extension b is given by

(3.3) b= :C"-I(Pd:l:)z—l
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Moreover, all band extensions which admit a right spectral factorization are obtained

in this way.

Proof of Theorem 1.3.1. Let b be a band extension admitting a right spectral
factorization. Since (iii) holds b= € M, allows a left spectral factorization b~ =
= a*a. with a- € M3. Put z := a*(Pya-). Then z € My,z"' € M, and
Pyz > pq,0. Now one can proceed as in the proof of Theorem 1.1.1 and obtain that

Py(kz) = P, (aZ!(Pya-)"t) =e.

This concludes the proof of the necessity.

For the converse, let z € M, be a solution to Py(kz) = e with 7! € M4
and Pz > pm,0. Let b := 2*~!(Pyz)z~!. Then Py(bz) = e. Moreover, writing
b = Pyb+ P.b + Pyb and using the multiplication table (3.1) one obtains that

Pz(b:l:) = Pz((Plb).'L’ + (Pcb):c + (P4b)l‘) = Pz((Pcb)Z).

Consequently
Py((k — (Pd)z)=e—e=0.

Using (iv) we obtain that k = Pcb. Since clearly b is positive definite we get that b is
a positive extension of k. Further, b~! = 2(Pyz)z* € M, by the multiplication table
(1.3). n

THEOREM 1.3.2. Let M be an algebra structured by the multiplication table
(3.1), satisfying (iii) and (iv), and assume that Axioms 1 and 2 hold true. Let k =
= k* € M, have a band extension b which admits a right spectral factorization. Then

for any positive extension a of k which admits a right spectral factorization
(3.4) Adb) > Arla).

Furthermore, equality holds in (3.4) if and only ifa = b.

Proof. The proof is completely analogous to the proof of Theorem 1.2.1 only

instead of using Lemma 1.2.1 one needs to use (iii). |
We can draw the same conclusion as before.

CoRroLLARY 1.3.3. Let M be an algebra structured by the muitiplication table
(3.1), satisfying (iii) and (iv), and assume that Axioms1 and 2 hold. Letk = k* € M..
Then k has at most one band extension which admits a right spectral factorization.
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CHAPTER II: TWO EXAMPLES

II.1. SEMI-INFINITE OPERATOR MATRICES

Let £ denote the linear space of all semi-infinite operator matrices V = (Vj1)$5 -,

such that
o0

> sup IVl < oo
m—go CTIFY

The entry Vi of V is assumed to be an operator from the Hilbert ;, into the Hilbert
space ;. ‘The space £ is an algebra under the usual operations of addition and

multiplication for infinite matrices. For V = (ij)?k:l we define
Pk * )00
V= (Ve i) %=1,

and this operation * is an involution on £. The element E = diag (I3,)$2; is the unit
in L.

[ooe)
We write Z for the Hilbert space @Hj. Thus Z cousists of all square summable
i=1
sequences (1;)§%, with n; ¢ H;. Note that each element V € £ induces a bounded
linear operator on 2.
We are interested in the following extension problem. Given are operators A;; =

= A}; for (4, 7) in the symmetric set of indices
(1.1) S={()eNxN i=1lor j=1 or |j—i|<m}.

Thus the giw;n data is centered around the main diagonal in a band of width m and
is located in the first row and column. We are looking for V = (V;;)§%., € £ with
the properties

(a) V induces a positive definite operator on Z;

(b) Vij = Ayj, (1,7) € S;

(©) (V™95 =0, (i,)) ¢ 5.
Such an infinite matrix V € £ will be called a (positive) band extension of { A;;|(¢, j) €
€ S}. If V only satisfies (a) and (b) we call V a positive extension of {A;; | (i, j) € S}.

TurorEM ILL1. Let S C NxN be the index set (1.1) and let A;; = A}, (4,5) €
€ S, be an opcrator from the Hilbert space H; into the Hilbert space H;. The given
data {A;; | (i,7) € S} has a positive extension if and only if

(e 9]
(1.2) > llAwl! < oo,

v=1
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the operator matrices

Ay Asj
Hj = ’ J= 1) . )m+ 1;
Ajy Ajj
(1.3) An Aljom ... Al
Ajm1 Aj_mj- Ajom,
H; = j=-m, j-mj-m j—m,j C j=mae2,
Ajl Aj’j_m Aj_.,'
are positive definite, and
(1.4) WH L H7 <M, §=1,2,...,

for a fixed M. Let X = ()A(gj)i?,‘}:l be given via

> 0
X1 ;
H;} | = 0 , 3=12,...,m+1,
X5
I
(1.5) Xy 0
Xjem,; :
Hj ]'m,J - (') ’ j:m+2)"')
% I
and X;j = 0 otherwise. Then
B:=X""1Xx"1,

with
X = (Xij)Bars Xij = Xy Xj51%,
is the unique positive band extension of {A;; | (i,j) € S}

Proof. We will obtain this theorem as a special case of Theorem 1.1.1. Let M
be the algebra £, and put

My =M= {(Vij)i5=1 €L | Vij = 0,(3,5) € S and i > j}
MG = (M3)* = {(Vij)5o € £ | Vij =0,(5,5) € S and i > j}
Ma = {(Vij)5=1 €L | Vij = 0,i# 5}
It is easy to see that M is an algebra structured by the multiplication table (1.2).

Assume that (1.2) and (1.4) hold true, and that H; > 0 for j € N. Put 4 =
= (Aij)f%=, where A;; for (i,j) € S are given matrices and A;; = 0 for (4,5) ¢ S.
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Since (1.2) and (1.4) hold true A € M, and thus A € M. Equation (I1.1.4) with
k = A has the unique solution z = X, where X is as in the theorem. It follows from
the uniformly boundedness of i, 1> 0 that

Pyz = diag ((Akk - AklAl—llAlk)_l)zozl

is positive definite.
It remains to show that X! € M. When this is proven Theorem II.1.1 follows
directly from. Theorem I.1.1.

Denote
H __[Au A(ljz)] x0 - %
o m=[ig gl K=K
X = L i=1,..m+1 xP = |, i>m+2
Xij Xjj
and 0
P= :
0
I

Then (1.5) becomes
Ay AR X 0
(&) L) | = o k=12,
Az Az X; P
Using the invertibility of A( ) we may rewrite this as

1 Aggmg?-l] [AII-A(“)A(‘“)‘ A o ]
0 I 0 A5

(ten ) (Gi0) = ()
AP 4, 1) L xW) T e )

HOE P
v )= L ax® 4 x )

With this notation (1.6) becomes

(1.6)

Put

[/,sﬂl-A(’")A(’“) a0 ] [Y(’“)] _ [_A(l’;)Ag’;)"‘P]
0 AR B P '
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Thus

-1
Yl(k) — (All _ A(k)A(k) 1A(’i)) Ag’;)A(zl;)_IP,
Y = AP

Let Y = (Y;;){%= be given via

[ Y1
=Y, j=1,...,m+1,
L Y5
RIELY
: =YP, j=m+2,...
L Yj;

and Y;; = 0 otherwise. We know from [7, §I1.3] that Y is invertible in M and that
Y-le M. Write

= (N ) = (N )

where the decomposition is described by requiring to have in the upper left corner of
X22(p)(Y22(p)) the entry X,,(Yyp). Note now that

||X22(p) Yzz(p)” < Z ||A(’") IA(’“)X(’C)” _
k=p

Y\ — 1 3
AL AL (An - 4D AL 4D a0 AH P <

k=p

] r k k
Z||A< lAg: ’||||HU|||1PH<MZZIIA‘ )

k= . =p

where M is such that ||[H;'||< M and ||A(") Y1< M for all k. Since

o ] L o0
S ARlU<m Y Avll
k=p k=p-m

[~
and Z [|A1,k|| < oo we get that for an arbitrary ¢ > 0
k=1

1 X22(p) — Yaa(p)ll < €

when p is large enough. But since Ygg(p) is invertible and its inverse is upper trian-

gular, the same holds for X32(p) for p large enough. Clearly X, (p) is invertible (its
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diagonal elements are) and X, 1(p)~" is upper triangular. Buth then X is invertible

and . X R
-1 = [XII(P)'I =X11(p)~ X12(p) X22(p)~* ]
B 0 Xoa2(p)~?

is upper triangular. Further, it is easy to see that X has diagonals which are summable
in norm. But then the same holds for X~!.
This concludes the proof of Theorem I1.1.1. ]

The maximum entropy principle for this case read as follows.

THEOREM I1.1.3. Let S C NxN be the index set (1.1) and let A;; = A};, (4,7) €
€ S, be an vperator fromn the Hilbert space H; into the Hilbert space H;. Suppose
that the operator matrices H;, j = 1,2,..., defined in (1.3), are positive definite, and
that (1.2) and (1.4) hold true. Put

0
M;=[0...00H;" (; L i=1,2,... .
I

If C = (Cij)% =, is a positive extension of {A;; | (¢,7) € S}, then

(1.7) Cu MY, AYC)SMTY k=23,...,
where
Cu .. Cu-r 17'[ Cu
1 (C) = Crx ~[Cr1 - . .Ci k1] : : : : , k=2,3,...
Ciz1,p oo Crerp-1 Cr-1,k

Equality holds in (1.7) if and only if C is the unique positive band extension of the
given data.

Proof. Let M be the same algebra structured by the multiplication table (1.2)
as in the proof of Theorem II.1.1. It is easy to check that M satisfies the Axioms 1
and 2 in Section 1.2.

Let B be the band extension of the given band. From the factorization B =
= X*~1X~1 in Theorem II.1.1 it follows that diag (Mi"l) is precisely the right mul-
tiplicative diagonal of B. The right multiplicative diagonal of C is given by diag
(47 (C)) (with AJ(C) = C11). But then the theorem follows directly from Theorem
1.2.1. |
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II.2. FREDHOLM INTEGRAL OPERATORS

In this section we apply the abstract results of Section 1.1 to functions f which
may be viewed as kernels of integral operators.
Let D c [0,1] x [0, 1] be the domain

D={(t,s)€[0,1]?|t—T<s<t+Tors<aort<al.

Here o and 7 are fixed numbers between 0 and 1.
Introduce F = Fp to be the class of n x n matrix valued functions f(t,s) which
are defined on the square [0,1] x [0, 1], continuous on each of the open regions

4y ={(t,s) €[0,1)* | t < s and (¢,5) € D},
Ay ={(t,s) €[0,1)? | t < s and (¢,s) € D},
Az = {(t,s) €[0,1)° | t < s and (¢, s) € D},
Ay ={(t,s) €[0,1)% |t < s and (¢,5) & D},

and the restriction f; of f to A; extends continuously to the closure A;. The set F is

an algebra with the usual addition of functions, and the multiplication defined by

(f *9)(t, ) = / £(t, u)g(u, 5)ds.

Also, F has a natural involution *, namely
(2.1) Fr(t,s) == f(s,1)*.

Then * in the right hand side of (2.1) is the usnal adjoint of a matrix. We shall say
that f € F is regular in F if there exists a ¢ € F such that

f+g+f*xg=0, g+f+g+xf=0.

In that case g is uniquely determined by f and denoted by f1. _
Given f € F we shall write F for the integral operator on L2[0, 1] with kernel f.
Thus

1
(Fe)t) = [ 1t s)pl)ds, O<t<l.
0
Similarly, G stands for the integral operator with kernel g. If f is regular in F, then

f1 is precisely the kernel of the integral operator (I = F)~! - I; in other words, f! is
the resolvent kernel. Furthermore, F* is the integral operator with kernel f*.
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We shall deal with the following extension problem. Let
ke F.:= {fe}-‘ f(t!s) =0, (t!s)e AIUA4}'

A matrix valued function ¢ € F is called a positive extension of k if k(t,s) =
= ¢(t,s), (t,s) € A2 U Az and I - G is a positive operator on LZ2[0,1]. To find
such a g we need some additional notation. For £ € [0,1] let J;¢ denote the open set
in [0, 1] given by

Je={t:t<§, (t,€) € D}.

For k € F. and € € [0,1] let A;¢ denote the integral operator on L2(Jg) which is
defined by

(2.2) (AreR)®) = () = [ Kt o)p(s)s, 1€ .
Je

THEOREM I1.2.1. Let k € F. be given, and suppose that for every € in the
interval 0 < £ < 1 the operator Ay ¢ in (2.2) is positive definite. Let ¢ be given by

(2.3) 2(t,5) - / k(t, u)e(u, s)du = k(t, ),
Js

fort € J,, 0 < s <1, and z(t,s) = 0 elsewhere. Then z is regular in F and the
function f € F given by

—f=zl4 (,,'r)* + (zt)* x !

is the unique positive extension f € F of k with f! € F..

Proof. We will obtain this theorem as a special case of Theorem 1.1.1. Let M
be the direct linear span of {F, I,} where I, denotes the n x n identity matrix. The
multiplication on M is defined by

(Ma+ f)(pIn +9) = Apln + Ag+ pf + f*g.
The unit in M is I,, and the involution * is defined by (A, + f)* := M, + f*. Let

My = {feM; fla; =0, j=2,3,4}
My = {f e M; fl4; =0, j=1,3,4}
Mgy :={Al;; AeC}

MG = (M3)*, My:=Mj.
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Then clearly (I1.1.1) holds and the decomposition satisfies (i) and (ii). In order to
see that indeed the multiplication table (I.1.2) holds true one needs to make several
straightforward calculations. Let us write out one of them, and prove that MM C
C M. Solet f € M3 and g € M} and take (t,5) ¢ D. We have to show that
(f * g)(t,s) = 0. Indeed, since f € M3 we have that supp f C A, C D and likewise
suppg C A3z C D. But then

1

(9w = [t odu= [ ftugudu=0
0

max{t,s}

since (¢,s) ¢ D, and u2s and u>t imply that either (t,u) ¢ D or (u,s) ¢ D
(depending on whether s>t ort>s).

Now we can apply Theorem 1.1.1 on the element I, — k € M.. This means that
we have to solve the equation

Po((In = k)(In + 7)) = In,

which precisely comes down to equation (2.3). The main difficulty is to show that z
belongs to the algebra M. As soon as this is done, clearly I, +z € My, Py(In+z) =
= I, is positive definite and z is regular with z! € M. The latter holds since z is
the kernel belonging to a Volterra operator. Thus it remains to show that z € M.
This follows from the next proposition.

ProrosITION [1.2.2. Let
J¢ = (max{0,£ ~ 7}, min{1,£}) U (e, 1),

and k € F. and suppose that for € € [0, 1] the operator A¢ on L3(J¢) defined by
(2.4) (Aee)(t) = () = [ ke, )pls)ds, te T,
Je
is invertible. Then, for each s € [0, 1], the equation
(2.5) z,(t) — /k(t,u):c,(u)du =k(t,s), telJ,,
Js

has a unique solution z,, and
z(t,s) := z,(t)

belongs to M (or, in fact, to M3).
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Proof. The fact that (2.4) has a unique solution follows directly from the in-
vertibility of A.. We have to prove & € M, i.e., 2|4; is a continuous and allows a

continuous extension to A;, ¢ = 1,2,3,4. First note that

T(t ,) . {’)’(t,-?), tEJSy
T, tgJ,,

where ¢ denotes the kernel of the integral operator A;l — 1. Thus it suffices to prove
that v¢ (¢, 5) is jointly continuous in the variables (,,s) on [0, 1] x A; providing that
(¢, 8) € [0, J2N{Je x J¢). The latter follows from the following adjustment of Theorem
3.3 in [2].

ProrosiTioN 11.2.3. Let f € M and introduce for 0<a < b<cg<d< the
operator Agpea on LE([a,b]U e, &) by

5 d
(Acseas) () = (t) — /f(t,b‘)w(s)ds _J/f(t,syP(S)ds-

Suppose that Agpeq is invertible on L2([e,b]U [c,d]). Then there exists a § > 0 such
that Agprergs is invertible on L2 ([a’, "1 U[c!, d')) for every 0< a’ < b < ¢’ < d' €1 with

le —a'] <8, b—-¥bj< 8 |c-~c| < §and|d—d'] <8, and the kernels y4p1er0r Of
Agiprergr -~ I are uniforinly bounded:

[Varsrera ()] S M < o0

fort,s € [’ VUl d'], jo—a'| < §,1b-b'| < §,|c—c'| < 6 and |[d—d'| < §. Moreover,
Yarsterar (2, 8) jointly continucus in all six variables in the appropriate domains: given

any & > ) there exists a 8 < § such that
h’mbcd(d: 3) - 7a’b’c’d’(t‘! S,)' <§g,
whenever ‘¢-a'{ < &, (b= < & je-| < &, 1d-d'| < &, (1, s) € 4;0(]a, b]Ulc, d})?,

and (8,8 € A n{le!, VU e, dND?, fori=1,2,3,4.
{ ! )

Proof. 'The proof of Theorem 3.3 in [2] generalizes straightforwardly to this
case. o

The proof of Theorem I1.2.1 is now complete. ]
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CHAPTER III. MATRICES AND GRAPHS

II1.1 PATTERNS AND TABLES

Let M be the algebra of n x n operator matrices (A4;)!';=;, where A;; is an
operator from the (nontrivial) Hilbert space M; into the (nontrivial) Hilbert space
H;. Given a pattern S C n x n, i.e.,, S is a symmetric index set containing the
diagonal ({i,7) € S, and (¢,7) € S implies (j,7) € S), we can make an additive
decomposition of M as follows:

(1.1) - M = M+ MO+ My+Mi+M,,
where

My = {(A5)]j2y | Aij =0 for i j and (i, j) € 5}
M= {(A)};, | Ay =0fori>j and (i,5) ¢ S}
Ma = {(4i5)};y | Ay =0for i # 5}

M§ = {(Ai)};c; | Ay = 0for i< and (i,5) ¢ S
Ma = {(A5);0, | Ay = 0for i< and (i, j) € S}

We shall refer to this decomposition as the decomposition of M induced by the
pattern S.

It is obvious that different types of patterns lead to different types of multi-
plication rules between the subspaces in the induced decomposition. The following
proposition makes the connection between certain types of patterns and multiplication
tables.

We call a pattern S row-diagonally connected if (z,5) € S and i<k <j imply
(i,k) € S. We call S column-diagonally connected if (¢,§) € S and i< k< j imply
(k,j) € S. Pattern which are both row- and column-diagonally connected are called
generalized block banded. Such a pattern is characterized by the condition that
(3,7) € S and i<k, i< imply (k,I) € S. A pattern S is called perfect if (i, k) €
€ S,(j, k) € Sand i,j <k imply (7,5) € S.

We introduce the following multiplication tables:
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lft\right | My M3 My M3 My
My | My My M; MM, M
(ME) M3 ML oML M) M. Mc+M,
’ My My MY Mg M3 My
M M M M M M,
My M M My M My
left\rfaght M Mg My Mg My
My M M M ME M
MC) M3 M; M MM M
’ My My M$ Mg MY My
M M+M; M. My ME OMO
M M MAMs My My M,
left\right | My MY Mg M M,
My My M M MEOM
(MB) M My MG MY M. M
’ My My M Mg MY My
M M M. MY MY My
My M M My My My
loft\right My M Mg M3 My
My MG M My MM
(1P) MS M§ My Mz M. M
’ My M M) Mg M) My
M MEAM. M M3 M My
My M MM My M2 MO

Provositiox IIL1.1. Let S be a n x » be a pattern. Then
(i) § is row-diagonally connected if and only if the induced decomposition of
M satisties the muliiplication table (MR).
(i) S is column-diagonally connected if and only if the induced decomposition
of M satisfics the multiplication table (MC).
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(iii) S is generalized block banded if and only if the induced decomposition of M
satisfies the multiplication table (MB).

(iv) S is perfect if and only if the induced decomposition of M satisfies the table
(MP).

Proof. To prove (i) let S be row-diagonally connected. It is straightforward to
check that the decomposition of M induced by S satisfied (MR). As an illustration
we prove that MgM; C MS. Let F = (Fij)tj=1 € M$ and G = (Gij)?j=1 € M1
Then Fj; = 0 for i< j and (4,7) ¢ S and G;; = 0 for i>j and (4,5) € S. Let now
122 7. Then

(FG)ij = ZFi‘lej'
=1
Suppose Fij; # 0. Then i > q and (¢,9) € S. If j<q then G4; = 0. If j > ¢, then,
since S is row-diagonally connected, we have (q,7) € S. But then also in this case
G;j = 0. Consequently, (FG);; = 0. This proves M§M; C Mg_.

For the converse, suppose that the decomposition (1.1) satisfies (MR). Then, in
particular, MlMi C M;. Suppose now that (i, k) € S, and let 7 > k. Introduce
A = (Apg)p =1, B = (Bpy)p g=1 With Ay = 0 for (p,q) # (i,k), Bpg = 0 for (p,q) #
# (k,j) and AixBij # 0. Then A € M; and B € M}. Thus AB € M;. Since
(AB)pg = 0 for (p,q) € S we must have that (z,7) ¢ S. But now we may conclude
that S is row-diagonally connected.

The proof of (ii) is similar to that of (i).

For (iii) note that if S is a generalized block banded the pattern S is both row- and
column-diagonally connected. Thus the induced decomposition satisfies both (MR)
and (MC), and consequently (MB). Conversely, if a decomposition (1.1) satisfied
(MB), then it satisfies in particular both (MC) and (MR). But then by (i) and (ii) S
must be both row- and column-diagonally connected, implying that S is generalized
block banded.

It is easy to prove that if S is perfect the induced decomposition satisfies (MP).
Let us prove the converse. If (MP) holds then MaM3 C M.. Let (i,k) € S, (k,j) €
€ Sand i,j < k. Put A = (Apg)ps=1,B = (Bpg)pe=1 With 4,y = 0 for (p,q) #
# (i, k), Bpg = 0 for (p,q) # (k,j) and A Bij # 0. Then A € M3, B € MQ so AB
must be in M.. Since (AB);; = A;xBij # 0 clearly we have (7,5) € S. a

III.2. THE EXTENSION PROBLEM

The following theorem generalizes the result of [2] for band patterns to row-
diagonally patterns.
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THEOREM IIL.2.1. Let S C nn x n be a row-diagonally connected pattern, and

let A;j = A%;,(4,j) € S, be an operator from the Ililbert space H; into the Hilbert

space M;. Then there exists a positive definite block matrix B = (B;;); -, with
Bij = Ay;,{3,j) € S, if and only if the operator matrices

(21) Hk = (Aij)i,jesk; k:l,...,n,

are positive definite. Here

St={penl!(pk)€eSand p<k}.

In that case, if Sy = {py,...,ps,} fork=1,...,nwithpy < ... <ps, =k, put

5 0
Xp, & :

(2.2) : = Hi! (‘) , k=1,...,n,
’\'Psk;k I

and let X = (X;1)!',_, be given by

0, i ¢ Si;
2.3 Xip = L a1/ .
( ) k {Xa-kak”', 1€ Sy.

Then
B:=X*""'x"!

is the unique positive definite operator matrix B = (By;); -, with Bij = Aij, (4,) €
€S and (B~%);; =0,(5,/)¢S.

Proof. We will obtain this theorem as a special case of Theorem I.1.1. Let M be
the algebra of operator matrices IF = (F;;)7; = with Aij:H; — H;. The unit in M is
the identity block matrix diag(Ix,)"., and the involution * on M is the usual adjoint
of operator matrices. Make the decomposition (1.1) of M induced by S. Since S is
row-diagonally connected the subspaces satisfy the multiplication (1.1.2) (Proposition
I1.1.1).

Put A = (A;;)?;=1, where A;; for (4,j) € S are given operators and A;; = 0 for
(?,7) ¢ S. Then A = A* € M.. The equation (I.1.5) with & = A has the unique
solution z = X, where X = (Xij)?,j:xx with X;; for (i,7) € S and i< j given by (2.1)
and Xj;; == 0 otherwise. Since the matrices i,k = 1,...,n, are positive definite and

Xge is the right lower entry of H; ! we have that

Pz = dlag (/{’kk)'IE:l
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is positive definite. Further, since X is upper triangular with an invertible diagonal,
! = X! € M,.. But then theorem follows immediately from Theorem 1.1.1, where
the uniqueness of the extension B follows form the uniqueness of the solution z to
the equation Py(kz) =e. |

We refer to the operator matrix B in Theorem II1.2.1 as the band extension of
the given data {A;; | (¢,7) € S}.

THEOREM II1.2.2. Let S C n X n be a row-diagonally connected pattern, and
let A;j = Aj; be an operator from the Hilbert space H; into the Hilbert space H;.
Suppose that the operator matrices Hj, defined in (2.1), are positive definite (j =

=1,...,n). Put
0

M;:=[0--0NH 0 L oi=1,..

1
Then, ifC = (Cij)} ;= is a positive definite operator matrix with Cj; = A;j,(i,7) € S,
then

(2.4) AL O)SMTY, k=1,...,n,
where
| Cu ... Cip—r 17
#(C) = Crr — [Cr1- - Crp-1] :
Ci-11 - Crorp—1
Crk
: , k=1,...,n.
Cr-1k

Moreover, equality holds for k = 1,...,n in (2.4) if and only if C is the unique band
extension of the given data.

Proof. The proof is similar to the proof of Theorem I1.1.3. ]
Theorem I11.2.2 has the following corollary.

CoroLLARY II1.2.3. Let S C nxn be row-diagonally connected and let A;; = A5
be matrices of size v; x v; for (i,j) € S. Suppose that the matrices H;,j = 1,...,n,
defined in (2.1), are positive definite. Then the unique positive definite block matrix
B = (B;j)? ;=) with Bi; = Ayj,(,5) € S, and (B~');; = 0, (4,j) & S, has the property
that

(2.5) det B> det C,
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where C = (Cij){ ;=1 is any positive definite block matrix with C;; = A;j for (4, 5) € S.
Moreover, equality holds in (2.5) if and only if B = C.

Proof. Use that the determinant of a positive definite block matrix equals the
determinart of its right multiplicative diagonal, and the fact that > G and F # G
implies that det ' >detG. ]

Using the results in Section 1.3 one can prove similar results as Theorem II1.2.1
and I11.2.2 for the case of perfect patterns as well. This requires among others to check
the requireinents (iii) and (iv) in Section I.3 on the algebra M of finite operator
matrices. In the paper[l] it is shown that for the case of perfect patterns thesc
requirements are fulfilled. The analogs of Theorems II1.2.1 and I11.2.2 for this case

also appear in [1].

IIL3. PATTERNS AND GRAPHS

Let S ¢ n x n be a pattern. We associate with S an undirect graph G without
loops or multiple edges as follows. Let the set of vertices V be n and there is an edge
between vertex ¢ and vertex j if ¢ # j and (7,7) € S. Conversely, if G = (V, E) is an
undirect graph without loops or multipie edges then after choosing a numbering of
the nodes we can associate a pattern as follows. If the vertices are numbered from 1

to n, then the associated pattern S C n x n is given by
S = {(¢,7) | i € n} U {(7, ) | there is an edge between i and j }.

A graph is called chordal if every cycle of lenght strictly greater than 3 (ie., a
sequence of pairwise distinct vertices vy,...,v, with s > 3 with the property that
there is an edge between v; and vi41,¢=1,...,s (here v,41 = v;)) possesses a chord,
that is an edge joining two nonconsecutive vertices of the cycle. An undirect graph is
called an interval graph if its vertices can be put into one-to-one correspondence with a
set, of closed finite intervals F of the real line R such that two vertices are connected by
an edge of G if and only if their corresponding intervals have a nonempty intersection.
It is known that an interval graph is chordal (see [9], and also the appendix in [10]).

The converse is not true, and the standard example is the graph

An interval graph is called a proper interval graph if each interval may be taken to
have unit lenght.
The following proposition translates the properties of patterns, introduced in

Section II1.1.. into properties of the associated graph and vice versa.
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ProposiTiON II1.3.1. (i) If a pattern S C n x n is perfect then its associated
graph is a chordal graph. Conversely, if G is a chordal graph then there exists a
numbering of the vertices such that the associated pattern is perfect.

(ii) Ifapattern S C nxn is row-(column-)diagonally connected, then its associated
graph is an interval graph. Conversely, ifG is an interval graph then there is a numbering
of the vertices such that the associated pattern is row-(column- )diagonally connected.

(iii) If a pattern S C n X n is generalized block banded then its associated graph
is a proper interval graph. Conversely, if G is a proper interval graph then there exists
anumbering of the vertices such that the associated pattern is generalized block banded.

Proof. (i) This is a classical result (see [9]). The appropriate ordering is usually
referred to as a perfect elimination scheme.

(ii) Let (V, E') be an interval graph. Number the vertices in such a way so that
the intervals I; C R corresponding to vertex j have the property that

minl; K minfj4;, j=1,...,|V|-1.
If there is an edge between vertex ¢ and j and i< j, then minJ; € I;. But then for
ikg)
min Iy € [minf;, minI;] C I;
so that I N I; # @. Thus there is an edge between 7 and k. But then it follows that
the corresponding pattern is row-diagonally connected. In order to make the pattern
column-diagonally connected one should require that
maxli < max Ly, i=1,...,]V|-1
For the converse, let S be row-diagonally connected. Put
L :=[8(),1], it=1,...,n,

where (i) = min{j | (i,5) € S}. It is easy to see that (i,7) € S if and only if
IinI; # @. But then the graph associated with S is an interval graph.
For (iil) note that if the intervals have unit lenght, then

(3.1) minl; K minlj4, j=1,...,|V|-1,
implies
(3.2) maxI; { maxIjy,, j=1,...,|V|-1.

This implies that for a suitable ordering the pattern associated with a proper interval
graph is generalized block banded.

For the converse, remark that if a set of finite intervals I, ..., I, have the prop-
erties (3.1) and (3.2) then one can make the intervals of unit lenght without changing

the existence of an overlap between pairs of intervals. : [ ]
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